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Distributed estimation algorithms have attracted a lot of attention in the past few years, particularly in the framework of Wireless
Sensor Network (WSN). Distributed Kalman Filter (DKF) is one of the most fundamental distributed estimation algorithms for
scalable wireless sensor fusion. Most DKF methods proposed in the literature rely on consensus filters algorithm. The convergence
rate of such distributed consensus algorithms typically depends on the network topology. This paper proposes a low-power DKF.
The proposed DKF is based on a fast polynomial filter. The idea is to apply a polynomial filter to the network matrix that will shape
its spectrum in order to increase the convergence rate by minimizing its second largest eigenvalue. Fast convergence can contribute
to significant energy saving. In order to implement the DKF in WSN, more power saving is needed. Since multiplication is the
atomic operation of Kalman filter, so saving power at the multiplication level can significantly impact the energy consumption of
the DKF. This paper also proposes a novel light-weight and low-power multiplication algorithm. The proposed algorithm aims to
decrease the number of instruction cycles, save power, and reduce the memory storage without increasing the code complexity or
sacrificing accuracy.

1. Introduction

Wireless sensor network has received momentous attention
in recent years because of their titanic potential in appli-
cations. Distributed estimation is one of the fundamental
problems inWSN. One of the most computationally efficient
algorithms for the state estimation is the Kalman filter.
Kalman filter is a classical technique with a number of poten-
tial distributed applications in WSN. There are several works
in the literature that propose distributed Kalman filter based
on consensus filter. Consensus filter has proven to be effective
tool for performing network distributed computation tasks.
Consensus filter allows the network to agree on the value
of a particular computation. Consensus filters can be used
independently for distributed Kalman filter. The role of this
consensus filter is to perform distributed fusion of sensor
measurements that is necessary for implementation of a
scalable Kalman filter.

Kalman filter form is a basic large class of complex
signal processing application. Unlike the other filters algo-
rithms, Kalman filter algorithm does not lend itself for easy
implementation; this is because it involves many matrix
multiplication, division, and inversion. Altogether, compu-
tations of an estimate involve seventeen matrix operations.
Among these seventeen matrix operations, there are ten
matrix multiplications, two matrix inversions, four matrix
additions, and one matrix subtraction. Multiplication is at
the core of Kalman filter operations. Moreover, these tasks
are computationally intensive and strain the energy resources
of any single computational node in a WSN [1]. In other
words, most sensor nodes do not have the computational
resources to complete multiplication task repeatedly. The
sensor nodes available in the market, such as the Crossbow’s
Micaz [2] and Telosb motes [3], depend on an 8-bit or 16-
bit microcontroller. These microcontrollers do not have a
floating-point multiplier. To deal with such systems, several
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multiplication algorithms have been proposed which rely on
repeated additions and consume lots of instruction cycles
and exhibit limited precision. Therefore, saving power at
the multiplication level has a significant impact on the
energy reserve of each node. Consequently, energy-efficient
multiplication can extend the WSN’s lifetime and increase
its computational capabilities. In this paper, we propose a
light-weight energy-efficient multiplication algorithm based
on Horner’s method [4]. Our method aims to reduce
the number of add operations during multiplication by
rounding any sequence of 1’s in the fractional part. The
applied rounding reduces the number of instruction cycles,
and reduces the memory storage without increasing the code
complexity.

Kalman filter is computationally intensive, and it could
strain the energy resources of any single computational node
in a WSN. Thus, computations will be an issue, the same as
the communication, to implement DKF in WSN. The key
contribution of the paper is to provide a low-power DKF
for WSN. The proposed DKF saves energy in two directions.
First, a fast polynomial methodology is proposed to increase
the convergence rate of the consensus. Fast convergence
can contribute to significant energy saving. Second, a light-
weight energy-efficient multiplication algorithm is proposed.
The proposed algorithm aims to decrease the number of
instruction cycles, save power, and reduce the memory
storage without sacrificing the accuracy. Thus, these energy
savings make the DKF applicable to be implemented inWSN
and hence increase the network’s life time.

The rest of the paper is organized as follows: Section 2
introduces the DKF’s related work. Some definitions and
notions about network representation of the WSN are
discussed in Section 3. Central Kalman filter is discussed
in Section 4. The consensus filter is introduced at Section 5
to show that the convergence rate of the DKF depends on
the magnitude of the second largest eigenvalue. Proposed
distributed Kalman filter based on polynomial filter is
introduced in Section 6. Simulation results are presented in
Section 7. Section 8 introduces the proposed multiplication
algorithm. Experimental results are provided in Section 9.
Finally, the paper is concluded in Section 10.

2. RelatedWork

DKF plays an important role in many practical problems
connected to sensor networks among which distributed
monitoring, tracking, and control. In the recent years, we
have witnessed an interest towards this class of problems.
Recently studied consensus algorithms, commonly used
in the theory of distributed algorithms as an efficient
method for data fusion, are providing useful tools to
tackle DKF. Consensus problems and their special cases
have been the subject of intensive studies by several
researchers [5–11]. Low-pass and high-pass consensus filters
are also developed to calculate the average of their inputs
in sensor networks [12, 13]. Consensus-based tracking
and synchronization algorithms in sensor networks that
are scalable have recently appeared as powerful tools for

mutual information processing [14, 15]. Olfati-Saber in
[16] introduced a new DKF algorithm with a peer-to-peer
(P2P) architecture that relies on reaching a consensus on
estimating of local Kalman filters. The consensus problem
with quantized transmission has been studied recently [17].
Schizas et al. in [18] proposed a distributed MLE and
BLUE estimators for the estimation of deterministic signals
in ad hoc WSNs, where the estimators are formulated as
the solution of convex minimization subproblems. Kashyap
et al. introduced in [19] the concept of quantized con-
sensus and proposed an algorithm to reach a consensus
in that sense. Some contributions found in the literature
analyzed the communication bandwidth constrains. Chen
and Li studied the tradeoff between bandwidth and tracking
accuracy with communication constraints [20]. Ribeiro et
al. analyzed the distributed state estimators of dynamical
stochastic processes, whereby the low communication cost
is affected by requiring the transmission of a single bit per
observation [21]. Olfati-Saber introduced a novel distributed
Kalman filtering strategy for distributed state estimation
and targeted tracking in sensor networks [22, 23]. This
DKF strategy consists of identical high-pass consensus
filters for distributed fusion of sensor data and covari-
ance information. Speranzon et al. introduced an adaptive
strategy for distributed estimation of a time-varying signal
measured [24]. A stable filter was derived, as time-varying
weights were computed to minimize the estimation error
covariance. He discussed the tradeoff between optimality
and computational costs. Carli et al. in [25] introduced the
problem of estimating the state of a dynamical system from
distributed noisy measurements. Spanos et al. introduced
a systematic analysis of DKF’s performance as various
network quantities such as connection density, topology,
and bandwidth are varied [26]. Khan and Moura presented
a DKF for sparse large-scale systems monitored by sensor
networks [27, 28]. Azizi and Khorasani proposed a DKF
to estimate actuator faults for deep space formation flying
satellites [29].

3. Network Representations

In wireless sensor network, there is a link between two nodes
when packets can be successfully delivered from one node to
the other. A wireless sensor network is called connected if for
two arbitrary nodes, there is a route, which consists of such
links, from one to the other. Traditional work on connectivity
analysis of wireless sensor networks often focuses on finding
a critical transmission range to keep the network connected.
However, some low-cost sensor nodes may not support
power-adaptive transmissions. On the other hand, changing
the transmission range can be reformulated as changing the
density of the sensor networks, in which each node is using
fixed transmitted power [30]. Recently, random graph theory
is introduced into the modeling of sensor networks with
uncertain features. A random graph often can be imagined
as a living organism which evolves with time. By giving a set
of vertices in advance, the edges are generated according to
some randomization rules [31].
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Let us consider a static network topology. We assume the
network at any arbitrary iteration t as an undirected graph
G = {V ,E} with the set of nodes V = 1, 2, . . . ,n and E is the
edge set at iteration t. E ⊆ E∗,where E∗ ⊆ V×V is employed
to show the interaction between the nodes in a network and it
is drawn if and only if sensor i can communicate with sensor
j. The neighbors of the node i are denoted by the set {Ni =
j ∈ V : (i, j) ∈ E}.

4. Central Kalman Filter

In 1960, Kalman presented a recursive solution for the
discrete-data linear filtering problem [32]. The Kalman filter,
since that time, has been the subject of extensive research
and application, particularly in the area of autonomous or
assisted navigation. The Kalman filter is a set of mathematical
equations that provides an efficient computational solution
to discrete time data filtering problems, in essence removing
extraneous noise from a given stream of data. The filter
is very powerful in several aspects: it supports estimations
of past, present, and even future states, It is an optimal
estimator in the case of Gaussian uncertainties, and it can
do so even when the precise nature of the modeled system
is unknown. Moreover, the Kalman filter is the best linear
estimator for any other distributions.

Let us consider a sensor network with n sensors that
are interconnected via an undirected graph as defined in
Section 2. The model of a process can be defined as

xk+1 = Akxk + Bkuk + wk, k ≥ 0, (1)

zk = Ckxk + vk, k ≥ 0, (2)

where zk ∈ Rnp represents the vector of p-dimensional
measurements obtained via n sensors and wk and vk are
assumed to be zero-mean white noise processes. The process
vk is called measurement noise andwk is called process noise.
The above equations have several variables:A, B, C are system
matrices, k is the time index, x is the system state, u is the
input to the system, z is the measurement output, w is the
process noise, and v is the measurement noise. Both w and
v are zero mean mutually uncorrelated white noises with
covariance

E
[
wk wT

k

]
= Qk, E

[
vk vTk

]
= Rk. (3)

The covariance of the estimation is defined as Pk.
Additionally, x0 is the zero-mean initial state of the process
with estimation covariance matrix P0, and it is assumed to be
uncorrelated with uk and vk. We describe below the Kalman
filter iterations in the information form

M−1
k = P−1k + CT

k R
−1
k Ck,

Kk =MkC
T
k R

−1
k ,

x̂k|k = x̂k|k−1 + Kk
(
zk − Ckx̂k|k−1

)
,

Pk+1 = AkMkA
T
k + BkQkB

T
k ,

x̂k+1|k = Akx̂k|k + Bkuk,

(4)

where Qk is the covariance of the process noise wk and Rk

is covariance of the measurement noise vk. The calculation
of Kalman gain (K) not only depends on the known
measurement error covariance Rk but also on the state
estimation covariance Pk.

5. Consensus Filter

Consensus problems are widely considered in computer
science, and they have a long history in this field. They
basically formed the field of distributed computing. Formal
study of these types of problems goes back to people who
were working in management science and statistics in the
1960s. The notion of statistical consensus theory by DeGroot
attracted the interests twenty years later in the problem
of processing information with uncertainty obtained from
multiple sensors and medical experts [33]. Distributed
computing has been considered by people in systems and
control theory starting with the work of Tsitsiklis and Athans
[34] on asynchronous asymptotic agreement problem for
distributed decision-making systems.

In a network, consensus means to get an agreement
regarding some common interest of the nodes which
depends on the states of all of them. A consensus algorithm
is the law which specifies the information flow between a
node and its neighbors to reach to the consensus in the whole
network [35]. To reach a consensus on a graph, each sensor
node i reports a scalar value x0(i) ∈ R. The vector of initial
values on the network x0 is denoted by

x0 = [x0(1), x0(2), . . . , x0(n)]
T ∈ Rn. (5)

The purpose of the consensus algorithm is to compute
the average at each sensor node using linear distribution
iteration. Thus, the distributed linear iterations of the
network can be defined in the following form:

xt+1(i) =Wiixt(i) +
∑

j∈Ni

Wijxt
(
j
)
, (6)

where i = 1, . . . ,n, xt( j) is the value computed by sensor
node j at iteration t, and Wij represents the edge weights
of G. Each sensor node communicates only with its direct
neighbors, soWij = 0. Writing in a matrix-vector format, the
above update equation becomes

xt+1 =Wiixt, (7)

where Wii is the weight matrix corresponding to the graph
G of iteration t. The iterative relation given by (7) can be
written as

xt+1 =
⎛
⎝

t−1∏

i=0
Wt

⎞
⎠xt. (8)

Equation (7) means that xt = Wtx0 for all t. We want to
chose the weight matrix W so that for any initial value x0,
xt convergences to the average vector Avg = ((1/n)1Tx0)1 =
(1/n)11Tx0, that is,

lim
t→∞xt = lim

t→∞W
tx0 =

(
1
n

)
11Tx0, (9)
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where 1 is the vector of ones. This is equivalent to the matrix
equation

lim
t→∞W

t =
(
1
n

)
11T . (10)

Let us define the vector of average as

Avg = 1
n

n∑

i=1
x0(i). (11)

From (10) and (11), we can find

lim
t→∞xt =

((
1
n

)
11T

)
x0 = x1. (12)

The asymptotic convergence factor is defined as

rasymp(W) = SUP
x0 /= x

lim
t→∞

(∥∥xt − Avg
∥∥
2∥∥x0 − Avg
∥∥
2

)1/t

. (13)

Equation (10) holds if and only if

1TW = 1T ,

W1 = 1,

ρ
(
W −

(
1
n

)
11T

)
< 1,

(14)

where ρ(·) is the spectral radius of a matrix. Now, (13) can
be written as

rasymp(W) = ρ
(
W −

(
1
n

)
11T

)
. (15)

Since W is symmetric, so its eigenvalues arranges as
λ1(W) ≥ λ2(W) · · · ≥ λn(W). λ2(W), the second largest
eigenvalue, is a measure of performance/speed of consensus
algorithm [35, 36]. Thus, the convergence rate of (7) depends
on the magnitude of the second largest eigenvalue λ2.
Since the DKF relies on consensus filters algorithm, so the
convergence rate of the DKF depends on λ2. The proposed
DKF uses a polynomial filter in order to control λ2 as shown
in the next section.

6. Proposed Distributed Kalman Filter

We have described the central Kalman filter in the context of
a sensor network with n nodes, where each node observes
p various measurements. The process we are describing is
m-dimensional processes, that is, xk ∈ Rm and the corre-
sponding white noise vectors have appropriate dimensions
matching the zk and xk. There are n various sensors; each
sensor ism-dimensional, meaning there arem different states
associated with each sensor and for each of those states, there
are p measurements taken. The states are related to each
other by way of matrices A and B. Likewise, zk is extracted
from xk by means of a linear combination dictated by the
matrix C.

In the distributed scenario, we will consider each indi-
vidual sensor one at a time, the expression for state estimate

matrix is placed in the context of a sensor network with
n sensors and a topology G that is a connected graph
illustrating a process of dimension m using p ≤ m sensor
estimates. At each iteration k, each sensor node calculates
the state estimate using the micro-Kalman filter update
equations

M−1
k = P−1k + CT

k R
−1
k Ck,

Kk =MkC
T
k R

−1
k ,

Pk+1 = AkMkA
T
k + BkQkB

T
k .

(16)

The local estimate x̂localk|k is formed by the predicted
regional estimate x̂

reg
k|k−1 and the local measurement zk

x̂localk|k = x̂
reg
k|k−1 + Kk

(
zk − Ckx̂

reg
k|k−1

)
. (17)

The sensor nodes exchange their estimates over the
communication channel and combine the estimates in the
neighboring nodes Ni

x̂
reg
k|k =

∑

j∈Ni

Wij x̂
Local
k|k . (18)

W is symmetric and its eigenvalues arranges as λ1(W) ≥
λ2(W) · · · ≥ λn(W). The second largest eigenvalue λ2(W)
is a measure of the speed of consensus algorithm. Thus,
the convergence rate of DKF depends on the magnitude of
the second largest eigenvalue λ2 as discussed in Section 3.
We applied a fast polynomial filter on the spectrum of W
in order to impact the magnitude of λ2(W), which mainly
drives the convergence rate. In particular, the convergence
is faster when the second largest eigenvalue is small. The
polynomial filter of degreem that is applied on the spectrum
ofW is defined as

pm(λ) = ∝0 +∝1λ +∝2λ2 + · · · +∝mλm. (19)

The matrix polynomial is given as

pm(W) = ∝0I +∝1W +∝2W2 + · · · +∝mWm. (20)

pm(W) is a periodic update of the current sensor node’s
value with a linear combination of its previous values. Now
we can rewrite (18)

x̂
reg
k|k =

m∑

i=0
pi(W)

(
x̂Localk

)
i
. (21)

Each sensor node typically applies polynomial filter
for distributed consensus. The αm’s are computed offline
assuming thatW is known a priori.

The goal is to find the polynomial that leads to the
fastest convergence of linear iteration described in (21),
for a given weight matrix W and a certain degree m. The
optimal polynomial is the one that minimizes the second
largest eigenvalue of W . Therefore, we need to solve an
optimization problem where the optimization variables are
the m + 1 polynomial coefficients α0,α1, . . . ,αm and the
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objective function is the spectral radius of W − (1/n)11T .
The following optimization problem needs to be solved:

Minimize ρ

⎛
⎝

m∑

k=0
αkW

k

⎞
⎠, where α ∈ Rm+1

subject to

⎛
⎝

m∑

k=0
∝kW

k

⎞
⎠1 = 1.

(22)

The Linear Matrix Inequality (LMI) of (22) is equivalent
to a set of m polynomial inequalities in W ; that is, the
leading principal minors of α must be positive. To solve this
optimization problem, the auxiliary variable f will be used
to bind the objective function, and then the spectral radius
constraint is expressed as a linear matrix inequality (LMI).
Thus, the following optimization problem needs to be solved
[35]

Minimize f , where f ∈ Rm+1

subject to − f I ≤
m∑

k=0
αkW

k − 11T

n
≤ f I ,

⎛
⎝

m∑

k=0
∝kW

k

⎞
⎠1 = 1.

(23)

Since W is symmetric,
∑m

k=0 αkWk will be symmetric as
well. Hence, the constraint W1 = 1 is sufficient to ensure
that 1 will be also a left eigenvector of W . Due to the LMI,
the above optimization problem becomes equivalent to a
semidefinite program (SDP) [35]. SDP is a special case of
cone programming and can be efficiently solved by interior
point methods. A matrix polynomial p is applied on the
weight matrix W to shape its spectrum in order to increase
the convergence rate for the DKF. Since the convergence rate
is driven by the second eigenvalue λ2(W), it is then possible
to increase the convergence rate by careful design of the
polynomial p. The computation of the coefficients of the
optimal polynomial is formulated as a semidefinite program
that can be efficiently solved. In addition, the sensors are
allowed to use their previous estimates, in order to accelerate
the convergence rate in a finite number of steps. Although
using the previous estimates will exploit the memory of
sensors, the memory requirements can be adjusted to the
memory constraints imposed by the sensor.

W is calculated according to the fast polynomial con-
sensus introduced above. Then, each sensor node applies
polynomial filter for distributed consensus, by implementing
Algorithm 1. Each sensor uses its previous estimate, in order
to accelerate the convergence rate in a finite number of steps.

Each node predicts the regional estimate x̂
reg
k+1|k as follows

x̂
reg
k+1|k = Ax̂

reg
k|k + Bkuk. (24)

Figure 1 presents the proposed architecture of m nodes
(in another word neighbors) running a micro-Kalman filter
as a part of the entire n nodes network. It shows also

Input: polynomial coefficients α0,α1, . . . ,αm, tolerance δ
Output: average estimate x̂

reg
k|k

While new data exists do
Repeat

for i = 1, 2, 3, . . . ,m
x̂
reg
k|k =

∑m
i=0 pi(W)(x̂Localk )i

If x̂
reg
k|k − x̂localk|k < δ

Exit
else
i = i + 1
end if

end
End while

Algorithm 1

the communication architecture between the nodes. The
advantage of the above micro-Kalman filter is that the state
estimates produced are identical to the ones obtained via a
central Kalman filter, as we will see in the simulation section.
Furthermore, a significant advantage for the distributed
implementation is the computational costs of the gain
matrices. The central Kalman filter gain K has O(m2n)
elements while the gain Mμ of the micro-Kalman filter has
O(m2) elements. This implies that the implementation of the
micro-Kalman filter is more computationally feasible than
that of the central Kalman filter, especially for large network.
Furthermore, our architecture is scalable in terms of the
network size n.

7. Simulation Results

In this section, we provide the output performance of the
proposed DKF versus the Central Kalman Filtering (CKF).
Consider a network of n = 100 sensors that are distributed
randomly with a topology shown in Figure 2. The values used
for the system defined in (1) are

A =
⎡
⎣0 −1
1 0

⎤
⎦, B =

⎡
⎣1 0

0 1

⎤
⎦. (25)

In the simulation, a heterogeneous network is proposed.
Half of the sensors has one kind of sensors and the other half
has another kind of sensors (i.e., each half has different C
matrix). The two different C matrices used in (2) are

C1 =
⎡
⎣1 0

0 1

⎤
⎦, C2 =

⎡
⎣1 2

2 1

⎤
⎦. (26)

The simulation time is 10 seconds with sampling time
Ts = 0.01 second and initial value as bellow:

X0 =
[
0 0

]
,

P0 =
⎡
⎣1 0

0 1

⎤
⎦.

(27)
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The estimation obtained from a CKF, shown in Figure 3,
will be our reference to evaluate the proposed DKF’s
performance. Each node in the network has an estimate;
Figure 4 shows the squared estimation error for the proposed
DKF at node 5 compared with the CKF squared error.
Apparently, the proposed distributed and the central Kalman
filters provide almost the same estimates and that can be
shown clearly in Figure 5 which shows the average Mean
Square Error (MSE) for DKF, for all the nodes, versus the
MSE of the CKF.

Olfati-Saber in [23] addressed the DKF problem by
reducing it into two separate dynamic consensus problems,
a low-pass consensus filter for fusion of the measurements
and a band-pass consensus filter for fusion of the inverse
covariance matrices. He decomposed the central Kalman
filter into n micro-Kalman filters with inputs that are
provided by two consensus filters. This network of micro-
Kalman filters was able to collaboratively provide an estimate
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of the state of the observed process. Figure 6 shows a
comparison of the performance of both the proposed DKF
and Olfati’s algorithm. Simulation results are presented for a
wireless sensor network with n = 200 nodes and 1074 links.
The result shows that the proposed algorithm improved the
average MSE over the olfatis algorithm.

8. ProposedMultiplication Algorithm

Kalman filter is computationally intensive, and it could
strain the energy resources of any single computational
node in a WSN. In other words, most sensor nodes do
not have the computational resources to complete many of
these tasks repeatedly for a long time. Multiplication is at
the core of Kalman-filtering operations. Therefore, saving
power at the multiplication level will have a significant
impact on the energy reserve at each node. Consequently,
energy-efficientmultiplication can extend theWSN’s lifetime
and increase its computational capabilities. Most of the
sensor nodes available in the market have fixed point
microcontroller and do not have hardware multiplier. To
deal with such systems, several multiplication algorithms
have been proposed which rely on repeated additions and
consume lots of instruction cycles and exhibits limited
precision. We propose a light-weight energy-efficient mul-
tiplication algorithm based on Horner’s method [4]. Our
method aims to reduce the number of add operations
during multiplication by rounding any sequence of 1’s
in the fractional part. The applied rounding reduces the
number of instruction cycles and reduces the memory
storage without increasing the code complexity or scarifying
accuracy. Moreover, reducing the number of instructions
convey to increase the speed of the multiplication and save
energy.
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Figure 6: Average MSE for proposed and Olfati’s DKF algorithm.

8.1. Horner’sMethod. Horner’s method is primarily designed
to perform multiplication on devices that do not have a
dedicated hardware multiplier. It dictates a set of designed
equations, which are unique for any multiplier. These
designed equations directly relate to a sequence of shift and
add operations on the multiplicand. The Horner’s algorithm
is based on the positions of the 1’s in the multiplier and
their distance to the immediate 1 to their left. This is done
starting from the rightmost bit position and moving left
until the last 1 before the binary point. As an example,
consider the multiplication of the two numbers A and B
below, represented in 12 bits

A = 0.14325 = 0.001001001010b,

B = 0.12345 = 0.000111111001b.
(28)

In the binary equivalent of the multiplier 0.14325 =
0.001001001010b, starting from the right the first 1 occurs
at bit position 2−11. The difference in position of this 1 to
its immediate 1 to the left is two. Similarly, the difference for
the 1 in bit position 2−9 is three and so on. If the number to
be multiplied is denoted as A, the designed equations can be
written as follows.

(1) A1 = A ∗ 2−3 + A: set the intermediate result equal
to the operand B and start with the rightmost 1. For
the first iteration, the weight 2−3 is applied to the
intermediate result as the distance of the rightmost
1 (bit position 2−12) in the multiplier to its next 1 (bit
position 2−9) is three

A1 =

0.000001001001b+
0.001001001010b
0.001010010011b

. (29)
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(2) A2 = A1 ∗ 2−1 + A: continue to the next 1 in bit
position 2−9. The weight 2−1 is now applied to the
intermediate result since the distance of the 1 in bit
position 2−9 to its next 1 (bit position 2−8) is one.
The operand is again added

A2 =

0.000101001001b+
0.001001001010b
0.001110010011b

. (30)

(3) A3 = A2∗2−1+A: keep on to the next 1 in bit position
2−7. The weight 2−1 is applied to the intermediate
result and the operand added

A3 =

0.000111001001b+
0.001001001010b
0.010000010011b.

. (31)

(4) A4 = A3∗ 2−1 +A: go on to the next 1 in bit position
2−6. The weight 2−1 is applied to the intermediate
result and the operand added

A4 =

0.001000001001b+
0.001001001010b
0.010001010011b.

. (32)

(5) A5 = A4 ∗ 2−1 + A: continue to the next 1 in
bit position 2−5. The weight 2−1 is applied to the
intermediate result and the operand added

A5 =

0.001000101001b+
0.001001001010b
0.010001110011b.

. (33)

(6) A6 = A5∗2−1+A: keep on to the next 1 in bit position
2−4The weight 2−1 is applied to the intermediate
result and the operand added

A6 =

0.001000111001b+
0.001001001010b
0.010010000011b.

. (34)

(7) The result = A6 ∗ 2−4 continue to the last 1 in bit
position 2−4. The factor 2−4 is applied to the inter-
mediate result, as it is the weight at the position of the
leftmost 1. The operand is not added this time, since
all the 1’s have been taken into account. The result =
A6 ∗ 2−4 = 0.000001001000b = 0.017578125. This
has an absolute error of 0.0001060875 which is just
0.434534 LSB, which is 0.60% error from the actual
result.

8.2. Proposed Multiplication Method. The proposed method
is targeting a fixed-point multiplication by utilizing the
redundancy of signed digit code. The feature of redundancy
in this representation allows a coefficient implementation to
be selected, which in general requires fewer additions and
thus yields a faster compact multiplication. The proposed
method aims to reduce the number of add operations
during multiplication by rounding any sequence of 1’s in the
fractional part. For example, the number 1010.010111101
becomes 1010.01100001.

Consider the last counter example. The multiplicand B is
rounded according to the proposed method to yield Bnew

Bnew = 0.12345 = 0.001000000001b. (35)

The algorithm, then, follows these 2 steps.

(1) A1 = A ∗ 2−9 + A: set the intermediate result equal
to the operand Bnew and start with the rightmost 1.
For the first iteration, the weight 2−9 is applied to the
intermediate result as the distance of the rightmost 1
(bit position 2−12) in the multiplier to its next 1 (bit
position 2−3) is three

A1 =

0.000000000001b+
0.001001001010b
0.001001001011b.

. (36)

(2) The result = A1 ∗ 2−3: Proceed to the last 1 in bit
position 2−3. The factor 2−3 is applied to the inter-
mediate result, as it is the weight at the position of the
leftmost 1. The operand is not added this time, since
all the 1’s have been taken into account. The result =
A1 ∗ 2−3 = 0.000001001001b = 0.017822265625.
This has an absolute error of 0.000138053125 which
is just 0.5654656 LSB, which is 0.78% error from the
actual result. The procedure remains the same if the
operand is a negative fraction.

The proposed algorithm takes only 2 steps compared
to seven steps for Horner’s method. The error of the
multiplication comes from the fraction part and depends
on the total number of bits in the fractional part. In order
to compare the accuracy of the proposed method with the
Horner’s method, we calculated the average absolute error
of multiplying all the possible combination of two fractions
for different fraction width (starting from 2 bits to 12 bits).
Figure 7 shows the average absolute error for both methods.
The simulation results show that the proposed method
reduces the accuracy by a maximum of 1% compared to
Horner’s method. Figure 8 draws a Box andWhisker diagram
to show the spread of the absolute error of the proposed
multiplication method.

Table 1 shows the comparison of accuracy, memory
requirements, speed, and energy for both methods for the
same multiplication example we gave before. The proposed
method reduces the number of instruction cycles and the
code size, which will lead to increase the multiplication
speed, without scarifying the accuracy. Experimental results
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Figure 7: Absolute average multiplication error for both methods.
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Figure 8: Box andWhisker diagram of the proposed multiplication
error.

show that the proposed algorithm achieves up to 17% power
saving and 16% increasing in speed, with only maximum 1%
accuracy loss compared toHorner’s algorithm. The newmul-
tiplication method has been validated experimentally using
the eZ430-RF2500 wireless sensor board. The experimental
results emphasize the simplicity and novelty of this scheme
in the use of low power DKF for limited-resource WSN.

Table 1: Comparison for both methods.

Multiplication of 0.14325 ∗ 0.12345

Horner Proposed

Instruction cycle 18 6

Code size (Byte) 37 26

Output result 0.0175781 0.0178222

Absolute error 0.0001060 0.00013805

Energy (pJ) 0.228121 0.178196

Speed (uS) 0.0218 0.0202

Wireless
sensor
node

TelosB

VsupplyVn
Vshunt

Rshunt

+

−I

Figure 9: Power measurement with shunt resistor.

9. Experimental Results

A test bed composed from 10 wireless sensor motes, TelosB,
was used to test the proposed DKF and measure its power
consumption. TelosB is designed for low-power operation.
The low power operation of the TelosB module is due
to the ultra-low-power Texas Instruments MSP430 F1611
microcontroller featuring 10 kB of RAM, 48 kB of flash, and
128 B of information storage. It supports several low-power
operating modes and consumes as low as 1 μA in a standby
mode; it also has very fast wake up time of no more than 6 μs.
TelosB features a Chipcon 2420 radio in the 2.4GHz band.
The CC2240 is controlled by the MSP430 microcontroller
through the SPI port and a series of digital I/O lines with
interrupt capabilities. The MAC protocol used is X-MAC.
X-MAC is an asynchronous MAC protocol in which the
sender uses short preambles to awaken the receiver. Before
any transmission, the sender senses the channel, if it is busy
the sender retries after a random backoff; otherwise, it sends
short preambles embedding the address of the receiver. Once
the receiver detects its address, it sends an acknowledgment,
and the sender can start transmitting the data [37].

Energy consumption in each TelosB can be attributed
to the current draw of each node. Therefore, we can use
accurate measurements of the amount of current that the
node sinks to determine the power consumption. Current
measurement is typically done with a shunt resistor placed in
series with the current flow in a circuit as shown in Figure 9.
This resistor is specifically chosen to be high precision and
low impedance so as not to interfere greatly with the circuit
being monitored. Because the value of the resistor is known,
by measuring the voltage drop across the shunt resistor,
we can accurately calculate the current using Ohm’s law as
follows.

P = Vn ∗ I =
(
Vsupply −Vshunt

)
∗ Vshunt

Rshunt
. (37)
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Figure 10: Power traces for DKF using proposed and Horner
multiplication methods.

Table 2: Energy and time for the proposed polynomial filter.

Proposed polynomial Standard polynomial

Energy (mJ) 62.01644 71.05673

Time (S) 14.6193 16.5402

The code for all the nodes was written in NesC. A java
GUI was developed to provide a friendly user interface with
the nodes. The java interface is a multithreaded socket-
based program that communicates with a serial forwarding
program. A set of 10 nodes is distributed around the
laboratory, they all run a DKF with the same equation values
defined in the simulation section, and a laptop gateway is
configured to be able to send/receive control signals and data
packets to/from the nodes.

To illustrate the effects of energy saving for the proposed
multiplicationmethod on theDKF, Figure 10 shows the com-
parison between the power consumption of one node has 5
neighbors and run DKF using the proposed multiplication
method and Horner’s method. Figure 10 shows the power
trace for only one iteration. The proposed method takes
140ms, while Horner’s method takes 153ms. Thus, using the
proposed multiplication method in DKF saves 8% of energy.

The proposed polynomial filter increases the convergence
rate of the DKF. Fast convergence can contribute to signif-
icant energy saving and hence a fast DKF. Table 2 shows
the time and energy consumption for the DKF using the
standard polynomial and the proposed polynomial. The
measurements are for one node has five neighbors and runs
for ten iterations.

Experimentally, the proposed DKF using the proposed
multiplication method and the proposed fast polynomial
filter was evaluated. The DKF introduced by Olfati was
experimentally tested as well. Figure 11 shows the compar-
ison for both methods for different numbers of neighbors.
The results show that the proposed DKF achieves up to
33% energy saving. The results show also that one node
can run the Olfati’s DKF for up to five neighbors only, but
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Figure 11: Energy consumption of the proposed DKF and Olfatis’
DKF.

the proposed DKF can run for up to seven neighbors. This
different in the nodes numbers is because of thememory lim-
itation, as Olfati’s DKF exchange the measurements and the
covariance, but the proposed DKF exchange the estimation
only. Moreover the proposed multiplication method saves
memory as well.

10. Conclusion

We have presented a low-power distributed Kalman filter
based on a fast polynomial filter. Fast convergence leaded
to significant energy saving. In addition, we proposed a
light-weight energy-efficient multiplication algorithm. The
proposed multiplication method reduced the number of
add operations during multiplication by rounding any
sequence of 1’s in the fractional part. The applied rounding
reduced the number of instruction cycles and reduced the
memory storage without increasing the code complexity. The
experimental results show that the proposed DKF achieved
up to 33% energy consumption save compared to Olfsti’s
DKF. Moreover, the proposed DKF efficiently uses the node’s
memory, so each node can run DKF with up to seven
neighbors.
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