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Abstract

This article presents the design and implementation of modular customizable event-driven architecture with parallel
execution capability for the first time with wireless sensor nodes using stand alone FPGA. This customizable
event-driven architecture is based on modular generic event dispatchers and autonomous event handlers, which will
help WSN application developers to quickly develop their applications by adding the required number of event
dispatchers and event handlers as per the need of a WSN application. This architecture can handle multiple events in
parallel, including high priority ones. Additionally, it provides non-preemptive operation which removes the timing
uncertainty and overhead involved with interrupt-driven processor-based sensor node implementation, which is
required in real-time wireless sensor networks (WSNs). Thus, higher computation power of FPGAs combined with the
non-preemptive modular event-driven architecture with parallel execution capability enables a variety of new WSN
applications and facilitates rapid prototyping of WSN applications. In this article, the performance of FPGA-based
sensor device is compared with general purpose processor-based implementations of sensor devices. Results show
that our FPGA-based implementation provides significant improvement in system efficiency measured in terms of
clock cycle counts required for typical sensor network tasks such as packet transmission, relay and reception.
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Introduction
A wide variety of wireless sensor network (WSN) appli-
cations have been emerging that requires innovation
in sensor devices. Most of the current sensor devices
employ general purpose processor-based embedded sys-
tem such as motes developed by the University California
at Berkeley [1]. Those devices consist of a general purpose
processor (also referred as commodity microcontroller),
wireless transceiver and sensors subsystem. The general
purpose processor needs event-based operating systems
(OS) tailored for sensor network applications such as
TinyOS [2] used in Berkeley motes. The available software
tools and debugging platform offer easy development of
WSN protocols and applications in these devices. That is
why these motes are popular in academic research as well
as in commercial applications.

General purpose processors are efficient in sequential
execution of instructions and are not primarily designed
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to exploit the inherent parallelism available in event-
driven sensor applications. Furthermore, these processors
requires a software based implementation of WSN pro-
tocol stack and application, which is always slower than
their fully hardware based counterparts. Processor-based
sensor nodes are interrupt-driven systems, which brings
uncertainty about the processing time of an event as it
can be interrupted by other events any time. Additionally,
interrupt-driven system have overhead of storing all the
states and variables of a running event in order to han-
dle the other event that interrupted the processor. After
processing the new event, the processor has to load the
states and variables of the interrupted event [3]. There-
fore, interrupt-driven systems are not suitable for real-
time WSN applications, where strict deadlines and delay
guarantees are necessary.

An alternative approach of WSN protocol and appli-
cation development using the general purpose processor
is to use virtual run-time environment instead of event-
based OS such as TinyOS. The virtual run-time environ-
ment facilitates application development in higher level
programming languages such as Java and C# as in IBM’s
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Moterunner [4]. Though virtual run-time environment
offers rapid application development, it is slower and
requires more hardware resources than the operating sys-
tem based solutions such as TinyOS to accomplish the
same amount of tasks.

In order to alleviate above mentioned problems with
processor-based senor nodes and virtual run-time envi-
ronments, a sensor device using a non-preemptive mod-
ular customizable event-driven processing architecture is
proposed and described in this article. The design goal
of the proposed sensor node is to provide real-time com-
putation and communication capabilities to a wireless
sensor node. Thus, the proposed architecture is imple-
mented fully in hardware using a field programmable gate
array (FPGA). In this architecture, an event dispatcher
assigns an event to an event handler and allows it to com-
plete the event. Removing preemption gives the ability
to define the timeliness in our architecture and removes
the need of storing states and variables of ongoing events
and loading them back, which significantly reduces the
memory usage and time needed for transitions. Apart
from this, the proposed event-driven architecture is mod-
ular; therefore, a WSN application designer can take as
many generic event dispatchers and autonomous event
handlers as needed by a WSN application. This facil-
itates the rapid prototyping of WSN application. This
type of modularization is not the inherent feature in
interrupt-driven systems. The hardware implementation
of the proposed design shows the significant improvement
in the sensor device performance in terms of execution
cycle count as compared to processor-based sensor nodes.
The improvement in cycle count enables the FPGA based
sensor device to run at slower system clock while main-
taining the same performance as that of a processor-based
system.

The proposed FPGA based implementation offers hard-
ware flexibility and speed as compared to the software
flexibility offered by the processor-based sensor node
implementations. With this hardware flexibility, a WSN
application developer can rapidly implement a sensor
device for any complex WSN application for which com-
mercial off-the-shelf sensor devices may not be an opti-
mum choice. Additionally, if needed, then the FPGA based
sensor device design can be used to develop economical
system-on-chip (SOC) or application specific integrated
circuit (ASIC) for large scale production.

The main contributions of this article are as follows.

1. A fully hardware based non-preemptive modular
customizable event-driven architecture is proposed
for a wireless sensor device. In this architecture,
various autonomous functional modules such as
event dispatchers and event handlers can be added or
removed easily for rapid WSN application
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development. This architecture can be particularly
useful for real-time WSN applications.

2. The proposed architecture is implemented on an
FPGA to utilize its speed, computation power, and
hardware flexibility. Usage of FPGA further enables
computationally extensive WSN applications related
to multimedia, image processing, and security.

These benefits come at a cost. In order to utilize the
proposed architecture, WSN developers have to design
various types of autonomous event handlers for different
subtasks of their specific WSN applications. They then
can use as many copies of an event handler as needed.
In the case of processor-based design, the developers are
still required to write code for various subtasks, but they
may not need to divide their tasks to various autonomous
subtasks. Additionally, FPGA based sensor nodes seem to
have higher energy consumption than processors based
sensor node implementations. However, there are ways to
mitigate the power consumption issue in FPGA based sen-
sor nodes, which are discussed in Section Implementation
details and test results.

The rest of the article is organized as follows: Section
Related study presents a brief background of typical
sensor node architectures and related research. Section
System architecture and design describes the system
architecture and design. Section System components
describes the main components used in the implementa-
tion of the sensor node. Section Implementation details
and test results presents implementation details and
experimental results related to the performance of the
sensor node. A discussion on the power consumption
issue is also provided in this section. Finally, Section
Conclusions concludes the article.

Related study

WSNs have a range of applications with vastly varying
requirements and characteristics [5]. For example, active
sensors, such as sonar, require much more computational
power for signal processing than passive sensors, such
as smoke detector. Sensors for applications that support
mobility need more processing power for complex net-
work protocols and algorithms than their fixed relatives.
That is why a single hardware platform is not sufficient
to support such wide range of possible applications [6].
In order to cater this range of WSN applications, vari-
ous sensor node implementations are available both in the
academia and industry. Berkeley Mica [7], UCLA Medusa
[8], and MIT wAMP [9] are some examples of dedicated
embedded sensor device architecture. These embedded
sensor devices have a general purpose processor on which
the event-driven operating system, such as TinyOS [2] can
be installed. The general purpose processor has to run
the operating system (OS) routines and process interrupt
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handlers, which increase the execution cycles required
per task. For example, a sequence of tasks of sampling
sensor output, averaging the sampled data, and display-
ing the result in Berkeley’s Mica Mote needs overhead of
781 cycles for interrupt handling and scheduling out of
total 1118 execution cycles to complete the tasks, which
translates into 70% overhead [10]. There have been efforts
to design dedicated sensor network processors such as
sensor network asynchronous processor (SNAP) [11] and
second-generation sensor processor [12]. These proces-
sors have optimized instruction sets and improved archi-
tectures for better task scheduling for sensor network
applications. However, OS related overhead still exists in
these dedicated processors based sensor nodes. In addi-
tion to this, efforts have been made to put additional
hardware modules along with processors to accommodate
event-driven nature of WSN applications. For example, an
event processor is proposed to work in conjunction with
the general purpose processor in [13]. This event proces-
sor is designed to efficiently perform most of the basic
functions of the processor in an efficient way. For example,
it provides better repetitive interrupt handling and accel-
erates tasks such as message preparation and routing. As
a result, this event processor-based sensor node is able
to reduce 40% to 96% of execution cycle counts to pro-
cess regular WSN application tasks [13] as compared to
TinyOS based Mica2 sensor nodes. Though, the processor
is proposed to be used minimally in this system, over-
head and timing uncertainty related to interrupt handling
still exists. Similar to this study, our sensor device imple-
mentation also tries to harness the event-driven nature
of WSN applications. However, our implementation com-
pletely eliminates the need of a general purpose proces-
sor by directly implementing the proposed event-driven
architecture into the dedicated hardware (an FPGA).
FPGAs are emerging as a viable option in implemen-
tation of WSN nodes. An extensive survey on the suit-
ability and challenges of using FPGA for various WSN
applications are provided in [14]. It is pointed out in
this survey that FPGAs are particularly useful for com-
putationally demanding WSN applications. For example,
Xilinx Spartan-3 FPGA based WSN nodes are used to
implement complex functions such as fuzzy logic based
link cost calculation for routing decision, image com-
pression, running Gaussian average for image background
subtraction, and symmetric cryptography algorithm in
[15-18], respectively. All above FPGA implementations
are used to implement some specific type of WSN appli-
cation to harness higher computational power capabilities
of FPGAs. These tasks were either very time consuming
or not possible due to limitation of resources in processor-
based sensor nodes. The other category of WSN applica-
tions that use FPGA based sensor nodes are multimedia
data transmission [19,20], sensor data security related to
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encryption algorithms [21,22], environmental monitoring
[23-25]. As a continuation of this effort, the proposed
FPGA based sensor node can enable a new class of appli-
cations such as real-time WSN applications mentioned in
[26-30]. In addition to this, our implementation will also
enable WSN applications that need both higher computa-
tional power and real-time capability such as with smart
grid gateway node [31].

In the literature, WSN nodes are implemented in four
modes, (1) standalone FPGA based sensor nodes without
processor core inside, (2) standalone FPGA based sen-
sor nodes with processor core inside, (3) sensor nodes
based on combination of onboard processor and FPGA,
and (4) standalone processor-based sensor nodes. Each
WSN application has its own requirements and one of the
above sensor node implementation can offer a meaningful
solution. It is up to the WSN developer to make this deci-
sion based on the application’s requirement. For example,
there are cases where sensor nodes with both onboard
FPGA and processor, as in [32,33], have advantages such
as utilizing high computational capability of FPGA com-
bined with software programmability of processor. To get
the advantage of both computational capability and soft-
ware programmability while using only FPGA, there are
various FPGA based wireless sensor device implementa-
tions proposed in the literature that use processor core
inside the FPGA [34-37]. As mentioned earlier, standalone
FPGA based sensor nodes without a processor core inside
[15-18] are customized for various types of WSN appli-
cations, and these customized designs cannot be used for
other WSN application. In this article, a generic modular
event-driven architecture is implemented on standalone
FPGA based sensor node without processor core which
can be applied to any WSN application. As it avoids
interrupt related overhead and timing uncertainties, it is
particularly suitable to applications that require real-time
processing and communication capabilities.

The following section, provides details of the proposed
FPGA-based sensor node design.

System architecture and design

The block diagram of the proposed hardware based sen-
sor node implementation is shown in Figure 1. There
are five main function units in this implementation and
these are the event-driven systems, except the parsing
and classification unit. Further details of these functional
units are given in Section System components. The event-
driven architecture of our sensor system is presented in
the following three sections.

Event-driven architecture

The general architecture of the event-driven system is
shown in Figure 2. There are event handlers and event
dispatchers in the architecture. The event dispatcher is
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Figure 1 Block diagram FPGA based sensor node with wireless interface.

used to detect the occurrence of an event and activate
the corresponding event handler to perform the tasks
related to this event. An event could be internal, such
as a timeout, or external, such as detection of a packet
in the radio module’s buffer. Event handlers are specific
processing hardware subsystems activated by an event
dispatcher in response to a specific event or by an event
handler in the case that a new event is triggered by that
event handler. Event handlers consist of event processing
unit, local registers and shared registers. The event pro-
cessing unit contains customized state machine and data
path for processing a particular event. Local registers are
used for temporary storage of intermediate data during
event processing. It could only be accessed by the event
handler. The shared registers are used to store event infor-
mation received from the event dispatcher. Both event
handler and event dispatcher are able to access to the

shared registers. A control signal is used to trigger the
event handler to change its state from idle to active. The
state signals indicate the state of event handlers to event
dispatchers. The data bus is used to transfer event infor-
mation from event dispatcher to event handler or from
one event handler to another event handler. The output
ports of the system are driven by the event handlers that
are responsible for communication between functional
units.

An event dispatcher is a state machine designed to mon-
itor the input ports of hardware blocks, receive event
information, decode event information and activate cor-
responding event handler. Figure 3 illustrates a simplified
version of actual state machine of an event dispatcher.
The event dispatcher stays in the idle state after reset-
ting or power ON until an event happens. When an event
happens, the event dispatcher receives preliminary event
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Figure 2 Event-driven architecture.
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information from the input port and determines the type
of event to find out which event handler needs to be
activated. If the corresponding event handler is idle, the
event dispatcher activates the event handler by signal-
ing the event handler and changing its state from idle to
JobAdd state. Then the event dispatcher receives the com-
plete information about the event from the input port and
sends it to the shared registers of activated event handler.
After the information transaction is complete, the event
dispatcher signals the event handler to leave JobAdd state
and begins processing the task. Finally, event dispatcher
returns to idle state and continues to monitor the input
interface. If the event handler is not in idle state when
an event dispatcher detects an event, the event dispatcher
will hold the communication on the input port and change
its state to the wait state until the event handler is idle.
When event handler is idle, the event dispatcher continues
the activation procedure as mentioned above.

Each event handler is a small processing unit with cus-
tomizable control logic and data path to perform a spe-
cific task. Figure 4 illustrates a simplified version of state
machine of an actual event handler. There are three states
in all event handlers’ state machine: (1) Idle, (2) JobAdd,
and (3) JobStart. All the event handlers have the same

functionality in any given state; and the change of state
of a event handler from idle to JobAdd and from JobAdd
to JobStart is solely controlled by the event dispatcher
or another event handler. An event handler stays in Idle
state after reset or power ON. In Idle state, the event
handler is free and ready to accept a task. The event han-
dler is signaled to change from Idle to JobAdd state after
the event dispatcher detects an event. The JobAdd state
shows that the event handler is engaged in receiving the
event information. When in this state, the event handler
waits for the completion of the transfer of necessary infor-
mation for task processing from event dispatcher to its
shared registers. When the information transfer is com-
plete, the event dispatcher signals the event handler to
change its state from JobAdd to JobStart. In that state, the
event handler begins to process the specific task. After
completing the task, the event handler will return to Idle
state and wait for the next event to happen. The event
handlers do not provide preemption operation and there
is no priority to access a particular event handler. An
event is processed on first-come-first-serve basis. When
an event handler is busy, event dispatcher has to wait until
it is free. The status bit of an event handler is used to
ensure the non-preemptive operation of event handlers.

Information is
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No event

Event
Trigger

Figure 4 Event handler state machine.
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The status of an event handler is stored in a flip-flop. A
‘0’ bit in the flip-flop indicates free status, whereas, ‘1’ bit
indicates busy status. Thus, when event dispatcher has
input event, it checks the status of the event handler. If
it is busy, then event dispatcher returns to wait state and
does not assign any task until the event handler is free.
Once event handler finishes its job, it switches its sta-
tus to free; additionally, it informs the status change to
event dispatcher as well so that the dispatcher can assign
the next task to the event handler if it still has events
in its queue to be processed. Not allowing preemption
is not restricting the usability of the proposed architec-
ture in event-driven WSN applications. For urgent or high
priority events, some event dispatcher and event handler
unit can be reserved, which will not be used for other
normal events. Thus, a WSN application designer can
choose the number of event dispatcher and event handler
as per the WSN application demand and can reserve some
of them for high priority applications. It is an alternate
way of having the similar functionality as the preemption
operation.

As described above, the event dispatcher is responsible
for the event detection and the event handler is respon-
sible for event processing. Therefore, the event detection
and event processing phases could overlap. Also, because
event handlers are able to work independently, the event
processing phases of different events can overlap, which
makes it possible to process the events in parallel. These
are the key features that make our event-driven archi-
tecture as customizable and scalable. The proposed sen-
sor node architecture locates all computation resources
locally as needed by the event handler to process a par-
ticular event. Therefore, event handlers do not need to
signal an interrupt to request the resources for task pro-
cessing. As a result, there is no interrupt overhead in our
architecture.

Hardware acceleration

The most frequent activities of a sensor device are
sending, receiving and relaying packets. These activities
involve operations directly on packets, such as parsing,
classification and framing. Those operations can be accel-
erated by hardware in network processor using parallel
processing [38,39]. As illustrated in Figure 1, the pro-
posed system adopts the architecture similar to network
processor to accelerate packet operations. There are two
information paths in the proposed system: (1) fast path
and (2) slow path. The functional units connected with the
fast processing path deal with operations that are directly
performed on packets, such as header modification, pars-
ing, classification, and packet framing. These fast pro-
cessing paths are customized for handling IEEE 802.15.4
frames and ZigBee packets. The slow processing path
deals with operations that relate to network management
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and upper layer applications, such as network setup, route
searching and routing table updates. Usually, these func-
tions are implemented by the central processing units in
a processor-based sensor node. However, in our system,
a set of specific event handlers are used to perform these
tasks.

Parallel distributed computation

Each event handler and event dispatcher has its own data
path and control hardware inside their respective func-
tional units. As described earlier, the event handlers work
in parallel. The parallel architecture in the proposed sys-
tem increases the efficiency of message processing and the
throughput of the system. The computation capability is
distributed among event handlers enabling the designed
system to respond to an event whenever it occurs. As
shown by the test results in Section Implementation
details and test results, the parallel distributed computa-
tion allows the system to respond faster to an application’s
needs.

System components

As shown in Figure 1, the proposed system consists of five
functional units. These are parsing and classification unit,
framing unit, network control unit, application manage-
ment unit, and radio control unit. These functional units
are connected to each other through dedicated links. The
functions of these units are described as follows.

Parsing and classification unit

The parsing and classification unit parses the received
packets into information fields. The parsed information
is sent to a corresponding module for further processing
based on the packet type. For example, the MAC com-
mand is sent to network control unit and the application
data is sent to application and management unit.

Framing unit

The framing unit is responsible for packing the data into
a ZigBee frame before the packet is sent to other ZigBee
nodes. It also requests the next-hop address from net-
work control unit for relaying the packet received from
parsing and classification unit. Some fields in these pack-
ets, such as MAC source address and MAC destination
address need to be modified before being sent to ZigBee
network.

Network control unit

The network control unit is responsible for ZigBee net-
work management. It provides network functions, such as
network discovery, network start, network join, neighbor
table maintenance, and routing. It also provides the oper-
ational parameters and commands to CC2420 transceiver.



Liao et al. EURASIP Journal on Embedded Systems 2013, 2013:5
http://jes.eurasipjournals.com/content/2013/1/5

Application management unit

The application management unit is responsible for the
application control and user interface. In order to test our
system, we developed an application in this unit to read
data from a counter, send the data over the network, and
display the received data.

Radio control unit

The radio control unit provides an interface with the
CC2420 transceiver module. It performs three operations:
get-packet, send-packet and transceiver-configuration.
Get-packet operation gets packets from CC2420’s buffer
and sends the packets to parsing and classification unit.
Send-packet operation receives packets from other mod-
ule, transfer the packets to CC2420 TX buffer and issue
send command. Transceiver-configuration operation is
used to configure CC2420 module and control the opera-
tion of the transceiver.

CC2420 unit

The low power, IEEE 802.15.4 [40] and ZigBee compatible,
RF chip CC2420 [41] is used as a wireless transceiver. The
chip provides features such as error detection and data
buffering for the packets that need to be transmitted and
received.

Implementation details and test results
Implementation details

Two sensor nodes were implemented using Celoxica’s
RC10 FPGA development boards [42] and CC2420 evalu-
ation boards (CC2420EB) [41] from Chipcon. The FPGA
on Celoxica’s RC10 development boards is Xilinx Spartan3
XC3S1500-FG320-4, which contains 29,952 logic cells.
Each logic cell has a 4 input look-up table (LUT) and a D
flip-flop. The system capacity of the FPGA is equivalent to
1.5 million gates. The CC2420EB contains CC2420 chip
and peripherals (i.e., antenna, receiver and transmitter fil-
ters) that support the normal operation of the chip. The
integrated system is shown in Figure 5.

To compare the circuit sizes of hardware based imple-
mentation and the processor-based sensor node imple-
mentation, a Xilinx’s soft core CPU, MicroBlaze, is also
implemented in FPGA as a reference design of processor-
based sensor node. MicroBlaze is a 32-bit soft processor
with RISC architecture. The processor-based implemen-
tation includes a 32 Kbyte RAM, which is sufficient for
both ZigBee protocol stack and the application program.

The hardware based sensor node implementation is
developed in VHDL. This VHDL design and MicroBlaze
CPU IP core are synthesized using Xilinx ISE7.0 [43] and
simulated using Mentor’s ModelSim simulator [44]. The
synthesis details are given in Table 1. As illustrated in
Table 1, the hardware based implementation of our event-
driven architecture and a WSN packet generation and
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routing application uses 52% of the total FPGA logical
capacity, and IP core of MicroBlaze processor uses 13%.
Since the FPGA logic capacity usage is directly related
to its circuit size, it is fair to say that the circuit size of
the hardware-based sensor node implementation is about
four times larger than that of the MicroBlaze processor-
based software implementation. It is a trade-off between
performance and circuit size. The proposed event-driven
architecture is not loaded into the MicroBlaze processor
as our event-driven architecture is not processor compati-
ble. IP core of MicroBlaze processor is loaded in our FPGA
just to know how much FPGA resources it takes as com-
pared to our fully hardware based FPGA implementation
of sensor nodes.

Test results

In this article, a unique design of a non-preemptive mod-
ular customizable event-driven architecture is proposed
for a standalone FPGA based sensor node. Therefore, the
standard benchmark tests are not available to test our
implementation. Thus, we tried to find standard applica-
tion that can run on the proposed sensor node. As one
of the prime objectives of WSN is to transmit and receive
data packets, a standard ZigBee transceiver application
is implemented to test the data packet processing and
routing functionality of the proposed FPGA based sensor
node. In general, every sensor node in a WSN has to have
routing capability. Thus, implementing routing within the
FPGA based sensor node is important. However, event
handlers can be designed to provide any kind of sensor
data processing and packet handling tasks in addition to
routing functionality. Thus, the functional testing of rout-
ing capability of a sensor node is carried out. However, a
full-fledged event-driven architecture for the FPGA based
sensor node is designed and implemented using VHDL
in this research rather than just FPGA based router.
As transceiver application is implemented on a sensor
node, measuring packet error rate (PER) and transmission
range is the common practice to validate a transceiver.
Thus, PER and transmission range are measured exper-
imentally as part of functional verification of the HDL
implementation. For performance analysis, the execution
cycle count and the minimum clock frequency require-
ment to achieve the maximum possible throughput are
recorded. Execution cycle count and minimum clock
frequency requirement are measured using ModelSim
simulator.

The transceiver test application mimics data monitor-
ing scenario of a real-world sensor application, in which
the system periodically collects sampled data and trans-
mits packets to the destination node. The destination
node receives packets, processes them and displays the
sampled value. Functional test cases covered in this appli-
cation include ZigBee network searching, network setup,
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network association, data sending, data receiving etc. The
test results of transmission range and PER are shown
in Figure 6. From the experiments, it is observed that
our FPGA based sensor node is able to provide reli-
able communication up to 30m at indoor environment
and 55m at outdoor environment with PER 2%. After
these distances, the system still functions with higher
PER (about 20%) up to 55m at indoor environment
and 85m at outdoor environment, respectively. During
these tests, FPGA board operated at 1.2 MHz clock fre-
quency. Radio transmitter output power is 0dBm and
antenna gain is 4.4 dBi. Our PER results are consistent
PER results obtained from the MicaZ motes based testbed
developed for ZigBee performance measurement in our
lab [45].

To evaluate the increase in speed provided by our
hardware-based sensor device implementation, execution

Table 1 Logic usage comparison between hardware based
implementation and MicroBlaze CPU

Resource Resource Hardware MicroBlaze CPU
type available based design based design
Used Percent Used Percent
Slices 13312 6888 52% 1665 13%
Slice flip flops 26624 3549 13% 1248 5%
4input LUTs 26624 12967 49% 2247 8%
bonded I0Bs 221 36 16% 81 37%
GCLKs 8 2 25% 3 38%
BRAMs 32 0 0% 16 50%

DCM_ADVs 4 1 25% 2 50%

cycle counts are compared with the typical sensor devices
found in the literature, namely general purpose processor-
based solution [7], sensor processor-based solution [11],
and event processor-based solution [13].

Execution cycle counts required for the regular sen-
sor network tasks are used as a performance metric in
order to identify the gain that is achieved with event-
driven architecture based on FPGA design. The exe-
cution clock is used in the literature as one of the
standard ways [11,13] to compare the efficiency of any
implementation. From that, how fast a task can be exe-
cuted can be derived by using the clock frequency.
The need for fewer execution cycles means that sys-
tem can either run for shorter time at the same clock
frequency or run for longer time at lower clock fre-
quency (while still ensuring the task completion on time).

0.1
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—%— Outdoor

Packet Error Rate

0.01
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Figure 6 Transmission distance versus packet error rate.
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Completing a given task in shorter time or at lower clock
frequency can reduce dynamic power consumption; how-
ever, the power consumption comparison is not made in
this article. Here, it is worth mentioning that operating
frequency of contemporary FPGAs for sensor nodes is
10 to 20 times more than the contemporary processor
(i.e., microcontroller) for sensor nodes. Processors that
are proposed for WSN operates at lower frequencies (such
as ATMEL Atmegal28 used in MICA2 motes operates
at around maximum frequency of 16 MHz [43]), whereas
the operating frequencies of Spartan-3 series FPGA can
be from 20 to 200 MHz depending upon speed grade and
the built-in functions of FPGA [43]. Newer generation
FPGAs such as low power Artrix-7 series from Xilinx
runs from 200 to 500 MHz; whereas the newer processors
for sensor nodes such as Atmel’s ATmegal281 micro-
controller in IRIS motes still runs at 16 MHz [46]. Thus,
because of disparity in maximum operating frequencies
of contemporary FPGAs and microcontrollers for sen-
sor nodes, the timing analysis based on clock frequency
alone would make it difficult to identify the gain achieved
with the proposed hardware implementation compared
to processor-based software implementations for a given
width of the datapath.

The regular sensor network tasks used to measure the
cycle counts in the evaluation are described as follows.

1. Packet transmission: The application management
unit periodically collects samples and sends these
values to the network control unit, which decides the
destination address for the packet and looks up
next-hop address. All the packets are sent to framing
unit to pack into a MAC frame. The frame is then
transferred to radio control unit and transmitted.

2. Packet reception: The radio control unit fetches the
MAC frame from CC2420 buffer when the packet is
ready, and sends the frame to parsing and
classification unit. If the destination of the packet is
the current sensor node, then the content is parsed
from the frame and sent to its network control unit
or application management unit.

3. Packet relay: After reception of a packet, if the packet
is not for the current sensor node, the system will
modify the relevant fields of the frame, and send it to
the next-hop device or to the destination node.
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The execution cycle counts for the tasks explained above
is provided in Table 2 for different sensor node implemen-
tations. From Table 2, our sensor node implementation is
about 11 times faster than Mica2 nodes in packet trans-
mission task and about 3 to 4 times faster in packet recep-
tion task and packet relay task. Our fully hardware based
event-driven architecture has comparable cycle count per-
formance in packet transmission and 30% less cycle count
for packet reception as compared to the event processor-
based architecture (implemented on general purpose pro-
cessor). Thus, implementation of network tasks directly
into hardware reduces the execution cycle count by 3 to
10 times as compared to a typical processor-based sen-
sor device. Such improvements are possible due to the
absence of an operating system and interrupt handling
overhead as well as the utilization of parallel processing
in our implementation. For example, in packet relay task,
framing unit will start a route lookup event as soon as it
receives the destination address of the relay packet. The
framing event handler and route lookup event handler are
able to run in parallel. The packet relay performance of
our system is the best among all the systems evaluated in
this article.

It is worth mentioning here that if we had operated Xil-
inx Spartan3 FPGA to its maximum possible operating
frequency of 20 to 200 MHz, we would have got more
increase in speed. Additionally, if we take high end FPGAs
for sensor nodes such as low power Xilinx Artix-7 series,
then certainly increase in speed would be better.

Figure 7 shows the minimum clock frequency require-
ment of our FPGA based implementation to maintain
250 kbit/s system throughput (the maximum possible data
rate through CC2420 based wireless interface) for typical
sensor node tasks described earlier in this section. The
packet transmission graph shown in the figure includes
the tasks of event sampling, packet generation and packet
transmission, therefore, the minimum clock frequency
requirement for transmission task is high as compared
to relay and reception task. The performance of the pro-
posed event-driven architecture is quite stable. Once the
system clock frequency is increased to the level to achieve
the maximum possible system throughput (250 kbit/s),
the system throughput remains constant irrespective of
increase in system clock frequency, frame size, or the
incoming or outgoing packet load conditions.

Table 2 The execution cycle counts for regular sensor network tasks for different sensor node implementations

Task Mica2 node (8-bit) SNAP node (16-bit) Event processor-based node (8-bit) FPGA based node (8-bit)
Packet 1532 331 127 137

transmission

Packet reception 234 258 136 71

Packet relay 429 418 165 115




Liao et al. EURASIP Journal on Embedded Systems 2013, 2013:5
http://jes.eurasipjournals.com/content/2013/1/5

Page 10 of 11

300000
_ //k_—o———*—’
z
>, 250000
9
c
v
3 A A _—y
o A—h— & 4 A
Ig /,—I/.”. —&— Packet transmission
¥ 200000 —— Packet Reception
8 —&— Packet Relay
£
g
£ 150000 w
=
100000 . . .
20 40 60 100 120
Frame Length (Byte)
Figure 7 Minimum clock frequency requirement to achieve maximum system throughput.

Discussion on power consumption

In this research, the reason of using FPGAs for sensor
nodes was not the minimization of energy consumption
but improving timing efficiency to meet certain types of
WSN application’s demanding real-time operations and
computation power. Some of these applications are multi-
media data transmission and smart grid gateway nodes.

If low power consumption is required simultaneously
with real-time and computational power, emerging low
power FPGAs can be used to extend the lifetime of bat-
teries on the WSN nodes. For example, IGLOO series
from Actel consumes 2 W in ultra low-power mode.
Thus, low power FPGAs based sensor nodes can compete
with processor-based sensor nodes. Even our implemen-
tation with relatively older generation Xilinx Spartan3
XC351500-FG320-4 FPGA with its static power consump-
tion of 41 mW provides comparable power consumption
performance to that of commonly used processor-
based implementations. For example, Mica2 mote with
ATMegal28 microcontroller operating at 7.4 MHz with
CC1000 radio module consumes total active power of
89 mW, and similarly Telos-B mote with TiMSP430 micro-
controller operating at 8 MHz with CC2420 radio module
consumes total active power of 32 mW [14].

Another power mitigation technique is to implement
the design in ASICs. The experimental study conducted
in [47] with 90nm CMOS FPGA and ASIC demon-
strated that on average, an FPGA consumes 14 times more
dynamic power than the ASIC implementation. Porting
our implementation to both low power FPGAs and ASIC
can be done with minimum effort as the code is written in
VHDL.

We also would like to point out that high computational
power provided by FGPA based sensor nodes allows better
in-node data processing, which can minimize the amount
of data that is to be forwarded/sent/received by a sen-
sor node instead of forwarding/sending raw sensor data.
Thus, FPGA’s higher processing capability can be used to
achieve higher level of data aggregation and compression,

which can minimize the amount of transmission for a
given amount of information.

Conclusions

In this study, a fully hardware based sensor node is imple-
mented using general purpose FPGA and ZigBee radio
interface. This design eliminates timing problems associ-
ated with interrupt-driven processor-based WSN nodes
and overhead associated with operating system’s inter-
rupt handling. The implementation can be tailored to
meet strict deadlines, hence provide real-time operation.
The hardware implementation can reduce the number of
execution cycles required to complete a task by at least
30% when compared to processor-based implementations
for the same datapath width. Although processor-based
sensor node implementations offer flexible architecture
for researchers, this study demonstrated that a hardware
based sensor node implementation can provide perfor-
mance improvement in terms of fewer execution cycle
count for applications such as multi-media, data compres-
sion, and real-time transmission in WSNs. The proposed
architecture provides an FPGA based viable WSN node
architecture.
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