
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 98045, Pages 1–11
DOI 10.1155/ES/2006/98045

Rapid Energy Estimation for Hardware-Software
Codesign Using FPGAs

Jingzhao Ou1 and Viktor K. Prasanna2

1DSP Design Tools and Methodologies Group, Xilinx, Inc., San Jose, CA 95124, USA
2Veterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

Received 1 January 2006; Revised 25 May 2006; Accepted 19 June 2006

By allowing parts of the applications to be executed either on soft processors (as software programs) or on customized hard-
ware peripherals attached to the processors, FPGAs have made traditional energy estimation techniques inefficient for evaluating
various design tradeoffs. In this paper, we propose a high-level simulation-based two-step rapid energy estimation technique for
hardware-software codesign using FPGAs. In the first step, a high-level hardware-software cosimulation technique is applied to
simulate both the hardware and software components of the target application. High-level simulation results of both software
programs running on the processors and the customized hardware peripherals are gathered during the cosimulation process.
In the second step, the high-level simulation results of the customized hardware peripherals are used to estimate the switching
activities of their corresponding register-transfer/gate level (“low-level”) implementations. We use this information to employ
an instruction-level energy estimation technique and a domain-specific energy performance modeling technique to estimate the
energy dissipation of the complete application. A Matlab/Simulink-based implementation of our approach and two numerical
computation applications show that the proposed energy estimation technique can achieve more than 6000x speedup over low-
level simulation-based techniques while sacrificing less than 10% estimation accuracy. Compared with the measured results, our
experimental results show that the proposed technique achieves an average estimation error of less than 12%.

Copyright © 2006 J. Ou and V. K. Prasanna. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The integration of multimillion gate configurable logic and
various heterogeneous hardware components, such as em-
bedded multipliers and memory blocks, offers FPGAs ex-
ceptional computational capabilities. Soft processors, which
are RISC processors realized using configurable resources
available on FPGA devices, have become popular for em-
bedded system development. Examples of such soft proces-
sors include Nios from Altera [1], a SPARC architecture-
based LEON3 from Gaisler [2], an ARM7 architecture-based
CoreMP7 from Actel [3], and MicroBlaze from Xilinx [4].
As shown in Figure 1, for the development of FPGA-based
embedded systems, parts of the application can be executed
either on soft processors as programs or on customized
hardware peripherals attached to the processors. Customized
hardware peripherals are efficient for executing many data
intensive computations. On the other hand, processors are
efficient for executing many control and management func-
tions, and computations with tight data dependency between
steps (e.g., recursive algorithms). The use of soft processors

leads to more compact designs and thus requires a much
smaller amount of hardware resources than that of cus-
tomized hardware peripherals. Having a compact design that
fits into a small FPGA device can effectively reduce static en-
ergy dissipation [5]. The ability to make hardware and soft-
ware design tradeoffs has made FPGAs an attractive choice
for implementing a wide range of embedded systems.

Energy efficiency is an important performance metric
for many embedded systems, such as software-defined ra-
dio (SDR) systems. In SDR systems, dissimilar and com-
plex wireless standards (e.g., GSM, IS-95) are processed in
a single adaptive base station, where a large amount of data
from the mobile terminals present high computational re-
quirements. State-of-the-art RISC processors and DSPs are
unable to meet the signal processing requirements of these
base stations. Power consumption minimization has become
a critical issue for base stations, due to the high computa-
tional requirement that leads to high energy dissipation in
inaccessible and distributed base station locations. FPGAs
stand out as an attractive choice for implementing various
SDR functions due to their high performance, low power



2 EURASIP Journal on Embedded Systems

On-chip
memory blocks

Instruction-side memory
interface controller

Software programs
running on soft processors

Customized
hardware peripherals

DataInstructions

FPGA-based
soft processors

Customized hardware

Customized hardware

Customized hardware

Customized hardware

Shared bus interface Dedicated bus interfaces

Data-side memory
interface controller

Figure 1: FPGA-based hardware-software codesign.

dissipation per computation, and reconfigurability [6].Many
hardware-software mappings and application implementa-
tions are possible on modern FPGA devices. The various
hardware-software mappings and implementations can re-
sult in a significant variation in energy dissipation. There-
fore, being able to obtain the energy dissipation of these dif-
ferent mappings and to evaluate implementations of the ap-
plications rapidly is crucial to energy efficient application de-
velopment using FPGAs.

In this paper, we consider an FPGA device configured
with a soft processor and several customized hardware pe-
ripherals attached to it. The processor and the hardware pe-
ripherals communicate with each other through specific bus
protocols. The target application is decomposed into a set of
tasks. Each task can be mapped onto either a soft processor
(i.e., software), or a specific customized hardware peripheral
(i.e., hardware), for execution. A specific mapping and exe-
cution schedule of the tasks are given. For tasks executed on
customized hardware peripherals, their implementations are
described using high-level modeling environments (e.g., MI-
LAN [7], Matlab/Simulink [8], and Ptolemy [9]). For tasks
executed on the soft processor, the software implementations
are described as C code and compiled using the appropriate
C compiler. One or more sets of sample input data are also
given. Under these assumptions, our objective is to rapidly
and accurately (within about 10%) obtain the energy dissipa-
tion of the complete application.

There are two major challenges for rapid and accurate
energy estimation for hardware-software codesigns using FP-
GAs. One challenge is that state-of-the-art energy estimation
tools are based on low-level (register transfer level and gate
level) simulation results. While these low-level energy esti-
mation techniques can be accurate, they are time-consuming
and would be intractable when used to evaluate the energy
performance of the different FPGA implementations. This is

especially true for software programs running on soft pro-
cessors. Considering the designs described in Section 5, the
simulation of ∼ 2.78 milliseconds execution time of a matrix
multiplication application using post place-and-route sim-
ulation models takes about 3 hours in ModelSim [10]. Us-
ing XPower [4] to analyze the simulation file that records the
switching activities of low-level hardware components and to
calculate the overall energy dissipation requires an additional
hour. The other challenge is that high-level energy perfor-
mance modeling, which is crucial for rapid energy estima-
tion, is difficult for FPGA designs. Lookup tables connected
through programmable interconnect, the basic elements of
FPGAs, can realize a wide range of different hardware archi-
tectures. They lack a single high-level model found in general
purpose processors, which can capture the energy dissipation
behavior of the various possible architectures.

As discussed in Section 2, while instruction-level energy
estimation techniques can provide rapid energy estimates of
processor cores with satisfactory accuracy, they are unable to
account for the energy dissipation of customized instructions
and tightly coupled hardware peripherals. More detailed en-
ergy performance models are required to capture the energy
behavior of the customized instructions and hardware pe-
ripherals.

We propose a high-level simulation-based two-step rapid
energy estimation technique for hardware-software codesign
using FPGAs. In the first step, a high-level modeling en-
vironment is created to combine the corresponding high-
level abstractions that are suitable for describing the hard-
ware and software execution platforms. Within this high-
level modeling environment, hardware-software cosimula-
tion is performed to evaluate a cycle-accurate high-level be-
havior of the complete system. Instruction profiling infor-
mation of the software execution platform and high-level ac-
tivity information of the customized hardware peripherals
are gathered during the cycle-accurate cosimulation process.
The switching activities of the corresponding low-level im-
plementations of the customized hardware peripherals are
then estimated. In the second step, by utilizing the instruc-
tion profiling information, an instruction-level energy esti-
mation technique is employed to estimate the energy dissi-
pation of software execution. Also, by utilizing the estimated
low-level switching activity information, a domain-specific
modeling technique is employed to estimate the energy dis-
sipation of hardware execution. The energy dissipation of the
complete system is obtained by summing the energy dissipa-
tion of hardware and software execution.

A Matlab/Simulink-based implementation of the pro-
posed energy estimation technique and two widely used nu-
merical computation applications are used to demonstrate
the effectiveness of our approach. For various implementa-
tions of these two applications, our high-level cosimulation
technique achieves more than a 6000x speedup versus tech-
niques based on low-level simulations. Such speedups can
directly lead to a significant speedup in energy estimation.
Compared with low-level techniques, our high-level simu-
lation approach achieves an average estimation error of less
than 10%. Compared with experimentally measured results,



J. Ou and V. K. Prasanna 3

our approach achieves an average estimation error of less
than 12%.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes our two-step rapid energy
estimation technique. An implementation of our technique
based on a state-of-the-art high-level modeling environment
is presented in Section 4. The design of two numerical com-
putation applications is described in Section 5. We conclude
in Section 6.

2. RELATEDWORK

Energy estimation techniques for FPGA designs can roughly
be divided into two categories. One category is based on low-
level simulation, which is employed by tools such as Quartus
II [1], XPower [4], and the tool developed by Poon et al. [11].
In low-level simulation-based energy estimation techniques,
the user generates low-level implementations of the FPGA
designs. Simulation is performed based on the low-level im-
plementations to obtain the switching activity of the low-
level hardware components used in the FPGA design (e.g.,
basic configurable units and programmable wires). Each of
the low-level hardware components is associated with an en-
ergy function that captures its energy behavior with different
switching activities. Using the low-level simulation results
and the low-level energy functions, the user can estimate the
energy dissipation of all low-level components. The energy
dissipation of the complete application is calculated as the
sum of the energy dissipation of the low-level hardware com-
ponents. Low-level estimation techniques are inefficient for
FPGA-based hardware-software codesign. The creation of a
low-level implementation includes synthesis, placement, and
routing. This sequence forms a lengthy process. Simulations
based on low-level implementations are very time consum-
ing. This is especially true for the simulation of software.

The other category of energy estimation techniques is
based on high-level energy models. The FPGA design is rep-
resented as a few high-level models interacting with each
other. The high-level models accept parameters that have a
significant impact on energy dissipation. These parameters
are predefined or provided by the application designer. This
technique is used by tools such as the RHinO tool [12] and
the web power analysis tools from Xilinx [13]. While energy
estimation using this technique can be fast, as they avoid
time-consuming low-level simulation, its estimation accu-
racy varies among applications and application designers.
One reason is that different applications demonstrate differ-
ent energy dissipation behaviors. We show in [14] that using
predefined parameters for energy estimation results in en-
ergy estimation errors as high as 32% for input data with
different statistical characteristics. The other reason is that
requiring the application designer to provide these impor-
tant parameters would demand a deep understanding of the
energy behavior of the target devices and applications, which
can prove to be very difficult in practice. This approach is not
suitable for estimating the energy estimation of software ex-
ecution as instructions with different energy dissipations are
executed on soft processors.

Step 1:
Cycle-accurate high-level

hardware/software cosimulation

Cycle-accurate
arithmetic level simulation
for hardware execution

Cycle-accurate
instruction set simulator
for software execution

Synchronization and
data exchange

Estimates of
switching activity

Instruction-level
energy estimator

Domain-specific modeling-
based energy estimation

Instruction profiling
information

High-level
simulation results

Step 2: Energy estimation of the complete system

Figure 2: The two-step energy estimation approach.

For software execution on processors, instruction-level
energy estimation is an effective technique for obtaining en-
ergy dissipation. This technique is used by several popular
commercial and academic processors, such as Wattch [15],
JouleTrack [16], and SimplePower [17]. JouleTrack estimates
the energy dissipation of software programs on StrongARM
SA-1100 and Hitachi SH-4 processors. Wattch and Simple-
Power estimate the energy dissipation of an academic Sim-
pleScalar processor. We proposed an instruction-level energy
estimation technique in [18], which can provide rapid and
accurate energy estimation for FPGA-based soft processors.
These energy estimation frameworks and tools target proces-
sors with fixed architectures. They do not account for the
energy dissipated by customized hardware peripherals and
communication interfaces. Thus, they are unable to provide
energy estimation of combined hardware-software designs
targeted to FPGA platforms. Low-level energy models are re-
quired for customized hardware peripherals.

3. OUR APPROACH

Our two-step approach for the rapid energy estimation of
the hardware-software designs using FPGAs is illustrated in
Figure 2. The two energy estimation steps are discussed in
detail in the following sections.

3.1. Step 1: high-level cosimulation

In the first step, a high-level cosimulation is performed to si-
multaneously simulate hardware and software execution on
a cycle-accurate basis. Note that we use “cycle-accurate” to
denote that on both positive and negative edges of the simu-
lation clock, the behavior of the high-level simulation mod-
els matches the corresponding low-level implementations.
Other timing information between the clock edges (e.g., the
glitches), as well as the logic and path delays between the



4 EURASIP Journal on Embedded Systems

Cycle-accurate arithmetic-level
bus models

Cycle-accurate instruction
simulators

Cycle-accurate arithmetic-level
simulation models

Software execution
platform

Communication
interface

Customized hardware
peripherals

High-level abstractions

Low-level implementations

Figure 3: Architecture of the cycle-accurate high-level cosimulation environment.

hardware components, is not accounted for in the high-level
simulation. There are two major advantages of maintaining
cycle accuracy during cosimulation. One advantage is that by
ignoring the low-level implementation and sacrificing some
timing information, the high-level cosimulation framework
can greatly speed up the simulation. This greatly speeds up
the energy estimation process. Most importantly, the sim-
ulation results gathered during the high-level cosimulation
process can be used to estimate the switching activities of the
corresponding low-level implementations, and can be used
in the second step of the energy estimation process to derive
rapid and accurate energy estimates of the complete system.

It can be argued that urging cycle accuracy early, the de-
sign process prevents efficient design space exploration as
cycle accuracy is usually not required in early hardware-
software partitioning and in the development of software
drivers. Our cosimulation framework only maintains cycle
accuracy at the instruction level for software execution and
arithmetic level for hardware execution. The cosimulation
environment presents a view similar to the combination of
the architects view and programmers view in transaction level
modeling (TLM). Kogel et al. points out in [19] that “there is
usually no need for 100% timing accuracy since the impact of
an architecture change is on a much bigger scope than a single
clock cycle. Still an accuracy of 70–80% needs to be maintained
to ensure the quality of the analysis results.”Many state-of-the-
art high-level modeling environments for digital signal pro-
cessing systems, control systems, and so forth, enforce such
cycle accuracy in their modeling process. Examples include
the concept of high-level simulation clocks within the Mat-
lab/Simulink and Ptolemy modeling environments. Com-
pared with System C implementations of the transaction-
level models, our design and cosimulation framework is
based on visual data-flow modeling environments and thus
is more suitable for describing embedded systems.

The architecture of the cosimulation environment is il-
lustrated in Figure 3. The low-level implementation of the
FPGA execution platform consists of three major compo-
nents: the soft processor (for executing programs), customized
hardware peripherals (hardware accelerators for parallel exe-
cution of some specific computations), and communication
interfaces (for exchanging data and control signals between
the processor and the customized hardware components).
High-level abstractions are created for each of the three ma-
jor components. The high-level abstractions are simulated

using their corresponding simulators. The hardware and
software simulators are tightly integrated into our cosim-
ulation environment and concurrently simulate the high-
level behavior of the hardware-software execution platform.
Most importantly, the simulation among the integrated sim-
ulators is synchronized at each clock cycle and provides
cycle-accurate simulation results for the complete hardware-
software execution platform. Once the high-level design pro-
cess is completed, the application designer specifies the re-
quired low-level hardware bindings for the high-level oper-
ations (e.g., binding the embedded multipliers to multipli-
cation arithmetic operations). Finally, register-transfer/gate
level (“low-level”) implementations of the complete plat-
form with corresponding high-level behavior can be auto-
matically generated based on the high-level abstraction of the
hardware-software execution platforms.

3.1.1. Cycle-accurate instruction-level simulation of
programs running on the processor

We employ cycle-accurate instruction-level simulation mod-
els to simulate the execution of the instructions on a soft
processor. These simulation models provide cycle-accurate
simulation information regarding the execution of the in-
structions of the target program. With MicroBlaze [4], for
example, the cycle-accurate instruction-set simulator records
the number of times that an instruction passes the multiple
execution stages, as well as the status of the soft processor,
on a cycle-accurate basis. Most importantly, as we show in
Section 4.2.1, such cycle-accurate instruction-level informa-
tion can be used to derive rapid and accurate energy estima-
tion.

3.1.2. Cycle-accurate arithmetic level simulation of
customized hardware peripherals

Arithmetic level simulation is performed to simulate the cus-
tomized hardware peripherals attached to the processors.
By “arithmetic level,” we mean that only the arithmetic as-
pects of the hardware-software execution are captured by
the coimulation environment. For example, low-level imple-
mentations of multiplication on Xilinx Virtex-II FPGAs can
be realized using either slice-based multipliers or embedded
multipliers.



J. Ou and V. K. Prasanna 5

3.1.3. Maintenance of cycle accuracy throughout
the cosimulation process

For each simulation clock cycle, the high-level behavior of
the complete FPGA hardware platform predicted by the
cycle-accurate cosimulation environment should match with
the behavior of the corresponding low-level implementation.
When simulating the execution of a program on a soft pro-
cessor, cycle-accurate cosimulation should take into account
the number of clock cycles required for completing a spe-
cific instruction (e.g., the multiplication instruction of the
MicroBlaze processor takes three clock cycles to finish) and
the processing pipeline of the processor. Also, when simulat-
ing the execution of customized hardware peripherals, cycle-
accurate simulation should take into account delays in the
number of clock cycles caused by the processing pipelines
within the customized hardware peripherals. Our high-level
simulation environment ignores low-level implementation
details, and only focuses on the arithmetic behavior of the de-
signs. By doing so, the hardware-software cosimulation pro-
cess can be greatly sped up. In addition, cycle accuracy is
maintained between the hardware and software simulators
during the cosimulation process. Thus, the instruction pro-
filing information and the low-level switching activity infor-
mation, which are used in the second step for energy estima-
tion, can be accurately estimated from the high-level cosim-
ulation process.

3.2. Step 2: rapid energy estimation

In the second step, the information gathered during the high-
level cosimulation process is used for rapid energy estima-
tion. The types and the numbers of instructions executed on
soft processors are obtained from the cycle-accurate instruc-
tion simulation process. The instruction execution informa-
tion is used to estimate the energy dissipation of the pro-
grams running on the soft processor. For customized hard-
ware implementations, the switching activities of the low-
level implementations are estimated by analyzing the switch-
ing activities of the arithmetic level simulation results. Then,
with the estimated switching activity information, energy
dissipation of the hardware peripherals is estimated by uti-
lizing a domain-specific energy performance modeling tech-
nique proposed in [20]. Energy dissipation of the complete
system is calculated as the sum of the energy dissipation of
the software and hardware implementations.

3.2.1. Instruction-level energy
estimation for software execution

An instruction-level energy estimation technique is em-
ployed to estimate the energy dissipation of the software
execution on the soft processor. A per-instruction energy
lookup table is created, which stores the energy dissipation
of each type of instruction for the specific soft processor.
The types and the number of instructions executed when the
program is running on the soft processor are obtained dur-
ing the high-level hardware-software cosimulation process.
By querying the instruction energy lookup table, the energy

dissipation of these instructions is obtained. The energy dis-
sipation of the program is calculated as the sum of the energy
dissipations of all of the instructions.

3.2.2. Domain-specificmodeling-based energy
estimation for hardware execution

The energy dissipation of the customized hardware periph-
erals is estimated through domain-specific energy perfor-
mance modeling presented in [20]. Domain-specific mod-
eling is proposed to address the challenge of high-level FPGA
energy performance modeling. FPGAs allow for implement-
ing designs using a variety of architectures and algorithms.
These architectures and algorithms use a different amount of
logic components and interconnect.While these tradeoffs of-
fer a great design flexibility, they prevent energy performance
modeling using a single high-level model. For example, ma-
trix multiplication on an FPGA can employ a single proces-
sor or a systolic architecture. An FFT on an FPGA can adopt
a radix-2-based or a radix-4-based algorithm. Each architec-
ture and algorithm would have different energy dissipation.

Domain-specific modeling (DSM) is a hybrid (top-down
followed by bottom-up) modeling approach. It starts with
a top-down analysis of the algorithms and the architec-
tures for implementing a kernel. Through top-down anal-
ysis, the various possible low-level implementations of the
kernel are grouped into domains, depending on the archi-
tectures and algorithms used. This DSM technique enforce a
high-level architecture for the implementations belonging to
the same domain. With such enforcement, high-level model-
ing within the domain becomes possible. Analytical formu-
lation of energy functions are derived within each domain
to capture the energy behavior of the corresponding imple-
mentations. Then, a bottom-up approach is used to estimate
the constants of these analytical energy functions for the
identified domains through low-level sample implementa-
tions. This includes profiling individual system components
through low-level simulations, hardware experiments, and so
forth. These domain-specific energy functions are platform-
specific. That is, the constants in the energy functions would
have different values for different FPGA platforms. During
the application development process, these energy functions
are used for rapid energy estimation of hardware implemen-
tations belonging to a particular domain.

The domain-specific models can be hierarchical. The en-
ergy functions of a kernel can contain the energy functions
of the subkernels that constitute the kernel. Characteristics
of the input data (e.g., switching activities) can have consid-
erable impact on energy dissipation and are also inputs to the
energy functions. This characteristic information is obtained
through low-level simulation, or through high-level cosimu-
lation described in Section 4.1. See [20] for more details re-
garding the domain-specific modeling technique.

4. AN IMPLEMENTATION

To illustrate our approach, an implementation of our rapid
energy estimation technique based on Matlab/Simulink is
described in the following sections.



6 EURASIP Journal on Embedded Systems

Software programs
(executable files compiled
from the input C code)

Cycle-accurate instruction set
simulator for soft processor

(e.g. MicroBlaze)

Data exchange and
synchronization

Simulation of customized
hardware peripherals

Simulation of software programs

Design of customized
hardware peripherals

Simulink block
for soft processor
(e.g. MicroBlaze)

Matlab/Simulink design and
modeling environment

Figure 4: An implementation of the hardware-software cosimulation environment based on Matlab/Simulink.

4.1. Step 1: cycle-accurate high-level cosimulation

An implementation of the high-level cosimulation frame-
work presented in Section 3.1 is shown in Figure 4. The four
major functionalities of our Matlab/Simulink-based cosimu-
lation environment are described as follows.

4.1.1. Cycle-accurate simulation of the programs

The input C programs are compiled using the compiler for
the specific processor (e.g., the GNU C compiler mb-gcc
for MicroBlaze) and translated into binary executable files
(e.g., .ELF files for MicroBlaze). These binary executable
files are then simulated using a cycle-accurate instruction
set simulator for the specific processor. Taking the Micro-
Blaze processor as an example, the executable .ELF files are
loaded into mb-gdb, the GNU C debugger for MicroBlaze.
A cycle-accurate instruction set simulator for the Micro-
Blaze processor is provided by Xilinx. The mb-gdb debugger
sends instructions of the loaded executable files to the Micro
Blaze instruction set simulator and performs cycle-accurate
simulation of the execution of the programs. mb-gdb also
sends/receives commands and data to/fromMatlab/Simulink
through the Simulink block for the soft processor and in-
teractively simulates the execution of the programs in con-
currence with the simulation of the hardware designs within
Matlab/Simulink.

4.1.2. Simulation of customized hardware peripherals

The customized hardware peripherals are described using
the Matlab/Simulink-based FPGA design tools. For example,
System Generator supplies a set of dedicated Simulink blocks
for describing parallel hardware designs using FPGAs. These
Simulink blocks provide arithmetic-level abstractions of the
low-level hardware components. There are blocks that rep-
resent the basic hardware resources (e.g., flip-flop-based reg-
isters, multiplexers), control logic, mathematical functions,
memory, and proprietary (intellectual property IP) cores
(e.g., the IP cores for fast Fourier transform and finite im-
pulse filters). For example, theMult Simulink block for mul-
tiplication provided by System Generator captures the arith-
metic behavior of multiplication by presenting at its output
port the product of the values presented at its two input

ports. The low-level design tradeoff of using either embed-
ded or slice-based multipliers is not captured in its arith-
metic level abstraction. The application designer assembles
the customized hardware peripherals by dragging and drop-
ping the blocks from the block set to his/her designs and
connecting them via the Simulink graphic interface. Simu-
lation of the customized hardware peripherals is performed
withinMatlab/Simulink.Matlab/Simulinkmaintains a simu-
lation timer to keep track of the simulation process. Each unit
of simulation time counted by the simulation timer equals
one clock cycle experienced by the corresponding low-level
implementations. Finally, once the design process in Mat-
lab/Simulink completes, the low-level implementations of
the customized hardware peripherals are automatically gen-
erated by the Matlab/Simulink-based design tools.

4.1.3. Data exchange and synchronization
among the simulators

The soft processor Simulink block is responsible for exchang-
ing simulation data between the software and hardware sim-
ulators during the cosimulation process. Matlab/Simulink
provides Gateway In and Gateway Out Simulink blocks
for separating the simulation of the hardware designs de-
scribed by System Generator from the simulation of other
Simulink blocks (including theMicroBlaze Simulink blocks).
These Gateway In and Gateway Out blocks identify the
input/output communication interfaces of the customized
hardware peripherals. For the MicroBlaze processor, the
Simulink MicroBlaze block sends the values of the proces-
sor registers stored in the MicroBlaze instruction set simu-
lator to the Gateway In blocks as input data to the hardware
peripherals. Vice versa, the Simulink MicroBlaze block col-
lects the simulation output of the hardware peripherals from
Gateway Out blocks and use the output data to update the
values of the processor registers stored in the MicroBlaze in-
struction set simulator. The Simulink block for the soft pro-
cessor also simulates the communication interfaces between
the soft processor and the customized hardware peripher-
als described in Matlab/Simulink. For example, the Simulink
MicroBlaze block simulates the communication protocol and
the FIFO buffers for communication through Xilinx dedi-
cated (fast simplex link FSL) interfaces [4].



J. Ou and V. K. Prasanna 7

Sample programs Processor configuration
(e.g. cache, memory)

Simulation files
(.vcd files)

Design files
(.ncd files)

Embedded development kit (EDK)
� Generation of hardware platforms
� Compilation of software programs

Simulation
models

(.vhd files) Energy
dissipation

of the
instructions

ModelSim XPower

Figure 5: Flow of generating the instruction energy lookup table.

The Simulink soft processor block maintains a global
simulation timer which keeps track of the simulation time
experienced by the hardware and software simulators. When
exchanging the simulation data between the simulators, the
Simulink soft processor block takes the number of clock cy-
cles required by the processor and the customized hardware
peripherals into account. This process considers both the in-
put data and the delays caused by transmitting the data be-
tween them. Then, the Simulink block increases the global
simulation timer accordingly. By doing so, the hardware and
software simulations are synchronized on a cycle-accurate
basis.

4.2. Step 2: rapid energy estimation

The energy dissipation of the complete system is obtained by
summing up energy dissipation of the software and the hard-
ware. These values are estimated separately by utilizing the
activity information gathered during the high-level cosimu-
lation process.

4.2.1. Instruction-level energy estimation for
software execution

We use the MicroBlaze processor to illustrate the creation
of the instruction energy lookup table. The overall flow for
generating the lookup table is illustrated in Figure 5. We de-
veloped sample programs that target each instruction in the
MicroBlaze processor instruction set by embedding assembly
code into the sample C programs. In the embedded assem-
bly code, we repeatedly execute the instruction of interest for
a certain amount of time with more than 100 different sets
of input data and under various execution contexts. Model-
Sim was used to perform low-level simulation for executing
the sample programs. The gate-level switching activities of
the device during the execution of the sample programs are
recorded by ModelSim as simulation record files (.vcd files).
Finally, a low-level energy estimator such as XPower was used
to analyze these simulation record files and estimate energy
dissipation of the instructions of interest. See [18] for more
details on the construction of instruction-level energy esti-
mators for FPGA configured soft processors.

Class A
estimate()

Class A(N)
estimate()

Class A(1)
estimate()

Class A(2)
estimate()

Class B(1)
estimate()

Class B(2)
estimate()

Domain 1 Domain 2

Domain N

Figure 6: Python classes organized as domains.

4.2.2. Domain-specificmodeling-based energy
estimation for hardware execution

The energy dissipation of the customized hardware periph-
erals is estimated using the domain-specific energy modeling
technique discussed in Section 3.2.2. In order to support this
modeling technique, the application designer must be able to
group different designs of the kernels into domains and as-
sociate the performance models identified through domain-
specific modeling with the domains. Since the organization
of the Matlab/Simulink block set is inflexible and is difficult
to reorganize and extend, we map the blocks in the Simulink
block set into classes in the object-oriented Python scripting
language [21] by following some naming rules. For exam-
ple, block xbsBasic r3/Mux, which represents hardware mul-
tiplexers, is mapped to a Python class CxlMul. All the design
parameters of this block, such as inputs (number of inputs)
and precision (precision), are mapped to the data attributes
of its corresponding class and are accessible as CxlMul.inputs
and CxlMul.precision. Information on the input and output
ports of the blocks is stored in data attributes ips and ops.
By doing so, hardware implementations are described using
Python language and are automatically translated into corre-
sponding designs in Matlab/Simulink. For example, for two
Python objects A and B, A.ips [0 : 2] = B.ops [2 : 4] has the
same effect as connecting the third and fourth output ports
of the Simulink block represented by B to the first two input
ports of the Simulink block represented by A.

After mapping the block set to the flexible class library in
Python, reorganization of the class hierarchy according to the
architectures and algorithms represented by the classes be-
comes possible. Considering the example shown in Figure 6,
Python class A represents various implementations of a ker-
nel. It contains a number of subclasses A(1), A(2), . . . , A(N).
Each of the subclasses represents one implementation of the
kernel that belongs to the same domain. Energy performance
models identified through domain-specific modeling (i.e.,
energy functions shown in Figure 7) are associated with these
classes. Input to these energy functions is determined by the
attributes of Python classes when they are instantiated.When
invoked, the estimate() method associated with the Python



8 EURASIP Journal on Embedded Systems

Kernel
(FFT, matrix multiplication, etc.)

Various architecture and
algorithm families

Domain NDomain 2Domain 1

Domain-
specific
modeling

Domain-
specific
modeling

Domain-
specific
modeling

Energy
function

Energy
function

Energy
function

Figure 7: Domain-specific modeling.

Fast simplex link
(FSL)

MicroBlaze
soft

processor
Yout

Xout

Zout

X0

Y0

Z0

C0

PE 0

PE 3

FSLs

X1

Y1

Z1

C1

X3

Y3

Z3

C3

X2

Y2

Z2

C2

PE 1

PE 2

Figure 8: CORDIC processor for division (P = 4).

classes returns the energy dissipation of the Simulink blocks
calculated using the energy functions.

As a key factor that affects energy dissipation, switch-
ing activity information is required before these energy func-
tions can accurately estimate energy dissipation of a design.
The switching activity of the low-level implementations is
estimated using the information obtained from the high-
level cosimulation described in Section 4.1. For example, the
switching activity of the Simulink block for addition is esti-
mated as the average switching activity of the two input data
and the output data. The switching activity of the process-
ing elements (PEs) of the (coordinate rotation digital com-
puter CORDIC) design [22] shown in Figure 8 is calculated
as the average switching activity of all the wires that con-
nect the Simulink blocks contained by the PEs. As shown
in Figure 9, high-level switching activities of the process-
ing elements (PEs) shown in Figure 8 obtained within Mat-
lab/Simulink coincide with their power consumption ob-
tained through low-level simulation. Therefore, using such
high-level switching activity estimates can greatly improve
the accuracy of our energy estimates. Note that for some
Simulink blocks, their high-level switching activities may
not coincide with their power consumption under some
circumstances. For example, Figure 10 illustrates the power

0.05

0.15

0.25

0.2

0.1

0

H
ig
h
-l
ev
el
sw

it
ch
in
g
ac
ti
vi
ty

1 2 3 4

Processing elements of the CORDIC divider

0.5

1

1.5

2

2.5

3

Po
w
er

co
n
su
m
pt
io
n
(m

W
)

Power

Figure 9: High-level switching activities and power consumption
of the PEs shown in Figure 8.

0.4

0.3

0.2

0.1

0

H
ig
h
-l
ev
el
sw

it
ch
in
g
ac
ti
vi
ty

5 10 15

Date sets

1

2

3

4

5

Po
w
er

co
n
su
m
pt
io
n
(m

W
)

Power
Switching activity

Figure 10: High-level switching activities and power consumption
of slice-based multipliers.

consumption of slice-based multipliers for input data sets
with different switching activities. These multipliers demon-
strate “ceiling effects” when switching activities of the input
data are larger than 0.23. Such “ceiling effects” are captured
when deriving energy functions for these Simulink blocks in
order to ensure the accuracy of our rapid energy estimates.

5. ILLUSTRATIVE EXAMPLES

To demonstrate the effectiveness of our approach, we eval-
uate the design of a CORDIC processor for division and
a block matrix multiplication algorithm. These designs are
widely used in systems such as software-defined radio, where
energy is an important performance metric [6]. We focus on
MicroBlaze and SystemGenerator in our illustrative examples



J. Ou and V. K. Prasanna 9

FSL

FSLs

b11 b21

b12 b22

MicroBlaze
soft

processor

Accumulator

Accumulator

Figure 11: Matrix multiplication with customized hardware for
multiplying 2× 2 matrix blocks.

due to their easy availability. Our approach is also applicable
to other soft processors and other design tools.

(i) CORDIC processor for division

The architecture of the CORDIC processor is shown in
Figure 8. The customized hardware peripheral is imple-
mented as a linear pipeline of P processing elements (PEs).
Each of the PEs performs one CORDIC iteration. The soft-
ware program controls the data flowing through the PEs and
ensures that the data are processed repeatedly until the re-
quired number of iterations is completed. Communication
between the processor and the hardware implementation is
through the FSL interfaces. It is simulated using our MicroB-
laze Simulink block. Our implementation uses 32-bit data
precision.

(ii) Blockmatrix multiplication

Smaller matrix blocks of matrices A and B are multi-
plied using a customized hardware peripheral. As shown in
Figure 11, data elements of a matrix block from matrix B
(e.g., b11, b21, b12 and b22) are fed into the hardware periph-
eral, followed by data elements of a matrix block from ma-
trix A. The software program running on MicroBlaze con-
trols the data to be sent to and retrieved from the attached
customized hardware peripheral, performs part of the com-
putation (e.g., accumulating the multiplication results from
the hardware peripheral), and generates the result matrix.

In our experiments, the MicroBlaze processor is config-
ured on a Xilinx Spartan-3 xc3s400 FPGA [4]. The proces-
sor, the two (local memory bus LMB) interface controllers
and the customized hardware peripherals operate at 50MHz.
(embedded development kit EDK) 6.3.02 [4] is used to de-
scribe the software execution platform and for compiling
software programs. System Generator 6.3 is used to describe
the customized hardware peripherals. ISE (integrated soft-
ware environment) 6.3.02 [4] is used for synthesizing and
implementing (placing and routing) the complete applica-
tions.

Power measurement is performed using a Spartan-3
FPGA board from Nu Horizons [23] and a SourceMeter
2400 instrument (a programmable power source with the

measurement functions of a digital multimeter) from Keith-
ley [24]. Except for the Spartan-3 FPGA device, all the other
components on the prototyping board (e.g., the power sup-
ply indicator, the SRAM chip) are kept in the same state dur-
ing measurement. We assume that the changes in power con-
sumption of the board are mainly caused by the FPGA de-
vice. We fix the input voltage and measure the changes in
input current to the FPGA board. The dynamic power con-
sumption of the designs is calculated based on the changes in
input current. Note that static power (power consumption of
the device when there is no switching activity) is ignored in
our experimental results, since it is fixed in the experiments.

The simulation time and energy estimation for imple-
mentations of the two numerical computation applications
are shown in Table 1. Our high-level cosimulation environ-
ment achieves simulation speedups between 5.6x and 88.5x
compared with low-level timing simulation using Model-
Sim. The low-level timing simulation is required for low-
level energy estimation using XPower. The speed of the cycle-
accurate high-level cosimulation is the major factor that de-
termines the estimation time and varies depending on the
hardware-software mapping and scheduling of the tasks that
constitute the application. This is due to two main rea-
sons. One reason is the difference in simulation speeds of
the hardware simulator and the software simulator. Table 2
shows the simulation speeds of the cycle-accurate Micro-
Blaze instruction set simulator, the Matlab/Simulink simu-
lation environment for simulating the customized hardware
peripherals, and ModelSim for timing-based low-level sim-
ulation. Cycle-accurate simulation of software executions is
more than 4 times faster than cycle-accurate arithmetic level
simulation of hardware execution using Matlab/Simulink. If
more tasks are mapped to execute on the customized hard-
ware peripherals, the overall simulation speed of the pro-
posed high-level cosimulation approach is further slowed
down. Compared with low-level simulation usingModelSim,
our Matlab/Simulink-based implementation of the cosimu-
lation approach can potentially achieve simulation speedups
from 29x to more than 114x for the chosen applications. A
reason for the variance is the frequency of data exchanges
between the software program and the hardware peripher-
als. Every time the simulation data is exchanged between the
hardware simulator and the software simulator, the simula-
tion performed within the simulators is stalled and later re-
sumed. This adds quite some extra overhead to the cosimu-
lation process. There are close interactions between the hard-
ware and software execution for the two numerical computa-
tion applications considered in the paper. Thus, the speedups
achieved for the two applications are smaller than the maxi-
mum speedups that can be achieved in principal.

If we consider the implementation time (including syn-
thesizing, placing-and-routing), the complete system, and
generating the post place-and-route simulation models (re-
quired by the low-level energy estimation approaches) our
high-level cosimulation approach would lead to even greater
simulation speedups. For the two numerical applications, the
time required to implement the complete system and gener-
ate the post place-and-route simulation models is about 3



10 EURASIP Journal on Embedded Systems

Table 1: High-level/low-level simulation time and measured/estimated energy performance of the CORDIC-based division application and
the block matrix multiplication application.

Designs
Simulation time Energy estimation

High-level Low-level∗ High-level Low-level Measured

CORDIC with N = 24, P = 2 6.3 sec 35.5 sec 1.15 µJ (9.7%) 1.19 µJ (6.8%) 1.28 µJ

CORDIC with N = 24, P = 4 3.1 sec 34.0 sec 0.69 µJ (9.5%) 0.71 µJ (6.8%) 0.76 µJ

CORDIC with N = 24, P = 6 2.2 sec 33.5 sec 0.55 µJ (10.1%) 0.57 µJ (7.0%) 0.61 µJ

CORDIC with N = 24, P = 8 1.7 sec 33.0 sec 0.48 µJ (9.8%) 0.50 µJ (6.5%) 0.53 µJ

12× 12 matrix mult. (2× 2 blocks) 99.4 sec 8803 sec 595.9 µJ (18.2%) 675.3 µJ (7.3%) 728.5 µJ

12× 12 matrix mult. (4× 4 blocks) 51.0 sec 3603 sec 327.5 µJ (12.2%) 349.5 µJ (6.3%) 373.0 µJ

Note: ∗ timing-based post place-and-route simulation. The times for placing-and-routing and generating simulation models are not included.

Table 2: Simulation speeds of the hardware-software simulators considered in this paper.

Instruction set simulator Simulink(1) ModelSim(2)

Simulated clock cycles per second >10000 254.0 8.7

Note: (1) only considers simulation of the customized hardware peripherals; (2) timing-based post place-and-route simulation. The time for generating the
simulation models of the low-level implementations is not accounted for.

hours. Thus, our high-level simulation-based energy estima-
tion technique can be about 200x to 6500x faster than those
based on low-level simulation for these two numerical com-
putation applications.

For the hardware peripheral used in the CORDIC divi-
sion application, our energy estimation is based on the en-
ergy functions of the processing elements shown in Figure 8.
For the hardware peripheral used in the matrix multipli-
cation application, energy estimation is based on the en-
ergy functions of the multipliers and the accumulators. As
one input to these energy functions, we calculate the aver-
age switching activity of all the input/output ports of the
Simulink blocks during arithmetic level simulation. Table 1
shows the energy estimates obtained using our high-level
simulation-based energy estimation technique. Energy es-
timation errors ranging from 9.5% to 18.2% and 11.6%
on average are achieved for these two numerical computa-
tion applications compared with measured results. Low-level
simulation-based energy estimation using XPower achieves
an average estimation error of 6.8% compared with mea-
sured results.

6. CONCLUSIONS

A two-step rapid energy estimation technique for hardware-
software codesign using FPGAs was proposed in this paper.
An implementation of the proposed energy estimation tech-
nique based on Matlab/Simulink and the design of two nu-
merical computation applications were provided to demon-
strate its effectiveness. One major approximation that affects
the energy estimation accuracy of the proposed technique is
a failure to consider glitches in high-level simulation. This

limitation creates two scenarios that causes our technique to
fail to give energy estimates with satisfactory errors. One sce-
nario occurs when an application runs close to its maximum
operating frequency. The other scenario occurs when an ap-
plication has long combinational circuit paths. In both sce-
narios, numerous glitches can occur in the circuits, causing
high energy estimation errors for the proposed technique.
The integration of high-level glitch power estimation tech-
niques is an important extension of the proposed technique.
Another important extension of our work is to provide con-
fidence level information of the energy estimates. Provid-
ing such information is desired in the development of many
practical systems.

ACKNOWLEDGMENTS

This work is supported by the United States National Science
Foundation (NSF) under Award No. CCR-0311823. The au-
thors would like to thank Brent Milne, Haibing Ma, Shay P.
Seng, and Jim Hwang from Xilinx, Inc. for their help and
discussions on creating the Matlab/Simulink-based high-
level cosimulation environment.

REFERENCES

[1] Altera Inc., http://www.altera.com.
[2] Gaisler Research Inc., “LEON3 User Manual,” http://www.

gaisler.com.
[3] Actel Inc., http://www.actel.com.
[4] Xilinx Inc., http://www.xilinx.com.
[5] T. Tuan and B. Lai, “Leakage power analysis of a 90nm FPGA,”

in Proceedings of the IEEE Custom Integrated Circuits Confer-
ence (CICC ’03), pp. 57–60, San Jose, Calif, USA, September
2003.

http://www.altera.com
http://www.gaisler.com
http://www.gaisler.com
http://www.actel.com
http://www.xilinx.com


J. Ou and V. K. Prasanna 11

[6] C. Dick, “The platform FPGA: enabling the software radio,”
in Proceedings of the Software Defined Radio Technical Confer-
ence and Product Exposition (SDR ’02), San Diego, Calif, USA,
November 2002.

[7] A. Bakshi, V. K. Prasanna, and Á. Lédeczi, “MILAN: a model
based integrated simulation framework for design of embed-
ded systems,” in Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers, and Tools for Embedded Systems, pp.
82–93, Snowbird, Utah, USA, June 2001.

[8] MathWorks Inc., http://www.mathworks.com.

[9] “The Ptolemy Project,” http://ptolemy.eecs.berkeley.edu.

[10] Mentor Graphics Inc., http://www.mentor.com.

[11] K. K. W. Poon, S. J. E. Wilton, and A. Yan, “A detailed power
model for field-programmable gate arrays,” ACM Transactions
on Design Automation of Electronic Systems, vol. 10, no. 2, pp.
279–302, 2005.

[12] “Reconfigurable Hardware in Orbit (RHinO),” Information
Sciences Institute, http://rhino.east.isi.edu.

[13] “Web Power Analysis Tools,” Xilinx, http://www.xilinx.com/
power.

[14] J. Ou and V. K. Prasanna, “PyGen: a MATLAB/Simulink based
tool for synthesizing parameterized and energy efficient de-
signs using FPGAs,” in Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM ’04), pp. 47–56, Napa, Calif, USA, April 2004.

[15] D. Brooks, V. Tiwari, andM.Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,” in
Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA ’00), pp. 83–94, Vancouver, BC,
Canada, June 2000.

[16] A. Sinha and A. Chandrakasan, “JouleTrack: a web based tool
for software energy profiling,” in Proceedings of the 38th De-
sign Automation Conference (DAC ’01), pp. 220–225, Las Ve-
gas, Nev, USA, June 2001.

[17] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The
design and use of simplepower: a cycle-accurate energy es-
timation tool,” in Proceedings of the 37th Design Automation
Conference (DAC ’00), pp. 340–345, Los Angeles, Calif, USA,
June 2000.

[18] J. Ou and V. K. Prasanna, “Rapid energy estimation of com-
putations on FPGA based soft processors,” in Proceedings of
the IEEE International System-on-Chip Conference (SoCC ’04),
pp. 285–288, Santa Clara, Calif, USA, September 2004.

[19] T. Kogel, A. Haverinen, and J. Aldis, “OCP TLM for Architec-
tural Modeling (white paper),” OCP-IP, 2005, http://www.
ocpip.org.

[20] S. Choi, J.-W. Jang, S. Mohanty, and V. K. Prasanna, “Domain-
specific modeling for rapid energy estimation of reconfig-
urable architectures,” Journal of Supercomputing, vol. 26, no. 3,
pp. 259–281, 2003.

[21] Python, http://www.python.org.

[22] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” in Proceedings of the ACM/SIGDA 6th Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA
’98), pp. 191–200, Monterey, Calif, USA, February 1998.

[23] Nu Horizons Electronics Inc., http://www.nuhorizons.com.

[24] Keithley Instruments Inc., http://www.keithley.com.

Jingzhao Ou received his B.S. and M.S.
degrees in electrical engineering from the
South China University of Technology, and
his M.S. and Ph.D. degrees in computer en-
gineering from the University of Southern
California. He is now working for the DSP
Design Tools and Methodologies Group at
Xilinx, Inc. His main research interests in-
clude hardware-software codesign and en-
ergy efficient application development us-
ing reconfigurable hardware.

Viktor K. Prasanna received his B.S. degree
in electronics engineering from the Banga-
lore University, his M.S. degree from the
School of Automation, Indian Institute of
Science, and his Ph.D. degree in computer
science from the Pennsylvania State Uni-
versity. He is now a Professor of electri-
cal engineering and Professor of computer
science at the University of Southern Cali-
fornia (USC). He is also a Member of the
NSF Supported Integrated Media Systems Center (IMSC), an As-
sociate Member of the Center for Applied Mathematical Sciences
(CAMS), and a Member of USC-ChevronTexaco Center of Excel-
lence for Research and Academic Training on Interactive Smart
Oilfield Technologies (CiSoft) at USC. His research interests in-
clude high-performance computing, parallel and distributed sys-
tems, network computing, and embedded systems.

http://www.mathworks.com
http://ptolemy.eecs.berkeley.edu
http://www.mentor.com
http://rhino.east.isi.edu
http://www.xilinx.com/power
http://www.xilinx.com/power
http://www.ocpip.org
http://www.ocpip.org
http://www.python.org
http://www.nuhorizons.com
http://www.keithley.com

	1. INTRODUCTION
	2. RELATEDWORK
	3. OUR APPROACH
	3.1. Step 1: high-level cosimulation
	3.1.1. Cycle-accurate instruction-level simulation of programs running on the processor
	3.1.2. Cycle-accurate arithmetic level simulation of customized hardware peripherals
	3.1.3. Maintenance of cycle accuracy throughout the cosimulation process

	3.2. Step 2: rapid energy estimation
	3.2.1. Instruction-level energy estimation for software execution
	3.2.2. Domain-specific modeling-based energy estimation for hardware execution


	4. AN IMPLEMENTATION
	4.1. Step 1: cycle-accurate high-level cosimulation
	4.1.1. Cycle-accurate simulation of the programs
	4.1.2. Simulation of customized hardware peripherals
	4.1.3. Data exchange and synchronization among the simulators

	4.2. Step 2: rapid energy estimation
	4.2.1. Instruction-level energy estimation for software execution
	4.2.2. Domain-specific modeling-based energy estimation for hardware execution


	5. ILLUSTRATIVE EXAMPLES
	(i) CORDIC processor for division
	(ii) Blockmatrixmultiplication

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

