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Abstract

Schedulers in radio frequency identification dense environments aim at distributing optimally a set of t slots between
a group ofm readers. In single-channel environments, the readers within mutual interference range must transmit at
different times; otherwise, interferences prevent identification of the tags. The goal is to maximize the expected
number of tags successfully identified within the t slots. This problemmay be formulated as a mixed integer
non-linear mathematical program, which may effectively exploit available knowledge about the number of
competing tags in the reading zone of each reader. In this paper, we present this optimization problem and analyze
the impact of tag estimation in the performance achieved by the scheduler. The results demonstrate that optimal
solutions outperform a reference scheduler based on dividing the available slots proportionally to the number of tags
in each reader. In addition, depending on the scenario load, the results reveal that there exist an optimum number of
readers for the topology considered, since the total average number of identifications depend non-linearly on the
load. Finally, we study the effect of imperfect tag population knowledge on the performance achieved by the readers.

1 Introduction
Passive radio frequency identification (RFID) is increas-
ingly being used to identify and trace objects in supply
chains, in manufacturing process, and so forth. These
environments are characterized by a large number of
items with attached tags which flow on conveyor belts,
inside pallets or boxes, and the like, entering and leav-
ing facilities. In large realistic installations, several readers
are commonly deployed; these are the so-called dense
reader environments, comprising multiple readers within
a mutual range.
In these scenarios, the rate of tags identified per reader

is limited by the reader collision problems, namely:

• Reader-to-tag interferences (RTI) occur when two or
more readers, irrespectively of the working frequency,
transmit at the same time, overlapping their read
ranges (reader-to-tag range) and powering the same
tags. For instance, in Figure 1, if readers R and R′ are
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feeding tag A simultaneously, tag is not able to
produce a correct response to any of the readers.

• Reader-to-reader interferences (RRI) occur when two
or more readers working at the same frequency are in
mutual range, that is, one reader that powers a tag
within its reader-to-tag range can receive stronger
signals from other readers, ruining the weaker signal
from the tag. For example, in Figure 1, tag B cannot be
read by R if at the same time R′ tries to read the tag C.

Another kind of interference is tag-to-tag interference
which is internal to the reader’s cell and is produced
among tags competing to be identified by the reader. This
latter type occurs even with a single reader, whereas the
former ones (external) are only present with more than
one reader. Indeed, the way of addressing internal and
external interferences is completely different and inde-
pendent. External ones are addressed by reserving (in
real-time or with a preconfigured scheduling) resources to
particular readers. Then, the reader uses these resources
(time, frequency, power, etc.) to execute some algorithm
to solve the tag-to-tag interference problem, as the static
frame slotted ALOHA (static-FSA). Later in Section 2.1,
we analyze the way how static-FSA and its derivate
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Figure 1 Interferences in dense reader environments.

dynamic-FSA work, since their operation is relevant to
decide the readers’ scheduling.
External interferences are directly related to the readers’

output power, which delimit the interference range. For
example, in Europe, output power may reach up to 2 W
and guarantees a reader-to-tag range up to 10 m, while
this may cause interferences with readers up to some
hundreds of meters typically, determining interference
ranges:

• If two or more readers are within two times the
reader-to-tag range (dRT), either part or the whole
reading area overlaps, preventing tag operation.
Hence, both RTI and RRI interferences are present.
In this case, reader operation should be allocated at
different working times.

• If the distance among the readers is between dRT and
the maximum distance determined by the RRI (dRR),
only RRI appears. The reader operation can be
multiplexed either in frequency or in time.

• If the distance among the readers is larger than the
maximum RRI distance, they do not suffer
interferences.

Table 1 summarizes the restrictions applying to reader
operation for dense reader environments.

Table 1 Reader operation restrictions versus d
= Freq �= Freq

= Time d > dRR d > dRT

�= Time d > 0 d > 0

Therefore, in dense reader environments, the problem
is how to distribute the reading resources available among
the readers to perform optimally. The main parameters
involved in this problem are the following:

• The number of readers, m.
• The number of available frequency channels, F.
• The number of time-slots available in each

frequency, t.
• The topology of the readers.
• The implemented identification procedure in each

reader (e.g., static-FSA, dynamic-FSA, Query-Tree
protocols, etc.).

• The characteristics of the traffic of tags (e.g., static
tags vs. tag flow, random vs. deterministic number of
tags, etc.).

Current standards (see Section 2) propose some solutions
to reduce collision issues but exclusively focused on min-
imizing RRI. On the other hand, a number of papers (see
also Section 2) deal with minimization of the RTI but
without considering reader-to-reader interferences.
In a previous paper [1], a particular simplified problem

with two readers m = 2 in reader-to-reader range (dual
reader environment) is addressed. Besides, in our previ-
ous paper [2], the scheduling problem for single-channel
environments is firstly introduced, that is, we consider
the case of any arbitrary number of readers (m) and for
any particular network topology. Attending to the restric-
tions given above, in this case, the readers cannot trans-
mit simultaneously if the reader-to-reader interferences
are present, that is, if the distance between them is less
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than dRR (note that this case also comprises reader-to-tag
interferences).
In addition to [2], in this work, we provide insight on

the impact of the schedulers derived from the knowledge
of the tag population associated to each reader. To the
best of our knowledge, all previous optimization models
(see Section 2) have largely ignored the availability of this
information. This information can be effectively exploited
to construct a scheduler with the goal of maximizing
the number of identifications in the whole interrogation
period. In this work, we assume that this information is
known and show how it can be used to develop an opti-
mal scheduler. Moreover, we analyze the improvement
obtained when this information is available and the effect
on the expected performance when errors occur in tag
estimation.
This resource allocation problem is addressed both for

static and dynamic frame length identification procedures
(which are described later in Section 2.1) and that the tags
remain in coverage of their corresponding reader at least
during the whole period of identification (t time-slots).
The goal is tomaximize the expected number of identified
tags in the whole network.
The rest of the paper is organized as follows: In

Section 2, themost relevant research proposals are shown.
Section 2.1 describes the identification procedures com-
monly used in RFID readers. Section 3 describes the opti-
mization model. Section 4 shows the performance results
achieved by the optimal algorithm. Section 5 deals with
the analysis of the impact of tag population estimation in
the scheduler. Finally, Section 6 concludes and describes
future works.

2 Related work
A number of proposal for coordinating dense reader envi-
ronments have been presented in the literature; most of
them are based on heuristic approaches and are, thus,
suboptimal by nature. A summary of these works is con-
tained in [3]. Besides, a number of papers [4-10] propose
different system models and schedulers based on the
optimization of some metric, defined upon the corre-
sponding model.
Choi and Lee [4] propose a mixed integer linear pro-

gram to minimize the reader interference problem as well
as other performance metrics by selecting channel, times-
lots, and output power for each reader. Their strategy is
based on achieving a minimal signal-to-interference-plus-
noise ratio for the signal received from tags, as well as
on maximizing network utilization and minimizing power
consumption. However, they neglect the availability of
information about the number of tags present in the read-
ing area of each reader and the operation of the underlying
reading protocols, which are major factors determining
the performance of the reading process.

Kim et al. [5] propose the TPC-CA algorithm based on
a power control approach. It consists of controlling the
reader output power optimally to reduce reader-to-reader
collisions. Optimality criterion is related to minimize the
area where interferences among readers occur.
Chui-Yu et al. introduces GA-BPSO in [6] a sched-

uler based on genetic algorithm and swarm intelli-
gence meta-heuristics for single-channel environments.
These schedulers aim at minimizing the overall sum
of transaction times. However, these times are pro-
vided as parameters for the scheduler and are not based
on the impact of resource allocation on the reading
protocols.
Deolalikar et al. derive in [7] optimal scheduling

schemes for readers in RFID networks for four basic
configurations. As in our work, the authors aim at maxi-
mizing the number of identification within the scheduling
period(t), but they model the performance of the read-
ing process with an approximation: the number of tags
identified increases linearly up to a saturation point. From
that point on, the number of identifications remains con-
stant. As we demonstrate in Section 2.1, this approach is
not realistic for different tag-to-tag anti-collision proto-
col configurations (e.g., in static-FSA, there is a drop on
the throughput). As in our work, only reader-to-reader
interference (and thus single-channel) environments are
considered.
The study of Mohsenian-Rad et al. [8] is the work

more closely related to ours. The authors design two
optimization-based distributed channel selection and ran-
domized interrogation algorithms for dense RFID sys-
tems: FDFA (which is fully distributed and achieves a
local optimum) and SDFA (semi-distributed and reach
to the global optimum). In addition, the authors realisti-
cally assume that the reader may operate asynchronously.
Similarly to our work, they consider a FDMA/TDMA
scheduler, where the medium access control layer of the
readers complies with EPCglobal Class-1 Gen-2 standard
(therefore, a reader may allocate a number of interro-
gation frames within its allocated time). In this work,
the authors focus on the probability that a reader starts
an interrogation interval without experiencing either
reader-to-reader or reader-to-tag collisions. The goal is
to achieve max-min fairness in the network; as a result,
the processing load is evenly distributed among all read-
ers. However, this paper does not consider the knowl-
edge about the number of contending tags in range
of each reader. This information allows us to formu-
late the optimization problem in terms of reading effi-
ciency (maximizing the number of tags identified in
the overall time period). An additional contribution of
[8] is to develop a protocol to construct the topology
(i.e., reader-to-reader and reader-to-tag constraints) by
exchanging some messages in three control channels.
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This protocol may be implemented in other schedulers
(like ours) to determine the network topology in real
time.
Tanaka and Sasase [9] also determine an interference

model which they apply later to formulate constraints
in a binary integer linear program aimed at maximiz-
ing the ratio of total time where readers can success-
fully communicate with the tags and total interroga-
tion time of the readers. As in our model, the goal is
selecting suitable timeslot and channels for each reader.
They also propose two heuristics (one distributed and
one centralized) to solve the allocation problem effi-
ciently.
Seo and Lee [10] propose a FDM/TDM scheduler (RA-

GA) based on a reader-to-reader interference model,
which seeks to maximize a utility function depending
upon the operating time slots. This problem is solved
using a genetic algorithmmeta-heuristic.
As many of the previous works, neither in [9] nor in

[10] the reading protocol or the current load (unidenti-
fied tags) of each cell is considered. Summarizing, to the
best of our knowledge, all previous optimization models
ignore the availability of information about the number
of tags within the range of each reader. This information
can be very effectively exploited to construct a scheduler
with the goal of maximizing the number of identifica-
tions in the interrogation period. Besides, most previous
works assume a model view from the physical layer per-
spective and are usually aimed at minimizing interference.
This view has notable limitations since tag identification
performance, and thus scheduling, heavily depends on the
underlying tag-to-tag anti-collision protocol, as discussed
in the next Section.

2.1 Tag identification procedure
The identification process involves communications
between the reader and the tags and takes place in a
shared wireless channel. Basically, the reader interro-
gates tags nearby by sending a Query packet (the exact
format of this packet depends on the particular stan-
dard). The tags are energized by the reader’s signal and
respond to this request with their identification. When
several tags answer simultaneously, a tag-to-tag collision
occurs, and the information cannot be retrieved. There-
fore, a tag-to-tag anti-collision mechanism is required
when multiple tags are in range. ALOHA-based proto-
cols, also called probabilistic or random access proto-
cols, are the most prevalent in the UHF band. They are
designed for situations in which the reader does not know
exactly how many tags will cross its checking area. The
most common ALOHA RFID protocol is FSA, a varia-
tion of slotted ALOHA. As in slotted ALOHA, time is
divided into time units called slots. However, in FSA,
the slots are subject to a super-structure called a ‘frame’.

Two options of the FSA are commonly used in the RFID
technology:

1. static frame length FSA (static-FSA). The reader
starts the identification process with an identification
frame by sending a Query packet with information
about the frame length (k slots) to the tags. The
frame length is kept unchanged during the whole
identification process. At each frame, each
unidentified tag selects a slot at random from among
the k slots to send its identifier to the reader. FSA
achieves reasonably good performance at the cost of
requiring a central node (the reader) to manage slot
and frame synchronization. FSA has been
implemented in many commercial products and has
been standardized in the ISO/IEC 18000-6C [11],
ISO/IEC 18000-7 [12], and EPCGlobal Class-1 Gen-2
(EPC-C1G2) standards [13].

2. dynamic frame length FSA (dynamic-FSA). When
the tags outnumber the available slots, the
identification time increases considerably due to
frequent tag-to-tag collisions. On the other hand, if
the slots outnumber the tags, many slots will be
empty in the frame, which also leads to long
identification times. Dynamic-FSA protocols were
conceived to address this problem. They are similar
to static-FSA, but the number of slots per frame is
variable. In other words, parameter k may change
from frame to frame in the Query packet to adjust
the frame length. Dynamic-FSA operation is optimal
in terms of reading throughput (rate of identified tags
per slot) when the frame length equals the number of
contenders [14]. Therefore, to maximize throughput,
the reader should ideally know the actual number of
competing tags and allocate that number of slots to
the next frame. Different dynamic-FSA algorithms
have been proposed to estimate the number of
competing nodes based on the collected statistical
information. The most relevant ones have been
studied in depth in our previous papers [15,16].

In the next Section, both algorithms (static-FSA and
dynamic-FSA) are considered in order to propose an opti-
mal slot distribution for the single channel environment.
In the case of static-FSA, the frame length is k for all read-
ers; in the case of dynamic-FSA,we are assuming that each
reader j actually knows the number of competing nodes
at frame i (nj,i) and that the reader is adjusting kj,i = nj,i
if the number of the remaining available slots is greater
than nj,i.

3 Optimal time distribution
Recall from the introduction that a dense-reader environ-
ment with the limitation of a single frequency channel
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Figure 2 Example scenarios form = 6. (a) Full-mesh topology.
(b) Star topology. (c) Line topology.

F=1, m readers, and t slots available in the channel is
assumed. In addition, for each reader j = 1, . . ., m, let us
denote

• nj, the tags unidentified in the range of the reader j
• tj, the number of slots assigned to reader j.

Let us remark that the methods used in dynamic-
FSA tag-to-tag anti-collision protocols to determine
the number of contenders can be directly applied
in our case to estimate nj in real-time (see [15]
and [16] for details). Besides, topological dependen-
cies among readers are defined by an m × m matrix
A = (ajj′), the elements of which are 1 if reader
j and j′ cannot operate at the same time, and 0
otherwise.
Let ϕ(n, t) denote the expected number of identified

tags when n tags contend in t slots, and let us define �

Table 2 Full-mesh scenario

Number of tags � R1 R2 R3 R4

10 40.000 128 128 128 128

20 80.000 126 115 155 116

30 119.999 128 128 128 128

40 159.427 128 128 128 128

50 186.355 128 128 128 128

60 189.195 94 140 139 139

70 189.113 110 70 166 166

80 188.949 80 162 190 80

90 188.992 0 212 89 211

100 188.905 157 157 99 99

Optimal assignment of slots for the dynamic-FSA protocol.

Table 3 Star scenario

Number of tags � R1 R2 R3 R4

10 40.000 78 74 76 77

20 80.000 126 115 155 116

30 119.999 128 128 128 128

40 159.427 128 128 128 128

50 186.355 128 128 128 128

60 189.195 94 140 139 139

70 210.000 0 512 512 512

80 240.000 0 512 512 512

90 270.000 0 512 512 512

100 300.000 0 512 512 512

Optimal assignment of slots for the dynamic-FSA protocol.

as the whole expected number of identified tags in the
network, that is,

� =
m∑
j=1

ϕ(nj, tj). (1)

Then, the optimization problem can be stated as solving

max
tj

j=1,...,m

�. (2)

Subject to

tj ≥ 0 (3)

and

tj + Itj
m∑

j′=1,j′ �=j
tj′aj′j,≤ t for all j = 1, . . . ,m, (4)

where Itj is 1 if tj is greater than 0, and 0 otherwise.
Constraint (3) expresses a basic limiting condition on

the values assigned to the number of assigned slots. The
key in our problem formulation is constraint (4) which

Table 4 Line scenario

Number of tags � R1 R2 R3 R4

10 40.000 85 86 165 221

20 80.000 118 118 124 248

30 120.000 153 153 171 171

40 160.000 173 170 169 173

50 199.913 174 169 169 174

60 236.153 176 168 168 176

70 254.481 188 162 162 188

80 263.693 215 172 125 215

90 273.451 242 180 90 242

100 287.462 256 256 0 453

Optimal assignment of slots for the dynamic-FSA protocol.
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establishes local conditions to regulate the spatial reuse
of the resources in our network. This condition states
that the number of slots assigned to a reader j plus those
assigned to its neighbors can not surpass the number of
available slots. Itj is included since readers without slots
assigned should be considered as disconnected, and no
constraints have to be applied to that particular readers.
The former constraint guarantees that enough slots are

available for each node in each neighborhood (set of nodes
bonded with topological constraints, i.e., aj′ j = 1) to obey
with the limit of t slots among all neighbors. Note that it
does not guarantee that these slots can be allocated con-
secutively. However, this is not an issue since tags do not
proceed with the next slot until aQueryRep packet arrives
from the reader. Hence, even if the slots are not con-
secutively allocated, the tags perceive continuity and the
identification can be performed seamlessly.
We must remark that this set of constraints produces

feasible solutions regardless of the considered topology.
However, in some cases (as we will show in the next

section), the constraint is too strict and may lead to sub-
optimal solutions since space reutilization is limited. If
the network graph has a large density (i.e., the number
of edges is close to the maximal number of edges), the
results provided by solving problem (1) will be close to
the optimal solution with maximal space resource reuti-
lization. Whereas, for sparse network graphs, the space
reutilization will be small. The first kind of scenario will
likely occur (due to the large reader-to-reader interference
range) in facilities with non-screened readers; thus, the
solutions found will be realistic.

3.1 ϕ(nj, tj) computation for static-FSA
Finally, in order to solve the optimization problem, the
expected number of identifications ϕ(n, t) must be com-
puted. The next sections deal with its computation both
for static-FSA and for dynamic-FSA.
In this case, the reading process for each reader j con-

sists of several consecutive reading frames of length k
until all the tj reading slots are eventually exhausted. It
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Figure 3 Expected number of identifications (�) versus n: Full-mesh scenario. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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is assumed that tj = ka, being a a positive integer or
zero. Given the last condition, and since expectation is a
linear operator, ϕ(nj, tj) can be computed as the sum of
the average number of tags identified in the first frame
(ϕ(nj, k)) plus those identified in the remainder process
(ϕ(nj − η, tj − k)), where η denotes the random number of
tags identified in the first frame.
The former part can be computed if the distribution

of the random variable η is known; so, let us denote
P(a|nj , k) as the probability that a tags are identified if nj
tags contend in k slots. Then

ϕ(nj, k) =
nj∑

a=0
aP(a|nj , k). (5)

The second part, can be computed given the joint proba-
bility of identifying a tags in the first frame and a′ in the
remainder process if nj tags contend in tj slots, which we
will denote as P(a, a′|nj, tj). We obtain

ϕ(nj − η, tj − k) =
nj∑

a=0

nj∑
a′=0

a′P(a, a′|nj, tj). (6)

But, clearly P(a, a′|nj, tj) = P(a|nj , k)P(a′|nj − a, tj − k),
and this leads to

ϕ(nj − η, tj − k) =
nj∑

a=0
ϕ(nj − a, tj − k)P(a|nj , k) (7)

Appendix 1 demonstrates that the value of P(a|nj , tj) is
given by (where the technique in [17] was used to compute
the probability P(a|n, t))

P(a|nj , tj) = nj!
tnjj

(tj
a

) nj−a∑
c=0

(−1)c
(t − a

c

)
(tj − a − c)nj−a−c

(nj − a − c)! .

(8)
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Figure 4 Expected number of identifications (�) versus n: Star scenario. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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Thus, the following recursive equation results:

ϕ(nj, tj)=
{∑nj

a=0(a + ϕ(nj− a, tj − k))P(a|nj , k), if tj ≥ k
0, otherwise

(9)

3.2 ϕ(nj, tj) computation for dynamic-FSA
In this second case, the reading process for each reader
j also consists of several reading frames but of vari-
able length kj,1, kj,2, . . ., until all the tj reading slots are
exhausted. Besides, denote the number of contenders in
each frame as nj,1, nj,2, . . .. Since the dynamic-FSA opera-
tion is used (see Section 2.1), the reader seeks tomaximize
reading throughput and allocates the optimal number of
slots in each frame. That is, as much slots as the num-
ber of contending tags (kj,i = nj,i). This is possible while
nj,i < tj − ∑i−1

c=1 kj,c, that is, if the remainder number
of slots is greater that the number of contenders. Other-
wise, we assume that a last frame is allocated with all the
remaining slots (kj,i = tj − ∑i−1

c=1 kj,i).

Like in the previous case ϕ(nj, tj) can be described
through a recursive equation:

ϕ(nj, tj)=
{

ϕ(nj,nj)+∑nj
a=0 ϕ(nj− a, tj− nj)P(a|nj,nj), if nj< tj

ϕ(nj, tj) if nj≥ tj.

From Equation (5),

ϕ(nj , nj) =
nj∑

a=0
aP(a|nj , nj),

and

ϕ(nj , tj) =
nj∑

a=0
aP(a|nj , tj), if nj ≥ tj.

Hence,

ϕ(nj, tj)=
{∑nj

a=0(a + ϕ(nj− a, tj− nj))P(a|nj , nj) if nj< tj∑nj
a=0 aP(a|nj , tj) if nj ≥ tj.

(10)
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Figure 5 Expected number of identifications (�) versus n: Line scenario. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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4 Results
The optimal assignment has been computed in static-FSA
and dynamic-FSA cases using the recursive formulas
described in the previous section. Three representative
scenarios (see Figure 2) have been selected. The edges (i.e.,
connecting lines) represent the existence of interference
between two vertices (readers). On the first scenario, a
full-mesh topology of m readers has been selected. It is a
typical configuration in facilities, since the RRI distance
is large (in the order of hundreds of meters) as discussed
in the introduction. On the other hand, the star topology
of m readers selected for scenario two represents another
practical case, where readers are confined to some areas
(e.g., by screening the reading area), and interferences are
restricted to some particular pairs, exclusively between R1
and the other readers in this example. Finally, the line sce-
nario is representative of an assembly line, where neighbor
readers are in range.
Besides, the following parameters have been considered:

• t = 512,

• n tags to be identified at each reader, from 1 to 100
tags,

• m = 2, 4, 6, 8, and 10,
• and for static-FSA k = 16 and 64.

Our optimization algorithm has been implemented
using the General Algebraic Modeling System, a high-
level modeling system for mathematical programming
and optimization, and AlphaECP, a MINLP (Mixed-
Integer Non-Linear Programming) solver based on the
extended cutting plane method. It allowed us to define
our optimization problem directly from the mathematical
description provided in Section 3.
Tables 2, 3, and 4 show the optimal configurations (slots

assigned to each reader) for the dynamic-FSA protocol in
all scenarios with m = 4. Let us remark that the optimal
solutions are non-trivial, that is, can be obtained through
an educated guess. Clearly, this solution is not unique: a
circular permutation of the optimal solution, replacing the
slots from Rj to R(j + 1) if j < m, and from Rm to R1 is
also an optimal solution for the full-mesh scenario. The
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Figure 6 Optimal vs. proportional allocation for full-mesh topology,m = 4. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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same applies to the star scenario if the slots in R1 are kept
constant while any permutation is applied to the rest of the
readers and to the line scenario replacing the slots from Rj
to R(m − j).
In addition, note that the results obtained for the star

scenario (Table 3) can be improved. For example, for n =
30, after assigning 128 slots to R1, it would be possible
to assign 384 to all remainder readers, which will provide
a solution better than that obtained by solving problem
(1). As discussed in Section 3, this is caused by the strict
resource reutilization obtained by applying the set of con-
straints given by Equation (4). This problem does not
appear for networks characterized by a dense graph, as the
full-mesh scenario.
Besides, Figures 3, 4, and 5 show the expected number

of tags identified (�) for all the possible values ofm using
the optimal assignments. Note that the resources available
(t = 512) are the same for all the configurations; however,
the performance clearly varies. This illustrates how the
underlying reading protocol determines the final system

performance. Dynamic-FSA performs better than static-
FSA assignment for both configurations of k (16, 64), as
can be expected. This is reasonable since dynamic-FSA
achieves an optimal reading throughput frame-by-frame
while the number of available slots is at least equal to the
number of contenders.
Another important result shown in these figures is the

existence of saturation points in the system. That is,
in some cases, the throughput does not increase when
the load is increased. For dynamic-FSA, in all cases, the
throughput never decreases; this is caused by the flex-
ibility of dynamic-FSA to adapt to different loads. For
static-FSA k = 64, the effect is almost similar to the
dynamic-FSA case, except in the full-mesh scenario where
the throughput slightly decreases when the tag is beyond
n = 60. However, for all static-FSA k = 16 cases, the
effect of the load in the throughput is dramatic, with a
throughput minima and a step decreasing performance.
This is of considerable importance, since static-FSA k =
16 is the default configuration of many readers in the

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 n
um

be
r 

of
 id

en
tif

ie
d 

ta
gs

 (
Φ

)

Number of tags in readers, m=4. Scenario 2.

FSAK16 opt

FSAK16 prop

(a)

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 n
um

be
r 

of
 id

en
tif

ie
d 

ta
gs

 (
Φ

)

Number of tags in readers, m=4. Scenario 2.

FSAK64 opt

FSAK64 prop

(b)

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 n
um

be
r 

of
 id

en
tif

ie
d 

ta
gs

 (
Φ

)

Number of tags in readers, m=4. Scenario 2.

DFSA opt

DFSA prop

(c)

Figure 7 Optimal vs. proportional allocation for star topology,m = 4. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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market, and this configuration leads to poor collective
performance.
In addition Figures 6, 7, and 8 show, for m =

4, the performance of the optimal allocation versus a
non-optimal allocation scheme selected for compari-
son, namely, using 1

m of time allocated to each reader
(‘proportional’ resource sharing), that is, t1 = ... = t4 =
128. This heuristic is a natural choice, since the number
of tags in the range of each reader is the same; there-
fore a good performance could be expected. In fact, the
proportional scheme achieves in a range of n a perfor-
mance nearly equal to the optimal one, as can intuitively
be expected, in some cases (e.g., static-FSA k = 64 and
dynamic-FSA in the full-mesh topology). However, for
some cases, the allocation is clearly suboptimal (e.g., star
and line scenarios for n > 60). Noteworthy, in the star
scenario, there is a point (n ≥ 70) where the best option
is directly to disconnect the central reader. In this case,
without restrictions in the network, the remainder readers
can be allocated each all the 512 slots. A similar behavior

occurs for the line scenario, disconnecting some readers
when there is a high load (e.g., see Table 4; if n = 100 the
third reader is disconnected).

5 Tag estimation impact on scheduler
performance

The aim of this section is twofold:

(1) Quantify the improvement achieved in the scheduler
when tag instant population estimation is available.

(2) Quantify the impact of tag population estimation
errors on the performance achieved by the scheduler.

As stated in Section 2, previous works do not assume
knowledge about the tag population and are mostly based
on minimizing interferences. To establish a comparison
between our model and a reference model that do not
use population information, at least, we must focus on the
same performance metric, i.e., the expected number of
identifications (which can also be viewed as throughput).
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Figure 8 Optimal vs. proportional allocation for line topology,m = 4. (a) Static-FSA k = 16. (b) Static-FSA k = 64. (c) Dynamic-FSA.
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Although our reference model does not use informa-
tion about the instant population, it is rational to assume
at least a coarse knowledge of the environment, typically
the average number of competing tags. This allows the
designer to configure the system for a standard case. Note
that if this information is unavailable, the designer should
guess somehow a configuration, and the performance
would be lower than in the reference model.
Henceforth, let us assume that our reference model is

based on the availability of information about the aver-
age tag population and that the designer is able to select
the optimal scheduler configuration for this case (e.g., by
solving problem (1)).
For simplicity, let us denote by �n them-dimensional vec-

tor (n1, . . . , nm), and by ��n( �n′) the expected number of
identifications when the optimal solution to problem (1)
with tag estimation parameter �n is applied to the actual
population �n′. Besides, let �n∗ denote the m-dimensional
vector, where the jth component is the average number of
tags in reader j.
Thus, if the probability distribution of tag population,

i.e., P(�n) is known, the improvement (�) achieved by our
scheduler over the reference scheduler is

� =
∑
∀�n

(��n(�n) − � �n∗(�n))P(�n). (11)

By solving problem (1), both optimal slot assignments
can be computed. Let us denote t̂ and t̂∗ to the optimal
assignments for tag populations �n and �n∗, respectively,
and t̂j and t̂∗j the slots assigned to particular reader jth.
Then, � can be rewritten as

� =
∑
∀�n

⎛⎝ m∑
j=1

ϕ(nj, t̂j) −
m∑
j=1

ϕ(nj, t̂∗j)

⎞⎠ P(�n), (12)

where ϕ(n, t) is computed directly with formulas (9) and
(10) for static-FSA and dynamic-FSA, respectively.
In addition, it could be argued that instant tag popu-

lation estimation may be subject to errors. This can be
included in our computations through an error vector �ε,
where the jth component is εj = n̆j − nj, nj the estimation,
and n̆j is the actual number of tags. Therefore, the real tag
distribution is �n + �ε, and � should be modified as

� = E�ε

⎧⎨⎩∑
∀�n

⎛⎝ m∑
j=1

ϕ(njy + εj, t̂j) −
m∑
j=1

ϕ(nj + εj, t̂∗ j)

⎞⎠P(�n)

⎫⎬⎭ .

(13)

Table 5 Full-mesh scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0273 0 0.0889

4 0.0120 0.0008 0.2891

6 0.0423 0.0050 0.4831

8 0.0791 0.0086 0.6024

10 0.0947 0.0086 0.6731

Ratio of improvement using tag estimation. ε = 0.

Note that in this last case, t̂j, is still computed with the
estimation vector �n. So, if �n and �ε are independent, we
finally reach to

�=
∑
∀�ε

⎡⎣∑
∀�n

⎛⎝ m∑
j=1

ϕ(nj+ εj, t̂j)−
m∑
j=1

ϕ(nj+ εj, t̂∗ j)

⎞⎠P(�n)

⎤⎦P(�ε).

(14)

Note that we use a perfect knowledge of the average
number of tags; therefore, we are assuming the least-
favorable comparison case for our scheduler versus the
reference model.

5.1 Numerical examples
For the sake of example, let us assume that for each reader,
the number of tags is given by a uniformly distributed ran-
dom variable n in the range [ 0, 100]. That is, nj = n for all
j = 1, . . . ,m. Hence, �n∗ = (50, . . . , 50). Tables 5, 6, and 7
show the average performance improvement achieved for
the examples described in the previous section and for the
dynamic-FSA and static-FSA tag-to-tag anti-collision pro-
tocols. The results are shown as the ratio of improvement
(�) to the expected readings without using tag estimation.
The results clearly depend on the scenario and on the

tag-to-tag anti-collision protocols. Improvement ranges
from nearly 0% in many static-FSA k = 64 cases, while
it may reach up to 67% for static-FSA, k = 16 in the
full-mesh scenario. For dynamic-FSA, the improvement

Table 6 Star scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0273 0 0.0889

4 0.1592 0.1702 0.2636

6 0.0509 0.0023 0.1940

8 0.0417 0.0005 0.1756

10 0.0333 0.0000 0.1683

Ratio of improvement using tag estimation. ε = 0.
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Table 7 Line scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0266 0 0.0817

4 0.0331 0.0144 0.2114

6 0.0049 0.0018 0.2105

8 0.0298 0.0050 0.2073

10 0.0101 0.0013 0.2056

Ratio of improvement using tag estimation. ε = 0.

is between 2.7% and 21.14%, depending on the particu-
lar scenario. Let us remark again that this comparison is
performed against the average tags identified when the
optimal configuration is computed using as information
the mean number of competing tags. Therefore, this is
theminimum improvement ratio: non-optimal schedulers
(as the reference heuristic used in Section 4) will obtain
worse results.
Besides,we can consider the estimation error. In our test

we have assumed for each reader an error distributed uni-
formly ε ∼ U[−10, 10]. Results are shown in Tables 8, 9,
and 10.
Again, the results heavily depend on the configuration,

but in most cases, even assuming an error in the tag
number estimation, they show a positive feedback using
the estimation. In some cases, in the full-mesh and line
scenarios, there is a negative impact, but almost neg-
ligible. Therefore, we can conclude that even assuming
errors, the utilization of tag estimators is worth to be
considered.

6 Conclusions
This work introduced a novel optimal scheduler for a par-
ticular dense reader environment composed bym readers
which must share a single frequency channel. The sched-
uler proposed exceeds in performance to heuristic algo-
rithms, improving the average number of tags identified
in an RFID facility. Besides, the effect of the reading pro-
tocols has also been studied in depth, concluding that a
dynamic FSA algorithm excels static frame length ones.

Table 8 Full-mesh scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0284 0 0.0527

4 0.0064 0.0007 0.2334

6 0.0361 0.0040 0.4107

8 0.0580 0.0101 0.5515

10 0.0747 0.0070 0.5712

Ratio of improvement using tag estimation. ε ∼ U[−10, 10].

Table 9 Star scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0275 0 0.0704

4 0.1541 0.1750 0.2087

6 0.0543 0.0017 0.2123

8 0.0406 -0.0002 0.1878

10 0.0302 0.0000 0.1925

Ratio of improvement using tag estimation. ε ∼ U[−10, 10].

Indeed, the impact of using knowledge about tag pop-
ulation in the scheduler has been analyzed. It has been
concluded that even assuming errors in the estimation,
our scheduler is able to obtain a higher performance
than a reference model, where the average population is
perfectly known.
As future works, we aim at extending our model

to multi-channel scenarios, developing a model that
allow full resource reutilization and further analyze
RFID realistic scenarios to propose optimal configuration
strategies.

Appendix
Computation of P(a|n, t)
To compute the probability P(a|n, t), we apply the
technique in [17], where the authors formulate
probabilistic transforms for urn models that convert the
dependent random variables describing urn occupancies
(slot occupancies in our case) into independent random
variables. Due to the independence of random variables
in the transform domain, it is simpler to compute the
statistics of interest, and afterwards the transform is
inverted to get the desired result.
Let us denote P(a|n, t) as the probability of interest and

P(λ, t, i) its transformation, with λ as parameter mean-
ingful in the transform domain only. Indeed, there is
no dependence on the number of balls (tags), n, in the
transform domain.
The procedure is as follows: first, the appropriate trans-

form for a particular urn model is selected. In our case,

Table 10 Line scenario

Number of readers Dynamic-FSA Static-FSA, Static-FSA,

k = 64 k = 16

2 0.0442 -0.0006 0.0023

4 0.0324 0.0212 0.0991

6 0.0003 0.0019 0.1169

8 0.0279 0.0071 0.0815

10 0.0118 0.0012 0.0942

Ratio of improvement using tag estimation. ε ∼ U[−10, 10].
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both the t urns (slots) and the n balls (tags) are distin-
guishable. In this case, the independent random variables
Z1, . . . ,Zt describing the occupancy of an urn in the trans-
form domain are Poisson distributed with mean λ [17].
That is, P(Zi = j) = e−λ λ(j)

j! . Second, the probability of
interest, P(λ, t), is computed in the transformed domain.
In our case, given a frame of length t and taking into
account the independence of Zi, the probability of having
i urns (slots) with one ball (tag) is

P(λ, t) =
(t
i

)
P(Z = 1)i(1 − P(Z = 1))t−i

=
(t
i

)
(e−λλ)i(1 − e−λλ)t−i.

(15)

Finally, the inverse transform is computed as

P(a|n, t) = n!
tn [ λ

n] {eλtP(λ, t)}, (16)

with [ λn] {h(λ)} denoting the coefficient of λn in the
power series {h(λ)}. So, we have to rewrite Equation (15)
as a power series in λ and extract the appropriate coef-
ficient. We use first the binomial expansion (a + b)c =∑h

k=0
(h
k
)
akbh−k :

P(a|n, t) = n!
tn [ λ

n]

{(t
i

) t−i∑
c=0

(t − i
c

)
(−1)ceλ(t−i−c)λc+i

}
,

(17)

and using the expansion of the exponential function as a
power series, the sum in Equation (17) can be rewritten as

t−i∑
c=0

(t − i
c

)
(−1)c

∞∑
j=0

(t − i − c)j
j! λjλc+i =

=
∞∑
j=0

λj+i

⎛⎝ j∑
c=0

(−1)c
(t − i

c

)
(t − i − c)j−c

(j − c)!

⎞⎠ ,

(18)

and extracting the coefficient of λn for the appropriate n
value, n = j + i, we obtain the result in Equation (8).
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