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1. Introduction

The programming language Esterel [1] belongs to the family
of synchronous languages [2]. Due to its synchronous
semantics, all correct Esterel programs are guaranteed to
be reactive and deterministic [3]. These properties greatly
simplify the formal verification of programs, while at the
same time, provide predictable run-time behavior. Hence,
there has been a great deal of interest in using Esterel for the
design and validation of a special class of embedded systems,
called reactive systems [4].

Esterel provides constructs to describe concurrently
executing statements. Each concurrent component executes
in lock-step, evolving in discrete instants of time, known as
a tick. Such synchronous execution is achieved by taking a
snapshot of input signals at the start of each tick, performing
some computation, and emitting all outputs before the start
of the next tick. Concurrent statements may communicate
back and forth with each other within a tick, making
such communication conceptually instantaneous. Such syn-
chronous execution guarantees that each reaction in Esterel
is atomic in every possible sense. This makes race conditions,
common in concurrent programming, impossible in Esterel.

While such powerful features make it intuitive to write
specifications in Esterel, its compilation and efficient execu-
tion has been nontrivial. We illustrate some aspects of this
complexity using the example shown in Figure 1.

An Esterel program always consists of basic entities
called modules. The example in Figure 1 has only a single
module named schizoCyc. Within this module, an abort
construct encloses the entire program, where input signal
R can preempt the abort body at any instant, except at the
starting instant (strong preemption). In the absence of the
preempting signal, the program executes continuously in an
endless loop. The “‖” operator inside the loop forks two
threads within the loop. The threads communicate with each
other through local signal A and output signal C.

The first thread checks for the presence of signal A in the
starting instant, and emits B if A is present. Similarly in the
following instant, if B is present, A is emitted; otherwise the
program waits until A becomes present before emitting C.
The two signal presence and emission statements within this
thread form a cyclic producer-consumer dependency [3]. It
is permitted in this example because the dependency cycle
is broken across instants by the pause statement. On each
iteration of the loop, signal A will be reincarnated [5]. This
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(1) module SchizoCyc:
(2) input I, R;
(3) output C, D;
(4) inputoutput B
(5) abort
(6) loop
(7) signal A in
(8) present A then emit B end;
(9) pause;

(10) present B then emit A end;
(11) await A;
(12) emit C;
(13) ‖
(14) await imediate I;
(15) emit A;
(16) present C then emit D end;
(17) end signal
(18) end loop
(19) when R
(20) endmodule

Figure 1: The schizocyc example Esterel program.

is equivalent to unrolling the loop body to produce a new
declaration of the local signal A for each pass of the loop.

The second thread, waits for input I to become present.
As soon as I becomes present A is emitted immediately.
Following the emission of A, if C is emitted by the first
thread, D will also be emitted in the same instant. Because
of signal reincarnation, the example in Figure 1 is said to
be schizophrenic. When I is present in the first instant,
signal A can be both present and absent in the same
instant. Hence, schizoCyc is named after the schizophrenic
behavior and a cyclic dependency. The schizoCyc example
illustrates some of the aspects that make the compilation and
efficient execution of Esterel challenging. Correct scheduling
of the threads, such that the data dependencies between
the threads are satisfied, contributes significantly to this
complexity. Moreover, preserving the synchronous semantics
of Esterel in compiled code is already, in itself, nontriv-
ial.

Several approaches exist for dealing with these com-
plexities in the compilation and execution of Esterel pro-
grams. These include hardware compilation [3], software
compilation for general-purpose microprocessors [6–8],
and architecture-specific compilation for reactive processors
optimized for Esterel [9, 10]. While the translation of Esterel
to digital circuits in hardware is relatively straightforward,
the generation of efficient software code has been challeng-
ing. Software compilers typically map Esterel programs into
another language, such as C, so that they can be executed on
standard microprocessors. Consequently, concurrent state-
ments in Esterel need to be interleaved and appropriately
scheduled in order to produce an equivalent sequential pro-
gram. This requires additional synchronization mechanisms
to be added to preserve Esterel’s semantics. Such mechanisms
introduce extra execution overhead and increase the required
memory footprint.

The architecture-specific approach for Esterel execu-
tion, in contrast, relies on custom microprocessors that

have been augmented with an instruction set, which
enables efficient mapping of Esterel statements to assembly
code. This approach yields very compact machine code,
as well as efficient execution, and will be the focus of
this paper. We present a novel multithreaded processor,
named Simultaneous multiThreaded Auckland Reactive Pro-
cessor (STARPro), and an Esterel compiler for it, that
achieves significant speed-up and code size compaction
over traditional methods for software implementations of
Esterel.

The rest of this paper is organized as follows. Section 2
reviews previous work related to architecture-specific execu-
tion of Esterel. Section 3 then presents STARPro’s architec-
ture, which is followed by a description of its instruction
set architecture (ISA) in Section 4. Section 5 covers code
generation from the intermediate format and the execution
semantics. In Section 6, we show the experimental results
obtained for some benchmarks. We finally end with some
concluding remarks in Section 7.

A preliminary version of the ideas in this manuscript has
been presented in the 2008 workshop on Model-driven High-
level Programming of Embedded Systems (SLA++P).

2. RelatedWork

The EMPEROR multiprocessor architecture [9] was the
first attempt at the direct execution of Esterel using a set
of reactive processor cores. These cores communicate and
synchronize with each other using a thread control block to
achieve synchronous execution. It executes Esterel programs
by resolving signal dependencies during run-time using a
dual-rail encoding of signals [11]. This approach, while
achieving good execution times, required excessively high
hardware resources.

In contrast to the approach taken in EMPEROR, new
contributions were also made to the idea of reactive process-
ing through the KEP series of processors [10, 12–14]. The
KEP series of processors are custom designed architectures
that have evolved from each generation with incremental
support for executing Esterel. The most recent processor,
KEP3a [10], is capable of preserving the semantics of the full
language. It also provides a multithreaded execution plat-
form to support the concurrency in Esterel. This approach
has yielded impressive code size compaction and execution
times, thus affirming again the benefits of reactive processors
for executing Esterel.

However, there are many improvements that could be
made over KEP’s approach to reactive processor design. At
present, KEP3a employs a nonpipelined architecture, which
supports Esterel’s semantics almost entirely in hardware.
This approach results in a complex hardware design, with a
consequently lower operating clock frequency.

In contrast, this paper presents a novel multithreaded
processor, named STARPro [15], that provides an alterative
approach to direct execution compared to KEP3a. STARPro
uses variable tick lengths and a pipelined architecture
to obtain much better average performance compared to
KEP3a. This has been achieved using far fewer logic gates for
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processor implementation, while maintaining code sizes that
are slightly inferior to KEP3a.

Plummer et al. [16] have explored another approach
of executing Esterel using a virtual machine (VM). The
VM provides customized instructions to support Esterel’s
execution, similar to STARPro. The key difference is that
a virtual machine is implemented as software, whereas
STARPro is a hardware platform. The code sizes in both
approaches are superior when compared with traditional
Esterel compilers. However, the VM approach is significantly
slower than traditional Esterel compilers [16].

3. Architecture of the STARPro Processor

STARPro’s design extends our previous reactive architecture
REMIC [17]. REMIC is a three-stage pipelined reactive
processor that was inspired by Esterel, though it was
not designed to provide support for executing Esterel.
REMIC has a Reactive Functional Unit (RFU), attached
to the control unit and datapath of the processor core,
that provides instruction set support for efficient handling
of asynchronous I/O in reactive applications. The RFU,
however, is not well suited for Esterel programs, which
requires I/O to be handled synchronously. Moreover, REMIC
has no support for concurrency. Hence, we have developed
the Esterel Support Unit (ESU) to replace the RFU within
REMIC, as illustrated in Figure 2(a). The ESU still interfaces
with the control unit and the datapath as before but enables
synchronous handling of signals as well as multithreading to
support concurrency in Esterel.

The ESU itself consists of the Abort Handling Block
(AHB) for dealing with preemptions and the Thread Control
Block (TCB) for multithreading support. STARPro is not a
typical simultaneous multithreading (SMT) processor [18]
since it does not use a separate register file for each thread.
Instead, it provides separate program counters and auxiliary
registers for abort handling for each thread. In the following,
we will first explain how the datapath from REMIC is
modified to work with TCB and AHB, before discussing how
the two interact.

3.1. The Datapath. STARPro is an RISC reactive processor,
featuring a three-state pipeline design. Its memory is orga-
nized following a Harvard architecture, with configurable
access to either internal or external program memory and
data memory. Both the program memory bus and the
instruction width are 32-bit wide, while the data memory
bus is 16-bit wide. I/O is mapped to the highest part of the
address space.

The datapath contains an 8-bank 16-bit wide register
file as general purpose registers. Next to the register file
is the Arithmetic Logic Unit (ALU). It supports standard
operations such as addition, subtraction, and bit shifting, just
to name a few.

To support the additional needs of the ESU, the datapath
of REMIC [17] has been extended with additional ports to
the datapath external interface. The changes allow the ESU
to directly access the register file, which now also serve as

signal register. It allows any data loaded into the registers
to be treated as signals. The other important modification
adds a new input to the program counter multiplexer. This
additional connection is required for loading a new program
address when a preemption occurs. In the following, we
will explain in more detail how the ESU uses these new
connections to the datapath.

3.2. The Thread Control Block (TCB). An Esterel program
may have multiple threads. The TCB maintains the status
of individual threads while emulating the synchronous
concurrency using static thread scheduling. In Figure 2(b),
the TCB itself is composed of a scheduler that maintains
thread context, a thread table, and a TCB control unit.

The thread table stores the current program counter
and the abort context associated with the current thread.
(The abort context will be described in Section 3.3.) Both
the program counter and the abort context are sufficient to
fully describe a thread’s context in STARPro. The number
of threads that can be stored in the thread table is parame-
terizable in our design and is limited only to the hardware
resources available.

The thread table is indexed by the Thread ID register.
The entry indexed by that register determines the thread
which is currently being executed. When the LD TCB signal
is asserted, write access is enabled to the table for a thread
context to be saved. Switching between threads then becomes
a simple matter of changing the value stored in the thread ID
register. A new thread ID value is loaded through the Rx bus
connected to the datapath. During the processor’s reset, the
thread ID register will be initialized to zero. Consequently,
the ID of the root thread of all programs will be assigned a
default value of zero by the STARPro compiler.

The other remaining important component of the TCB is
the scheduler. The scheduler stores the priority and a notion
of a local tick for each thread as boolean flags. We say that
the local tick for a thread has elapsed whenever a pause
statement is reached. This differs from the global tick for an
entire Esterel program, which only elapses when all running
threads have completed their local ticks. In STARPro, the
pause statement is mapped to the PAUSE instruction, which
is used within the processor to indicate the completion of the
local tick for a given thread.

The scheduler will always select the thread with the
highest priority for execution. In doing so, it ignores all the
threads that either have completed their local ticks or are
otherwise inactive. A thread is considered to be inactive if its
priority number is set to the lowest possible priority. When
the local tick of all the currently active threads has elapsed, the
global tick completes, and a compiler-generated management
thread is selected to sample new inputs and to clear all output
signals for the next global tick.

The distinction between local and global ticks is actually
the key idea that facilitates the use of variable tick durations
in STARPro. This idea was first introduced in [9] and
has been adapted for our current design. By relying on
the completion of individual local ticks to determine the
final duration of a global tick, the k global tick duration is
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Figure 2: The STARPro architecture: (a) overview of hardware blocks, (b) thread Handling Block (TCB), and (c) abort Handling Block.

dynamically changed and is equal to the actual computa-
tional time required for executing a number of threads in any
instant.

3.3. The Abort Handling Block (AHB). The AHB is used
to monitor aborting signals and to trigger the appropriate
preemptions if necessary. In Esterel, the priority of the abort
construct depends on the level of its nesting. An outer
abort construct will always have higher priority over those

nested below it. The AHB supports this feature by providing
hardware-based priority resolution (controlled by a finite
state machine in the AHB) for the abort constructs. The
depth of nested aborts is fully parameterizable in our design.
Figure 2(c) depicts an AHB that has been configured with
four levels of aborts for each thread.

The AHB relies on the abort context provided by the
TCB to trigger abortions. An abort context consists of the
following elements.
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(i) Rx. This is the bus that connects to a 16-bit register
selected from the register file in the datapath. The
register has to be loaded with the status of 16 I/O
signals at a time from memory. It is updated at the
beginning of every tick and is used by the AHB to
evaluate the current status of the aborting signals.

(ii) ASR (Abort Signal Register). This stores the ID of the
signal which needs to be monitored during execution
of an abort body.

(iii) AAR (Abort Address Register). This stores the con-
tinuation address, to which the thread must jump to
should preemption happens.

(iv) ATF (Abort Type Flags). STARPro supports the
different types of abortions in Esterel. Abortions can
either be strong or weak, and may be either immediate
or nonimmediate. These are orthogonal to each other,
resulting in four distinct behaviors for abortions in
Esterel.

(v) ALC (Abort Level Count). Each thread can consist of
an arbitrary number of nested aborts. This register is
incremented as the depth of nested aborts increases.

The TCB stores the ASR, ATF, and ALC for each thread
and provides this abort context of the current running
thread to the AHB. The AHB does not contain any memory
element, and it is purely control. When instructed by the
main control unit, the AHB checks all abort levels that have
been initialized. If a preemption is taken, it provides an index
(CA SEL in Figure 3) that selects the continuation address
(AAR, stored in the thread table inside the TCB) as well as an
updated ALC, back to the TCB. The TCB directly provides the
continuation address to the datapath, and hence the AAR is
the only part of the abort context not passed to the AHB. The
activation and deactivation of abort levels are also controlled
by the TCB control unit.

The AHB relies on the control unit to indicate to it
when to check for aborting conditions. This is necessary to
preserve Esterel’s synchronous preemption and to correctly
implement both strong and weak abortions. This indication
from the control unit is provided using STARPro’s CHKABORT
instruction. When the CHKABORT signal arrives, the AHB
control unit will check for abortions in the following
manner.

(i) For strong abortions, the AHB starts by evaluating
the status of aborting signals, beginning from the
outermost to the innermost abort level.

(ii) For weak abortions, the AHB starts by evaluating
the status of aborting signals, beginning from the
innermost to the outermost abort level.

The distinction in behaviors of strong and weak abor-
tions is controlled by the finite state machine inside the
control unit of the AHB. Based on the type of abortion, the
condition of a transition triggered between states changes.
The FSM depicted in Figure 4(a) contains five states for four
levels of aborts, and the transition condition is summarized
in Figure 4(b).

Upon reset of the processor, the FSM is initialized to state
A0, where no abort is loaded. The state of AHB is saved in
TCB in the ALC register. When the first ABORT instruction is
executed, the main control unit of the processor activates the
LD AA signal. LD AA triggers a transition from state A0 to A1
via a01.

The type of abortion specified by CHKABORT instruction
is stored as a single bit in the instruction operand. The
operand is passed through the Pipelined Instruction Reg-
ister (PIR) wire from the datapath. When the CHKABORT
instruction is executed, the main control unit instructs the
AHB to check for preemption. For a strong abort, from
a state, for example, A4, a transition can be made to any
state before it. If all Preemptive Abort Event (PAEs) are
present at the same time, PAE1 would be taken, as it is
given higher priority over others by the transition condition
for strong aborts (see the left hand side of Figure 4(b)).
Again, at state A4, if the abort type given by the CHKABORT
instruction is weak, a transition to A0, for example, can only
happen if PAE1 is the only PAE signal present (see transition
a40 on the right hand side of Figure 4(b)). If PAE1 and
PAE4 are both present, then a transition via a43 would be
taken.

We describe the reason for this difference. When weak
aborts are nested, the bodies of the weak abort that took
the preemption will be given one last chance to complete
the current tick. To preserve such semantics, we designed
the AHB to preempt weak aborts from inside out. This is
in contrast to nested strong aborts, where the abort bodies
of a strong abort are preempted at the beginning of the tick.
In order for the AHB to start the preemption of weak aborts
inside out, the state machine of the AHB differentiates weak
aborts from the strong.

Let us now consider the scenario where a weak abort is
nested within another weak abort, and both of them have an
associated abort handler. In the instant where the aborting
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State Description:

A0: Abort empty (no ABORT loaded)
A1: Abort Level 1 (AASR1 and AAAR1 loaded with 1st ABORT)
A2: Abort Level 2 (AASR2 and AAAR2 loaded with 2nd ABORT)
A3: Abort Level 3 (AASR3 and AAAR3 loaded with 3rd ABORT)
A4: Abort Level 4 (AASR4 and AAAR4 loaded with 4th ABORT)

State Transition Condition (strong): State Transition Condition (weak):

a00: LD AA = ‘0’ a00: LD AA = ‘0’
a01: LD AA = ‘1’ a01: LD AA = ‘1’

a10: (ENDABORT = ‘1’ or PAE1 = ‘1’) a10: (ENDABORT = ‘1’ or PAE1 = ‘1’)
a11: No operation a11: No operation
a12: LD AA = ‘1’ a12: LD AA = ‘1’

a20: PAE1 = ‘1’ a20: PAE1 = ‘1’ and PAE2 = ‘0’
a21: (ENDABORT = ‘1’ or PAE2 = ‘1’) a21: (ENDABORT = ‘1’ or PAE2 = ‘1’)
a22: No operation a22: No operation
a23: LD AA = ‘1’ a23: LD AA = ‘1’

a30: PAE1 = ‘1’ a30: PAE1 = ‘1’ and PAE2 = PAE3 = ‘0’
a31: PAE2 = ‘1’ a31: PAE2 = ‘1’ and PAE3 = ‘0’
a32: (ENDABORT = ‘1’ or PAE3 = ‘1’) a32: (ENDABORT = ‘1’ or PAE3 = ‘1’)
a33: No operation a33: No operation
a34: LD AA = ‘1’ a34: LD AA = ‘1’

a40: PAE1 = ‘1’ a40: PAE1 = ‘1’ and PAE2 = PAE3 = PAE4 = ‘0’
a41: PAE2 = ‘1’ a41: PAE2 = ‘1’ and PAE3 = PAE4 = ‘0’
a42: PAE3 = ‘1’ a42: PAE3 = ‘1’ and PAE4 = ‘0’
a43: (ENDABORT = ‘1’ or PAE4 = ‘1’) a43: (ENDABORT = ‘1’ or PAE4 = ‘1’)
a44: No operation a44: No operation

(b)

Figure 4: Finite State Machine of the Abort Handling Block: (a) the FSM, and (b) state transition conditions.

signals for both constructs are present, the program will first
execute the inner abort handler up to, but not including, the
pause statement (if any). Execution will then branch to the
outer abort handler. This chaining of weak abort handlers
is the reason behind the different order of checking between
the two types of abort constructs. By checking a weak abort
beginning at the innermost level, the preemption can be
propagated from the inner to the outer levels of aborts. Later,
in Section 5.2, we will discuss in more detail how the four
types of abortions in Esterel are handled for execution on
STARPro.

In comparison to the design of preemption mechanism
in KEP, the most significant difference between the AHB and
the preemption watchers in KEP [10] is how the preemption
is monitored. STARPro relies on explicit checks at appropri-
ate times using an instruction, whereas the watchers in KEP
rely on a physical tick signal in hardware. The correctness of
abort semantics of the AHB relies on the compiler, whereas
the watchers rely on the run-time hardware behavior. The
difference between the two approaches results in simpler
preemption hardware design for the STARPro. However, the
watcher design of KEP scales with the number of nested
aborts supported by the hardware. STARPro supports up
to 16 nested aborts it is a limit imposed by the design of
the instruction format and the AHB control state machine.
The complexity of the state machine of the AHB grows
exponentially with respect to the number of nested aborts
supported by the hardware. Despite the limitation, our
compiler is able to handle aborts in software in addition to
hardware aborts.

4. The STARPro Instruction Set Architecture

STARPro uses a 32-bit instruction format. Apart from the
common instructions found on a typical RISC processor, we
introduce additional Esterel-oriented instructions to support
multithreading, signal testing, and preemption. The syntax
and description of these instructions are summarized in
Table 1.

The number of I/O signal ports is parameterizable. I/O
signals are memory mapped, which enables signal manip-
ulation to be also done using instructions that read from
and write to memory. This design allows standard arithmetic
or logic operation to be performed on signals. This also
provides the flexibility on how signals are interpreted; this
is especially so for valued signals where the value can be
represented by a variable number of bits.

STARPro also does not have any dedicated instruction
for strong immediate aborts. Instead, this is implemented
using the ABORT instruction, together with the PRESENT
instruction to test for the aborting condition in the starting
instant.

We illustrate the reactive instructions using the example
in Figure 1. The equivalent STARPro assembly code for that
example is shown in Figure 5. For the reader’s convenience,
Figure 1 is replicated as Figure 6 next to Figure 5. We start by
explaining the reactive instructions used in this program and
defer the discussion on the translation process to Section 5.

Starting with ABORT on line 3, the first abort level is
configured here to watch for signal 14 (signal R). Then, the
program forks two concurrent threads. This is accomplished
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(1) LDR R6 $INPUTS ; external inputs
(2) ; -------------- Start of program --------------
(3) ABORT S14 L13 ; abort S14=R
(4) L0 LDR R0 $SIGNALS
(5) CBIT R0 R0 #A
(6) STR R0 $SIGNALS
(7) LDR R0 #1 ; create
(8) SPAWN R0 T1 ; thread 1
(9) PCHANGE R0 #0 ; assign thread 1 with priority 0

(10) LDR R0 #2 ; create
(11) SPAWN R0 T2 ; thread 2
(12) PCHANGE R0 #0 ; assign thread 2 with priority 0
(13) LDR R0 #31 ; special thread for
(14) SPAWN R0 GTK ; handling global ticks
(15) LDR R0 #$6 ; set threads to
(16) STR R0 $JOIN ; NOT join
(17) CSWITCH #255
(18) ; after join
(19) CHKABORT R6 STRONG
(20) JMP L0
(21) L13 JMP EN
(22) ; -------- Start of global tick handler --------
(23) GTK LDR R7 #0 ; clear
(24) STR R7 $OUTPUTS ; outputs
(25) LDR R6 $INPUTS ; new snapshot of inputs
(26) CSWITCH #255
(27) JMP GTK
(28) ; ------------- Start of thread 1 --------------
(29) T1 ABORT S14 L6 ; abort S14=R
(30) CSWITCH #2
(31) LDR R0 $SIGNALS
(32) PRESENT $15 R0 L5 ; present S15=A
(33) SBIT R7 R7 #B ; emit B
(34) STR R7 $OUTPUTS
(35) L5 PAUSE #0
(36) CHKABORT R6 STRONG
(37) CSWITCH #1
(38) PRESENT S15 R7 L4 ; present S15=B
(39) LDR R0 $SIGNALS
(40) SBIT R0 R0 #A ; emit A
(41) STR R0 $SIGNALS
(42) L4 PAUSE #0
(43) CHKABORT R6 STRONG
(44) CSWITCH #3
(45) LDR R0 $SIGNALS
(46) PRESENT S15 R0 L4 ; present S15=A
(47) L3 SBIT R7 R7 #C ; emit C
(48) STR R7 $OUTPUTS
(49) ENDABORT
(50) L6 LDR R0 $JOIN ; mark
(51) CBIT R0 R0 #1 ; thread 1
(52) STR R0 $JOIN ; dead
(53) SZ L1 ; threads join if JOIN == 0
(54) JMP L2
(55) L1 LDR R0 #0 ; activate the parent thread
(56) PCHANGE R0 #5
(57) L2 CSWITCH #255 ; set current thread to inactive
(58) ; ------------- Start of thread 2 --------------
(59) T2 ABORT S14 L12 ; abort S14=R
(60) ABSENT S15 L10 ; absent S15=I
(61) L11 PAUSE #0
(62) CHKABORT R6 STRONG
(63) PRESENT S15 R6 L11 ; present S15=I
(64) L10 LDR R0 $SIGNALS
(65) SBIT R0 R0 #A ; emit A
(66) STR R0 $SIGNALS
(67) CSWITCH #4
(68) PRESENT S14 R7 L9 ; present S14=C
(69) SBIT R7 R7 #D ; emit D
(70) STR R7 $OUTPUTS
(71) L9 ENDABORT
(72) L12 LDR R0 $JOIN ; mark
(73) CBIT R0 R0 #2 ; thread 2
(74) STR R0 $JOIN ; dead
(75) SZ L7 ; threads join if JOIN == 0
(76) JMP L8
(77) L7 LDR R0 #0 ; activate the parent thread
(78) PCHANGE R0 #5
(79) L8 CSWITCH #255 ; set current thread to inactive
(80) EN END

Figure 5: The schizoCyc example translated to STARPro assem-
bly.

Table 1: Esterel-Oriented instructions.

Instruction Syntax Description

SPAWN Reg StartAddr Creates a new thread

CSWITSH PriorityVal

Updates the priority of the
currentthread (which executes the
CWITCH) to the value of
PriorityVal. It then passes control
to the scheduler that has to select
the next highest priority thread for
execution

PAUSE PriorityVal
Same as CSWITCH, in addition it
marks the end of local tick

PCHANGE Reg PriorityVal Changes the priority of a thread

PRESENT Sig Reg ElseAddr Checks the presence of a signal

ABSENT Sig Reg ElseAddr Checks the absence of a signal

ABORT Sig Addr
Initializes the AHB for strong
abortion

WABORT Sig Addr
Initializes the AHB for weak
abortion

WIABORT Sig Addr
Initializes the AHB for weak
immediate abortion

CHKABORT Reg Type
Checks for preemption of type
Type (strong/weak) only

ENDABORT Deactivates the current abort level

(1) module SchizoCyc:
(2) input I, R;
(3) output C, D;
(4) inputoutput B
(5) abort
(6) loop
(7) signal A in
(8) present A then emit B end;
(9) pause;

(10) present B then emit A end;
(11) await A;
(12) emit C;
(13) ‖
(14) await imediate I;
(15) emit A;
(16) present C then emit D end;
(17) end signal
(18) end loop
(19) when R
(20) endmodule

Figure 6: The schizoCyc example Esterel program.

using the SPAWN instruction on lines 8 and 11, which creates
two new entries in the thread table of the TCB for threads
1 and 2. These threads are then initialized to start at labels
T1 and T2, respectively. Line 14 creates the special global tick
management thread. The PCHANGE instruction on lines 9 and
12 sets the initial priority of threads 1 and 2. Finally, the
CSWITCH instruction on line 17 completes the thread-forking
process by setting the current (in this case, the root) thread



8 EURASIP Journal on Embedded Systems

inactive. The priority number of 255 is the lowest possible
priority (indicating an inactive thread), while 0 is the highest.
The CSWITCH instruction has two functions—it updates the
priority of the thread that executed it and then invokes the
scheduler. The scheduler, in response to CSWITCH, selects a
thread for resumption in the next instruction cycle. Since
both threads 1 and 2 have the same priority, the scheduler can
randomly select either thread for execution first. The PAUSE
instruction functions similarly to CSWITCH, but in addition,
also marks the end of a local tick for the thread that executed
it. PAUSE instructions can be found on several lines across
threads 1 and 2.

In order to achieve a simpler hardware design, the abort
constructs are kept local to the threads that they have been
declared in. When a thread is forked, the aborts within it are
duplicated in the child threads, as was done in [9]. Due to
this, thread 1 and thread 2 begin with an ABORT instruction
on lines 28 and 58, respectively. These two lines do the same
initialization as was done on line 3. Inside the abort body, the
CHKABORT instruction is appropriately inserted at local tick
boundaries, such as on lines 35 and 42. As the mnemonic
suggests, it checks for the abort at the point of execution of
this instruction. It requires a register to be selected and the
abortion type (strong or weak) to be given. The abortion
type operand of a CHKABORT instruction allows the AHB to
check only the type of aborts initialized with the same type
and ignores the other type. When the end of an abort body
is reached, the ENDABORT instruction (see line 48 and 71) is
used to deactivate the current abort level, and it will not be
checked again until it is reactivated. The ENDABORT marks
the end of an abort body, and the instruction following it is
simply a branch to the address of the next instruction after
the abort construct.

The PRESENT instruction, found in many places such
as line 32, is functionally equivalent to Esterel’s present
statement. It tests for the presence of a signal. If it is
present, the following instruction executes, otherwise the
else-address is taken. The ABSENT instruction is similar
to PRESENT, except that it checks for a signal’s absence.
Our compiler inserts the appropriate conditional branch
by anticipating the most probable branch of the condition.
For example, when the number of nested aborts exceeds
what the hardware had been synthesized with, the compiler
inserts ABSENT instructions in place of CHKABORT. If a
PRESENT instruction is used instead, the present branch of
the condition would require an additional jump instruction
to exit the abort body and to execute the abort handler.
Also, whichever branch of the PRESENT instruction is taken,
the processor pipeline will be flushed, which reduces the
performance benefit of pipelining.

5. Code Generation and Execution Semantics

In order to generate assembly code from the Esterel source,
the STARPro compiler uses an intermediate format, called
the unrolled concurrent control-fow graph with surface and
depth (UCCFGsd), to represent a given Esterel program. We
first present the UCCFGsd, and then, describe how assembly
code is generated from it.

(1) abort
(2) % instantaneous statements
(3) pause;
(4) % instantaneous statements
(5) pause;
(6) % instantaneous statements
(7) when S
(8) % instantaneous statements

(a)

(1) ABORT Sn CONT
(2) ; some instructions
(3) PAUSE #n
(4) CHKABORT STRONG
(5) ; some instructions
(6) PAUSE #n
(7) CHKABORT STRONG
(8) ; some instructions
(9) CONT ; some instructions

(b)

S

0

0

S

P

P

(c)

Figure 7: Mapping of a strong abort: (a) esterel source, (b)
assembly, and (c) UCCFGsd.

5.1. Unrolled Concurrent Control-Flow Graph. The UCCFGsd

is a variant of the UCCFG intermediate format, which
was first introduced in [9]. However, the UCCFG is not
capable of fully preserving Esterel’s semantics, especially for
statements that have distinct start and resumption behaviors
(also known as surface and depth behaviors), like that of
the abort statement described in the example of Figure 1.
Some statements, like emit, are logically instantaneous,
while others, like the await statement, consume time (ticks).
Such noninstantaneous statements have distinct surface and
depth behaviors.

To overcome this, we have modified the original UCCFG
format and extended it to explicitly capture both the surface
and depth behavior of every statement in Esterel. This
approach adapts the technique used in [7], where the start
and resumption behaviors are differentiated using distinct
surface code and depth code.

However, unlike [7], the control flow graph in our
case is unrolled due to explicit representation of the ticks.
Moreover, we have no explicit state encoding using state
variables. Hence, our intermediate format is simpler and
closely resembles the Esterel source.

In [7], each pass of the control-flow graph (CFG)
represents an execution of just one tick. Thus, to compute
the reaction for multiple ticks, the CFG would have to be
executed within a loop. The selection of the appropriate
surface and depth code in each pass of the graph is
accomplished using state variables. In contrast, STARPro can
directly preserve state information during execution through
its PAUSE instruction, which essentially mimics Esterel’s
pause statement by keeping the program counter for each
thread unchanged until the start of the next tick.

In UCCFGsd, tick boundaries are marked by pause nodes,
denoted as an arrow with a black bar on the right, as depicted
in Figure 11. Using these pause nodes, the loop required to
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execute the CFG of [7] can be completely unrolled. Hence,
instead of using a switch statement to select between the
surface and depth code as done in [7], code for STARPro can
be conveniently represented in the following form:

Surface (code) followed by depth (code).
Using this approach, Esterel statements can be mapped

to UCCFGsd nodes rather intuitively. The mapping of the
abort statement, however, would merit further elaboration.

5.2. Translating Aborts. Translation of aborts is done in two
stages: first, by marking the start and end of the body, and
subsequently, by placing the check abort node at the desired
points. Depending on the type of the abort, placement of the
check abort nodes varies with respect to the tick boundary. To
handle the four types of aborts, we use the following general
rules.

(i) A strong abort always checks for preemption at the
start of a tick. Therefore, a check abort node is placed
immediately after each pause node.

(ii) A weak abort always checks for preemption at the
end of a tick. Therefore, a check abort node is placed
immediately before each pause node.

(iii) The immediate version of a strong abort checks for
preemption before entering the abort body. A present
node is simply added before the abort node to test for
the aborting condition.

(iv) The nonimmediate version of a weak abort also has
the check abort nodes inserted before the pause node
of the first instant. The reason for this is described
below.

In the following, we further elaborate how the four types
of aborts are translated. Depicted in Figure 7 is an example of
strong abort. The abort body consists of a series of sequential
statements, with a pause statement in between each pair of
instantaneous statements. These instantaneous statements
are denoted as “· · · ” in Figure 7(c).

The abort and when S statements are directly mapped
to the abort start and abort end nodes. These two nodes are
drawn as diamonds with a single dot at the top and bottom
corners, respectively. In between these two nodes is the abort
body. Nodes following the abort end nodes correspond to
the statements of the abort handler, if one exists. Otherwise,
these are the continuation context after the abort. Within
the abort body, each pause statement is mapped to a pause
node. After each pause node, a check abort node is inserted
immediately below. By mapping each node in the UCCFGsd

to assembly, we obtain the final result in Figure 7(b).
The assembly version very closely resembles the

UCCFGsd. The assembly program defines the start of the
abort body by the ABORT instruction and ends the abort
body at the label CONT. Pause nodes are translated to PAUSE
instructions.

The immediate version of a strong abort, in addition,
checks for preemption at the beginning of the starting instant
(surface behavior). This requires only a signal test node
before entering the abort body (see Figure 8(c)).

(1) abort
(2) % instantaneous statements
(3) pause;
(4) % instantaneous statements
(5) pause;
(6) % instantaneous statements
(7) when immediate S
(8) % instantaneous statements

(a)

(1) ABSENT Sn CONT
(2) ABORT Sn CONT
(3) ; some instructions
(4) PAUSE #n
(5) CHKABORT STRONG
(6) ; some instructions
(7) PAUSE #n
(8) CHKABORT STRONG
(9) ; some instructions

(10) CONT ; some instructions

(b)

S

0

0

S

P

P

S
P

(c)

Figure 8: Mapping of a strong immediate abort: (a) esterel source,
(b) assembly, and (c) UCCFGsd.

(1) weak abort
(2) % instantaneous statements
(3) pause;
(4) % instantaneous statements
(5) pause;
(6) % instantaneous statements
(7) when immediate S
(8) % instantaneous statements

(a)

(1) WIABORT Sn CONT
(2) ; some instructions
(3) CHKABORT WEAK
(4) PAUSE #n
(5) ; some instructions
(6) CHKABORT WEAK
(7) PAUSE #n
(8) ; some instructions
(9) CONT ; some instructions

(b)

S

WI

0

0

S

P

P

(c)

Figure 9: Mapping of a weak immediate abort: (a) esterel source,
(b) assembly, and (c) UCCFGsd.

A weak abort differs from a strong abort with respect to
when a preemption is taken. A weak abort allows its body
to execute one last time at the instant of preemption. To
preserve this behavior, checking for preemption is done at
the end of each tick. Figure 9(c) illustrates how a check abort
node is inserted immediately above each pause node.

The handling of a nonimmediate weak abort is subtle
when the abort body contains a loop. The first pass through
the loop is different from all subsequent passes, as the surface
part of the loop body gets folded back into the depth after
the first pass. In this case, the abortion condition needs not
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(1) weak abort
(2) loop
(3) % instantaneous statements
(4) pause;
(5) % instantaneous statements
(6) pause;
(7) % instantaneous statements
(8) end loop
(9) when S

(10) % instantaneous statements

(a)

(1) WABORT Sn CONT
(2) LOOP ; some instructions
(3) CHKABORT WEAK
(4) PAUSE #n
(5) ; some instructions
(6) CHKABORT WEAK
(7) PAUSE #n
(8) ; some instructions
(9) JMP LOOP

(10) CONT ; some instructions

(b)

S

W

0

0

S

P

P

Jump

(c)

Figure 10: Mapping of a weak abort: (a) esterel source, (b)
assembly, and (c) UCCFGsd.

to be checked during the first pass of the loop but would
need to be done in subsequent passes. In order to handle
this, the AHB has been designed to ignore the first CHKABORT
instruction encountered for weak nonimmediate aborts
using an additional status bit, which we refer to as the surface
flag. The surface flag is only valid for nonimmediate weak
aborts, and it is initialized to false by a WABORT instruction,
indicating that the surface of the body has not been executed.
The surface flag is set on the first CHKABORT instruction
in the nonimmediate weak abort body, and the hardware
skips over this first CHKABORT. The CHKABORT instruction
will only work after the surface flag is set for nonimmediate
weak aborts. This explains why Figures 10(b) and 10(c) are
exactly the same as their immediate counterpart. The abort
start node with the letter W inside is the only clue that the
abort is a nonimmediate version.

Note the orthogonality of the four types of aborts. For
example, the translation for strong-immediate (SI) abort is
different from that of the weak-immediate (WI). Unlike the
SI that has an absent statement guarding the abort to deal
with preemption at the starting instant, we do not have
a similar strategy for WI. This is because in case of WI
preemption, if the preemption is taken, this can happen only
after executing instantaneous code inside the body before the
first pause statement.

5.3. Handling Schizophrenic Programs. Statements in an
Esterel program may potentially be executed multiple times
within a single tick. When a local signal declaration is
executed multiple times within a tick, that local signal
may potentially assume multiple statuses within the tick.
Such programs are referred to as schizophrenic [3, 5]. This
phenomenon may result in a single local signal declaration
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Figure 11: Unrolled Concurrent Control Flow Graph of the
SchizoCyc example.

in Esterel being executed multiple times within a tick. Esterel
compilers typically handle this by creating multiple copies
of the same signal (known as incarnations [3]) for each new
signal declaration that may potentially occur within the tick.
This not only complicates the compilation process but also
significantly leads to an increase in memory footprint due to
code duplication.

STARPro’s ISA is able to handle schizophrenic programs
correctly without requiring multiple incarnations of a sig-
nal. Local signals are simply implemented as variables in
STARPro. Whenever the local signal is declared (redeclared
on each new iteration of a loop), the corresponding variable
will be (re-)initialized. This effectively introduces a fresh
copy of the signal by replacing the previous incarnation.
This does not pose any problem even for local signals that
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are shared between multiple threads, as Esterel’s semantics
always ensures that parallel statements are synchronously
terminated before the local signal enclosing them can be
redeclared. This prevents any thread from entering a new
scope of the local signal, while other threads are still in the
previous scope.

SchizoCyc is an example of a schizophrenic program.
Emissions of signal A at the end of the threads inside the loop
will not be visible in the next iteration of the loop. Signal A
will be initialized as absent at the beginning of the loop as
can be seen at the top of the control flow graph in Figure 11.
The join node acts as a rendezvous point for the two threads,
ensuring that they will always join before jumping back to
the top of the loop to create a new copy of signal A.

5.4. Code Generation. The SchizoCyc example contains a
strong abortion. In Figure 11, this is indicated through the
start abort node. Within the abort body, a check abort node
is placed after each pause node in the two forked threads. An
end abort node is placed at the end of the abort body. The
start and end abort pair, thus, defines the scope of the abort
in the graph.

In Esterel, when a thread gets preempted, its sibling
threads are also synchronously preempted in the same
instant. In order to preserve the same behavior for STARPro,
a check abort node is inserted immediately below the join
node. By doing so, when the preempting signal becomes
present, each of the two threads in the example takes the
present branch (the preempting signal is present) of the
check abort node inside the forked threads to the join node.
Following the conjunction of the two threads at the join
node, the check abort node below the join node allows the
parent thread to also check for preemption and reacts to the
preemption synchronously in the same instant with all its
sibling threads.

The nodes in the UCCFGsd map very closely to STARPro
instructions. Backend code generation from the UCCFGsd is
greatly simplified as there is almost a direct mapping between
nodes and assembly instructions. For example, the context
switch and pause nodes directly translate to the CSWITCH and
PAUSE instructions, respectively.

The less straightforward ones in Figure 11 are the fork
and join nodes. Forking involves the following actions:
spawning each child thread, setting the priority and join
status (stored as a variable) of each thread, and finally context
switching to one of the child threads and marking the parent
thread as inactive. Lines 7 to 17 in Figure 5 are the translated
output for the fork node. Joining requires checking the join
status and making sure that all the child threads in the same
fork are ready to join before reviving the parent thread. In
the SchizoCyc example, one thread could finish before the
other. When a thread first reaches the join node, it clears
the corresponding bit in the JOIN variable and checks the
join status to see if all other sibling threads are ready to
join. It then deactivates itself by executing the CSWITCH
instruction with a priority of 255. These are shown on lines
50 ∼ 57 and 72 ∼ 79 in Figure 5. When all threads are
ready to join (the JOIN variable evaluates to zero), whichever

is, the last executing thread of the fork revives the parent
thread by changing its priority to a priority lower than the
currently executing cluster. When the CSWITCH instruction
is next executed, the scheduler in hardware will select the
parent thread. In the next subsection, we will explain how
scheduling is done.

5.5. Scheduling. Scheduling of threads is done in hardware at
run-time based on the priorities of the threads precomputed
at compile-time. We will first explain how the UCCFGsd is
traversed before presenting the scheduling algorithms.

The scheduling algorithms traverse the UCCFGsd by
following two kinds of paths, either a control arc or a
data dependency arc. For any given node in the UCCFGsd

connected to other nodes by a control arc, we refer to nodes
immediately preceding the current one as control predecessors
and nodes immediately succeeding the current one as control
successors. Similarly, nodes that write data are referred to as
data predecessors, while those that read data are referred to as
data successors.

For example, the fork node in Figure 11 has two control
successors; these are both abort start nodes. The fork node
is said to be the control predecessor of the two abort start
nodes. An example of a data successor would be the signal
test node on the output signal C found in the thread on the
right branch. Its data predecessor would be the emit node to
output signal C found in the thread on the left branch.

In the next four subsections, we will present three
algorithms that are used to determine how the threads are to
be interleaved, and how a schedule is followed at run-time.
These will be explained in the following order.

(1) Clustering: this algorithm breaks a program into
clusters of control flow nodes in order to interleave
the execution of threads.

(2) Priority assignment: this algorithm computes the
relative order of clusters such that data dependencies
between threads can be satisfied.

(3) Inserting cswitch nodes: this algorithm inserts cswitch
nodes when necessary based on the priority assigned
to the clusters.

(4) Scheduling in hardware: this subsection explains how
threads are interleaved at run-time, and how the
hardware orders the threads.

5.6. Clustering. The first step to schedule threads is to group
the UCCFGsd of a program into clusters of nodes, where each
cluster contains the maximum number of control flow (CF)
nodes that can execute before a context switch is absolutely
required. The clustering algorithm was inspired by CEC’s [8],
and has been modified so as to adapt to our intermediate
format. We present the clustering algorithm in Figure 12.

The clustering algorithm uses two sets to store control
flow nodes, a frontier set F that holds nodes that may need
to be inserted into new clusters and a pending set P to hold
nodes to be considered for inserting into the cluster being
worked on. The algorithm starts by adding the top node
of the UCCFGsd to F, and arbitrarily selects and move a
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(1) C denotes a set of clustered nodes
(2) Cs denotes the cluster of the control successor of a node
(3) Ci denotes the current cluster being worked on
(4) i = 0
(5) add topmost CF node to F, the frontier set
(6) while F /=∅ do
(7) arbitrarily select and remove f from F
(8) create a new, empty pending set P
(9) add f to P

(10) set Ci to the empty cluster
(11) while P /=∅ do
(12) randomly select and remove p from P
(13) if p /∈ C and (p has no data predecessors or

Ci = ∅) then
(14) add p to Ci and C
(15) if p = jump then
(16) if p’s successor ∈ Cs then
(17) insert p into Cs and C
(18) else
(19) insert p into F
(20) remove p from Ci and C
(21) add all of p’s control successors to P
(22) end
(23) else if p /= fork and p /= threadswitch then
(24) add all of p’s control successors to P
(25) end
(26) add all of p’s control successors to F
(27) end
(28) if p ∈ C then
(29) remove p from F
(30) end
(31) end
(32) if Ci /=∅ then
(33) i = i + 1
(34) end
(35) end

Figure 12: The clustering algorithm.

node from F into P. The outer loop creates a new cluster
Ci everytime P is emptied by the inner loop, and the outer
loop repeats until all the nodes in the UCCFGsd have been
clustered and F becomes empty.

Inside the inner loop, the algorithm first checks if the
current node p has been clustered and that p has no data
predecessor. However, node p can still be considered for
clustering if the current cluster Ci is empty. This is done
on line 13 to ensure that an unclustered node with data
predecessors can be inserted into a new empty cluster. For
example, beginning at the top of Figure 11, the start node
is the first to be inserted into the first cluster C0. Its control
successor, the abort start node, is then added to P and F. A
new successor is added to P and F on each iteration of the
inner loop until the fork node. The two control successors of
the fork node are the abort start nodes. These are inserted into
F for clustering in a new cluster later. As soon as P is emptied,
the outer loop restarts, creating a new cluster C1 and adding
one of the abort start nodes to it.

Lines 15 ∼ 22 in the algorithm specially looks for jump
nodes, where a jump node is a node that unconditionally
jumps to some location in the program. It is used, for
example, to implement a loop. When a jump node leads to
a node that has a data predecessor, a cswitch node has to
be inserted before the jump node. This means that a jump
node should be considered as part of the cluster it is jumping
to. The clustering algorithm achieves this by inserting jump
nodes into set F, then adding its successor to P. This way, a

(1) module InstCyc:
(2) inpute I;
(3) outpute A, B;
(4) present I then
(5) present A then emit B end;
(6) end
(7) ‖
(8) present I else
(5) present B then emit A end;

(10) end
(11) endmodule

Figure 13: An example of a causal program with a false instanta-
neous cyclic dependency.

Table 2: Hardware Resource Usage–STARPro versus KEP3a.

STARPro
@167 MHz

Max.
Threads

2 4 8 16 32 64 128 256 512

Gates (K) 24 24 26 29 52 89 173 342 682

KEP3a
@60 MHz

Max.
Threads

2 10 20 40 60 80 100 120

Gates (K) 295 299 311 328 346 373 389 406

jump node is always clustered after its control successor has
been clustered. If a node p is not a jump and it is neither a
fork nor a threadswitch (where a threadswitch node is either a
pause or cswitch), then all of p’s control successors are added
to set P.

5.7. Priority Assignment. Following the clustering of all
UCCFGsd nodes, priorities are computed by statically analyz-
ing the dependencies between threads. The basic idea of the
algorithm is to compute priority values of the clusters such
that all signal producers will execute before the consumers.
This is achieved by determining the longest dependency
chain for every cluster. The priority of the cluster at the start
of the chain is the highest, while that at the end of the chain is
the lowest. All intermediate clusters have incrementally lower
priority values. Such an algorithm requires causal programs
to compute these chains statically and will not work for
noncausal programs. We can, however, generate correct code
for programs with certain types of cyclic dependencies.

In Esterel, only noninstantaneous cyclic dependencies are
allowed [3]. SchizoCyc is an example of this. It is also
possible that an instantaneous cyclic dependency seemingly
exists in a program, but the dependency, in fact, does not
exist because at least one of the nodes in the cycle can never
be reached in the same instant as the rest. An example of such
a program is shown in Figure 13. In this example, the first
thread reacts to the presence of the input signal I on line 4,
while the second thread reacts to the absence of I on line 8.
Since I can only be either present or absent at any instant,
only one of the statements on lines 5 and 9 can execute.
Hence, there are no dependencies between the two threads.

Given a causal program, if a dependency cycle is found,
our compiler can still generate correct code. In such a case,
the priority assignment assumes that the program is causal,
and an arbitrary cluster will be chosen as a starting point.
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Table 3: A list of example Esterel programs used.

Module name Lines of code No. of threads

abcd 101 5

abcdef 119 7

eight but 137 9

chan prot 55 6

reactor ctrl 32 4

runner 53 3

example 21 3

(1) foreach cluster C in the program do
(2) traceDataPred(C)
(3) end

(1) function traceDataPred(C)
(2) if C is visited then return priority of C
(3) add C to the visited set
(4) max depth = 0
(5) foreach CF node n in C do
(6) depth = 0
(7) foreach data predecessor p of n do
(8) if n = join then
(9) n′ = first non-jump control predecessor of p

(10) depth = traceDataPred(cluster of n′) +1
(11) if depth > max depth then
(12) max depth = depth
(13) end
(14) else if p /∈ C then
(15) depth = traceDataPred(cluster of n) +1
(16) if depth > max depth then
(17) max depth = depth
(18) end
(19) end
(20) end
(21) end
(22) assign priority of C with max depth
(23) returnmax depth
(24) end

Figure 14: The priority assignment algorithm.

Our compiler relies on existing tools [19] to do a priori
causality analysis prior to compilation. This step is needed
to ensure correct code generation using our compiler.

We present the priority assignment algorithm in
Figure 14. The first two lines of the priority assignment
algorithm do a depth first search along the data dependency
arcs of each cluster, where tracing of the data dependency is
done by the recursive function traceDataPred. Function
traceDataPred immediately returns the priority of cluster
C, the cluster being traced, if the cluster has already been
assigned with a priority. This check on line 2 prevents the
algorithm from deadlocking in a dependency cycle. For an
unvisited cluster, it is, by default, assigned with a priority
of 0 if no data predecessors can be found. The default
priority comes from the max depth variable on line 4 in
traceDataPred.

The loop on line 5 traverses through every control flow
nodes in the cluster and looks for incoming data dependency
arcs. The inner loop follows each data dependency arc in a
depth first fashion by recursively calling traceDataPred.

A join node is specially handled on lines 8 ∼ 13. This
is required because control cannot flow immediately to the
join node. Instead, all joining threads need to terminate

C1 C2 C3

JumpJump

Jump

C4

n’ n’ n’

S1 S2 S3

Figure 15: Tracing upwards from a join node.

synchronously before the join node can be reached. To
enforce such execution order of the join node, the control
arcs from the control predecessors of a join node are
replaced with data dependency arcs. The priority assignment
algorithm can then be used to assign the cluster of the join
node a lower priority than its preceding clusters.

As mentioned earlier, a jump node is grouped into the
cluster of its control successor. In the case of a join node, it
is possible that a jump node or a sequence of consecutive
jump nodes precedes the join node and resides in the same
cluster. Moreover, because the control arcs from these jump
nodes have been replaced with data dependency arcs, and
if an incoming data dependency arc of a join node comes
from a jump node, tracing the arc will lead to a node in the
same cluster. Figure 15 shows an example of such scenario.
This creates a problem because the priority cannot be derived
by tracing the depth of the dependencies. To assign C4 in
Figure 15 a priority, line 9 in the algorithm traverses the
UCCFGsd upward until it finds a nonjump node n′; then
on line 10, the cluster of n′ is passed to traceDataPred
to derive a priority from the preceding clusters of C4. These
would be C1 and C2 in Figure 15.

The priority of each chain of data dependency arcs are
incremented by one, and then the maximum priority value of
the deepest data dependency chain is assigned to max depth.
The intuition is that the higher the value assigned, the lower
the priority, and hence, this cluster will execute after all its
predecessors. These can be seen on lines 10 ∼ 13 and lines
15 ∼ 18. The algorithm finishes when all clusters in the
UCCFGsd have been visited.

To illustrate how the algorithm works, let us now
consider cluster C2 in Figure 11. Assume that C0 and C1
have been visited, and C2 is the first cluster traceDataPred
found to have dependencies. C2 has two incoming depen-
dency arcs, one from C8 and another from C4. Assume that
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(1) foreach cluster C in the program do
(2) foreach CF node n in C do
(3) if n = pause then
(4) store the priority of the cluster n’s successor

belongs to in the pause node
(5) continue
(6) end
(7) if n = fork then continue
(8) foreach control successor s of n do
(9) if priority of the cluster of s > C’s priority then

(10) insert a cswitch node between n and s
(11) store the priority of the cluster s belongs

to in the cswitch node
(12) end
(13) end
(14) end
(15) end

Figure 16: The cswitch insertion algorithm.

the algorithm recursively calls traceDataPred on C4 first.
Cluster C4 has only one incoming dependency arc from C2,
creating a cycle. The arc is traced by traceDataPred (C2).
Since C2 is already visited and currently holds a priority
of 0, traceDataPred (C2) immediately returns 0. The
depth variable in traceDataPred (C4) is assigned with
the priority of C2 plus 1; depth, thus, becomes 1. The
max depth variable in C4 then obtains the value 1 from
depth. There are now no more dependency arcs to be traced
for C4; so traceDataPred (C4) returns 1. At this point, C2
still has one more dependency arc from C8. This is again
traced by calling traceDataPred (C8). C8 does not have
any dependency; so a priority of 0 is returned. The depth
variable in C2 obtains a value of 1. However, this value is less
than max depth, and hence, C2 is now permanently assigned
with a priority of 2 (max depth + 1).

5.8. Inserting Cswitch Nodes. To interleave between threads,
cswitch nodes have to be inserted between transitions from
one cluster to another. The final algorithm presented in
Figure 16 does this. This is done by the cswitch insertion
algorithm, which examines each cluster in the UCCFGsd by
discovering all exit points from the cluster using the loops
on lines 1 ∼ 2. While traversing the tree, lines 3 ∼ 5 of the
algorithm use this opportunity to fill in the priority values
in each pause node it encounters. This priority value will
become the operand of PAUSE instructions.

The check on line 7 skips over any fork node it
encounters. A fork node needs to manipulate the priority
of both the thread being forked and its child threads. A
CSWITCH instruction will be generated from a fork.

Lines 8 ∼ 9 ensure that a minimum number of cswitch
nodes are inserted. A cswitch node is only inserted between
a transition from a cluster with a priority value that is lower
than its successor cluster. Clusters that depend on each other
are maintained in this relative order—signal producers are
given a chance to execute before consumer clusters execute.
Conversely, a cswitch node is not necessary, as the lower
priority value of the succeeding cluster means that either the
dependency has already been satisfied prior to the current
executing cluster, or there are no data dependencies between

these two clusters. Finally, line 11 stores the priority of the
succeeding cluster in each cswitch node.

We will again use Figure 11 to illustrate how cswitch
nodes are inserted by the algorithm. Starting with the first
cluster C0, it has two exit points from fork. Exit points
from a fork node are skipped by the algorithm. The next
cluster C1 visited by the algorithm has one exit point to
C2. The transition from C1 to C2 is a transition from a
higher priority cluster to that of a lower one (from P0 to
P2). A cswitch is inserted before C2 to give any potential
signal emitters a chance to execute prior to C2. The newly
inserted cswitch node has a priority value of 2 stored in it,
where the value comes from the priority of C2. Moving on
to the next cluster C2, the pause node in C2 is assigned with
the priority of C3. One thing that Figure 11 does not show is
that the control arcs leading to the join node have actually
been replaced with data dependency arcs. Because of this
change, the algorithm does not find exit points from clusters
that previously had control arcs to join. Hence, no cswitch is
inserted, and instead, context switching and reviving of the
parent thread is handled by the join node.

5.9. Scheduling in Hardware. The priority of a thread is
changed by executing the PCHANGE, CSWITCH, or PAUSE
instruction. The scheduler keeps the priority of all threads
in the TCB. The highest priority is 0, while the number
255 is reserved as an indication that the thread is inactive.
The scheduler also stores the local tick status flags of every
thread. The scheduler makes a decision on which thread to
select when a CSWITCH or PAUSE instruction is executed. The
decision is made based on the following steps in the given
order.

(1) Limit the selection to active (priority < 255) threads
only.

(2) Limit the selection to threads whose local tick status
evaluates to false.

(3) Select the thread with the highest priority (lowest
number).

(4) When no more threads can be selected, the special
global tick handler thread is selected, and the local tick
flags of every thread are reset to false. This completes
the global tick.

The last step described above is only performed at the
end of a global tick, which can only be reached when the local
tick status flags of all active threads evaluate to true. At the
end of each global tick, all signal outputs to the environment
and local signals need to be reset. A new snapshot of inputs
from the environment needs to be taken. STARPro relies on
software code to manipulate memory mapped I/O, using a
special thread, called the global tick handler. The scheduler
selects this thread when step (4) is performed. However, as
a single threaded program does not rely on a special global
tick handler, the code of the global tick handler is simply
generated for the pause nodes instead.

To illustrate how SchizoCyc executes on STARPro, we
show the same assembly code in Figure 17(a) with comments
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removed. On the right, Figure 17(b) shows the changes of the
values of the program counter, local tick status flag, and the
priority of each thread.

In the starting instant of the program, the root thread
starts forking into two threads. The global tick handler thread
gets created after line 12, while threads 1 and 2 are created
on lines 6 and 9, respectively. All threads except the root
thread are initialized to a priority of 255 upon start up of
the processor. The root thread starts with a priority of 0.
During the forking process, the priorities of the threads are
reassigned by the PCHANGE instruction, as can be seen in the
table at the top of Figure 17(b). We show signals that are
present in the current tick in the top right-hand corner of
the thread context table.

Shortly after creating threads, the newly created threads
are ready to be scheduled by executing the CSWITCH instruc-
tion on line 15. The second table below shows the thread
context after the fork. The root thread becomes inactive at
this point with the priority set to 255. This makes the priority
of the parent thread 255 (lowest possible) and passes control
to the scheduler. The program counter will be frozen at 16
until the thread is resumed. The same applies to all other
threads that are suspended through context switches.

Continuing on, since both threads 1 and 2 have the same
priority, it does not matter which one is executed first. If
thread 1 is selected, it quickly reaches another context switch
on line 25. Looking at the third table from the top, the
instruction on line 25 lowered the priority of thread 1 to 1,
while thread 2’s priority is now higher at 0. Both threads 1
and 2 have not completed their local ticks and are still active;
thus both are valid candidates to be scheduled next. Since
thread 2 now has higher priority, it is selected for execution.

The fourth table shows the result after executing thread
2 up to the first PAUSE instruction on line 55, assuming that
input signal I is absent in the first instant. PAUSE sets the local
tick status flag of thread 2 to true and refreshes its priority
with 0. Thread 2 is no longer a candidate for scheduling,
leaving thread 1 as the only active thread 1 yet to complete
its local tick. Similarly, we arrive with the results in the next
table after completing the remainder of the tick in thread 1.
No more threads can now be scheduled as thread 0 is inactive,
while threads 1 and 2 have both completed their local ticks.
This triggers a global tick signal internal to the scheduler,
which causes the global tick handler thread to be scheduled.
Because of the special role of the global tick handler, and since
it plays no part in the scheduling of threads, it has no priority.

Tick 1 starts after executing the CSWITCH instruction on
line 22. Note that the local tick status flags have been reset to
false. The flow of the execution carries on in similar fashion
as described above.

In a different scenario, an interesting case arises when
the input signal I is present in the first instant. Thread 2
would finish before thread 1 in this case. The code between
lines 66 ∼ 73 generated from the join node performs barrier
synchronization by checking the JOIN variable. In this case,
thread 2 finishes before thread 1; thread 2 deactivates itself
without reviving thread 0. Thread 1 continues execution
until it also finishes; the same barrier synchronization is

(0) LDR R6 $INPUTS
(1) ABORT S14 L13
(2) L0 LDR R0 $SIGNALS
(3) CBIT R0 R0 #A
(4) STR R0 $SIGNALS
(5) LDR R0 #1
(6) SPAWN R0 T1
(7) PCHANGE R0 #0
(8) LDR R0 #2
(9) SPAWN R0 T2

(10) PCHANGE R0 #0
(11) LDR R0 #31
(12) SPAWN R0 GTK
(13) LDR R0 #$6
(14) STR R0 $JOIN
(15) CSWITCH #255
(16) CHKABORT R6 STRONG
(17) JMP L0
(18) L13 JMP EN
(19) GTK LDR R7 #0
(20) STR R7 $OUTPUTS
(21) LDR R6 $INPUTS
(22) CSWITCH #255
(23) JMP GTK
(24) T1 ABORT S14 L6
(25) CSWITCH #2
(26) LDR R0 $SIGNALS
(27) PRESENT S15 R0 L5
(28) SBIT R7 R7 #B
(19) STR R7 $OUTPUTS
(30) L5 PAUSE #0
(31) CHKABORT R6 STRONG
(32) CSWITCH #1
(33) PRESENT S15 R7 L4
(34) LDR R0 $SIGNALS
(35) SBIT R0 R0 #A
(36) STR R0 $SIGNALS
(37) L4 PAUSE #0
(38) CHKABORT R6 STRONG
(39) CSWITCH #3
(40) LDR R0 $SIGNALS
(41) PRESENT S15 R0 L4
(42) L3 SBIT R7 R7 #C
(43) STR R7 $OUTPUTS
(44) ENDABORT
(45) L6 LDR R0 $JOIN
(46) CBIT R0 R0 #1
(47) STR R0 $JOIN
(48) SZ L1
(49) JMP L2
(50) L1 LDR R0 #0
(51) PCHANGE R0 #5
(52) L2 CSWITCH #255
(53) T2 ABORT S14 L12
(54) ABSENT S15 L10
(55) L11 PAUSE #0
(56) CHKABORT R6 STRONG
(57) PRESENT S15 R6 L11
(58) L10 LDR R0 $SIGNALS
(59) SBIT R0 R0 #A
(60) STR R0 $SIGNALS
(61) CSWITCH #4
(62) PRESENT S14 R7 L9
(63) SBIT R7 R7 #D
(64) STR R7 $OUTPUTS
(65) L9 ENDABORT
(66) L12 LDR R0 $JOIN
(67) CBIT R0 R0 #2
(68) STR R0 $JOIN
(69) SZ L7
(70) JMP L8
(71) L7 LDR R0 #0
(72) PCHANGE R0 #5
(73) L8 CSWITCH #255
(74) EN END

(a)

After line 12 on tick 0

Thread PC Ticked Priority

0 13 N 0

1 24 N 0

2 53 N 0

31 19 N N/A

After line 15 on tick 0

Thread PC Ticked Priority

0 16 N 255

1 24 N 0

2 53 N 0

31 19 N N/A

After line 25 on tick 0

Thread PC Ticked Priority

0 16 N 255

1 26 N 2

2 53 N 0

31 19 N N/A

After line 55 on tick 0

Thread PC Ticked Priority

0 16 N 255

1 26 N 2

2 56 Y 0

31 19 N N/A

After line 30 on tick 0

Thread PC Ticked Priority

0 16 N 255

1 31 Y 0

2 56 Y 0

31 19 N N/A

After line 22 on tick 1 I

Thread PC Ticked Priority

0 16 N 255

1 31 N 0

2 56 N 0

31 23 N N/A

After line 32 on tick 1 I/A

Thread PC Ticked Priority

0 16 N 255

1 33 N 1

2 56 N 0

31 23 N N/A

After line 61 on tick 1 I/A

Thread PC Ticked Priority

0 16 N 255

1 33 N 1

2 62 N 4

31 23 N N/A

After line 37 on tick 1 I/A

Thread PC Ticked Priority

0 16 N 255

1 38 Y 0

2 62 N 4

31 23 N N/A

After line 73 on tick 1 I/A

Thread PC Ticked Priority

0 16 N 255

1 38 Y 0

2 74 N 255

2 23 N N/A

(b)

Figure 17: Change of thread context for SchizoCyc example: (a)
assembly, and (b) change of thread context.
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Figure 18: Comparison of hardware resource usage between KEP3a
and STARPro.

performed for thread 1 between lines 45 ∼ 52. This time,
thread 1 breaks the barrier and revives thread 0 on lines
50 ∼ 52.

Cluster C10 can only be reached when threads 1 and
2 join. The corresponding code for C10 is shown on lines
16 ∼ 18. Note that the chkabort node positioned immediately
below the join node. It is inserted because the chkabort
nodes in threads 1 and 2 only cause these two threads to
join. To actually exit the program, thread 0 has to take the
preemption by checking for signal R immediately after the
join.

6. Experimental Results

STARPro was successfully synthesized for both Cyclone II
[20] and Spartan-3 [21] FPGAs. Its hardware resource usage
on Spartan3 is presented in Table 2 for comparison with
KEP3a [10]. STARPro was synthesized for 2 to 512 threads
to examine the relationship between the resource usage and
the number of threads. Figures for KEP3a have been taken
from [10]. These results have been used to produce the
curves in Figure 18. Both processors exhibit linear increase
of required resources (logic gates) with the increase of
number of threads. STARPro will not significantly change
the hardware resource usage when the number of memory
mapped I/O ports increases.

The benchmark programs presented here have been
selected from EstBench [22]; these are listed in Table 3.
All the selected programs are also present in [10] for
comparison. All the Esterel examples used in the benchmark
are pure control-driven and have minimal data computation.
The benchmarks were evaluated in three aspects. First,
we compare the worst-case and average reaction times for
KEP3a and STARPro. The optimized results for KEP3a were
taken from [10]. Then, we compare the generated code

Table 4: The worst and average case reaction time.

Module
name

KEP STARPro KEP STARPro

WCRT
(clk
cyc)

WCRT
(clk cyc)

Speedup
ACRT

(clk
cyc)

ACRT
(clk cyc)

Speedup

abcd 135 83 1.63 84 42 2

abcdef 201 121 1.66 117 57 2.05

eight but 267 96 2.78 153 87 1.76

chan prot 117 140 0.84 54 55 0.98

reactor ctrl 51 43 1.19 39 39 1

runner 30 88 0.34 6 35 0.17

example 42 46 0.91 24 30 0.8

size. Finally, we show the effects of STARPro pipelined
architecture in terms of the execution speedup.

To evaluate STARPro’s compiler, we compared it against
four other Esterel compilers, namely, CEC v0.4 [8], EEC2
[11], the V5 [1] and V7 Esterel compilers [23]. These
compilers produced C code from the Esterel source, which
we compiled for the NIOS II [24] 32-bit RISC processor.
NIOS is a softcore processor, provided by Altera as part of its
development tools for its Cyclone II FPGA. All C programs
were compiled using the nios2-elf-gcc compiler with level-2
optimization (−O2). The reason for using NiOS II was that
it was implemented on the same Cyclone II FPGA as was
STARPro.

We start by comparing the execution times of the two
reactive architectures, KEP3a and STARPro. Execution traces
were generated using Esterel Studio’s Coverage Analysis tool,
which were also used for the benchmarks in [10]. The
Coverage Analysis tool produces a set of input trace that
covers all possible states in the program. The worst-case
reaction time is obtained from the longest reaction by feeding
the generated input trace to the program.

The worst-case and average-case reaction times for
KEP3a and STARPro are shown in Table 4. Although KEP3a
has almost one-to-one mapping between Esterel statements
and its native instructions, STARPro is still able to achieve, on
an average, 37% faster execution (referred as to speedup in
Table 4) in worst-case reaction time (WCRT), and 38% faster
execution in average-case reaction time (ACRT) expressed in
number of system clock cycles. We consider this comparison
fair as it assumes that both processors run at the same
system clock speed. However, STARPro achieves more than
two times higher clock speed than KEP3a (167 MHz versus
60 MHz) when synthesized for the same FPGA device, which
gives it even further advantage in terms of real execution
time. The exception where KEP3a significantly excels in
performance is the runner example. The example involves
counting of signal occurrences. In KEP3a, such counting is
done in hardware, whereas STARPro relies on software to do
this.

The code size for the various compilers was obtained
from the size of the object files generated by the nios2-elf-
gcc compiler. The approach taken by KEP3a and STARPro
consistently resulted in much more compact code compared
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Figure 19: Code size comparison in bar graph (lower better).

Table 5: Code size comparison using different compilation tech-
niques.

Module name
Code size (kilobytes)

CEC EEC V5A V5 V7 KEP3a STARPro

abcd 8.94 10.18 7.68 10.37 6.09 0.74 0.8

abcdef 18.95 20.57 23.02 33.73 15.1 1.11 1.21

eight but 3.56 3.93 3.54 6.66 6.64 1.48 1.58

chan prot 4.41 5.86 6.38 10.22 8.95 0.29 0.56

reactor ctrl 2.25 4.5 3.62 4.26 2.53 0.17 0.24

runner 4.42 5.19 5.55 5.43 4.05 0.17 1.05

example 3.1 3.47 3.18 3.57 2.29 0.14 0.29

to the conventional software approach, as depicted in Table 5
(plotted as a graph in Figure 19). Overall, STARPro has an
average 40% larger code size than KEP3a.

To compare performance of the code generated by the
software compilers, we ran each Esterel program for one
million reactions with randomly generated input trace. Input
traces are generated once for each Esterel program. The total
number of machine instructions to complete million reac-
tions is recorded in Table 6 (plotted as graph in Figure 20).

Finally, Table 7 shows the performance gain from the
pipelined STARPro architecture. The clock cycles shown
in the table represent the total number of clock cycles
to complete each program with a given execution trace.
The same applies to the instruction count. Multiplying the
instruction count by three, we obtain the total number of
clock cycles required for a nonpipelined processor. The effect
of pipelining results in an average speedup of 1.83 times.
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Figure 20: Performance (in run-time machine instruction count)
comparison in bar graph (lower better).

Table 6: Performance (in run-time machine instruction count).

Module name
Number of instructions (in millions)

Software approach using C STARPro

CEC EEC V5A V5 V7

abcd 347 407 177 1015 541 28

abcdef 473 580 232 1492 815 41

eight but 689 832 270 1993 1077 51

chan prot 288 241 176 598 261 29

reactor ctrl 97 178 111 366 148 20

runner 181 175 186 476 338 19

example 144 127 116 323 160 20

Table 7: Effectiveness of pipelining in clock cycles per instruction.

Module name Clk cyc Instructions ClkCyc/inst Speedup

abcd 21338 10489 2.03 1.47

abcdef 254439 123454 2.06 1.46

eight but 24645 13439 1.83 1.64

chan prot 24167 13181 1.83 1.64

reactor ctrl 544 290 1.88 1.6

runner 1090222 703585 1.55 1.94

example 274 160 1.71 1.75

Average 1415629 864598 1.64 1.83

In summary, execution of Esterel using reactive pro-
cessors yields much better code size and execution times
compared to conventional software approaches that target
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traditional processors. The proposed STARPro architecture
shows better execution times with significantly less hardware
resources compared to the latest KEP processor, but with the
larger memory footprint.

In general, the STARPro is simpler than KEP3a in terms
of instructions and used functional units. Unlike KEP3a,
STARPro does not have a one-to-one mapping of Esterel
statements to its ISA. Instead, it relies on a combination of
hardware and software. This approach leads to larger code
size compared to KEP3a. However, STARPro has another
advantage that it can operate at higher clock frequency when
synthesized for the same target FPGA.

7. Conclusions

We have presented a direct execution platform for Esterel
with multithreading support. Esterel programs compiled
for STARPro are significantly faster than those produced
by Esterel software compilers for traditional processors,
and at the same time have smaller memory footprint.
In comparison to an existing Esterel-optimized processor,
KEP3a, STARPro achieves better execution times but has
larger memory footprint. This has been accomplished with a
simpler hardware design, which, at the same time, consumes
significantly less hardware resources. This led to the ability of
the pipelined STARPro processor to operate at 167 MHz in
contrast to the nonpipelined operating frequency of KEP3a
of only 60 MHz for the same implementation technology.

Our future work includes further optimization of the
processor itself, which will include work on hardware
support for scheduling. Also, we are looking for extension
of the approach to data driven computations where a
standard traditional processor would be used to execute data
transformations that are performed by using C functions in
Esterel. Also, we are looking for the approach where multiple
STARPro processors would be used as execution platform for
more demanding Esterel programs.
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