
Mayer et al. EURASIP Journal on Embedded Systems  (2016) 2016:8 
DOI 10.1186/s13639-016-0025-y

RESEARCH Open Access

Exploiting joint sparsity in compressed
sensing-based RFID
Martin Mayer1,2*, Gabor Hannak1 and Norbert Goertz1

Abstract

We propose a novel scheme to improve compressed sensing (CS)-based radio frequency identification (RFID) by
exploiting multiple measurement vectors. Multiple measurement vectors are obtained by employingmultiple receive
antennas at the reader or by separation into real and imaginary parts. Our problem formulation renders the
corresponding signal vectors jointly sparse, which in turn enables the utilization of CS. Moreover, the joint sparsity is
exploited by an appropriate algorithm.
We formulate the multiple measurement vector problem in CS-based RFID and demonstrate how a joint recovery of
the signal vectors strongly improves the identification speed and noise robustness. The key insight is as follows:
Multiple measurement vectors allow to shorten the CS measurement phase, which translates to shortened tag
responses in RFID. Furthermore, the new approach enables robust signal support estimation and no longer requires
prior knowledge of the number of activated tags.

Keywords: Compressed sensing, Approximate message passing, Joint sparsity, Multiple measurement vectors,
Backscatter communication, Multiple access

1 Introduction
In radio frequency identification (RFID), a reader device
interrogates tags for identification. A large branch of RFID
deals with the identification of a multitude of tags that
may identify, e.g., products in a store, parts on a conveyor
belt, or items in a warehouse. Predominantly, passive tags
that are powered by the field emitted by the reader are
employed. Such tags are cheap and can be produced in
high volumes, which has made RFID a ubiquitous tech-
nology. An overview is provided in [1, 2].
Reducing the identification time and promoting quick

identification of many tags has been a major research field
in recent years. The key problem in customary protocols
arises from collisions during interrogation: If several tags
respond simultaneously, their responses superimpose at
the reader and cause collisions, resulting in loss of data.
The widely adopted EPCglobal standard [3] employs a
collision avoidance protocol called frame slotted ALOHA

*Correspondence: martin.mayer@nt.tuwien.ac.at
1Institute of Telecommunications, TU Wien, Gusshausstrasse 25/389, A-1040,
Vienna, Austria
2Christian Doppler Laboratory for Wireless Technologies for Sustainable
Mobility, Gusshausstrasse 25/389, A-1040, Vienna, Austria

(FSA)—a summary of collision avoidance schemes is pro-
vided by [4, 5]. These protocols separate the tag responses
in the time domain. The authors in [6–8] improve FSA by
performing collision recovery, which is accomplished by
separating tag responses in the in-phase and quadrature-
phase plane and by employing multiple receive antennas
at the reader to resolve multiple collisions.
The compressed sensing (CS)-based identification pro-

tocols [9–14], on the other hand, cope with simultane-
ously responding tags and exploit collisions. This bears
several advantages over FSA-based schemes, as reported
in, e.g., [9, 14]. In particular, CS enables a quicker iden-
tification and provides an increased noise robustness. In
this work, we demonstrate that CS-based schemes can
be improved significantly if joint sparsity is exploited. To
the best of the authors’ knowledge, this is truly novel in
the realm of CS-based RFID, denoted as CS-RFID in the
sequel. We discuss how multiple receive antennas at the
reader and the separation into real and imaginary parts
lead to a CS problem with inherent joint sparsity.
We employ the Bayesian structured signal approximate

message passing (BASSAMP) algorithm [15] in order to
exploit the joint sparsity. While the number of activated
tags is assumed to be known or has to be estimated in
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an additional step in the current state-of-the-art protocols
[9–14], we demonstrate how our approach eliminates the
need for such prior knowledge by exploiting a novel signal
support estimation scheme. Note that we do not present
a new protocol but an improvement of the CS formu-
lation that is applicable to all present protocols [9–14].
The benefits of our novel formulation comprise a strongly
increased identification throughput, an increased noise
robustness, and an implicit estimation of the number of
activated tags.
Outline: In Section 2, we briefly summarize CS and

introduce the concept of multiple measurement vectors
and joint sparsity. Section 3 gives an overview of CS-
RFID and discusses our novel contributions. Section 4
explains the origins of joint sparsity in CS-RFID and high-
lights the advantages of its exploitation. In Section 5, the
channel model and channel coefficient distribution are
introduced, and the BASSAMP algorithm is defined for
the RFID scenario. Section 6 deals with the estimation
of the signal support and the number of activated tags.
Numerical results are provided and discussed in Section 7,
and we conclude in Section 8.
Notation: Boldface letters such asA and a denote matri-

ces and vectors, respectively. The bth column of a matrix
A is denoted ab, while the nth entry of the bth column is
denoted an,b. The superscript (·)T denotes the transposi-
tion of a matrix or vector, and (·)H denotes the conjugate
transpose. The vectorization of an M × N matrix into a
column vector is denoted A(:) ≡ [aT1 , ..., aTN ]T.
TheN×NB all-onematrix is denoted 1N×NB . The Frobe-

nius norm of amatrixA is denoted ‖A‖F = √trace(AAH).
Calligraphic letters such as S denote sets.
The cardinality of a set S is denoted by |S|. Random

variables, vectors, and matrices are written in sans serif
font as x, x, and X, respectively, while realizations thereof
are written in serif as x, x, and X.

2 Compressed sensing and joint sparsity
CS—introduced in [16, 17] and discussed in [18, 19]—
aims at reconstructing a signal vector x ∈ C

N from
M < N noisy linear measurements

y = Ax + w, (1)

where y ∈ C
M is the measurement vector, A ∈ R

M×N is
the fixed sensing matrix, andw ∈ C

M is additive measure-
ment noise. If the signal vector x features only K � N
nonzero entries, it is said to be K-sparse.
Using randomly generated sensing matrices with i.i.d.

(sub-)Gaussian entries, x can be reconstructed from (1)
by [20]

M =
⌈
cK log

N
K

⌉
(2)

measurements, with a small constant c. Most importantly
for CS-RFID, this holds for Rademacher distributed sens-
ing matrices where the entries are picked from the set
{−1, 1} with equal probability.
While many recovery algorithms aiming at solving (1)

for x have been proposed in literature [18, 19], we uti-
lize the versatile approximate message passing (AMP)
framework that was introduced in [21–23]. These algo-
rithms enable efficient recovery with low computational
complexity, while maintaining excellent recovery perfor-
mance. Note that the CS-RFID schemes presented in
[9–11] utilize computationally demanding convex opti-
mization algorithms, while the schemes in [12–14]
employ an efficient AMP algorithm that iteratively
solves the least absolute shrinkage and selection oper-
ator (LASSO) [24]. In this work, we utilize a powerful
extension of the AMP algorithm—termed BASSAMP and
introduced in [15]—that allows to leverage prior knowl-
edge and joint sparsity. A detailed specification follows in
Section 5.
Joint sparsity is defined as havingNB signal vectors xb ∈

C
N , b ∈ B = {1, ...,NB}, that share a common support

Sx ≡ Sxb ,∀b ∈ B, (3)

where Sxb contains the indices of the nonzero entries in
xb. Aside from having the same support, all vectors are K
sparse with |Sx| = K � N .
In general, we obtain NB measurement vectors similar

to (1):

yb = A(b)xb + wb, (4)

where yb ∈ C
M, A(b) ∈ R

M×N , and wb ∈ C
M. Let us

collect the data blocks in matrices: Y =[ y1, ..., yb, ..., yNB ],
X =[ x1, ..., xb, ..., xNB ], andW =[w1, ...,wb, ...,wNB ].
If all NB sensing matrices are identical, i.e., A ≡

A(b),∀b ∈ B, (4) can be rewritten as Y = AX + W. This is
the relevant case for our approach.

3 CS-RFID: Related work and novel contributions
The emerging field of CS triggered a shift of paradigm
in signal processing and digital communications that also
sparked new ideas in the field of RFID. In this work,
we focus on protocols where a single reader identifies a
multitude of tags. It is investigated how multiple receive
antennas at the reader improve the performance.
We assume commonly used passive RFID tags that

employ backscatter modulation to convey information
back to the reader [25]. Before going into details about the
CS-RFID protocols presented in [9–14], let us first discuss
what those schemes have in common.

3.1 CS-RFID problem formulation
All CS-based identification protocols [9–14] share a com-
mon problem formulation that can be interpreted as a
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compressed sensing measurement similar to (1). Let us
recapitulate how this formulation is obtained.

• We intend to identify K tags that are activated by the
reader (i.e., are in read range).

• After a query from the reader, all K tags respond
simultaneously with a signature sequence.

• Activated tag k responds with signature sak , where
ak ∈ {1, ...,N} is the signature index, and there are N
possible signatures in total.

• Each signature entails M real-valued (ASK) symbols,
i.e., sak ∈ {b0, b1}M (the two amplitudes of
backscatter modulation).

• The N signature sequences form the columns of the
signature matrix S =[ s1, ..., sN ]∈ {b0, b1}M×N . The
signature sequences are generated pseudo-randomly,
each with a certain seed [26]. The possible seeds are
known to the reader such that it can construct S.

As a response to a query, the reader receives a super-
position of signature sequences sak that are weighted with
the respective channel coefficients hk , which we formulate
as CS measurement

z =
K∑

k=1
sakhk + w = Sx + w, (5)

where the nonzero entries of x ∈ C
N store the complex-

valued channel coefficients and dictate which columns in
S are selected, and with w ∈ C

M being additive Gaussian
measurement noise with i.i.d. entries wm ∼ CN (0, σ 2

w). In
our application, x is a sparse vector with K � N nonzero
entries, i.e., there are much fewer signatures (or tags to be
identified) than exist in total. Our goal is to recover x from
z knowing S, because the locations of the nonzero entries
in x tell us which signatures have been chosen by the
tags. This information is used to directly identify the tags
[12, 14] or to establish a handshake mechanism in order
to read out the tag information in an additional step
[9–11, 13].

3.2 CS-RFID overview
Let us give an overview of the individual protocols. Most
tag identification protocols can be separated into two
subsequent phases:
Tag acquisition refers to the process of obtaining infor-

mation about the activated tags in order to communicate
with them. Data read-out refers to the process of obtain-
ing the data (payload) of the acquired tags. For exam-
ple, the widely employed FSA protocol [3] schedules the
activated tags to respond during time slots in a frame,
thereby trying to avoid collisions in the acquisition phase.
The tags respond with a 16-bit pseudo-random sequence
called RN16 [3]. The reader acquires the uncorrupted
RN16 sequences from collision free slots, which enables a

successful handshake mechanism with the corresponding
tags. After acquisition, the data that identifies the tags is
read out in a sequential manner (tag by tag). Let us discuss
how these phases are handled by CS-RFID protocols.

Buzz: This CS-based scheme was introduced in [9].
During the acquisition phase, the tags respond simul-

taneously with pseudo-random sequences that are seeded
by the tag’s temporary identifier, which is a 16-bit random
number (i.e., the RN16 number a tag would have picked
for FSA). This is formulated as a CS measurement (5).
Because the total number of possible identifiers (signa-
tures in S) is N = 216, the CS measurement (5) features a
very large sensing matrix S that renders an efficient recov-
ery of x infeasible. The scale of the problem is reduced by
hashing the identifiers into buckets [9] and eliminating the
buckets that contain no energy, thereby strongly reduc-
ing the number of possible signatures (and, consequently,
N). However, this requires knowledge of the number of
activated tags K that has to be estimated in a prior step.
An improved scale reduction that utilizes a gradient algo-
rithm was introduced in [10]. Another improvement that
does not require arbitrary restrictions of the huge initial
identifier space was proposed in [11].

In the data read-out phase, the tags respond simulta-
neously as well. Based on the temporary identifier (that
is now known to the reader), each tag generates a ran-
dom sequence of bits. If a bit is ‘1’, the tag transmits its
data, whereas it is silent if a bit is ‘0’. This results in a rate-
less code; the superposition of the randomly encoded tag
responses can be decoded by a belief propagation decoder,
for details, see [9].
CSF: In [12], we introduced a scheme to quickly iden-
tify tags in applications with fixed inventory, e.g., a book
store with N books, and K � N books are brought to the
checkout to be identified. Each of the N tags features a
unique signature (identifier) that is not based on a random
number.

During the acquisition phase, the tags respond simulta-
neously with their signature sequence—this process is cast
as a CSmeasurement (5). Recovering x from S yields com-
plete identification because each signature corresponds to
a unique item of the inventory, no data read-out phase is
required for identification.

Another novelty proposed in [12] was the utilization
and investigation of an AMP recovery algorithm that
enables efficient iterative recovery of large-scale CS prob-
lems.
CSR: In [13, 14], a flexible alternative to CSF was
introduced that allows for arbitrary inventory sizes.

During the acquisition phase, the tags respond simulta-
neously with a signature sequence that is randomly chosen
from a pool of N possible signatures (N is now a design
parameter). Recovering x form S yields the estimated set
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of assigned signatures. A scale reduction as in Buzz is not
required.

In the data read-out phase, these signatures are
enquired and the corresponding tags that recognize their
signature transmit their data. In [13, 14], the data is read
out in a sequential manner (tag by tag). However, it is also
possible to employ the rate-less code scheme from Buzz
[9].

In [14], the optimal choices of signature length M and
signature pool size N based on the number of tags K have
been discussed.

A brief overview of the aforementioned schemes is
provided in Table 1.

3.3 Novel contributions
All CS-RFID protocols feature the same problem
formulation (5) for tag acquisition. This is the key aspect
that we build and improve upon throughout this work,
i.e., we improve the CS recovery scheme for RFID
applications rather than proposing a new protocol. Our
novel contributions are as follows:

• We identify the origins of joint sparsity in CS-RFID
and provide a mathematical problem formulation. In
particular, a reader with multiple receive antennas
features multiple jointly sparse signals, and a
separation into real and imaginary parts doubles their
number.

• We adapt BASSAMP—an algorithm used for CS
recovery of jointly sparse signals—to the RFID
problem formulation. This adaptation involves the
calculation of several functions—used in the
algorithm—for a specific channel coefficient prior
distribution. We perform a rigorous calculation for a
dyadic channel model, where the individual channels
are Gaussian distributed, and finally provide closed
form expressions for those functions. This allows for
a straightforward implementation of the algorithm.

• We propose a relaxation of the channel prior
distribution in order to obtain simpler functions and
to further reduce the computational complexity
(reader side) of the implementation. This relaxation
is validated by experiments.

• We introduce a novel approach for robust signal
support estimation that utilizes joint sparsity. This
enables implicit estimation of the number of
activated tags K. FSA requires K for an optimal
choice of the frame size, Buzz requires K to reduce
the scale of the CS problem, and CSF and CSR
require K to determine the ideal signature length for
optimal identification throughput. With our
proposed approach, K can be implicitly estimated
during CS recovery.

• We compare CS-RFID to a FSA-based collision
recovery scheme and show the superior performance
of our proposed approach. It is investigated how the
number of receive antennas at the reader influences
the performance.

4 Exploiting joint sparsity in CS-RFID
In [12–14], we explained how the computationally
efficient AMP algorithm can be used to recover x from
large-scale CS problems (5). In [15, 27], it was shown
that the exploitation of additional signal structure—
such as joint sparsity—strongly improves the recovery
performance of AMP-based schemes. Here are the main
benefits of exploiting joint sparsity in CS-RFID:

• The same mean squared error (MSE) performance as
standard AMP can be achieved by a significantly
reduced number of CS measurements M.
Consequently, shorter signature sequences (length
M) can be employed for tag acquisition.

• This increases the acquisition throughput and
reduces the jitter sensitivity [14] (jitter refers to link
frequency deviations among tags). The noise
robustness is improved as well. Furthermore, passive
tags require less energy during the acquisition phase.

• Support estimation (location of nonzero entries) can
be improved significantly by combining soft
information from multiple vectors, see Section 6.
This leads to fewer identification cycles [14] (i.e.,
fewer repetitions of the acquisition phase) and
quicker identification. Furthermore, the number of
activated tags K can be estimated implicitly.

Table 1 How RFID protocols handle the two phases of tag identification

Phase 1 Phase 2

Tag acquisition Data read-out

FSA Schedule responses into time slots (avoid collisions) Sequential (list)

Buzz Concurrent responses, CS measurement (exploit collisions) Simultaneous (rate-less code)

CSF Concurrent responses, CS measurement (exploit collisions) Not required

CSR Concurrent responses, CS measurement (exploit collisions) Sequential or simultaneous
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In the following, we demonstrate how to obtain jointly
sparse signal vectors in CS-RFID.

Multiple receive antennas: In Fig. 1, a reader with NR
receive antennas is depicted. Each antenna receives the
superposition of signatures (5) with different noise real-
izations and, generally, with different channel coefficients
for every tag (stored in signal vector xr , r ∈ {1, ...,NR}).
Employing NR receive antennas provides us with NR
jointly sparse signal vectors and, thus, with NR measure-
ment vectors that are generated with the same signature
matrix:[

z1, ..., zNR

] = S
[
x1, ..., xNR

]+ [w1, ...,wNR

]
. (6)

Real and imaginary parts: Having complex-valued chan-
nel coefficients in xr and a real-valued signature matrix
S, we can separate the measurements into a real part
z(R)
r and an imaginary part z(I)

r , which yields two jointly
sparse signal vectors, and two measurement vectors that
are generated with the same sensing matrix:

[ z(R)
r , z(I)

r ]= S[ x(R)
r , x(I)

r ]+[w(R)
r ,w(I)

r ] . (7)

We combine the two variants as depicted in Fig. 2 and
obtain

NB = 2NR (8)

jointly sparse vectors.
The CSmeasurement with jointly sparse vectors is illus-

trated by Fig. 3 and reads[
z(R)
1 , z(I)

1 , ..., z(R)
NR

, z(I)
NR

]
︸ ︷︷ ︸

Z

= S
[
x(R)
1 , x(I)

1 , ..., x(R)
NR

, x(I)
NR

]
︸ ︷︷ ︸

X

+
[
w(R)
1 ,w(I)

1 , ...,w(R)
NR

,w(I)
NR

]
︸ ︷︷ ︸

W

.

(9)

Fig. 1 A reader with multiple receive antennas interrogates tags. We
assume that a reader with one transmit antenna and NR receive
antennas is identifying K activated tags

Fig. 2 Origins of joint sparsity. By splitting the NR receive signals into
real and imaginary parts, the number of measurement vectors is
doubled to NB = 2NR . The measurement vectors entail NB jointly
sparse signal vectors that produce the measurements

The BASSAMP Algorithm 1 is applied on the reformu-
lation

Y = [y1, ..., yNB

] = AX + W (10)

where the bth column of Y computes as

yb = zb − 1
M

M∑
m=1

zm,b = Axb + wb. (11)

This reformulation is necessary in order to obtain
an appropriate sensing matrix that is compatible with
the employed recovery algorithm. Signature matrix S
comprises entries from the set {b0, b1}. Assuming sig-
nature sequences (columns in S) where b0 and b1 are
equally likely, all sequences have the same mean. Conse-
quently, the reformulation features a sensing matrix A ∈
{−b, b}M×N with zero mean columns and with b = |b1 −
b0|/2, i.e., Rademacher distributed up to a constant fac-
tor. This renders A an appropriate sensing matrix for CS
recovery that satisfies (2). In order to apply BASSAMP,
we have to specify the functions used in Algorithm 1 (see
below). Note that we use the original algorithm from [15]
without algorithmic changes but demonstrate how the
utilized functions have to be specified for our application
case.

5 Adaptation of BASSAMP for RFID
The BASSAMP algorithm—introduced in [15] and
depicted in Algorithm 1—aims at recovering X from Y in
(10). It utilizes the knowledge of A, the signal prior, and
the joint sparsity structure.
Let us briefly summarize how Algorithm 1 works.
AMP decouples each measurement vector yb of the

measurement formulation (10) into N uncoupled scalar
measurements of the form (using random variables,
details see [15, 28])

un,b = xn,b + w̃n,b, (12)
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Fig. 3 CS measurement with NB blocks. Illustration of a CS measurement with NB jointly sparse signal vectors collected in matrix X, resulting in NB

measurement vectors collected in Z. (NoiseW omitted)

where the noise w̃n,b accounts for the measurement noise
and the undersampling noise. It is assumed to be Gaus-
sian distributed as w̃n,b ∼ N (0,βb). This assumption
is satisfied in the asymptotic case (M,N → ∞ while
M
N = const.) and approximately satisfied in finite but high
dimensions. The decoupled measurement (12) refers to
line 5 of Algorithm 1. The effective noise variance βb is
estimated in line 6, and the current estimate for xb is com-
puted in line 7 using the minimum mean squared error
(MMSE) estimator function F(·; ·, ·) that will be defined
later. A residual is computed in line 8. Above points sub-
sume the Bayesian approximate message passing (BAMP)
[21–23] iteration that is executed for allNB blocks. In each
BAMP iteration, the signal vector xb is newly estimated.
The energy of the residual decreases over iterations, and
so does the effective noise variance βb — the MMSE esti-
mator F(·; ·, ·) acts as a denoiser. In line 9, the extrinsic
group update function UG(·, ·, ·) enforces the joint spar-
sity structure. This is done via binary latent variables that

indicate whether a signal entry is zero or nonzero; in a
probabilistic manner, the prior probability for a specific
signal entry to be zero is updated. The likelihood ratios
that are generated by the extrinsic group update function
are converted into new prior probabilities in line 10. After
several iterations of BASSAMP, a consensus emerges. For
a detailed derivation, we refer the interested reader to [15].
The algorithm assumes independently distributed signal

entries for the BAMP iteration, where the prior distribu-
tion of the nth entry of the bth signal vector is denoted
as fxn,b(xn,b). This prior plays a major role in the com-
putation of the functions F(·; ·, ·), F ′(·; ·, ·), and UG(·, ·, ·).
Therefore, let us specify the signal prior for the RFID
scenario, which is essentially dictated by the channel
model.

5.1 Channel model and distribution
As illustrated by Fig. 1, we employ a widely used dyadic
channel model (see, e.g., [6, 8, 25]) where the channel

Algorithm 1 BASSAMP for jointly sparse signals [15]

1: init. Xt = 0N×NB , �t =1N×NB− K0

N and rbt = yb ∀b ∈ B = {1, ...,NB} and t = 0
2: do
3: t ← t + 1 � advance iterations
4: for b = 1 to NB do � BAMP iteration for all blocks
5: ut−1

b = xt−1
b + A(b)Trt−1

b � decoupled measurements
6: βt−1

b = 1
M‖rt−1

b ‖22 � effective noise variance estimate
7: xtb = F(ut−1

b ;βt−1
b , γ t−1

b ) � estimate signal
8: rtb = yb − A(b)xtb + rt−1

b
1
M
∑

nF ′
(
ut−1
n,b ;β

t−1
b ,γ t−1

n,b

)
� compute residual

9: Lt = UG
(
Ut−1,βt−1,�0) � extrinsic group update

10: �t =
[
γ t
1, ..., γ

t
NB

]
= UP

(
Lt
)

� prior update
11: while

∥∥X(:)t−X(:)t−1∥∥
2>εtol

∥∥X(:)t−1∥∥
2 and t < tmax

12: return X̂ = Xt
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coefficients comprise a forward channel h(f)
k and a back-

ward channel h(b)
r,k . The total channel from the transmit

antenna to the kth tag and back to the rth receive antenna
reads

hr,k = h(f)
k h(b)

r,k . (13)

We assume that the forward and backward channel
coefficients are distributed according to a circularly sym-
metric complex normal distribution such that

h(f)
k ∼ CN

(
0, σ (f)2

)
, (14)

h(b)
r,k ∼ CN

(
0, σ (b)2

)
. (15)

In the sequel, we consider the separation of the channel
coefficients into real and imaginary parts:

h(f)
k = h(f,R)

k + jh(f,I)

k , (16)

h(b)
r,k = h(b,R)

r,k + jh(b,I)

r,k , (17)

where the real and imaginary parts obey a zero mean
normal distribution with half the original variance,
respectively. The total channel (13) can now be expressed
by

hr,k = h(R)

r,k + jh(I)

r,k

=
(
h(f,R)

k h(b,R)

r,k − h(f,I)

k h(b,I)

r,k

)
+ j
(
h(f,R)

k h(b,I)

r,k + h(f,I)

k h(b,R)

r,k

)
.

(18)

In order to obtain the distribution of the real and imag-
inary parts of hr,k , we remember the following relation
([29] Proposition 2.2.5): consider four random variables
v1, v2 ∼ N (0, σ 2

a ) and v3, v4 ∼ N (0, σ 2
b ); the term v =

v1v3 − v2v4 is Laplace distributed with probability density
function (PDF)

fv(v) = 1
2σaσb

exp
(

− 1
σaσb

|v|
)
. (19)

Applying this to (18), we obtain the PDF

fh(h) = 1
σ (f)σ (b) exp

(
− 2

σ (f)σ (b) |h|
)
, (20)

where h is a placeholder for the real part h(R)

r,k or imaginary
part h(I)

r,k of the total channel (13).

5.2 Sparsity enforcing signal prior
The BASSAMP algorithm requires the specification of a
signal prior distribution. In (20), we specified the distri-
bution of the nonzero entries in the random matrix X =
[ x1, ..., xNB ]. A realization thereof,X, contains the channel
realizations as nonzero entries. The prior of signal entry
xn,b reads

fxn,b(xn,b) = γn,bδ(xn,b) + (1 − γn,b) fh(xn,b), (21)

where γn,b is the probability that the nth signal entry of
the bth vector is zero. If the number of activated tags, K, is
known a priori, the initial value computes as γn,b = 1− K

N .
In BASSAMP, this probability is adapted in each itera-
tion, and it is sufficient to initialize it with a very coarse
assumption of the number of activated tags; details follow
in Section 6.

5.3 Specification of functions
Let us now discuss the computation of the functions
(required in Algorithm 1, iteration index t omitted)

F
(
un,b;βb, γn,b

) = Exn,b{xn,b|un,b = un,b;βb, γn,b}, (22)

F ′ (un,b;βb, γn,b
) = d

dun,b
F
(
un,b;βb, γn,b

)
. (23)

The conditional expectation (22) yields the MMSE
estimate of xn,b given the decoupled measurement un,b =
xn,b + w̃n,b, where w̃n,b ∼ N (0,βb); for details, consider
[15, 28]. Note that in Algorithm 1 (line 7), (22) is applied
separately on the vector components un,b of the vector
input ub.
Let us calculate these functions for prior (21) (indices n

and b are dropped for clarity):

F(u;β , γ ) =
∫ ∞

−∞
x̃fx|u(̃x|u)d̃x

=
∫∞
−∞ x̃fu|x(u|̃x)fx(̃x)d̃x∫∞
−∞ fu|x(u|̃x)fx(̃x)d̃x

= β [h1(u)k1(u) + h2(u)k2(u)]
γ

1−γ
2σ (f)σ (b)√

2πβ
+ k1(u) + k2(u)

= p(u)

q(u)
,

(24)

with auxiliary functions

g1(u) =
√
2β

σ (f)σ (b) − u√
2β

, (25)

g2(u) =
√
2β

σ (f)σ (b) + u√
2β

, (26)

h1(u) = u
β

− 2
σ (f)σ (b) , (27)

h2(u) = u
β

+ 2
σ (f)σ (b) , (28)

k1(u) = erfc
(
g1(u)

)
exp

(
g1(u)2

)
, (29)

k2(u) = erfc
(
g2(u)

)
exp

(
g2(u)2

)
, (30)

the derivative of (24) with respect to u calculates as

F ′(u;β , γ ) = p′(u)q(u) − p(u)q′(u)

q(u)2
, (31)
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where

p′(u) = k1(u) + k2(u)

+√2β
[
h2(u)

(
g2(u)k2(u)− 1√

π

)
−h1(u)

(
g1(u)k1(u)− 1√

π

)]
,

(32)

q′(u) =
√

2
β

[
g2(u)k2(u) − g1(u)k1(u)

]
. (33)

Finally, we have to specify the update functionsUG(·, ·, ·)
andUP(·). The extrinsic group update (applied entry-wise)
in iteration t accumulates extrinsic information about sig-
nal entry xn,b from the entries xn,l of the other signal
vectors, l ∈ B\b:

Ltn,b = UG(Ut−1,βt−1, γ 0
n,b) := L0n,b +

∑
l∈B\b

Ltn,l

= log
γ 0
n,b

1 − γ 0
n,b

+
∑
l∈B\b

log
2σ (f)σ (b)√
2πβt−1

l

− log
[
k1(ut−1

n,l )+k2(ut−1
n,l )

]
,

∀n ∈ {1, ...,N}, ∀b ∈ B = {1, ...,NB}.
(34)

The prior update converts likelihood ratios into
probabilities:

γ t
n,b = UP(Ltn,b) :=

1

1 + exp
(
−Ltn,b

) ,
∀n ∈ {1, ...,N}, ∀b ∈ B = {1, ...,NB}.

(35)

A detailed explanation of functions (34) and (35) can be
found in [15].

5.4 Specification of functions—Gaussian relaxation
Note that the implementation of the functions above may
be computationally challenging—in particular, the terms
k1(u) and k2(u) that occur in (24), (31), and (34) entail a
complementary error function that is multiplied with an
exponential function. This may cause numerical instabil-
ities in the computation. In order to keep the demands
on the reader hardware low and facilitate a simpler imple-
mentation, we propose to approximate the channel PDF
(20) by a Gaussian distribution with zero mean and vari-
ance σ 2

x = 1
2σ

(f)2σ (b)2, i.e., with the same variance as the
Laplace distribution 20. Doing so, we obtain the follow-
ing functions for BASSAMP, see [15] (indices n and b are
dropped for clarity):

F(u;β , γ ) = u · M(u, γ , ξ), (36)

F ′(u;β , γ ) = M(u, γ , ξ) + 1
β
m(u, γ , ξ) · F(un;β)2, (37)

with auxiliary functions

ξ = σ 2
x

β
= σ (f)σ (b)

2β
, (38)

m(u, γ , ξ) = γ

1 − γ

√
1 + ξ exp

(
− u2

2β
ξ

1 + ξ

)
, (39)

M(u, γ , ξ) = ξ

1 + ξ

1
1 + m(u, γ , ξ)

. (40)

The extrinsic group update for the Gaussian prior reads

Ltn,b = UG(Ut−1,βt−1, γ 0
n,b) := L0n,b +

∑
l∈B\b

Ltn,l

= log
γ 0
n,b

1−γ 0
n,b

+ 1
2
∑
l∈B\b

⎛⎜⎝log βt−1
l + σ 2

xn,l

βt−1
l

−
(
ut−1
n,l

)2
σ 2
xn,l

βt−1
l

(
βt−1
l + σ 2

xn,l

)
⎞⎟⎠ ,

∀n ∈ {1, ...,N}, ∀b ∈ B = {1, ...,NB}.
(41)

The prior update (35) stays the same.
To justify this approximation of the channel PDF, we

conducted numerical experiments that suggest that the
MSE performance is hardly affected, see Section 7.

5.5 Choice of parameters
The choice of the channel model and the forward chan-
nel variance σ (f)2 and backward channel variance σ (b)2

depends on the location of the reader antennas, the envi-
ronment (scatterers and reflectors), and the effective read
range. The variances describe the strength of the spatial
fading of the forward and backward link, respectively. In
order to estimate them, one would have to measure the
forward and backward links separately for many prospec-
tive tag positions.
In practice, one would rather measure the total chan-

nel (13), or avoid measuring the channels and determining
their distribution entirely. The AMP framework allows to
perform prior estimation during recovery, i.e., the recov-
ery algorithm can be adapted to estimate the prior over
iterations. One such algorithmic extension was proposed
in [30], and it was shown that the performance degrada-
tion due to unknown prior is negligible in practice.

6 Support estimation
We now present a method to estimate the signal support
(3) based on [31]. The support estimation is crucial for
quick tag identification as it yields

• The estimated set of assigned signatures T̂A [14] (this
is the information from the acquisition phase used to
communicate with the tags),

• The estimated number of activated tags K̂ .

The schemes presented in [12–14] assumed to know the
number of activated tags K, i.e., K̂ = K . Utilizing this
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knowledge, the estimated set of assigned signatures T̂A is
dictated by the K largest entries of signal recovery x̂. The
newly employed BASSAMP algorithm allows for a robust
support estimation by combining the soft information of
all recovered vectors x̂b.
In each BAMP iteration of the BASSAMP Algorithm 1,

the decoupled measurements ub are computed; they have
the form (12). The effective noise variance βb is decreased
over the BAMP iterations, and un,b is used as input of the
MMSE estimator function F(·; ·, ·), i.e., the signal estimate
in each iteration depends on this value, see line 7 of Algo-
rithm 1. The PDF of un,b can be computed by convolving
the signal PDF (21) with the PDF of the effective noise
w̃n,b, a normal distribution with zero mean and variance
βb. Doing so, we obtain (indices dropped for clarity)

fu(u) = γ f0(u) + (1 − γ )f1(u), (42)

where

f0(u) = 1√
2πβ

exp
(

− u2

2β

)
f1(u) = 1

2σ (f)σ (b) exp
(

− u2

2β

)
[k1(u) + k2(u)] .

(43)

If the Gaussian relaxation (see Section 5.4) is used, we
get

f1(u) = 1√
2π(β + σ 2

x )
exp

(
− u2

2(β + σ 2
x )

)
. (44)

In order to compute the conditional probability that a
signal entry was zero given un,b, we introduce a latent
binary random variable zn,b that indicates whether a signal
entry xn,b in (12) was zero (zn,b = 0) or nonzero (zn,b = 1),
also see [15, 31]. We intend to compute the overall proba-
bility that the nth entry of all NB jointly sparse vectors xb
is zero respectively nonzero (since we have jointly sparse
vectors, these are the only relevant cases; either all nth
entries are zero, or all nth entries are nonzero). The pos-
terior probability that all nth signal entries are zero (given
un,b and γn,b, ∀b ∈ B) computes as

ε(0)
n :=

NB∏
b=1

P(zn,b = 0|un,b, γn,b) = 1
d

NB∏
b=1

γn,bf0(un,b),

(45)

while the posterior probability that all nth signal entries
are nonzero computes as

ε
(1)
n :=

NB∏
b=1

P(zn,b = 1|un,b, γn,b) = 1
d

NB∏
b=1

(1 − γn,b)f1(un,b),

(46)

where d is a common partition factor. The estimate for
the signal support (3) is equivalent to the estimated set of

assigned signatures and is obtained by comparing these
probabilities:

T̂A =
{
n ∈ T :

ε
(1)
n

ε
(0)
n

=
∏NB

b=1(1 − γn,b)f1(un,b)∏NB
b=1 γn,b f0(un,b)

> 1
}
.

(47)

Note that the estimated set of assigned signatures is of
vital importance:

• In Buzz [9–11], this set represents the seeds used in
the pseudo random generator for the data read-out
via rate-less code. An erroneous set hampers
decoding, and the acquisition has to be repeated.

• In CSF [12], this set directly identifies the activated
tags. The reader enquires the signature indices in
order to confirm the identification. An erroneous set
prolongs this enquiry phase and leads to a repetition
of the acquisition phase.

• In CSR [13, 14], the indices of the assigned signatures
are used to communicate with the tags for data
read-out. Again, an erroneous set prolongs the
enquiry phase and leads to a repetition of the
acquisition phase.

For all schemes, a wrongly estimated set of assigned
signatures prolongs the identification and increases the
reader-to-tag communication overhead.
The estimated number of activated tags is defined as the

cardinality of this set:

K̂ = |T̂A|. (48)

Note that the support estimation is performed after exe-
cuting the BASSAMP algorithm; it considers the values
un,b, γn,b, and βb after the last iteration t. The prior prob-
abilities in BASSAMP Algorithm 1 are initialized with a
coarse assumption of K, termed K0: γ 0

n,b = 1 − K0

N .

7 Numerical results and comparison
Let us introduce the figures of merit used in the sub-
sequent evaluation. The signal-to-noise ratio (SNR) is
defined as

SNR = ‖AX‖2F
‖W‖2F

. (49)

The normalized mean squared error (NMSE) between
original signalX and its estimate (recovery) X̂ is defined as

NMSE = ‖X − X̂‖2F
‖X‖2F

, (50)

it gives indication about the overall recovery performance.
For the subsequent numerical experiments, the stopping

criteria of Algorithm 1 were chosen as εtol = 10−5 and
tmax = 100.
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7.1 Gaussian relaxation of prior
In Section 5.4, we proposed a relaxation of the prior dis-
tribution (Gaussian instead of Laplace) in order to obtain
an implementation of Algorithm 1 that features a lower
computational complexity and better numerical stability.
To demonstrate that the performance is not significantly
affected by this relaxation, we investigate the empirical
phase transition curves that illustrate the recovery perfor-
mance over a wide range of parameters K andM for fixed
N = 1 000. We chose NR = 1 receive antenna.
For the empirical phase transition curves, we consider

an undersampling
(M
N
)
versus sparsity

(
K
M

)
grid, where

the values range from 0.05 to 0.95 with stepsize 0.05,
respectively. At each grid point, 1 000 realizations of A, X,
and W are simulated. Let us introduce a success indicator
for each realization r:

Sr =
{
1 NMSEr < 10−4

0 else . (51)

The average success is obtained as S = 1
1 000

∑1 000
r=1 Sr .

The empirical phase transition curves are finally obtained
by plotting the 0.5 contour of S using MATLAB®function
contour.
The results are shown in Fig. 4, where the AMP

algorithm (with NMSE minimizing soft thresholding
parameter λ = 2.678K−0.181, see [12]) is compared to
the BASSAMP algorithm with two different priors. The
true channel prior is the Laplace distribution obtained
in (20), the signal vectors were generated accordingly
in each realization, with σ (f) = σ (b) = 1. The
relaxed channel prior is a zero mean Gaussian distribu-
tion with σ 2

x = 1
2σ

(f)2σ (b)2 = 0.5. We conclude that

Fig. 4 Empirical phase transition curves. Shown are the empirical
phase transition curves for the recovery of a single complex-valued
signal vector (NR = 1, NB = 2, SNR = ∞). Plotted is the 50% success
contour, where success is defined as NMSE < 10−4. Success with
high probability is observed below a contour line

the NMSE performance is only aggravated slightly by
the Gaussian relaxation. This also suggests that a mis-
match in the channel prior does not hamper the recovery
significantly, and advocates the general use of a Gaus-
sian prior for the considered application. Furthermore,
we observe that in order to achieve the same NMSE
performance as AMP, we can significantly reduce the
signature lengthM. In the sequel, we employ the Gaussian
relaxation.

7.2 Support estimation
In this section, we demonstrate the capabilities of
the support detection scheme that was introduced in
Section 6. The BASSAMP Algorithm 1 requires an ini-
tialization of the zero probabilities, which is done with
a coarse initial assumption of the number of activated
tags: γ 0

n,b = 1 − K0

N . We now demonstrate that the initial
assumption of K0 can indeed be very coarse.
We consider the number of correct detections (CDs)

and false alarms (FAs) [32] that partition the estimated set
of assigned signatures T̂A (47) (an index in this set either
refers to a CD or a FA).
Figure 5 shows the number of CDs and FAs aver-

aged over 1 000 realizations versus variable SNR. The
true number of activated tags was K = 100; for a
much lower K0 = 50 or a much higher K0 = 150 to
initialize BASSAMP with, the results are only changed
marginally. At low SNR, the cardinality of T̂A is lower
than K, and K̂ = |T̂A| is underestimated. The indices
in T̂A mostly represent the true support (many CDs, few
FAs). The support estimation does not flood us with many
FAs which is beneficial for the RFID protocols because
it reduces the overhead of the reader-to-tag communi-
cation (the protocols do not have to deal with wrongly
acquired tags). In this way, we obtain efficient identi-
fication cycles (see [12–14]) that feature only very few
wrongly enquired tags. For the schemes presented in
[12–14], it is important to obtain many CDs and few FAs
rather than an exact estimate K̂ . With an increasing num-
ber of jointly sparse vectors (right plot in Fig. 5), the
support estimation becomes very robust with respect to
noise. In the considered example,NR = 4 receive antennas
result in perfect support estimation above SNR = 15 dB
which entails immediate identification after only one
cycle.
Figure 6 shows the number of CDs and FAs averaged

over 1 000 realizations versus variable M in the noise-
less case. Again, three different initializations of K0 are
investigated, and the outcome is only marginally different.
We observe that the number of CDs is hardly affected,
whereas the number of FA increases (decreases) for over
(under)-assumptions of K0 during the phase transition,
but declines quickly with increasing M. The signature
length M should be chosen such that the algorithm
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Fig. 5 Support estimation (variable SNR). Plotted are the number of correct detections (CD) and false alarms (FA) in the estimated set of assigned
signatures T̂A over variable SNR. K0 is the assumed number of tags to initialize the BASSAMP algorithm with. Assuming a K0 that is much larger or
smaller than the original K affects the outcome of the support detection only marginally. With an increasing number of receive antennas NR , the
support estimation becomes more robust. The light grey curves show the legacy approach used in [12–14] that assumes to know K ; there, the indices
of the K largest entries in the AMP recovery compose T̂A

operates in the successful regime where the support esti-
mation features only CDs and no FAs. We conclude that
a very coarse assumption of K is sufficient to initialize
Algorithm 1.

7.3 Improvement of acquisition phase—perfect
conditions

As motivated in Section 3.2, our approach improves the
tag acquisition phase of CS-RFID protocols. To demon-
strate this, we consider various identification schemes and
compare the bit overhead for the acquisition phase, i.e.,
the number of bits required to acquire the activated tags.
In order to facilitate a comparison of various schemes, we
restrict ourselves to the number of bits transmitted by the

tags and omit protocol overhead and commands from the
reader. Our baseline is the widely employed FSA protocol
where tags are randomly scheduled to transmit in slots of
a frame in order to avoid collisions. It features following
bit overhead for tag acquisition:

β
(A)
FSA = 16

Tps
K , (52)

where Tps is the throughput per slot [8], i.e., the num-
ber of tags acquired per slot, and the number 16 refers
to the RN16 sequences utilized during acquisition. If the
number of activated tags is known, the optimal choice of
the frame size leads to a maximum average throughput

Fig. 6 Support estimation (variable sequence length). Plotted are the number of correct detections (CD) and false alarms (FA) in the estimated set of
assigned signatures T̂A over variableM in the noiseless case. A similar behavior to Fig. 5 is observed. For an increased number of jointly sparse
vectors NB , fewer measurements are required to achieve the same number of CD. The light grey curves show the legacy approach used in [12–14]
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of Tps = e−1 ≈ 0.368 [33]. In [6–8], collision recovery
schemes have been proposed that allow shortened frame
sizes and, thus, increased throughput numbers. A reader
with NR receive antennas can resolve up to 2NR collisions
[8]. Assuming perfect channel knowledge and knowledge
of the number of activated tags K, a reader with NR = 1
receive antenna can resolve one collision and features a
maximal theoretical throughput of Tps = 0.841, while a
reader with NR = 4 receive antennas achieves a maximal
theoretical throughput of Tps = 4.479, for details, see [8].
On the other hand, we have the CS-based schemes

where all activated tags respond simultaneously with
sequences of length M during the acquisition phase. This
results in a CS measurement of the type (1) that needs
to be solved for x utilizing the M measurements in y.
Therefore, the optimal bit overhead for tag acquisition
reads (cf. (2))

β
(A)
CS = M =

⌈
cK log

N
K

⌉
. (53)

It was shown in [12] that an optimally tuned AMP
recovery algorithm requires a measurement multiplier
c = 2 to yield perfect recovery results in the noise-
less case. In Sections 7.1 and 7.2, we observed that our
proposed scheme requires fewer measurements than the
legacy AMP scheme, which enables a reduction of c that
results in the same recovery quality. Scrutinizing Fig. 6, we
observe that M ≈ 210 (c ≈ 0.9) for NR = 1 and M ≈ 140
(c ≈ 0.6) for NR = 4 lead to perfect recovery (i.e., only
CDs and no FAs), respectively.
Let us collect above insights and compare the bit over-

head for tag acquisition. Figure 7 depicts the bit overhead
versus K for various schemes under perfect conditions, i.e.,

the channels are known to the FSA-based collision recov-
ery scheme, and all schemes know the number of activated
tags K. For the CS-based schemes, we assume N = 1 000.
We observe that the CS-based schemes strongly out-
perform FSA (despite its collision recovery capabilities)
and that our novel approach that utilizes the BASSAMP
algorithm reduces the bit overhead over the legacy AMP
scheme by a factor of 2.2 (NR = 1) respectively 3.3
(NR = 4). Let us emphasize again that this improvement
is observed in all CS-based schemes [9–14], as they all
feature the same problem formulation in the acquisition
phase.
By utilizing the channel statistics and the joint spar-

sity among the signal vectors, a strong improvement over
previous approaches is observed. Furthermore, the novel
approach already shows a significant improvement for a
reader that employs only NR = 1 receive antenna.

7.4 Improvement of acquisition phase—imperfect
conditions

Now that we have studied the performance under perfect
conditions, let us move on to the noisy case. In partic-
ular, the tag responses of FSA are corrupted by noise,
and the collision recovery scheme [8] faces channel esti-
mation errors. The CS-based schemes have to deal with
noisy measurements (10). Let us describe the simulation
guidelines.

FSA: For the legacy FSA approach [3], the reader features
one receive antenna and no collision recovery capabilities.
The advanced FSA approach features collision recovery
capabilities as introduced in [8]. There, the channels have
to be estimated by using a set of orthogonal sequences
that are transmitted prior to the RN16 sequences—note

Fig. 7 Bit overhead for tag acquisition under perfect conditions. The dashed lines depict the FSA-based schemes, while the solid lines depict the
CS-based schemes (e.g., Buzz, CSF, see [9–14]). By exploiting our novel approach with the BASSAMP algorithm, we are able to reduce the bit
overhead of CS-based schemes by a factor of 2.2 (NR = 1) respectively 3.3 (NR = 4) over the legacy AMP algorithm. Overall, the CS-based schemes
strongly outperform the FSA-based schemes, despite collision recovery methods [8] that utilize several antennas
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that we omit the bit overhead for the channel estimation
sequences, although they will have a significant over-
head in practice. The frame size is adjusted in each cycle
in order to maximize the throughput [8, 33], depend-
ing on the number of remaining tags. It is assumed that
the schemes know the number of tags K. The average
acquisition throughput is obtained as

T (A)
FSA = K

β
(A)
FSA

= Tps
16

. (54)

It is measured in acquired tags per bit, where we count
the number of bits transmitted by a tag during the acqui-
sition phase. We used the Tps values from [8].
CS: For the legacy CS approach, the reader features one
receive antenna, and AMP is employed as CS recovery
algorithm that estimates a single complex-valued signal
vector. The improved CS approach features the BAS-
SAMP algorithm that we specified for a dyadic channel
model. We simulated 1 000 random realizations of A, X,
and W and averaged the results. In each realization, CS
measurements of the form (5) are performed in cycles
[14]. Each cycle features a CS tag acquisition, and the
cycles are repeated until all tags are identified. In each
cycle, the number of measurements (sequence length) M
is set according to (2) based on the remaining number of
unidentified tags. AMP is assumed to know K, and T̂A is
composed of the indices that correspond to the K largest
entries in the recovered signal vector. BASSAMP uti-
lizes the support estimation (47). The average acquisition
throughput is obtained as

T (A)
CS = K

β
(A)
CS

. (55)

Note that here, the simulated bit overhead β
(A)
CS that may

include several CSmeasurements (cycles) is used, whereas
(53) refers to the optimal bit overhead of only one CS
measurement.

Figure 8 shows the average identification throughput
of tag acquisition versus SNR for K = 100 and N =
1 000. We employ NR = 4 receive antennas, and for
the novel CS-based scheme, the signature length M is
varied (c = {0.5, 1, 2, 3}). We observe that with the pro-
posed approach, we can shorten the signatures and thereby
drastically increase the acquisition throughput of the CS-
RFID schemes. Compared to the legacy AMP schemewith
NR = 1, the new BASSAMP scheme with NR = 4 features
an increased noise robustness for the same signature length
(c = 3), i.e., the noise robustness increases with increas-
ing NR. It was shown in [12] that c < 2 generally does not
admit successful AMP recoveries; with the newly utilized
BASSAMP algorithm that exploits joint sparsity, smaller c
and thus shorter signatures are possible. Note that shorter
signatures also reduce the sensitivity to jitter [14], and the

Fig. 8 Acquisition throughput parameterized onM. With the newly
employed BASSAMP algorithm and the exploitation of multiple
receive antennas, the maximum acquisition throughput of CS-based
schemes can be improved drastically by reducing the sequence
lengthM (or equivalently, the measurement multiplier c). The
proposed scheme strongly outperforms the FSA-based scheme with
collision recovery (CR) capabilities, despite having the same number
of receive antennas at the reader

tags require less energy (shortened activation time). An
advantage over collision recovery schemes is the fact that
the CS-based schemes do not require channel knowledge,
only coarse knowledge of the channel statistics. Overall,
our proposed approach significantly improves the acquisi-
tion phase of CS-based schemes and strongly outperforms
other schemes such as FSA with collision recovery.
Let us list the achieved improvements (at high SNR) by

exploiting NR = 4 receive antennas at the reader. The tag
acquisition of the proposed CS-RFID scheme is

• 4.3 times quicker than the legacy CS approach that
employed AMP and a single receive antenna,

• 3 times quicker than FSA with collision recovery,
• 26 times quicker than legacy FSA without collision

recovery capability, and a reader with a single receive
antenna.

We emphasize again that our approach is applicable to
all state-of-the-art CS-RFID schemes [9–14].

8 Conclusions
We proposed a novel extension to CS-RFID that improves
the acquisition phase of the tag identification by leverag-
ing joint sparsity. We demonstrated how multiple receive
antennas at the reader produce multiple measurement
vectors and that their number can be doubled beneficially
by separation into real and imaginary parts. The corre-
sponding signal vectors are jointly sparse, i.e., they share
a common support. This is exploited by the BASSAMP
algorithm that we defined for a dyadic channel model.
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We showed that the usage of a Gaussian prior relax-
ation is applicable. Simulation results suggest that an
exact knowledge of the channel coefficient distribution
is not required. Furthermore, the relaxation promotes a
low complexity implementation of our iterative recovery
algorithm.
Robust signal support estimation is facilitated by com-

bining the soft information from multiple jointly sparse
signal vectors. Support estimation is crucial for quick tag
identification, as the support dictates the overhead of the
reader-to-tag communication (correct detections lead to
correctly read out tags, while false alarms prolong the
identification). It was shown that prior knowledge of the
exact number of activated tags is not required for robust
support estimation.
The main benefits of exploiting joint sparsity are the

possible reduction of the sequence length (i.e., shorter
tag responses) and the increased noise robustness during
acquisition. This enables quicker, more reliable identifica-
tion, reduces the sensitivity to jitter, and lowers the energy
requirements of the tags.
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