
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 18526, Pages 1–11
DOI 10.1155/ES/2006/18526

Generation of Embedded Hardware/Software from SystemC

Salim Ouadjaout and Dominique Houzet

Institut d’Electronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164, Institut National des Sciences Appliquées
(INSA), 20 avenue des Buttes de Coësmes, 35043 Rennes Cedex, France

Received 30 November 2005; Revised 26 June 2006; Accepted 27 June 2006

Designers increasingly rely on reusing intellectual property (IP) and on raising the level of abstraction to respect system-on-chip
(SoC) market characteristics. However, most hardware and embedded software codes are recoded manually from system level.
This recoding step often results in new coding errors that must be identified and debugged. Thus, shorter time-to-market requires
automation of the system synthesis from high-level specifications. In this paper, we propose a design flow intended to reduce the
SoC design cost. This design flow unifies hardware and software using a single high-level language. It integrates hardware/software
(HW/SW) generation tools and an automatic interface synthesis through a custom library of adapters. We have validated our inter-
face synthesis approach on a hardware producer/consumer case study and on the design of a given software radiocommunication
application.

Copyright © 2006 S. Ouadjaout and D. Houzet. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Technological evolution—particularly shrinking silicon fab-
rication geometries—enables the integration of complex
platforms in a single system on chip (SoC). In addition to
specific hardware subsystems, a modern SoC can also include
sophisticated interconnects and one or several CPU subsys-
tems to execute software. New design flows for SoC design
have become essential in order to manage the system com-
plexity in a short time-to-market. These flows include hard-
ware/software (HW/SW) generation tools, the reuse of pre-
designed intellectual property (IP), and interface synthesis
methodologies which are still open problems requiring fur-
ther research activities [1].

EDA tools propose their own solutions to HW/SW gen-
eration. Some use SystemC as a starting point for the hard-
ware design, like Cynthesizer from Forte Design [2] or Agility
Compiler from Celoxica [3]. Several tools use the C lan-
guage as a starting point for both hardware and software
with a custom application programming interface (API) for
HW/SW interfaces. It is the case of DK Design Suite from
Celoxica [3] with its DSM API and CatapultC from Men-
tor [4]. In SiliconC [5], structural VHDL is generated for
the C functions. Prototypes of the functions become the en-
tities. There are other variants which start from Matlab to
produce both hardware and software like SPW from CoWare
[6]. Many design methodologies exist for the design of em-

bedded software [7–9]. Some are based on code generated
from an abstract model (UML [10]), graphical finite state
machine design environments (e.g., StateCharts [11]), DSP
graphical programming environments (e.g., Ptolemy [8]),
or from synchronous programming languages (e.g., Esterel
[12]). A software generation from a high-level model of oper-
ating system is proposed by several authors [13–16]. In [15],
a software generation from SystemC is based on the redefi-
nition and overloading of SystemC class library elements. In
[13], a software-software communication synthesis approach
by substituting each SystemC module with an equivalent C
structure is proposed. It requires special SystemC modeling
styles (i.e., with macrodefinitions and preprocessing switches
in addition to the original specification code). In [16], soft-
ware is generated from SpecC with no restrictions on the de-
scription of the system model.

Several approaches have been developed to deal with IP
integration. Fast prototyping enables the productive reuse of
IPs [17]. It describes how to use an innovative system de-
sign flow that combines different technologies, such as C
modelling, emulation, hard virtual component reuse, and
CoWare tools [6]. Prosilog’s IP creator, as part of Magillem,
aims to improve the integration and reuse of non-VCI com-
pliant IPs by wrapping them into a compatible structure.
This tool allows the generation of wrappers from a RTL
VHDL description of the IP interface [18]. The Cosy ap-
proach is based on the infrastructure and concepts developed



2 EURASIP Journal on Embedded Systems

in the VCC framework [19]; it defines interfaces at mul-
tiple levels of abstraction. Most of those approaches deal
with low-level protocol adaptation in order to integrate RTL,
level IPs. A few approaches provide a ready network on
Chip (NoC) to allow easy integration of communication.
But these approaches require that the IPs have to be com-
pliant with the NoC interface. Consequently, the design-
ers have to modify the IPs codes. All these approaches deal
with system-level synthesis which is widely considered as the
solution for closing the productivity gap in system design.
System-level models are developed for early design explo-
ration. The system specification of an embedded system is
made of a hierarchical set of modules (or processes) inter-
connected by channels. They are described in a system-level
language as a set of behaviour, channel, and interface declara-
tions. Those behavioursmapped onto general or application-
specific microprocessors are then implemented as embed-
ded software and hardware. The predominant system-level
languages are C/C++ extensions [13, 20]. We consider here
the SystemC language but another language can be used.
SystemC is mainly used to model and to simulate designs
at system level. However, dedicated powerful hardware de-
scription languages like VHDL and Verilog are used for RTL.
Embedded software languages like C with static scheduling
or POSIX RTOS are used for embedded processors. This
leads to a decoupling of behavioral descriptions and imple-
mentable descriptions. This decoupling usually requires the
recoding of the design from its specification simulation in
order to meet the very different requirements of the final
generated code. The recoding step often results in new cod-
ing errors that must be identified and debugged. The deriva-
tion of embedded software and hardware from system spec-
ifications described in a system-level language requires to
implement all language elements (e.g., modules, processes,
channels, and port mappings). It is known that SystemC al-
lows the refinement for hardware synthesis, but up to now
SystemC has not been used as an embedded software lan-
guage. Considering the limited memory space and execution
power of embedded processors, the SystemC overheadmakes
the direct compilation to produce the binary code for tar-
get embedded microprocessors highly inefficient. Obviously,
it is due to the large SystemC kernel included in the com-
piled code. This kernel introduces an overhead to support
the system-level features (e.g., hierarchy, concurrency, com-
munication), but these features are not necessary to the tar-
get embedded software code. In addition to direct SystemC
compilation inefficiency, some cross-compilers for embed-
ded processors may only support the C language. Thus, Sys-
temC has to be translated to C code.

To address system-level synthesis, we propose in this pa-
per a top-down methodology. Our challenge is to automate
the codesign flow generating the final code for both embed-
ded processors and hardware from a unifying high-level lan-
guage (SystemC). In our methodology, we have developed
methods to make the codesign flow smooth, efficient, and
automated. These methods allow two improvements: a rapid
integration of communication and a fast software generation
for embedded processors with an efficient interface synthesis.

The proposed methodology includes several parsing steps
and intermediate models. The first main step is the com-
munication integration based on a custom library of inter-
face adapters that uses the virtual component interface (VCI)
standard from VSIA consortium [21]. This library aims to
perform the interface synthesis. It allows heterogeneous IPs
to communicate in a plug-and-play fashion in the same sys-
tem. The second main step is the generation of embedded C
code from the system specification written in SystemC. Our
approach proposes the use of static scheduling and POSIX-
based RTOSmodels. It enables also an automatic refinement,
while [14] requires its own proprietary simulation engine
and needs manual refinement to get the software code. Our
method also differs from [13–16] in that our high-level Sys-
temC code is translated to a C code with optimized inter-
face synthesis. Optimization is performed according to the
processors busses and the NoC as well as according to the
SystemC parallel programming model. Other recent propo-
sitions have been published in that direction [22].

The paper is organized as follow. In Section 2 we de-
scribe the main features of our proposed design flow. The
main innovative parts of the design flow are detailed in the
next two sections. The first one presents our hardware in-
terface library and our integration methodology of func-
tional IPs, with implementation results from a simple de-
sign example. The second one describes the translation pro-
cess of SystemC elements to C code. This C code targets ei-
ther an RTOS for dynamic scheduling or a stand alone so-
lution with a generated static scheduling. This translation
process is validated in Section 5 with implementation results
of a producer/consumer and a code-division multiple-access
(CDMA) radio-communication applications. This work is
the result of a project started in 2001 [23–25].

2. DESIGN FLOW

SoC design requires the elaboration and the use of radi-
cally new design methodologies. The main parts of a typical
system-level design flow are the specification model, the par-
tition into HW/SW elements, and the implementation of the
models for each element. In Figure 1 we describe the pro-
posed top-down methodology of automatic generation of
binary files from SystemC to both embedded software and
hardware. The design flow starts with a high-level model de-
scribed in a high-level programming language (SystemC).
The system is described either through direct programma-
tion or through IP reuse. We use Celoxica tools to develop,
simulate, analyze, and validate the SystemC code (step (1)).
The first SystemC description is at the functional level. The
system is a set of functional IPs including functional models
of architectural IPs for fast simulation. The communication
between IPs uses SystemC channel mechanisms like sc signal
or sc fifo with read() and write() primitive functions. From
the Celoxica graphical tool, we select the IPs which are as-
sociated with the hardware side (the architectural IPs substi-
tuted by their already VCI-compliant version), and the IPs
which are associated with the software side (the monitoring
IPs, stimulating IPs, host IPs, etc.). The remaining IPs of the



S. Ouadjaout and D. Houzet 3

Celoxica GUI tools

Specification SystemC System-level model

SystemC programmation SystemC IPs

SystemC simulation and profiling
(functional or architectural)

Full system
architecture

Hardware
functional
subsystem

HW/SW functional
subsystem

Software
functional
subsystem

Architecture
parameters

SystemC/XML parser
HW/SW partitioning

Mapping/scheduling/routing
XML/C parser

SystemC
files

SystemC
files

C soft-IP
C++ compiler

+
MPI2 + PCI

drivers

HDL IP synthesis
(Celoxica)

or HDL substitution

HDL synthesis tool
Gcc +
MPI2

Binary
files

Binary
filesSystemC

VCI IPs
SystemC
Hard-IP

Communication integration
(VCI adapters + NoC connexion)

SystemC VCI IPs & NoC

PCI
VCI NoC

Hard IPs

VCI/PCI
bridge

LEONs
μ blazes

FPGAs

Constraints
Ok

SystemC code

Our contribution

Figure 1: Top-down design flow.

system are targeted to the codesign side, as we need to op-
timize and well balance hardware and embedded software
to meet several stringent design constraints simultaneously:
hard real-time performance, low power consumption, and
low resources.

Considering the software side (step (2)), the SystemC
IPs are directly compiled to become binary files targeted
to the host processor. This set of software tasks communi-
cates with the remaining IPs contained in the FPGA plat-
form through the PCI bus. Because software components run
on processors, the SystemC abstract communication needed
to describe the interconnection between the software and
hardware components is totally different from the existing
abstraction of wires between hardware components as well
as the function calls abstraction that describes the software
communication.

In this part, the communication is abstracted as an API
which calls PCI bus drivers through an operating system
layer. The API hides hardware details such as interrupt con-
trollers or memory and input/output subsystems. We have
implemented the message passing interface (MPI-2) library
on the host processor and on the embedded processors of
our platform [26]. MPI-2 is our HW/SW interface API.

Step (3) is the performing of our SCXML parser tool
which allows to convert a given SystemC source code into an
XML intermediate representation. The XML format is a sub-

set of the standardized SPIRIT 2.0 format [27]. The system is
interpreted as a set of XML files. Each XML file contains the
most important characteristics of a SystemC IP, such as

(i) name, type, and size of each in/out ports, name and
type of processes declared in the constructor, and also
the sensitivity list of each process;

(ii) name and type of IPs building a hierarchical IP, the
names of connections between the sub-IPs, and the
binding with the IP ports.

Both XML files and profiling reports from Celoxica tool
are treated by our HW/SW partitioning tool (step (4)) in or-
der to partition IPs as hardware or software according to the
architecture parameters and constraints. After this step we
use SynDEx tool (step (5)) to perform an automatic map-
ping, routing, and static scheduling of IPs on the software
and hardware architecture based on a predefined NoC topol-
ogy [28]. The different SynDEx inputs are the following.

(i) A hierarchical conditioned data-flow graph of com-
puting operations and input/output operations. The
operations are just specified by the type and size of
input/output data and execution time of the IPs. The
XML files and profiling reports are parsed to produce
these inputs. We need also to provide manually infor-
mation on the nonexclusive execution of IPs in order
to help SyndEx optimize parallelism.



4 EURASIP Journal on Embedded Systems

IP ports

SystemC
functional

IP

VCI
adapter

Architectural IP
“VCI compliant”

VCI interface

(a)

SystemC
functional

IP

VCI
adapter

MPEG2

Network on
chip

μ blaze FFT

RAM

SystemC
functional

IPs

(b)

Figure 2: VCI connections of non-VCI IPs through VCI adapters. (a) “Wire” point-to-point connection. (b) NoC connection.

(ii) Specification of the heterogeneous architecture as a
graph composed of software processors and hardware
processors, interconnected through communication
medias. Processors characteristics are supported tasks,
their execution duration, worst-case transfer duration
for each type of data on the interconnect. The profil-
ing reports and architecture parameters are parsed to
produce these inputs.

SynDEx implements the IPs onto the multicomponent
architecture through a heuristic mapping, routing, and
scheduling. After the implementation, a timing diagram
gives the mapping of the different IPs on the components
and the real-time predicted behavior of the system. The com-
munication links are represented in order to show all the ex-
changes between processors; they are taken into account in
the execution time of IPs. The mapping/routing code gen-
erated by SynDEx tool is then parsed (step (6)) in order to
manage the NoC configuration and to switch software IPs
to the XML/C parser. This parser translates the XML mark-
ups to C code with either RTOS calls or a static schedul-
ing provided by SynDEx tool. With our SCXML and XML/C
parsers, we obtain an embedded C generation tool (SCEm-
bed) from SystemC. This SCEmbed tool has about 5000 C++
and JAVA code lines. This tool and its XML format can be
easily adapted to a different RTOS.

The embedded C code is then treated in step (7) with the
Gcc compiler in order to obtain binary executables for the
embedded processors. As the C software IPs are mapped on
several heterogeneous processors, they need to use a commu-
nication library (MPI-2).

In the communication integration (step (8)), the identi-
fied SystemC hardware IPs are completed with our SystemC
VCI adapter library. This point is detailed in the section be-
low. Then point-to-point communications are established
between the new VCI-compliant IPs and the VCI hardware
IPs through the VCI NoC. We use SynDEx configuration in-
formation to initialize the VCI adapters, plug the IPs on the
NoC, and load the binary code of the software IPs on their
corresponding processor memory. Once all the SystemC ar-
chitecture is produced, we can either simulate it back in the
Celoxica tool for evaluation. After validation, we continue
with the implementation step.

The last hardware synthesis step plays a very important
role in the methodology described above. There have been
various research efforts to come up with a good hardware
compiler which can generate a synthesizable HDL from high-
level C/SystemC specifications. The Agility Compiler from
Celoxica can help the generation of synthesizable VHDL
from SystemC. The final product of the design flow is a set
of binary files representing programs for the host processor,
LEON andMicroblaze (Xilinx) processors and FPGAs. These
files can be loaded onto the respective components of the
prototyping platform (FPGA boards) to build a prototype
with a real-time communication system.

3. HW/SW INTERFACE CODESIGN

3.1. Introduction

An SoC can include specific hardware subsystems and one
or several CPU subsystems to execute the software tasks.
The SoC architecture includes hardware adapters (bridges or
communication coprocessors) to connect the CPU subsys-
tems to other subsystems. The HW/SW interface abstraction
must hide the CPU. On the software side, the abstraction
hides the CPU under a low-level software layer ranging from
basic drivers and I/O functionality to sophisticated operating
system. On the hardware side, the interface abstraction hides
CPU bus details through a hardware adaptation layer gener-
ally called the CPU interface. This can range from simple reg-
isters to sophisticated I/O peripherals including direct mem-
ory access queues and complex data conversion and buffering
systems.

3.2. Hardware-to-hardware interface synthesis:
VCI adaptationmethodology

We show in Figure 2 the way to establish a communication
between IPs with different abstraction levels. We consider
here functional IPs and architectural IPs.

The connection can be through wires or through anNoC.
The VCI adapters library aims to simplify the (re)use of func-
tional IPs (non-VCI compliant) in any SoC based on the VCI
protocol. This adapter library is designed in order to change
neither the IP cores nor their interface description.



S. Ouadjaout and D. Houzet 5

IPs
systemC

IPs
interfaces

Adapt

VCI
interface

VCI
interface

V
C
I
ag
en
t

V
C
I
ag
en
t

NoC

Adapt
IPs

systemC

IPs
interfaces

FPGA

Figure 3: Layers between heterogeneous interfaces of two sets of
IPs.

The generic architecture shown in Figure 3 helps to clar-
ify the relationship between two hardware IPs connected
through a sophisticated VCI NoC. The communication be-
tween heterogeneous component interfaces imposes the ex-
istence of a wrapper on each side of the communication me-
dia (bus or NoC). This wrapper behaves like a bridge which
translates the RTL interface between the media and the com-
ponent. These wrappers (agents) have to be compatible with
VCI interface to build a standard media. Thus, an initiator
wrapper is connected to VCI initiator ports of a master IP
and a target wrapper is connected to VCI target ports of a
slave IP.

Considering that these two VCI wrappers are available,
the interface synthesis of SystemC functional IPs is a set of
steps to replace a primitive channel with a refined channel in
order to connect it to the wrappers. A refined channel will of-
ten have a more complex interface (e.g., VCI) than the prim-
itive channel previously used. The main step in refining the
interfaces is to create adapters that connect the original mod-
ules to the refined channel. Adapters can help to convert the
interfaces of the IPs instances into VCI interfaces. The inter-
face refinement can be made more manageable if new inter-
faces are developed without making changes to their associ-
ated module. The adapter translates the transaction-oriented
interface consisting of methods such as write(data) into VCI
RTL-level interface for hardware IPs. Figure 3 depicts the
use of adapters to connect functional IPs to the NoC VCI
agents. Hook arrow boxes indicate the interface provided by
the adapters while the rightleftarrows square boxes represent
ports. Our contribution consists in the design of VCI master
adapters and VCI slave adapters which manage the VCI ini-
tiator and VCI target interfaces, respectively. We have chosen
a convention that each SystemC output port is an initiating
port of transaction and each input port is a target port. Thus,
the release of a transaction results in a nonblocking write
of data on the output port for an sc signal and in a block-
ing write for an sc fifo. This corresponds to the semantics of
the SystemC sc signal and sc fifo primitive channels. Thus,
initiating ports of functional IPs are connected to a master
adapter and target ports are connected to a slave adapter. In
this case, several IPs may be connected to the same adapter.

The adaptation methodology approach is implemented
using a micronetwork stack paradigm, which is an adapta-
tion of the OSI protocol stack.

3.2.1. Application layer

This layer describes the functional behaviour of a complex
system. A system is a set of functional IPs with behavioural
models, not architectural IPs such as processors ormemories.
The communication mechanism is performed with classical
read(data) and write(data) SystemC primitives without ad-
ditional parameters and no protocol implementation.

3.2.2. VCI adapter layer

The VCI adapter layer is responsible for converting an IP in-
terface towards a lower-level interface. A VCI adapter core
can manage different ports of different non-VCI-compliant
IPs. Functional hardware IP ports are implemented as a
memory segment accessed through its VCI adapter. The VCI
adapter layer is composed of the following sublayers.

(a) Presentation layer

This layer is responsible for translating an abstract data-type
port towards a SystemC synthesizable data-type port.

(b) Session layer

The session layer generates a single VCI address between two
ports connected to each other in the system-level descrip-
tion. This address is divided into two fields: the most sig-
nificant bits (MSB) identify the destination wrapper and the
least significant bits (LSB) identify the local offset at destina-
tion. Each agent of the NoC needs to be configured in order
to know the separation position between MSB and LSB, and
thus be able to perform address translation to correctly route
the data to be sent.

The LSB field is itself divided first according to the target
IP port addressed among the different IP ports connected to
the same VCI adapter, and second according to the local ad-
dress segment managed by the transport layer. VCI adapter
address is finally divided into three fields.

(i) Field 1: agent number is the address field decoded/gen-
erated by the NoC agents and routed in the NoC.

(ii) Field 2: port number is the address field decoded/gen-
erated by the VCI adapter to switch data to the corre-
sponding IP port.

(iii) Field 3: word number is the address field decoded/gen-
erated by the transport layer. It represents the address
in the memory segment of the selected port.

The address translation of each VCI adapter is configured
during its connection to the NoC with its NoC agent num-
ber and its port number. Already VCI-compliant IPs have
to provide configurability of addresses in order to commu-
nicate to any IP on the NoC. This configuration of IP VCI
adapters is performed during VCI adapter integration step
based on SynDEx mapping/routing information. For already
VCI-compliant IPs, addresses are provided manually as it is
IP dependant. This is the second of the very few non-fully
automated parts of the flow.



6 EURASIP Journal on Embedded Systems

(c) Transport layer

The basic function of the transport layer is multiple: it ac-
cepts data from the IP ports, splits them into smaller units
(segments) according to the VCI master adapter data bus
size, passes them to the network layer, and ensures that the
pieces all arrive correctly at the other end. In addition, the
transport layer is responsible for the generation of the seg-
ment number which constitutes the third field of VCI ad-
dress.

(d)Network layer

This layer is responsible for the identification of the initiating
port. In the case of a multiport master adapter, the network
layer launches an arbiter to solve the conflicts and ensures
that only one port can have an access to the resource (me-
dia). The second treatment is the operation of transfers mul-
tiplexing and demultiplexing.

(e)Datalink layer

The datalink layer defines the format of data on the interface
and the communication protocol. It is responsible for VCI
transactions.

3.2.3. Physical layer

The physical layer is the physical way of communication.
Wires are used for point-to-point connection between VCs.
An NoC is used for sophisticated communications.

We have synthesized an example of a simple producer/
consumer on the Xilinx FPGA technology. We have used the
PVCImaster/slave adapters with an 8-bit data bus and a 5-bit
address bus on both IPs. Each adapter unit allows two IP data
bus connections of 64-bit and 32-bit size, respectively, with
a static IP port priority management. This implementation
was performed with Xilinx Virtex II xc2v3000-6 technology.
We present here the post placed/routed results. We have ob-
tained a master adapter cost of 489 units of 4-entries logic
and 136 flipflop units, with a 100MHz clock frequency. So, it
occupies 1.7% of the FPGA. The slave adapter requires 144 4-
entries logic units and 204 flipflop units with the same clock
frequency. It needs 0.46% of the FPGA resources. A master
adapter is four times larger than a slave adapter.

3.3. Software-to-software interface synthesis

For embedded software, the SystemC read(data) and write
(data) are implemented with POSIX elements in the case of
dynamic scheduling with an RTOS and message passing in-
terface (MPI) elements in the case of static scheduling. We
have used the POSIX compliant real-time embedded multi-
processor scheduler (RTEMS) as RTOS.

For RTEMS, the read and write primitive functions
are replaced with the rtems message queue receive() function
and the rtems message queue send() function, respectively.
The sc fifo blocking read() function is implemented with the

RTEMS WAIT option set in rtems message queue receive().
The nonblocking sc signal functions are implemented for
RTEMS through message queues which are flushed before
each data write. The nonblocking read is implemented with
the option RTEMS NO WAIT.

For an RTOS-less solution, the SystemC read(data) and
write(data) are implemented as one-sided remote memory
access (RMA) with the MPI MPI put(data) primitive only.
The blocking mechanism for sc fifo is implemented with the
MPI wait() primitive which waits for an acknowledgment.

3.4. Software-to-hardware interface synthesis

For software IP on embedded CPUs, communication with
the NoC VCI agent is managed with dual-ported memory
buffers and DMA from its VCI adapter (dedicated to the
CPUs) directly connected to this dual-ported memory. The
DMA is controlled by software driver subroutines overload-
ing MPI or RTEMS message queues.

In the case of host processor, the read(data) and
write(data) SystemC primitives are overloaded in order to
call the PCI driver services through MPI calls. This software
driver configures the hardware DMAwhichmanages the data
transactions between host memory and the NoC on the pro-
totyping board through the VCI/PCI bridge.

Using one-sided RMA is an efficient implementation so-
lution of MPI [26, 29] and the SystemC programming model
is also very well suited to RMA implementation as sc signal
reads and writes are not correlated. In practice, efficiency
of HW/SW interfaces is obtained with a direct integration
of SystemC high-level communication library in hardware,
that is, by a joint optimization of the implementation of
the SystemC programming model with the MPI put() and
MPI wait() primitives (RMA model) as well as with the un-
derlying NoC design. The RMA mechanism is limited to
write-only transfers between IPs allowing the design of a spe-
cific NoC optimized for those transfers with DMA. This ap-
proach is similar to the joint optimization of compilers and
microarchitectures of microprocessors.

We have designed optimized network interfaces for two
custom NoC [30] with write-only communications, con-
nected to Microblazes, LEONs, and PowerPCs processors
through their dedicated ports. The MPI put() primitive
needs two I/O access to configure the DMA of the network
interface and to launch the DMA transfer in the NoC. Thus
the MPI put() takes only 8 processor clock cycles: 6 clock cy-
cles to prepare the DMA configuration and 2 clock cycles for
I/O access. In that case, the result for the SystemC sc signal
write() primitive is 25 clock cycles of overhead comprising
two MPI put() executions (one for the control and one for
the data), that is, 16 clock cycles, and 9 clock cycles to pre-
pare the data to be transferred. Also there is no overhead for
the SystemC sc signal read() which is only a local variable
access due to the RMA mechanism.

For comparison, the main difference between MPI RMA
subset and DSM API from Celoxica presented in Table 1
is that the MPI put is a nonblocking mechanism which
in conjunction with MPI Wait can implement a blocking



S. Ouadjaout and D. Houzet 7

Table 1: DSM and RMAMPI subset comparison.

DSM MPI

DsmInit() MPI Init()

DsmExit() MPI Finalize()

DsmWrite() & DsmRead() MPI Put() & MPI Wait()

DsmPortS2HOpen() —

— MPI Barrier()

mechanism, compared to the DsmWrite and DsmRead
which are only blocking mechanisms. Also the DSM API is a
two-sided communication compared to the one-sided RMA
subset.

4. GENERATION OF EMBEDDED C CODE

4.1. Generation process

In modern complex SoCs, the software as an integral part of
the SoC is gaining more and more importance. At the sys-
tem level, the system is composed of a set of hierarchical be-
haviors connected together through channels. However, for
the implementation, many designers use a task-based ap-
proach, where the tasks are scheduled by a real-time kernel.
A whole system design is composed of a set of globally asyn-
chronous/locally synchronous reactive processes that con-
currently perform the system functionalities.

Inside the SystemC process code, only wait() primitives
are allowed and processes lack a sensitivity list except for one
signal which is considered as a clock. Therefore, a process will
only block when it reaches a wait(). These restrictions that we
have required are only for the code involved in the embedded
HW/SW partitioning process. They help our SCEmbed tool
to generate the embedded C code [30]. These restrictions on
SystemC coding are also required by Celoxica tools for the
SystemC synthesis.

The XML format used by the XML/C parser is easily
adaptable for a new target RTOS. The main idea behind is
to redefine the SystemC class library elements for the new
target RTOS. The original code of these IPs calls the SystemC
kernel functions to support process concurrency and com-
munication. The new code calls the embedded RTOS func-
tions that implement the equivalent functionality. Thus, Sys-
temC kernel functions are replaced either by typical RTOS
functions or through direct generation of a statically sched-
uled code. The functional behavior is not modified during
the hardware, software, and interfaces generation.

We illustrate the C generation process for the RTOS tar-
get with a producer/consumer example. The SystemC main
code named sc main() is converted to the RTEMS RTOS
main code “init.” The channels are implemented with mes-
sage queues for blocking sc fifo channels and shared vari-
ables for nonblocking sc signal channels. The clock in the
SystemC code is converted into a task sending an event value
broadcasted on a message queue. All the tasks read this clock
message queue for there synchronization.

SystemC concurrent processes need to be converted into
RTOS-based tasks. We instantiate the child tasks in a parent

one corresponding to the SC MODULE in the system spec-
ification. This step is illustrated by our example in Figure 4.
The producer and the consumer instances are converted into
Tprod and Tcons parent tasks. In RTEMS, each parent task
(SC MODULE in systemC) launches the child tasks (pro-
cesses in SystemC) and an additional task which is respon-
sible for interprocess communication. This task is created to
manage sc out ports writing delay corresponding to the be-
havioral delay of the SystemC write function (the data are
validated after the wait event). The RTEMS equivalent code
of the SystemC Producer is shown in Figure 5.

At the system level, synchronization is implemented us-
ing channels or SystemC events. During the generation pro-
cess, the RTOS model provides routines to replace the Sys-
temC synchronization primitives.

In the case of POSIX generation, synchronization be-
tween tasks is managed by semaphores for sc signal imple-
mentation with global shared variables. A special clock man-
agement task is generated which schedules the two-step sig-
nal assignment process in order to respect the semantic of
sc signal. All the signal assignments are performed simulta-
neously after all the processes are stopped on a wait() instruc-
tion. The wait() instruction is implemented by a semaphore
synchronization. The clock task is waiting for all the tasks
which are sensitive to the same clock to stop on a wait in-
struction. Then the second step is performed by this clock
management task, which corresponds to the assignment of
all the shared global variables with the temporary variables
assigned by the different blocked tasks. These blocked tasks
are then freed and can read the shared global variables which
are now updated. This mechanism is generated for each inde-
pendent clock in the whole system. When different tasks are
mapped on different processors, we assume that they com-
municate through asynchronous sc fifo channels. Otherwise,
the clock management tasks of the different processors have
to be synchronized before the assignment of the shared global
variables.

The second approach uses an RTOS-less static schedul-
ing. In this solution, the SystemC scheduler is replaced by our
custom simulation engine optimized for embedded applica-
tions. This scheduler is called from each wait() instruction or
from sc fifo blocking read() or write() functions. This sched-
uler also manages the synchronization of clock sensitive tasks
with barrier primitives.

A channel implementation library is provided for all the
solutions. Up to now, only primitive channels are available
(sc signal, sc fifo). There are three versions of implemen-
tation for each channel: SW/SW, HW/HW, and SW/HW.
SW/SW channels are direct shared variables or message
queues implementation. HW/HW channels are RTL-level
NoC wrappers. SW/HW are C drivers for embedded proces-
sors connected to the NoC.

4.2. Application example

In order to evaluate the proposed technique, two designs
have been experimented for the SW part in this section.



8 EURASIP Journal on Embedded Systems

// RTEMS declaration part

int sc main (){ {rtems task init(rtems task argument∗ unused){

sc signal <char>medium;

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

medium = rtems build name(“m,” “e,” “d,” “i”);

rtems message queue create(medium, . . . ,

& mediumID);

sc clock clock(“clock”);

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tclk = rtems build name(“H,” “L,” “G,” “A”);

rtems task create(Tclk, . . . , & TclkID);

clock = rtems build name(“c,” “l,” “o,” “c”);

rtems message queue create(clock, . . . , & clockID);

Port clock[0] = clockID;

prod inst.out(medium);

prod inst.clk(clock);

producer prod inst(“prod”);
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Tprod = rtems build name(“p,” “r,” “o,” “d”);

rtems task create(Tprod, . . . , & TprodID);

Port prod inst[1] = mediumID;

Port prod inst[0] = clockID;

cons inst(“Consumer”);

cons inst.in(medium);

cons inst.clk(clock);

consumer
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Tcons = rtems build name(“c,” “o,” “n,” “s”);

rtems task create(Tcons, . . . , & TconsID);

Port cons inst[0] = mediumID;

Port cons inst[1] = clockID;

sc start(−1);

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rtems task start(TclkID, clock task, & Port clock);

rtems task start(TprodID, producer, & Port prod inst)

rtems task start(TconsID, consumer, & Port cons inst);

return 0;

} rtems task delete(RTEMS SELF);

}
(a) before (b) after

Figure 4: From SystemC main code to RTEMS code.

The first one is a simple consumer/producer case with two
SystemC components linked together. The second one, a
more realistic case, is a CDMA radiocommunication exam-
ple. The consumer/producer system description has about 86
SystemC code lines and the CDMA system description has
about 976 SystemC code lines. The CDMA includes 7 mod-
ules with 8 concurrent processes. Both examples have been
implemented in a SPARC-based platform that includes 1MB
SDRAM and a LEON2 processor synthesized on one 4Mgate
Xilinx FPGA with 128KB of RAM. The open source POSIX-
compliant RTEMS operating system has been selected as the
target embedded RTOS.

The CDMA system has 7 modules: the top (CDMA), one
module that generates samples, three modules that compute
the QPSK modulation, the THR and the interleaving, one

that models the real environment channel behavior by in-
troducing noise, and the last ones that do the reverse treat-
ment that is deinterleaving, ITHR and demodulation. All the
modules work in a pipelined dataflow way. Several channel
models have been implemented with our design flow. The
CDMA application example uses one of them: a nonblock-
ing channel (the sc signal channel). The proposed channel
models have different implementations depending on the
HW/SWpartition. Several experiments have been performed
with semaphores, mutex condition variables, and signals in
order to synchronize threads with RTEMS.

Table 2 shows the code size of the different codes on the
different operating systems. Table 3 presents their binary size
and Table 4 their average execution time per treatment itera-
tion.



S. Ouadjaout and D. Houzet 9

/∗===Myproducer.h File==∗/
rtems task prod(rtems task argument ∗port) {

class prod : public sc module
Tsend = rtems build name(“F,” “C,” “o,” “m”);

Tmain = rtems build name(“m,” “a,” “i,” “n”);

{
public: rtems task create(Tsend[0], . . . , & TsendID);
sc out<char> out;

sc in<bool> clk;
rtems task create(Tmain[1], . . . , & TmainID);

rtems task start(TsendID, ComTask, & port);

rtems task start(TmainID, main, & port);

int i;

void main(); rtems task delete(RTEMS SELF);

SC HAS PROCESS(prod); }
prod(· · · ): sc module(name){

SC THREAD(main);

sensitive pos� clk;

}

rtems taskmain(rtems task argument ∗port){
// main code

rtems task delete(RTEMS SELF);

}
}; // Communication task

rtems task ComTask (rtems task argument ∗port)

{ // task code

}

Figure 5: Producer RTEMS code.

Table 2: Line number of prod/cons and CDMA source code.

SystemC POSIX RTEMS POSIX Static C Static C

Linux Linux LEON LEON Linux LEON

Prod/Cons 86 130 203 161 — —

CDMA 976 1350 1479 1387 950 950

Table 3: Binary code size of prod/cons and CDMA.

SystemC POSIX RTEMS POSIX Static C Static C

Linux Linux LEON LEON Linux LEON

Prod/Cons 592K 14K 106K 83K — —

CDMA 1.8M 32K 119K 97K 188K 12K

Table 4: Execution time of prod/cons and CDMA.

SystemC POSIX RTEMS POSIX Static C Static C

Linux Linux LEON LEON Linux LEON

Prod/Cons 43 μs 81 μs 2.43ms 1.85ms — —

CDMA 170 μs 310 μs 12.5ms 9.2ms 17 μs 153 μs

In Table 2, the number of lines of the generated embed-
ded C code is nearly the double for the first simple case which
includes 27% of SystemC primitives. For the CDMA, the gen-
erated code size is nearly half more important with only 13%
of SystemC primitives. The size of the embedded C gener-
ated code is directly linked to the number of SystemC ele-
ments included in the original code. As each SystemC prim-
itive is translated with a set of embedded C instructions, a

large proportion of read(), write(), wait(), and others prim-
itives can result in an important size. However, the increase
of the generated code size remains low. Moreover, this gen-
erated C code is entirely “readable” and can be completed or
optimized manually.

In Table 3, the size of the statically scheduled code for em-
bedded processor is nearly ten times lower than the RTOS
one. Thus, when it is possible, it is more interesting to use an
RTOS-less solution for embedded processors. For the Linux
implementation, the kernel is not included in the code, thus
its size is lower than for the standalone one which includes
its own kernel.

In Table 4, the code execution time on the embedded
processor with a static scheduling is nearly 60 times faster
than the RTOS one.We have to consider here that the CDMA
application highly communicates and thus highly requests
RTOS services with context switching for each communica-
tion. In addition, the validation of the embedded software
can be operated on the host processor, through direct POSIX
execution, as it obtains comparable execution times com-
pared to SystemC execution. We obtain also better execution
times for a dedicated static scheduling that is nearly ten times
faster than pure SystemC execution times.

It is thus possible to evaluate more rapidly the whole Sys-
temC model by parsing it in C and execute it on the user
computer instead of using pure SystemC simulations. The
results collected in Tables 2, 3 and 4 show the feasibility of
our SystemC parsing process to POSIX or static scheduling
C code.

We have also experimented different CDMA multipro-
cessor implementations with static scheduling in order to



10 EURASIP Journal on Embedded Systems

Sp
ee
du

p

Proc. Nb.

Figure 6: Speedup of CDMA application.

Table 5: Average design time of prod/cons and CDMA.

Solutions Automated
Manual

POSIX C Static C

Prod/Cons 1.5H 6H 1.5 days

CDMA 3H 2 days 4 days

evaluate the impact of HW/SW communication in term of
time overhead. This overhead includes software delays from
device drivers and hardware delays due to the NoC cross-
ing. We have experimented several configurations with 1, 2,
4, and 7 processors connected with a one-dimension linear
NoC with two processors per node. The speedup obtained is
presented on Figure 6. The overhead of HW/SW communi-
cation (25 clock cycles for a write) added to the NoC crossing
time (almost one clock per NoC node crossed) makes the im-
pact of communication low compared to the execution time
of the CDMA functions on the different processors. We ob-
tain a speedup of 1.8 with 2 processors and 5 with 7 proces-
sors.

These results show the low implications of such a higher-
level interface approach.

These previous design experiments conducted to mea-
sures of design cycle times used for time-to-market evalu-
ation. Several groups of students have implemented these
examples with the SystemC code as a starting point. As we
evaluate here only the mapping of software IPs on embed-
ded processors, we have provided also the VHDL code of the
hardware platform. This platform is composed of LEON-2
processors and an NoC. We have compared the implementa-
tion time between our automated flow and two manual so-
lutions. These experiment results presented in Table 5 show
consequent implementation time differences. Even for a sim-
ple case, the manual design of a multithreaded (POSIX/MPI)
code needs a debugging step which is time consuming. This is
of course even more important for a fully static code which
needs to design the scheduling of IPs and their communi-
cation (MPI). This debugging step needs to be conducted
first as pure C/MPI code on the user computer and then on
the VHDL platform. Moreover, even if no VHDL is designed
here, they need at least to configure the platform in terms of
addresses, and thus validate the entire system. A more com-
plex system with VHDL integration would conduct to even
more time-consuming implementation.

5. CONCLUSION

This paper deals with the idea of unifying the use of Sys-
temC to implement both hardware and embedded software.
We propose an automated HW/SW codesign methodology
which reduces the design time of embedded systems.

The proposed methodology uses the redefinition of Sys-
temC elements to generate the embedded software. A first
solution is to replace each SystemC element by typical RTOS
functions and MPI primitives. This solution provides a sig-
nificantly smaller code size than the equivalent SystemC code
size. A second complementary solution is to generate a stati-
cally scheduled stand alone C code which exhibits better re-
sults in code size and execution time.

The main advantage of this methodology relies on the
optimization of the different steps of the flow. These steps
are jointly designed and optimized by integrating the features
of the SystemC programming model. Actually, the NoC ar-
chitecture is jointly designed with the MPI software of the
communication layer. This approach is similar to the joint
optimization of compilers and microarchitectures of micro-
processors. According to the previous experiments, our op-
timized flow exhibits efficient results in terms of execution
times and hardware resources. Finally, this automated flow
can help to obtain fast design cycle times.

Future works concern the full support of the SPIRIT
standard as well as the improvement of SynDExmapping and
routing solution.

REFERENCES

[1] P. Sánchez, “Embedded SW and RTOS,” in Design of HW/SW
Embedded Systems, E. Villar, Ed., University of Cantabria, San-
tander, Spain, 2001.

[2] Forte Design Systems, “Cynthesizer 3.0,” http://www.forteds.
com/.

[3] Celoxica, “Agility compiler user guide,” Celoxica, 2005.
[4] Mentor Graphics, “CatapultC,” http://www.mentor.com/.
[5] C. S. Ananian, “SiliconC: a hardware backend for SUIF”.
[6] CoWare, “SPW and Platform Architect,” http://www.coware.

com/.
[7] R. K. Gupta, Co-Synthesis of Hardware and Software for Digi-

tal Embedded Systems, Kluwer Academic, Norwell, Mass, USA,
1995.

[8] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis
for DSP using Ptolemy,” Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, vol. 9, no. 1-2,
pp. 7–21, 1995.

[9] F. Baladin, M. Chiodo, P. Giusto, et al., Hardware-Software
Codesign of Embedded Systems: The POLIS Approach, Kluwer
Academic, Norwell, Mass, USA, 1997.

[10] Rational, http://www.rational.com/uml/index.html.
[11] D. Harel, H. Lachover, A. Naamad, et al., “STATEMATE: a

working environment for the development of complex re-
active systems,” IEEE Transactions on Software Engineering,
vol. 16, no. 4, pp. 403–414, 1990.

[12] F. Boussinot and R. de Simone, “The ESTEREL language,” Pro-
ceedings of the IEEE, vol. 79, no. 9, pp. 1293–1304, 1991.

[13] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC, Kluwer Academic, Norwell, Mass, USA, 2002.

http://www.forteds.com/
http://www.forteds.com/
http://www.mentor.com/
http://www.coware.com/
http://www.coware.com/
http://www.rational.com/uml/index.html


S. Ouadjaout and D. Houzet 11

[14] D. Desmet, D. Verkest, and H. De Man, “Operating system
based software generation for systems-on-chip,” in Proceedings
of 37th Design Automation Conference, pp. 396–401, Los Ange-
les, Calif, USA, June 2000.

[15] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, “Systemic em-
bedded software generation from systemC,” in Proceedings of
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’03), pp. 10142–10149, Munich, Germany, March
2003.

[16] H. Yu, R. Dömer, and D. Gajski, “Embedded software gen-
eration from system level design languages,” in Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC ’04), pp. 463–468, Yokohama, Japan, January 2004.

[17] F. Pogodalla, R. Hersemeule, and P. Coulomb, “Fast Prototyp-
ing: a system design flow for fast design, prototyping and effi-
cient IP reuse,” in Proceedings of the 7th International Confer-
ence on Hardware/Software Codesign (CODES ’99), pp. 69–73,
Rome, Italy, May 1999.

[18] OCP Adoption Adds Value to Prosilog. www.prosilog.com/
news/press/documents/.

[19] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, et al., “COSY
communication IP’s,” in Proceedings of 37th Design Automa-
tion Conference, pp. 406–409, Los Angeles, Calif, USA, June
2000.

[20] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Methodology, Kluwer Academic,
Norwell, Mass, USA, 2000.

[21] “Virtual Component Interface Standard (OCB 2 1.0),” VSIA
on-Chip Bus Development Working Group, March 14, 2000.

[22] W. Klingauf, “Systematic transaction level modeling of em-
bedded systems with systemC,” in Proceedings of Design, Au-
tomation and Test in Europe (DATE ’05), vol. 1, pp. 566–567,
Munich, Germany, March 2005.

[23] W. Gropp, E. Lusk, and R. Thakur,UsingMPI-2 Advanced Fea-
tures of the Message Passing Interface, MIT Press, Cambridge,
Mass, USA, 1999.

[24] S. Ouadjaout and D. Houzet, “Easy SoC design with VCI sys-
temC adapters,” in Proceedings of the EUROMICRO Systems on
Digital System Design (DSD ’04), pp. 316–323, Rennes, France,
August-September 2004.

[25] S. Ouadjaout, M.-F. Albenge, and D. Houzet, “VSIA interface
cosynthesis,” in Proceedings of the 1st IEEE International Work-
shop on Electronic Design, Test and Applications (DELTA ’02),
pp. 43–46, Christchurch, New Zealand, January 2002.

[26] SPIRIT Consortium, “SPIRIT V2.0 Alpha release,” 2006.
[27] T. Grandpierre and Y. Sorel, “From algorithm and architec-

ture specifications to automatic generation of distributed real-
time executives: a seamless flow of graphs transformations,” in
Proceedings of 1st ACM and IEEE International Conference on
FormalMethods andModels for Co-Design (MEMOCODE ’03),
pp. 123–132, Mont Saint-Michel, France, June 2003.

[28] S. G. Ziavras, A. V. Gerbessiotis, and R. Bafna, “Coprocessor
design to support MPI primitives in configurable multipro-
cessors,” to appear in Integration, the VLSI Journal.

[29] S. Evain, J.-P. Diguet, and D. Houzet, “μSpider: a CAD tool for
efficient NoC design,” in Proceedings of 22nd Norchip Confer-
ence, pp. 218–221, Oslo, Norway, November 2004.

[30] S. Ouadjaout and D. Houzet, “Embedded hardware/software
generation from high level design languages,” in Proceedings of
IEEE International Computer Systems & Information Technol-
ogy Conference (ICSIT ’05), Algiers, Algeria, July 2005.

Salim Ouadjaout received the M.S. de-
gree in computer science from the National
Institute of Computers (INI), Algeria, in
2000, and the M.S. degree from INP, EN-
SEEIHT, Toulouse, France, in 2001. He is a
Ph.D. candidate in the Electrical and Com-
puter Engineering Department at the Insti-
tute of Electronics and Telecommunication,
Rennes, France. He is also working as a Re-
search Engineer at M3Systems, Inc. He has
been an ACM Student Member. His research interests include de-
sign methodologies, interface synthesis, micronetworks for SoC,
and embedded multiprocessors SoC.

Dominique Houzet received the M.S. de-
gree in computer sciences in 1989 from Paul
Sabatier University, Toulouse, France, and
the Ph.D. degree and HDR degree in com-
puter architecture in 1992 and 1999, both
from INPT, ENSEEIHT, Toulouse, France.
He worked at IRIT Laboratory and EN-
SEEIHT Engineering School from 1992 to
2002 as an Assistant Professor and at IETR
Laboratory INSA Engineering School in
Rennes from 2002 to 2006 and also as a Digital Design Consultant
with SME and large companies. He is now a Professor at LIS-INPG,
Grenoble. He has published a number of research papers in the area
of parallel computer architecture and SoC design and a book on
VHDL principles. His research interests include codesign and SoC
design methodologies applied to image processing and radiocom-
munications. He is a Member of the IEEE Computer Society.


	INTRODUCTION
	DESIGN FLOW
	HW/SW INTERFACE CODESIGN
	Introduction
	Hardware-to-hardware interface synthesis: VCI adaptation methodology
	Application layer
	VCI adapter layer
	(a) Presentation layer
	(b) Session layer
	(c) Transport layer
	(d) Network layer
	(e) Datalink layer
	Physical layer

	Software-to-software interface synthesis
	Software-to-hardware interface synthesis

	Generation of embedded C code
	Generation process
	Application example

	CONCLUSION
	REFERENCES

