
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 318654, 19 pages
doi:10.1155/2009/318654

Research Article

Efficient Processing of a Rainfall SimulationWatershed on
an FPGA-Based Architecture with Fast Access to
Neighbourhood Pixels

Lee Seng Yeong, ChristopherWing Hong Ngau, Li-Minn Ang, and Kah Phooi Seng

School of Electrical and Electronics Engineering, The University of Nottingham, 43500 Selangor, Malaysia

Correspondence should be addressed to Lee Seng Yeong, yls@tm.net.my

Received 15 March 2009; Accepted 9 August 2009

Recommended by Ahmet T. Erdogan

This paper describes a hardware architecture to implement the watershed algorithm using rainfall simulation. The speed of the
architecture is increased by utilizing a multiple memory bank approach to allow parallel access to the neighbourhood pixel values.
In a single read cycle, the architecture is able to obtain all five values of the centre and four neighbours for a 4-connectivity
watershed transform. The storage requirement of the multiple bank implementation is the same as a single bank implementation
by using a graph-based memory bank addressing scheme. The proposed rainfall watershed architecture consists of two parts. The
first part performs the arrowing operation and the second part assigns each pixel to its associated catchment basin. The paper
describes the architecture datapath and control logic in detail and concludes with an implementation on a Xilinx Spartan-3 FPGA.

Copyright © 2009 Lee Seng Yeong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Image segmentation is often used as one of the main stages
in object-based image processing. For example, it is often
used as a preceding stage in object classification [1–3]
and object-based image compression [4–6]. In both these
examples, image segmentation precedes the classification or
compression stage and is used to obtain object boundaries.
This leads to an important reason for using the watershed
transform for segmentation as it results in the detection
of closed boundary regions. In contrast, boundary-based
methods such as edge detection detect places where there is
a difference in intensity. The disadvantage of this method is
that there may be gaps in the boundary where the gradient
intensity is weak. By using a gradient image as input into the
watershed transform, qualities of both the region-based and
boundary-based methods can be obtained.

This paper describes a watershed transform implemented
on an FPGA for image segmentation. The watershed algo-
rithm chosen for implementation is based on the rainfall
simulation method described in [7–9]. There is an imple-
mentation of a rainfall-based watershed algorithm on hard-
ware proposed in [10], using a combination of a DSP and an

FPGA. Unfortunately, the authors do not give much details
on the hardware part and their architecture. Other sources
have implemented a watershed transform on reconfigurable
hardware based on the immersion watershed techniques
[11, 12]. There are two advantages of using a rainfall-based
watershed algorithm over the immersion-based techniques.
The first advantage is that the watershed lines are formed
in-between the pixels (zero-width watershed). The second
advantage is that every pixel would belong to a segmented
region. In immersion-based watershed techniques, the pixels
themselves form the watershed lines. A common problem
that arises from this is that these watershed lines may have
a width greater than one pixel (i.e., the minimum resolution
in an image). Also, pixels that form part of the watershed line
do not belong to a region. Other than leading to inaccuracies
in the image segmentation, this also slows down the region
merging process that usually follows the calculation of the
watershed transform. Other researchers have proposed using
a hill-climbing technique for their watershed architecture
[13]. This technique is similar to that of rainfall simulation
except that it starts from the minima and climbs by the
steepest slope. With suitable modifications, the techniques

2 EURASIP Journal on Embedded Systems

proposed in this paper can also be applied for implementing
a hill-climbing watershed transform.

This paper describes a hardware architecture to imple-
ment the watershed algorithm using rainfall simulation.
The speed of the architecture is increased by utilizing a
multiple memory bank approach to allow parallel access
to the neighbourhood pixel values. This approach has the
advantage of allowing the centre and neighbouring pixel
values to be obtained in a single clock cycle without the need
for storing multiple copies of the pixel values. Compared
to the memory architecture proposed in [14], our proposed
architecture is able to obtain all five values required for
the watershed transform in a single read cycle. The method
described in [14] requires two read cycles, one read cycle for
the centre pixel value using the Centre Access Module (CAM)
and another read cycle for the neighbouring pixels using the
Neighbourhood Access Module (NAM).

The paper is structured as follows. Section 2 will
describe the implemented watershed algorithm. Section 3
will describe a multiple bank memory storage method based
on graph analysis. This is used in the watershed architecture
to increase processing speed by allowing multiple values (i.e.,
the centre and neighbouring values) to be read in a single
clock cycle. This multiple bank storage method has the same
memory requirement as methods which store the pixel values
in a single bank. The watershed architecture is described in
two parts, each with their respective examples. The parts are
split up based on their functions in the watershed transform
as shown in Figure 1. Section 4 describes the first part of
the architecture, called “Architecture-Arrowing” which is fol-
lowed by an example of its operation in Section 5. Similarly,
Section 6 describes the second part of the architecture, called
“Architecture-Labelling” which is followed by an example of
its operation in Section 7. Section 8 describes the synthesis
and implementation on a Xilinx Spartan-3 FPGA. Section 9
summarizes this paper.

2. TheWatershed Algorithm Based on
Rainfall Simulation

The watershed transformation is based on visualizing an
image in three dimensions: two spatial coordinates versus
grey levels. The watershed transform used is based on the
rainfall simulation method proposed in [7]. This method
simulates how falling rain water flows from higher level
regions called peaks to lower level regions called valleys. The
rain drops that fall over a point will flow along the path of
the steepest descent until reaching a minimum point.

The general processes involved in calculating the water-
shed transform is shown in Figure 1. Generally, a gradient
image is used as input to the watershed algorithm. By using
a gradient image the catchment basins should correspond
to the homogeneous grey level regions of the image. A
common problem to the watershed transform is that it tends
to oversegment the image due to noise or local irregularities
in the gradient image. This can be corrected using a region
merging algorithm or by preprocessing the image prior to
the application of the watershed transform.

Watershed
(region detect)

Gradient image
(edge detect)

Region
merging

Arrowing Labelling

Label all pixels to their
respective catchment

basins

Find steepest descending
path for each pixel and

label accordingly

Figure 1: General preprocessing and postprocessing steps involved
when using the watershed. Also it shows the two main steps involved
in the watershed transform. Firstly find the direction of steepest
descending path and label the pixels to point in that direction. Using
the direction labels, the pixels will be relabelled to match the label
of their corresponding catchment basin.

2

1

4

3

(a)

−1 −3

−2

−4

(b)

Figure 2: The steepest descending path direction priority and
naming convention used to label the direction of the steepest
descending path. (a) shows the criterion used when determining
order of steepest descendent path when there is more than one
possible path; that is, the pixel has two or more lower neighbours
with equivalent values. Paths are numbered in increasing priority
from the left moving in a clockwise direction towards the right and
to the bottom. Shown here is the path with the highest priority
labelled as 1 to the lowest priority, labelled as 4. (b) shows labels
used to indicate direction of the steepest descent path. The labels
shown correspond with the direction of the arrows.

The watershed transform starts by labelling each input
pixel to indicate the direction of the steepest descent. In other
words, each pixel points to its neighbour with the smallest
value. There are two neighbour connectivity approaches
that can be used. The first approach called 8-connectivity
considers all eight neighbours surrounding the pixel and
the second approach called 4-connectivity only considers the
neighbours to its immediate north, south, east, and west. In
this paper, we use the 4-connectivity approach. The direction
labels are chosen to be negative values from −1 → −4 so
that it will not overlap with the catchment basin labelling
which will start from 1. These direction labels are shown
in Figure 2. There are four different possible direction labels
for each pixel for neighbours in the vertical and horizontal
directions. This process of finding the steepest descending
path is repeated for all pixels so that every pixel will point

EURASIP Journal on Embedded Systems 3

Pixel has at least
one lower neighbour

All pixels have at
least one lower

neighbour

All pixels are of
lesser values than
their neighbour

Pixel has no lower
neighbour

Label to the lowest
neighbour

Label as minima

Normal

Minima

Edge + inner

Inner

Edge

Plateau

Label all pixels to
point to their

respective lowest
neighbour

Iteratively classify
as edge or inner

Label all pixels
as minima

Pixels have similar
valued neighbours

A plateau is a group
of connected pixels

 with the same value

Nonplateau

Pixel has no similar
valued neighbours

Pixel type/class

Group have lower,
similar, and/or
higher-valued
neighbours

Plateau-edge
Plateau-inner

Nonplateau-minima

Plateau-(Edge + inner)
Edge: dark grey
Inner: light grey

Example of the different types of
pixels encountered during labelling of

the steepest descending path

10 9 8 35 20

20 20 40 45

20 38

37 26

3920

20

2020

20

20 20 20

20202020202020

20 24 59

10 12 10 7

6 1 11 8

14114

10 14 22

20

60 49 45 27 19 17 14 10

216202429475562

Figure 3: Various arrowing conditions that occur.

to the direction of steepest descent. If a pixel or a group of
similar valued pixels which are connected has no neighbours
with a lower value, it becomes a regional minima. Following
the steepest descending paths for each pixel will lead to a
minimum (or regional minima). All pixels along the steepest
descending path will be assigned the label of that minimum
to form a catchment basin. Catchment basins are formed by
the minimum and all pixels leading to it. Using this method,
the region boundary lines are formed by the edges of the
pixels that separate the different catchment basins.

The earlier description assumed that there will always be
only one lower-valued neighbour or none at all. However,
this is often not the case. There are two other conditions
that can occur during the pixel labelling operation: (1) when
there is more than one steepest descending paths because
two or more lowest-valued neighbours have the same value,
and (2) when the current pixel value is the same as any
of its neighbours. The second condition is called a plateau
condition and increases the complexity in determining the
steepest descending path.

These two conditions are handled as follows.

(1) If a pixel has more than one steepest descending path,
the steepest descending path is simply selected based
on a predefined priority criterion. In the proposed
algorithm, the highest priority is given to those going
up from the left and decreases as we move to the right
and down. The order of priority is shown in Figure 2.

(2) If the image has regions where the pixels have the
same value and are not a regional minimum, they are
called nonminima plateaus. The nonminima plateaus
are a group of pixels which can be divided into two
groups.

(i) Descending edge pixels of the plateau. This group
consists of every pixel in the plateau which
has a neighbour with a lower value. These
pixels simply labelled with the direction to their
lower-valued neighbour.

(ii) Inner pixels. This group consists of every pixel
whose neighbours have equal or higher values
than its own value.

Figure 3 shows a summary of the various arrowing
conditions that may occur. Normally, the geodesic distances
from the inner points to the descending edge are determined
to obtain the shortest path. In our watershed transform this
step has been simplified by eliminating the need to explicitly
calculate and store the geodesic distance. The method used
can be thought of as a shrinking plateau. Once the edges of
a plateau has been labelled with the direction of the steepest
descent, the inner pixels neighbouring these edge pixels will
point to those edges. These edges will be “stripped” and
the neighbouring inners will become the new edges. This
is performed until all the pixels in the plateau have been
labelled with the path of steepest descent (see Section 4.7 for
more information).

4 EURASIP Journal on Embedded Systems

358910

7101210

8116

14114

20221410

20202020

27454960

29475562 2

20

20

20

20

20

20

19

24

592420

454020

393820

263720

202020

202020

101417

1620

0

0

1

1 765432

2

3

4

5

6

7

10 9 8 35

7101210

6 811

4 1411

59242020

45402020

39382020

26372020

10 202214

20 202020

60 274549

62 294755

20202020

20202020

10141719

2162024

2111

2333

3333

3333

2222

4222

4333

4333

3333

3333

4333

4444

4333

4333

4444

4444

(a) Original input values. Values are
typically those from a gradient image

Row
numbering
convention

Column
numbering
convention

(b) Identification of catchment basins
which are formed by the local minima
(indicated in circles) and plateaus (shaded).
Direction of the steepest path is indicated by
the arrows

(d) Region labelling. All pixels which
“flow” to a particular catchment basin
will assume that catchment basin’s label.
The catchment basins have been circled
and the pixels that are associated with it
are labelled and shaded correspondingly

(c) Labelling of the pixels based on the
direction of the path of steepest descent.
The earlier circled catchment basins are
given a catchment basin label indicated
by the bold lettering in the circles. All
paths to that catchment basin will assume
that catchment basin’s label

Labelling convention for the
various paths are also indicated
by the negative values at the end

of the direction arrows.

The steepest descending paths are
labelled from the left moving in

a clockwise direction with
increasing priority. This priority
definition is used to determine
what is the steepest descending
path to choose when there are

two or more lowest-valued
neighbours with the same value.

The steepest descending direction
priority

and
 the steepest descending path

labelling convention.

−1 −3

−2

−4

1 −4

2

−3 −1

−3 −1

4

−3 −3

3 3

3 3

−4 −4 −4

−4 −1 −1 −1

−1 −1 −1 −4

−1 −1 −1 −4

−1 −1 −1 −4

−2 −2 −2 −2

−2 −2 −1 −2

−2 −2 −2 −3

−3 −3 −3 −3

−1 −4 −4 −4

−4 −4 −4 −4

−3 −3 −3 −4

−2 −3 −3

Figure 4: Example of four-connectivity watershed performed on an 8 × 8 sample data. (a) shows the original gradient image values. (b)
shows the direction of the steepest descending path for each pixel. Minima are highlighted with circles. (c) shows pixels where the steepest
descending paths and minima have been labelled. The labels used for the direction of the steepest descending path are shown on the right
side of the figure. (d) shows the 8 × 8 data fully labelled. The pixels have been assigned to the label of their respective minima forming a
catchment basin.

The final step once all the pixels have been labelled
with the direction of steepest descent is to assign them
labels that correspond to the label of their respective
minimum/minima. This is done by scanning each pixel and
to follow the path indicated by each pixel to the next pixel.
This is performed repeatedly until a minimum/minima is
reached. All the pixel in the path are then assigned to the label
of that minimum/minima. An example of all the algorithm
steps is shown in Figure 4. The operational flowchart of the
watershed algorithm is shown in Figure 5.

3. Graph-BasedMemory Implementation

Before going into the details of our architecture, we will
discuss a multiple bank memory storage scheme based on
graph analysis. This is used to speed up operations by allow-
ing all five pixel values required for the watershed transform
to be read in a single clock cycle with the same memory
storage requirement as a single bank implementation. A
similar method has been proposed in [14]. However, their
method requires twice the number of read cycles compared

EURASIP Journal on Embedded Systems 5

Find pixel
neighbour
location

Get pixel
value

Any
neighbour with

the same value as the
current pixel?

Find all connected
pixels with the

same value

Label as
minima

Store all pixel
locations

Read and classify
each pixel

Pixel
value smallest
compared to
neighbours?

Any
similar-valued

neighbours (2 lower
decending
paths)?

Get neighbour
values

Label based on
direction
priority

Label to
smallest-valued

neighbour

Current/next
pixel location

No

Yes

Yes

No

No

Yes

Figure 5: Watershed algorithm flowchart.

to our proposed method. Their proposed method requires
two read cycles, one to obtain the centre value and another
to obtain the neighbourhood values. This effectively doubles
the number of clock cycles required for reading the pixel
values.

To understand why this is important, recall that one of
the main procedures of the watershed transform was to find
the path of the steepest descent. This required the values
of the current and neighbouring pixels. Traditionally, these
values can be obtained using

(1) sequential reads: a single memory bank the size of the
image is read five times, requiring five clock cycles,

(2) parallel read: it reads five replicated memory banks
each size of the image. This requires five times more
memory required to store a single image but all
required values can be obtained in a single clock
cycle.

Using this multiple bank method, we can obtain the
speed advantage of the parallel read with the nonreplicating
storage required by the sequential reading method. The
advantages of using this multiple bank method are to

(1) reduce the memory space required for storing the
image by up to five times,

(2) obtain all values for the current pixel and its neigh-
bours in a single read cycle, eliminating the need for
a five clock cycle read.

This multiple bank memory storage stores the image
in separate memory banks. This is not a straightforward
division of the image pixels by the number of memory banks,
but a special arrangement is required that will not overlap
and that will support the access to five banks simultaneously
to obtain the five pixel values (Centre, East, North, South,
West). The problem now is to

(1) determine the number of banks required to store the
image,

(2) fill the banks with the image data,

(3) access the data in these banks.

All of these steps shall be addressed in the following sections
in the order listed above.

6 EURASIP Journal on Embedded Systems

Two distinctive
subgraphs with

4-neighbourhood
connectivity

Each number represents
a different bank

(a) Shows neighbourhood graph for
4-neighbour connectivity. Each pixel
can be represented by a vertex (node);
two distinct subgraphs arise from this
and have been highlighted. All vertices
within each subgraph is fully connected
(via edges) to all its neighbours

Notice that each vertex is not connected
to any of its four neighbours, that is, the
grey dots are not connected to the black
ones

(b) Combined subgraph with
nonoverlapping labels.
The nonoverlapping nature allows
the concurrent access of the centre
pixel value and its associated
neighbours

Each number has been color
coded and corresponds to a single
bank. The complete image is
stored in eight different banks

Separate into two
subgraphs

Recombine and show
colouration of

different banks

2020

0202

2020

0202

1313

3131

1313

6240

1537

4062

3715

6240

1537

4062

3715

6240

1537

4062

3715

6240

1537

4062

3715

6464

4646

6464

4646

5757

7575

5757

Figure 6: N4 connectivity graph. Two sub-graphs combined to produce an 8-bank structure allowing five values to be obtained concurrently.

3.1. Determining How Many Banks Are Needed. This section
will describe how the number of banks needed to allow
simultaneous access is determined. This depends on (1) the
number of neighbour connectivity and (2) the number of
values to be obtained in one read cycle. Here, graph theory
is used to determine the minimum number of databanks
required to satisfy the following:

(1) any of the values that we want cannot be from the
same bank;

(2) none of the image pixels are stored twice (i.e., no
redundancy).

Satisfying these criteria results in the minimum number
of banks required with no additional memory needed
compared to a standard single bank storage scheme.

Imagine every pixel in an image as a region and a vertex
(node) will be added to each pixel. For 4-neighbour con-
nectivity (N4), the connectivity graph is shown in Figure 6.
To determine the number of banks for parallel access can
be viewed as a graph colouration problem, whereby any of
the parallel values cannot be from the same bank. We ensure
that each of the nodes will have a neighbour of a different
colour, or in our case number. Each of these colours (or
numbers) corresponds to a different bank. The same method
can be applied for different connectivity schemes such as 8-
neighbour connectivity.

In our implementation of 4-neighbourhood connectivity
and five concurrent memory access (for five concurrent
values), we require eight banks. In the discussion and
examples to follow, we will use these implementation
criteria.

EURASIP Journal on Embedded Systems 7

(b) Any filling order is possible. For any filling order,
the bank and address within the bank is determined
by the same logic in the address bar (see Figure 8)
Using a traditional raster scan pattern as an
example. The order of bank_select is

(a) Using cardinal directions, CWNES are the centre,
west, north, east, and south values, respectively.
These correspond to the current pixel, left, top, right,
and bottom neighbour values

Scan from top left to bottom
right one pixel at atime

ba
n

k_
se

le
ct

10

20

1

37

20

20

47

16

10

40

4

20

20

20

62

24

35

59

1

20

20

20

49

17

9

20

8

39

14

20

27

10

12

20

14

26

20

20

29

2

0
1

1 7 3
7 3 5 1 2 6 0 4 … 5

4 2 6 0 4 2 6 7 3 5

7

45

1

20

20

20

55

20

8

24

6

20

22

20

60

19

10

20

1

38

10

20

45

14

Crossbar

C W N E S

0

1

2

3

4

5

6

7

k
nab e

ht
ni

hti
w sserdd

A

0

0

Pixel location
(3, 3) as used in
the addressing
scheme example

1

1

2

2

3

3

4

4

5

5

6

6

7

7

0 1 2 3 4 5 6 7

358910

7101210

8116

14114

59242020

45402020

39382020

26372020

20221410

20202020

27454960

29475562

20202020

20202020

10141719

2162024

Figure 7: Block diagram of graph-based memory storage and
retrieval.

3.2. Filling the Banks. After determining how many banks are
needed, we will need to fill the banks. This is done by writing

the individual values one at a time into the respective banks.
During the determination of the number of required banks,
a pattern emerges from the connectivity graph. An example
of this pattern is highlighted with a detached bounding box
in Figures 6 and 7.

The eight banks are filled with one value at a time.
This can be done in any order. The bank number and bank
address is calculated using some logic. The same logic is
used to determine the bank and bank address during reading
(See Section 3.3 for more details on this). For the ease of
explanation, we shall adopt a raster scan type of sequence.
Using this convention, the order of filling is simply the order
of the bank number as it appears from top-left to bottom-
right. An example of this is shown in Figure 7.

The group of banks replicates itself every four pixels in
either direction (i.e., right and down). Hence, to determine
how many times the pattern is replicated, the image size
is simply divided by sixteen. Alternatively, any one of its
sides can be divided by four since all images are square.
This is important as the addressing for filling the banks (and
reading) holds true for square images whose sizes are to the
power of two (i.e. 22, 23, 24). Image sizes which are not square
are simply padded.

3.3. Accessing Data in the Banks. To access the data from
this multiple bank scheme, we need to know (1) which bank
and (2) location within that bank. The addressing scheme
is a simple addressing scheme based on the pixel location.
A hardware unit called the Address Processor (AP) handles
the memory addressing. By providing the AP with the pixel
location, it will calculate the address to retrieve that pixel
value. This address will tell us which bank and location
within that bank the pixel value is stored in.

To understand how the AP works, consider a pixel
coordinate which consists of a row and column value with the
origin located at the upper left corner. These two values are
represented in their binary form and the lowest significant
bits for the column and row are used to determine the bank.
The number of bits required to represent the number of
banks is dependent on the total number of banks in this
multiple bank scheme. In our case of eight banks, three bits
from the address are needed to determine in which bank the
value for that particular pixel location is stored in. These
binary values go through some logic as shown in Figure 8 or
in equation form:

B[2] = r[0]c[0]′ + c[0]r[0]′,

B[1] = r[1]′r[0]′c[1] + r[1]r[0]′c[0]′

+ r[1]′r[0]c[0]′ + r[1]r[0]c[0],

B[0] = r[0],

(1)

where B[0 → 2] represent the three bits that determine the
bank number (from 0 → 7). r[0] and r[1] represent the
first two bits of the row value in binary while c[0] and c[1]
represent the first two bits of the column value in binary.

8 EURASIP Journal on Embedded Systems

Now that we have determined which bank the value is in;
the remainder of the bits is used to determine the location of
the value within the bank. An example is given in Figure 8(a).

For an image of size y-rows and x-columns, the number
of bits required for addressing will simply be the number of
bits required to store the largest value of the row and column
in binary, that is, no o f address bits = log2(x) + log2(y).

This addressing scheme is shown in Figure 8. (Note that
the steps described here assume an image with a minimum
size of 4× 4 and increase in powers of 2).

3.4. Sorting the Data from the Banks. After obtaining the
five values from the banks, they need to be sorted according
to the expected neighbour location output to ensure that
values of a particular direction is sent to the right output
position. This sorting is handled by another hardware unit
called the Crossbar (CB). In addition, the CB also tags invalid
values from invalid neighbour conditions which occur at the
corners and edges of the image. This tagging is part of the
output multiplexer control.

The complete structure for reading from the banks is
shown in Figure 9. In this figure, five pixel locations are fed
into the AP which generates five addressees, for the centre
and its four neighbours. These five addresses are fed into
all eight banks. However, only the address corresponding
to the correct bank is chosen by the add sel x, where x =
0 → 7. The addresses fed into the banks will generate eight
values however, only five will be chosen by the CB. These
values are also sorted using the CB to ensure that the values
corresponding to the centre pixel and a particular neighbour
are output onto the correct data lines. The mux control,
CB sel x, is controlled by the same logic that selects the
add sel x.

4. Arrowing Architecture

This section will provide the details on the architecture that
performs the arrowing function of the algorithm. This part
of the architecture will describe how we get from Figure 4(a)
to Figure 4(c) in hardware. As mentioned in the previous
description of the algorithm, things are simple when every
pixel has a lower neighbour and gets more complicated
due to plateau conditions. Similarly, this plateau condition
complicates the architecture. Adding to this complexity is the
fact that all neighbour values are obtained simultaneously,
and instead of processing one value at a time, we have to
process five values, the centre and its four neighbours. This
part of the architecture that performs the arrowing is shown
in Figure 10.

When a pixel location is fed into the system, it enters the
“Centre and Neighbour Coordinates” block. From this, the
coordinates of the centre and its four neighbours are output
and fed into the “Multibank Memory” block to obtain all the
pixel values and the pixel status (PS) from the “Pixel Status”
block.

Assuming the normal state, the input pixel will have a
lower neighbour and no neighbours of the same value, that
is, inner = 0 and plat = 0. The pixel will just be arrowed to the

c[2]

Binary representation
of value location of

within the bank

Row value (in binary) Column value (in binary)

c[0]c[1]c[2]lo
g 2

(y
)

lo
g 2

(y
)

lo
g 2

(x
)

lo
g 2

(x
)

r[0]r[1]r[2]

MSB LSB

(a) Example of location to address calculations

Determining which bank
the data is in

c[0]
B[2]

B[1]

B[0]

r[0]

c[1]
r[0]
r[1]

c[0]
r[0]
r[1]

c[0]
r[0]
r[1]

c[0]
r[0]

r[0]

r[1]

(3,3)

1 1 00 1 1

c[0]c[1]c[2]r[0]

0

B[2]

1

B[1]

1

B[0]

r[2]

0 1

r[1]

0

c[2]

r[1]r[2]

Bank address
logic

Address 2

of

Bank 3

This example is based on the convention
that the first pixel location is (0,0).

The bank and location within the bank
count start from 0, that is, the first bank
is 0 and the last bank is 7. Similarly, the first
address location is 0 and the last is 7.

Bank address logic

r[1] c[3]

In the case of 8 banks, 3
bits are needed to
determine which bank the
data is located. For 4 and
16 banks, 2 bits and 4 bits
are required, respectively.

These values are derived
from the LSB of both the
row and column values.

In this 8 bank example,
the bank number is
represented by the 3 bit
value B[0 2].

The location within that
bank is determined by the
remaining 3 bits.

B[2] = r[0]c[0]′ + c[0]r[0]′

B[1] = r[1]′r[0]′c[1] + r[1]r[0]′c[0]′

+r[1]′r[0]c[0]′ + r[1]r[0]c[0]
B[0] = r[0]

Figure 8: The addressing scheme for the multiple bank graph-based
memory storage.

nearest neighbour. The Pixel Status (PS) for that pixel will be
changed from 0 → 6 (See Figure 19).

However, if the pixel has a similar valued neighbour,
plat = 1 and plateau processing will start. Plateau processing
starts off by finding all the current pixel neighbours of similar
value and writes them to Q1. Q1 is predefined to be the first

EURASIP Journal on Embedded Systems 9

AP-W AP-NAP-C AP-E AP-S

Address processor (AP)

Crossbar (CB)

inv inv inv inv inv

C
B

_s
el

_0

C
B

_s
el

_1

C
B

_s
el

_2

C
B

_s
el

_3

C
B

_s
el

_4

ad
d_

se
l_

0

ad
d_

se
l_

1

ad
d_

se
l_

2

ad
d_

se
l_

3

ad
d_

se
l_

4

ad
d_

se
l_

5

ad
d_

se
l_

6

ad
d_

se
l_

7

Pixel neighbour coordinates

0 1 2 3 4

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4

C W N E S

C W N E S

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

B0

(c, r) (c−1, r) (c, r−1) (c+1, r) (c, r+1)

B1 B2 B3 B4 B5 B7B6

Figure 9: 8 Bank memory architecture.

queue to be used. After writing to the queue, the PS of the
pixels is changed from 0 → 1. This is to indicate which
pixel locations have been written to queue to avoid duplicate
entries in the queue. At the end of this process, all the pixel
locations belonging to the plateau will have been written to
Q1.

To keep track of the number of elements in Q1 WNES,
two sets of memory counters are used. These two sets of
counters consist of mc1 → mc4 in one set and mc6 →
mc9 in another. When writing to Q1 WNES, both sets of
counters are incremented in parallel but when reading from
Q1 WNES to obtain the neighbouring plateau pixels, only
mc1–4 is decremented while mc6–9 remains unchanged.
This means that, at the end of the Stage 1 processing,
mc1–4 = 0 and mc6–9 will contain the count of the number
of pixel locations which are contained within Q1 WNES.
This is needed to handle the case of a lower complete
minima (i.e., a plateau with all inner pixels). When this
type of plateau is encountered, mc1–5 = 0, and Q1 WNES
will be read once again using mc6–9, this time not to
obtain the same valued neighbours but to label all the pixel
locations within Q1 WNES with the current value stored in
the minima register. Otherwise, mc5 > 0 and values will

be read from Q1 C and subsequently from Q2 WNES and
Q1 WNES until all the locations in the plateau have been
visited and classified. The plateau processing steps and the
associated conditions are shown in Figure 11.

There are other parts which are not shown in the main
diagram but warrants a discussion. These are

(1) memory counters—to determine the number of
unprocessed elements in a queue,

(2) priority encoder—to determine the controls for
Q1 sel and Q2 sel.

The rest of the architecture consists of a few main parts
shown in Figure 10 and are

(1) centre and neighbour coordinates—to obtain the
centre and neighbour locations,

(2) multibank memory—to obtain the five required pixel
values,

(3) smallest-valued neighbour—to determine which
neighbour has the smallest value,

10 EURASIP Journal on Embedded Systems

Sm
al

le
st

-
va

lu
ed

n

ei
gh

bo
u
r

P
la

t/
in

n
er

A
rr

ow
in
g

M
in

im
a

+
1

+
1

a
>

 b

Q
1

(W
)

Q
1_

se
l

Q
1

(N
)

Q
1

(E
)

Q
1

(S
)

w
e_

t6

w
e_

t7

w
e_

t8

w
e_

t9

w
e_

t1
0

w
e_

t1

w
e_

t2

w
e_

t3

w
e_

t4

w
e_

t5

in
_c

tr
l

w
e_

m
in

im
a

pl
at

s_
st

at
e_

st
at

n
_s

ta
t

w
_s

ta
t

c_
st

at

1

Q
1

(C
)

2 3

0 1 2

1 0

4 5

Q
2

(W
)

Q
2_

se
l

Q
2

(N
)

Q
2

(E
)

Q
2

(S
)

1

Q
2

(C
)

2 3 4 5

Location (x,y)

C
u
rr

en
t
pi
xe

l v
al

u
e

P
la

t

In
n

er
1

1

1 1

88

2

in
_a

m

w
_l

oc

w
_v

al
u

e

a b
1:

 w
h

en
 a

 >
 b

0:
 o

th
er

w
is

e

P
S

=
 2

P
S

=
 3

in
_c

tr
l =

 2

P
S

=
 1

m
c6

–9
 =

 1

 3

C
en

tr
e

an
d

n
ei
gh

bo
u
r

co
or

di
n

at
es

P
ix

el
co

or
di

n
at

es

in
_c

tr
l >

 0

d

Arrow memory

M
u

lt
ib

an
k

m
em

or
y

P
ix

el
 s

ta
tu

s

Figure 10: Watershed architecture based on rainfall simulation. Shown here is the arrowing architecture. This architecture starts from pixel
memory and ends up with an arrow memory with labels to indicate the steepest descending paths.

(4) plat/inner—to determine if the current pixel is part
of a plateau and whether it is an edge or inner plateau
pixel,

(5) arrowing—to determine the direction of the steepest
descent. This direction is to be written to the “Arrow
Memory”,

(6) pixel status—to determine the status of the pixels,
that is, whether they have been read before, put into
queue before, or have been labelled.

The next subsections will begin to describe the parts
listed above in the same order.

EURASIP Journal on Embedded Systems 11

Read from Q2_WNES,
label pixels and write

similar valued neighbours
to Q1_WNES

Read all similar valued
neighbouring pixels

Read from Q1_WNES,
label pixels and write

similar valued neighbours
to Q2_WNES

Read from Q1_C, label
pixels and write similar
valued neighbours to

Q2_WNES

Read all from Q1_WNES
using mc6–9 and label

with value from
minima register

Q1_W

Q1_N

Q1_E

Q1_S

Q1_C

mc1 + mc6

mc2 + mc7

mc3 + mc8

mc4 + mc9

mc5

Plateau processing
completed

Start plateau
processing

if mc6–9 > 0

if mc6–9 > 0

if mc6–9 = 0if mc1–4 = 0

if mc1–4 > 0

if mc5 = 0 if mc5 > 0

St
ag

e
1

St
ag

e
2

St
ag

e:
 in

n
er

 a
rr

ow
in
g

Notes:
1. In stage 1 of the processing, mc6–9 is used as a secondary

counter for Q1_WNES and incremented as mc1–4
increments but does not decrement when mc1-4 is decremented.
In stage 2, if mc5 = 0 (i.e., complete lower minima), mc6–9
is used as the counter to track the number of elements in
Q1_WNES. In this state, mc6-9 is decremented when
Q1_WNES is read from. However, if mc5 > 0, mc6–9 is reset
and resumes the role of memory counter for Q2_WNES.

2. Q1_C is only ever used once and that is during stage 2 of the
processing.

Figure 11: Stages of Plateau Processing and their various condi-
tions.

4.1. Memory Counter. The architecture is a tristate system
whose state is determined by the condition of whether the
queues, Q1 and Q2, are empty or otherwise. This is shown
in Figure 12. These states in turn determine the control of
the main multiplexer, in ctrl, which is the control of the data
input into the system.

0

2 1

in_ctrl values = state numbers

E1� × E2

E1� × E2

E1 × E2�

E1 × E2

E1 × E2�

E1 × E2�

E1 × E2

E1� × E2

E1� × E2�E1� × E2�

E1 = 1 when Q1 is empty
E2 = 1 when Q2 is empty

E1 × E2

Figure 12: State diagram of the architecture-ARROWING.

Memory
counter 1

Memory
counter 2

Memory
counter 9

Memory
counter 10

mc1

1
0

Q1_sel = 1
we_t1

Q1_sel = 2
we_t2

Q2_sel = 4
we_t9

Q2_sel = 5
we_t10

+1

mc2

1
0

+1

mc9

1

...

0

+1

mc10

1
0

+1

−1

−1

−1

−1

Figure 13: Memory counter for Queue C, W, N, E, and S. The
memory counter is used to determine the number of elements in
the various queues for the directions of Centre, West, North, East,
and South.

To determine the initial queue states, Memory Counters
(MCs) are used to keep track of how many elements are
pending processing in each of the West, North, East, South,
and Centre queues. There are five MCs for Q1 and another
five for Q2, one counter for each of the queue directions.
These MCs are named mc1–5 for Q1 W, Q1 N, Q1 E, Q1 S,

12 EURASIP Journal on Embedded Systems

Table 1: Comparison of the number of clock cycles required for
reading all five required values and the memory requirements for
the three different methods.

Sequential Parallel Graph-based

Clock cycles 5 1 1

Memory Req. 1x image size 5x image size 1x image size

and Q1 C, respectively, and similarly mc6–10 for Q2 W,
Q2 N, Q2 E, Q2 S, and Q2 C respectively. This is shown in
Figure 13.

The MCs increase by one count each time an element
is written to the queue. Similarly, the MCs decrease by one
count every time an element is read from the queue. This
increment is determined by tracking the write enable we tx
where x = 1 − 10 while the decrement is determined by
tracking the values of Q1 sel and Q2 sel.

A special case occurs during the stage one of plateau
processing, whereby mc6–9 is used to count the number of
elements in Q1 W, Q1 N, Q1 E, and Q1 S, respectively. In
this stage, mc6–9 is incremented when the queues are written
to but are only decremented when Q1 WNES is read again in
the stage two for complete lower minima labelling.

The MC primarily consists of a register and a multiplexer
which selects between a (+1) increment or a (−1) decrement
of the current register value. Selecting between these two
values and writing these new values to the register effectively
count up and down. The update of the MC register value is
controlled by a write enable, which is an output of a 2-input
XOR. This XOR gate ensures that the MC register is updated
when only one of its inputs is active.

4.2. The Priority Encoder. The priority encoder is used to
determine the output of Q1 sel and Q2 sel by comparing
the outputs of the MC to zero. It selects the output from the
queues in the order it is stored, that is, from queue Qx W
to Qx C, x = 1 or 2. Together with the state of in ctrl, Q1 sel
and Q2 sel will determine the data input into the system. The
logic to determine the control bits for Q1 sel and Q2 sel is
shown in Figure 14.

4.3. Centre and Neighbour Coordinate. The centre and
neighbourhood block is used to determine the coordinates
of the pixel’s neighbours and to pass through the centre
coordinate. These coordinates are used to address the various
queues and multibank memory. It performs an addition
and subtraction by one unit on both the row and column
coordinates. This is rearranged and grouped into their
respective outputs. The outputs from the block are five pixel
locations, corresponding to the centre pixel location and the
four neighbours, West (W), North (N), East (E), and South
(S). This is shown in Figure 15.

4.4. The Smallest-Valued Neighbour Block. This block is to
determine the smallest-valued neighbour (SVN) and its
position in relation to the current pixel. This is used to
determine if the current pixel has a lower minima and to find
the steepest descending path to that minima (arrowing).

mc1
=

=

=

=

0

mc2
0

mc3
0

mc4
0

=
mc5

0

a

b

c

d

e

P
ri

or
it

y
en

co
de
r Q1_sel[0]

Q1_sel[1]

Q1_sel[2]

mc6
=

=

=

=

0

mc7
0

mc8
0

mc9
0

=mc10
0

f

g

h

i

j

P
ri

or
it

y
en

co
de
r Q2_sel[0]

Q2_sel[1]

Q2_sel[2]

(a)

Qx_sel

a/f

a/f

Q1_sel[0]/Q2_sel[0]

Q1_sel[1]/Q2_sel[1]

Q1_sel[2]/Q2_sel[2]

b/g

b/g

c/h

c/h

d/i

d/i

e/j

e/j [2] [1] [0]

00011111
1

Disable
100xxxx0

2010xxx01
3110xx011
4001x0111
510101111

Q1_sel[0] = a� + abc� + abcde�
Q1_sel[1] = ab� + abc�
Q1_sel[2] = abcd� + abcde�

Q2_sel[0] = f � + fgh� + fghij�
Q2_sel[1] = fg� + fgh�
Q2_sel[2] = fghi� + fghij�

(b)

Figure 14: The priority encoder. (a) shows the controls for Q1 sel
and Q2 sel using the priority encoders. The output of memory
counters determines the multiplexer control of Q1 sel and Q2 sel.
(b) shows the logic of the priority encoders used. There is a special
“disable” condition for the multiplexers of Q1 and Q2. This is used
so that the Q1 sel and Q2 sel can have an initial condition and will
not interfere with the memory counters.

EURASIP Journal on Embedded Systems 13

Row

Column

C

W

N

E

S

+1

+1

r + 1

r − 1

c + 1

c − 1
−1

−1

Figure 15: Inside the Pixel Neighbour Coordinate.

To determine the smallest value pixel, the values of the
neighbours are compared two at a time, and the result of
the comparator is used to select the smaller value of the
two. The last two values are compared once again and the
value of the smallest value neighbour will be obtained. As for
the direction of the SVN, the outputs from the 3 stages of
comparison are used and compared to a truth table. This is
shown in Figure 16. This output is passed to the arrowing
block to determine the direction of the steepest descent
(when there is a lower neighbour).

4.5. The Plateau-Inner Block. This block is to determine
whether the current pixel is part of a plateau and which type
of plateau pixel it is. The current pixel type will determine
what is done to the pixel and its neighbours, that is, whether
they are put back into a queue or otherwise. Essentially,
together with the Pixel Status, it helps to determine if a pixel
or one of its neighbours should be put back into the queues
for further processing. When the system is in State 0 (i.e.,
processing pixel locations from the PC), the block determines
if the current pixel is part of a plateau. The value of the
current pixel is compared to all its neighbours. If any one
of the neighbours has a similar value to the current pixel, it is
part of a plateau and plat = 1. The respective similar valued
neighbours are put into the different queue locations based
on sv W, sv N, sv E, and sv S and the value of pixel status.
The logic for this is shown in Figure 17(a).

In any other state, this block is used to determine if the
current pixel is an inner (i.e., equal to or smaller than its
neighbours). If the current pixel is an inner, inner = 1. This
is shown in Figure 17(b). Whether the pixel is an inner or
not will determine the arrowing part of the system. If it is an
inner, it will point to the nearest edge.

4.6. The Arrowing Block. This block is to determine the
steepest descending path label for the “Arrow Memory.” The
steepest path is calculated based on whether the pixel is an
inner or otherwise. When processing non-inner pixels the
arrowing block generates a direction output based on the
location of the lowest neighbour obtained from the block
“Smallest Valued Neighbour.” If the pixel is an inner, the
arrow will simply point to the nearest edge. When there is
more than one possible path to the nearest edge, a priority

<

<

<

Wvalue
Nvalue

Evalue
Svalue

0
1

0

a

b

c

1

0
1

Value of
smallest-
valued
neighbour

(a)

x = c
y = ac� + bc

xc

y
b

a

a b c x y Direction

0 x 0 0 0 W
1 x 0 0 1 N
x 0 1 1 0 E
x 1 1 1 1 S

(b)

Figure 16: Inside the Smallest Value Neighbour (SVN) block.
(a) The smallest-valued neighbour is determined and selected
using a set of comparators and multiplexers. (b) The location of
the smallest-valued neighbour is determined by the selections of
each multiplexer. This location information used to determine the
steepest descending path and is fed into the arrowing block.

sv_W = 1, when C = Wvalue

sv_N = 1, when C = Nvalue

sv_E = 1, when C = Evalue

sv_S = 1, when C = Svalue

C

C

C

C

Plat

sv_E

sv_S

sv_N

sv_W
Wvalue

Nvalue

Evalue

Svalue

=

=

=

=

(a)

lv_E

lv_S

lv_N

lv_WC

C

C

C

Inner

Wvalue

Nvalue

Evalue

Svalue

lv_W = 1, when C ≤ Wvalue

lv_N = 1, when C ≤ Nvalue

lv_E = 1, when C ≤ Evalue

lv_S = 1, when C ≤ Svalue

≤

≤

≤

≤

(b)

Figure 17: Inside the Plateau-Inner Block.

14 EURASIP Journal on Embedded Systems

encoder in the block is used to select the predefined direction
of the highest priority. This is shown in Figure 18 when the
system is in State = 0, and in any other state where the pixel is
not an inner, this arrowing block uses the information from
the SVN block and passes it through directly to its own main
multiplexer, selecting the appropriate value to be written into
“Arrow Memory.”

If the current pixel is found to be an inner, the arrowing
direction is towards the highest priority neighbour with
the same value which has been previously labelled. This is
possible because we are labelling the plateau pixels from
the edge pixels going in, one pixel at a time, ensuring that
the inners will always point in the direction of the shortest
geodesic distance.

4.7. Pixel Status. One of the most important parts of this
system is the pixel status (PS) registers. Since six states
are used to flag the pixel, this register requires a 3-bit
representation for each pixel location of the image. Thus
the PS registers have as many registers as there are pixels
in the input image. In the system, values from the PS help
determine what processes a particular pixel location has gone
through and whether it has been successfully labelled into
the “Arrow Memory.” The six states and their transitions are
shown in Figure 19. The six states are as follows:

(i) 0 : unvisited—nothing has been done to the pixel,

(ii) 1 : queued : initial,

(iii) 2 : queued in Q2,

(iv) 3 : queued in Q1,

(v) 4 : completed when plat = 0,

(vi) 5 : completed when plat = 1 and reading from Q2,

(vii) 6 : completed when plat = 1 and reading from Q1.

To ease understanding of how the plateau conditions
are handled and how the PS is used, we shall introduce
the concept of the “Unlabelled pixel (UP)” and “Labelled
pixel (LP).” The UP is defined as the “outermost pixel which
has yet to be labelled.” Using this definition, the arrowing
procedure for the plateau pixels are

(1) arrow to lower-valued neighbour (applicable only if
inner = 0)

(2) arrow to neighbour with PS = 5 according to
predefined arrowing priority.

With reference to Figure 20, the PS is used to determine
which neighbours to the UPs have not been put into the other
queue, UPs of the same label and LPs.

5. Example for the Arrowing Architecture

This example will illustrate the states and various controls
of the watershed architecture for an 8 × 8 sample data. It is
the same sample data shown in Figures 6 and 7. A table with
the various controls, status, and queues for the first 14 clock
cycles is shown in Table 2.

0
1
2
3

01

Direction
of steepest

descent

22

x and y from
smallest value

neighbour block

0
1

0
1

0
1

0
1

PS_W

sv_W

5

PS_x are the values read from the pixel
status registers from the center (C) and
respective neighbours (W, N, E, S).

sv_x are the “same value” conditions
obtained from the plat/inner block where
x are the directions W, N, E, S.

6
=

PS_C
2

PS_C
3

ne_W

ne_N

ne_E

ne_S

dir[0]

dir[1]

P
ri

or
it

y
en

co
de
r

PS_N

sv_N

5
6

=

PS_E

sv_E

5
6

=

PS_S

sv_S

5
6

=

=

=

in_ctrl
1

=

dir[0] = a�b + a�c�
dir[1] = a�b�

a
dir[0]

dir[1]
b

c

a b c d x y mux_ctrl

1 x x x 0 0 0
0 1 x x 0 1 1
0 0 1 x 1 0 2
0 0 0 1 1 1 3

−1
−2
−3
−4

Figure 18: Inside arrowing block.

The initial condition for the system is as follows. The
Program Counter (PC) starts with the first pixel and
generates a (0, 0) output representing the first pixel in an
(x, y) format.

With both the Q1 and Q2 queues being empty, that is,
mc1 → mc10 = 0, the system is in State 0. This sets in ctrl =
0 that controls mux1 to select the PC value (in this case (0, 0).
This value is incremented on the next clock cycle.

The First Few Steps. This PC coordinate is then fed into the
Pixel Neighbour Coordinate block. The outputs of this block

EURASIP Journal on Embedded Systems 15

(1
,0

)[
2]

3
2

Q
1
=

5
(0

,0
)

1
0

S
6

in
v

in
v

0
0

—
0

—
0[

1]
—

—
—

—
(0

,0
)[

0]

(1
,0

)[
1]

4
2

Q
1
=

5
(1

,0
)

1
0

N
6

in
v

6
0

0
—

0
—

0[
1]

—
—

—
—

(0
,0

)[
0]

(1
,0

)[
0]

5
0

0
(0

,1
)

0
0

—
0
→

6
6

in
v

0
0

—
1

−3
0[

1]
—

—
—

—
—

6
0

0
(0

,2
)

0
0

—
0
→

6
6

in
v

0
0

—
1

1
1[

1
→

2]
—

—
—

—
—

7
0

0
(0

,3
)

0
0

—
0
→

6
6

in
v

0
0

—
1

−4
0[

2]
—

—
—

—
—

8
0

0
(0

,4
)

1
1

E
,S

0
6

in
v

0
→

1
0
→

1
t3

,t
4

0
0

0[
2]

—
—

(0
,5

)[
1]

[1
]

(1
,4

)[
1]

[1
]

—

9
2

Q
1
=

3
(0

,5
)

1
1

W
,S

0
0
→

1
in

v
0

0
→

1
t1

,t
4

0
0

0[
2]

(0
,4

)[
1]

[1
]

—
(0

,5
)[

0]
[1

]
(1

,4
)[

1]
[1

]
—

(1
,5

)[
2]

[2
]

—

10
2

Q
1
=

1
(0

,4
)

1
1

E
,S

1
1

in
v

1
1

—
0

0
0[

2]
(0

,4
)[

0]
[1

]
—

(0
,5

)[
0]

[1
]

(1
,4

)[
1]

[1
]

—

(1
,5

)[
2]

[2
]

—

11
2

Q
1
=

4
(1

,4
)

1
0

N
,E

,S
0
→

6
1

in
v

1
0
→

1
t4

,t
5

1
−1

0[
2]

(0
,4

)[
0]

[1
]

—
(0

,5
)[

0]
[1

]
(1

,4
)[

0]
[1

]
(1

,4
)[

1]

(1
,5

)[
1]

[2
]

—

(2
,4

)[
2]

[3
]

—

12
2

Q
1
=

4
(1

,5
)

1
1

W
,N

,S
1

6
1

0
0
→

1
t4

,t
5

1
−1

0[
2]

(0
,4

)[
0]

[1
]

—
(0

,5
)[

0]
[1

]
(1

,4
)[

0]
[1

]
(1

,4
)[

1]

(1
,5

)[
0]

[2
]

—

(2
,4

)[
1]

[3
]

—

(2
,5

)[
2]

[4
]

—

13
2

Q
1
=

4
(2

,4
)

1
0

N
,E

,S
0
→

6
0

6
1

0
→

1
t4

,t
5

1
−1

0[
2]

(0
,4

)[
0]

[1
]

—
(0

,5
)[

0]
[1

]
(1

,4
)[

0]
[1

]
(1

,4
)[

1]

(1
,5

)[
0]

[2
]

(2
,4

)[
2]

(2
,4

)[
0]

[3
]

—

(2
,5

)[
1]

[4
]

—

(3
,4

)[
2]

[5
]

—

14
2

Q
1
=

4
(2

,5
)

1
1

W
,N

,S
1

6
1

0
0
→

1
t4

0
—

0[
2]

(0
,4

)[
0]

[1
]

—
(0

,5
)[

0]
[1

]
(1

,4
)[

0]
[1

]
(1

,4
)[

1]

(1
,5

)[
0]

[2
]

(2
,4

)[
2]

(2
,4

)[
0]

[3
]

—

(2
,5

)[
0]

[4
]

—

(3
,4

)[
1]

[5
]

—

(3
,5

)[
2]

[6
]

—

16 EURASIP Journal on Embedded Systems

W
ri

te
 to

 Q
2

W
ri

te
 to

 Q
1 W

rite to Q
2

Reading from Q2_W
N

ES

Reading from Q1_W
N

ES

Normal

During stage 1 plat processing w
hen it is an edge

Plat of all inner/edges (from
 Q

1)

St
ag

e
1
pl

at
 p
ro

ce
ss

in
g

The pixel status is a 3-bit register. It is used to tag
the status of pixels. The various tags are as follows:

0: Never visited
1: Queued-initial (all plat pixel locations into Q1)
2: Queued in Q2
3: Queued in Q1
4: Completed when plat = 0
5: Completed when plat = 1 and reading from Q2
6: Completed when plat = 1 and reading from Q1

0 4

1

2

5

3

plat = 1
inner = 1

Q1_sel = 5
in_ctrl = 2

plat = 1
inner = 1

plat = 1
inner = 1

PS = 3
Qx_sel < 5
in_ctrl = 2

plat = 1
inner = 1

PS = 2
Q2_sel < 5
in_ctrl = 1

plat = 1
inner = 1

PS = 1
Qx_sel < 5
in_ctrl = 1

plat = 1
inner = 1

PS = 1
Qx_sel < 5
in_ctrl = 2

plat = 0
inner = 0

in_ctrl = 0

plat = 1
PS = 1

mc5 = 0
Q1_sel < 5
in_ctrl = 2

plat = 1
inner = 0

in_ctrl = 0

6

∗ Controls assume that Q1 is
the first queue to be used

Figure 19: The pixel status block is a set of 3-bit registers used to
store the state of the various pixels.

(the pixel locations) are (0, 0), (0, 1) → E, (1, 0) → W ,
(−1, 0) → INVALID, and (0,−1) → INVALID. The valid
addresses are then used to obtain the current pixel value,
10(C), and neighbour values, 9(W) and 10(S). The invalid
pixel locations are set to output an INVALID value through
the CB mux. This value has been predefined to be 255.

The pixel locations are also used to determine address
locations within the 3-bit pixel status registers. When read,
the values are (0, 0) = 0, (0, 1) = 0, and (1, 0) = 0. The

20
[6]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

10

10

10

10

10 10 10 10 10

20
[6]

20
[2]

20
[1]

20
[1]

[2]
20
[1]

20
[1]

20
[2]

20 20

20
[6]

20
[6]

20
[6]

20 20 20

10

10

10

10

10 10 10 10 10

20
[6]

20
[5]

20
[3]

20
[1]

20
[5]

20
[3]

20
[3]

20
[5]

20
[5]

20
[5]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

10

10

10

10

10 10 10 10 10

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

20
[6]

20
[3]

20
[3]

20
[3]

20
[2]

20
[2]

20
[2]

20
[2]

20
[2]

20
[2]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[1]

20
[2]

20
[2]

20
[2]

20
[2]

20
[2]

20
[3]

20
[3]

20
[3]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

20
[0]

10

10

10

10

10 10 10 10 10

UP

LP

[6] [6] [6]

20

[2] [2]

[5]

2

20
[5]

[3

2
[3] [3]

LP

UP

Scan entire plateau by continously
feeding the unvisited neighbours back
into the system. Each visited pixel is
flagged by changing PS = 0→1.
Scanning stops when there are no
more unvisited neighbours

During the initial scan of
all the plateau pixels, all
the pixels with a lower
neighbour are arrowed,
put into Q1_C and their
PS = 0→6.

Then Q1_C is read and
all the neighbours to
these pixel locations
(circled in blue) are put
into Q2_WNES. When
put into Q2, PS = 1→2.

PS after the going through
the plateau once. Shown
here before reading
Q1_C. The pixels in Q1_C
have their PS = 6 even
before they are read back
because they are labelled
before they are put into
Q1_C.

PS shown here after
reading Q1_C. This is
before reading from
Q2_WNES. When reading
from Q2_WNES, all the
inner unlabelled pixel (UP)
will arrow to the labelled
pixel (LP) which can be
identified because their
PS=6 (completed).

PS shown here after
reading Q1_WNES (from
the previous cycle). This is
before reading from
Q2_WNES. When reading
from Q1_WNES, all the UP
will arrow to the LP. This
continues until there are no
more neighbours to write
into the other queue.

When Q1_WNES is read,
all the neighbours to this
pixel location (circled in
blue) are put into Q2_WNES.
When put into another
queue, PS = 1→2.

When Q2_WNES is
read, all the neighbours
to these pixel locations
(circled in blue) are put
into Q1_WNES. When
put into Q1, PS = 1→3.

Starting condition with
pixel staus (PS) = 0
(shown in square brackets)

Read from
contents of

Q1_C

Read from
contents of
Q2_WNES

Ignore
contents of
Q1_WNES

Write to
Q2_WNES

Write to
Q1_WNES

Read from
contents of
Q1_WNES

Write to
Q2_WNES

Figure 20: An example of how Pixel Status is used in the system.

neighbours with similar value are put into the queue. In
the example used, only the sound neighbour has a similar
value and is put into queue Q1 S. Next, the pixel status for
(1, 0) is changed from 0 → 1. This tells the system that
the coordinate (1, 0) has been put into the queue and will
avoid an infinite loop once its similar valued neighbour to

EURASIP Journal on Embedded Systems 17

Pixel
coordinate

+1

Reverse arrowing

Arrrow memory Buffer

Path queue

L
ab

el
 m

em
or

y

Pixel status
we_pc

1

0

All memories have a built-in
“pixel coordinate to memory

address decoder”

mux

w_loc: memory write location
r_loc: memory read location

w_info: memory write data

we_pq: write enable path queue memory
we_label: write enable label memory &

 pixel status memory
we_pc: write enable for pixel coordinate

incrementation
we_buf: write enable for buffer. Value of

 CBL is locked in buffer and read
 from it until “read Q” is completed.

mux: data input selection

we_label

we_label

+1

−1

PQ_counter

we_pq

1
0

Path queue
counter 1

Memory counter for path queue

a

b

if a > 0, b = 1

w_loc

w_loc

w_loc

r_loc

r_loc

we_pq

we_buf

w_value

0
>

Figure 21: The watershed architecture: Labelling.

the north (0, 0) finds (1, 0) again. The current pixel location
(0, 0) on the other hand is written to Q1 C because it
is a plateau pixel but not an inner (i.e., an edge) and is
immediately arrowed. The status for this location (0, 0) is
changed from 0 → 6. Q1 S will contain the pixel location
(1, 0). This is read back into the system and mc4 = 1 → 0
indicating Q1 S to be empty. The pixel location (1, 0) is
arrowed and written into Q1 C. With mc1 − 4 = 0 and
mc5 > 0, the pixel locations (0, 0) and (1, 0) is reread into the
system but nothing is performed because both their PSsequal
6 (i.e., completed).

6. Labelling Architecture

This second part of the architecture will describe how we
get from Figure 4(c) to Figure 4(d) in hardware. Compared
to the arrowing architecture, the labelling architecture is
considerably simpler as there are no parallel memory reads.
In fact, everything runs in a fairly sequential manner. Part 2
of the architecture is shown in Figure 21.

The architecture for Part 2 is very similar to Part 1. Both
are tristate systems whose state depends on the condition

Normal

Fill queue Read queue

P
Q

_c
ou

nt
er

 >
 0 PQ

_counter =
 0

b = 1 (catchment basin found)

mux = 1

mux = 0

Figure 22: The 3 states in Architecture:Labelling.

of the queues and uses pixel state memory and queues
for storing pixel locations. The difference is that Part 2
architecture only requires a single queue and a single bit pixel
status register. The three states for the system are shown in
Figure 22.

18 EURASIP Journal on Embedded Systems

Values are initially read in from the pixel coordinate
register. Whether this pixel location had been processed
before is checked against the pixel status (PS) register. If it has
not been processed before (i.e., was never part of any steepest
descending path), it will be written to the Path Queue (PQ).
Once PQ is not empty, the system will process the next
pixel along the current steepest descending path. This is
calculated by the “Reverse Arrowing Block” (RAB) using the
current pixel location and direction information obtained
from the “Arrow Memory.” This process continues until a
non-negative value is read from “Arrow Memory.” This non-
negative value is called the “Catchment Basin Label” (CBL).
Reading a CBL tells that the system a minimum has been
reached and all the pixel locations stored in PQ will be
labelled with that CBL and written to “Label Memory.” At
the same time, the pixel status for the corresponding pixel
locations will be updated accordingly from 0 → 1. Now that
PQ is empty; the next value will be obtained from the pixel
coordinate register.

6.1. The Reverse Arrowing Block. This block calculates the
neighbour pixel location in the path of the steepest descent
given the current location and arrowing label. In other
words, it simply finds the location of the pixel pointed to by
the current pixel.

The output of this block is a simple case of selecting
the appropriate neighbouring coordinate. Firstly the neigh-
bouring coordinates are calculated and are fed into a 4-input
multiplexer. Invalid neighbours are automatically ignored as
they will never be selected. The values in “Arrow Memory”
only point to valid pixels. Hence, no special consideration is
required to handle these cases.

The bulk of the block’s complexity lies in the control of
the multiplexer. The control is determined by translating the
value from the “Arrow Memory” into proper control logic.
Using a bank of four comparators, the value from “Arrow
Memory” is determined by comparing it to four possible
valid direction labels (i.e., −4 → −1). For each of these
values, only one of the comparators will produce a positive
outcome (see truth table in Figure 23). Any other values
outside the valid range will simply be ignored.

The comparator output is then passed through some
logic that will produce a 2-bit output corresponding to the
multiplexer control. If the value from “Arrow Memory” is
−1, the control logic will be (x = 0, y = 0) corresponding
to the West neighbour location. Similarly, if the value from
“Arrow Memory” is −2, −3, or −4, the control logic will
be (x = 0, y = 1), (x = 1, y = 0), or (x = 1, y =
1) corresponding to the North, East, or South neighbour
locations, respectively. This is shown in Figure 23.

7. Example for the Labelling Architecture

This example will pick up where the previous example had
stopped. In the previous part, the resulting output was
written to the “Arrow Memory.” It contains the directions of
the steepest descent (negative values from −1 → −4) and
numbered minima (positive values from 0 → total number

r + 1

r − 1

c + 1

c − 1

Row

Column

W 0

1

2

3

N

E

S

+1

+1

Lower
neighbour
location

am

am

am

am

=

=

=

=

am = value from
arrow memory

a

b

c

d

x

x

y

y

−1

−1

−1

−2

−3

−4

a b c d x y mux_ctrl

1 0 0 0 0 0 0
0 1 0 0 0 1 1
0 0 1 0 1 0 2
0 0 0 1 1 1 3

x = a′b′c′d + a′b′cd′
y = a′b′d′d + a′bc′d′

Figure 23: Inside the reverse arrowing block.

of minima) as seen in Figure 4(c). In this part, we will use the
information stored in “Arrow Memory” to label each pixel
with the label of its respective minimum. Once all associated
pixels to a minimum/minima have been labelled accordingly,
a catchment basin is formed.

The system starts off in the normal state and the initial
conditions are as follows. PQ counter = 0, mux = 1. In the
first clock cycle, the first pixel location (0, 0) is read from the
pixel location register. Once this has been read in, the pixel
location register will increment to the next pixel location
(0, 1). The PS for the first location (0, 0) is 0. This enables
the write enable for the PQ and the first location is written
to queue. At the same time, the location (0, 0) and direction
−3 obtained from “Arrow Memory” are used to find the next
coordinate (0, 1) in the steepest descending path.

Since PQ is not empty, the system enters the “Fill Queue”
state and mux = 0. The next input into the system is the value
from the reverse arrowing block, (0, 1), and since PS = 0,
it is put into PQ. The next location processed is (0, 2). For
(0, 2), PS = 0 and is also written to PQ. However, for this
location, the value obtained from “Arrow Memory” is 1. This
is a CBL and is buffered for the process of the next state. Once
a non-negative value from “Arrow Memory” is read (i.e.,
b = 1), the system enters the next state which is the “Read
Queue” state. In this state, all the pixel locations stored in
PQ is read one at a time and the memory locations in “Label
Memory” corresponding to these locations are written with
the buffered CBL. At the same time, PS is also updated from
0 → 1 to reflect the changes made to “Label Memory.” It tells
the system that the locations from PQ have been processed
so that it will not be rewritten when it is encountered again.

EURASIP Journal on Embedded Systems 19

Table 3: Results of the implemented architecture on a Xilinx
Spartan-3 FPGA.

64× 64 image size,

Arrowing

Slice flip flops 423 out of 26,624 (1%)

Occupied slices 2,658 out of 13,312 (19%)

Labelling

Slice flip flops 39 out of 26,624 (1%)

Occupied slices 37 out of 13,312 (1%)

With each read from PQ, PQ counter is decremented. When
PQ is empty, PQ counter = 0 and the system will return to
the normal state.

In the next clock cycle, (0, 1) is read from the pixel
coordinate register. For (0, 1), PS = 1 and nothing gets
written to PQ and PQ counter remains at 0. The same goes
for (0, 2). When the coordinate (0, 3) is read from the pixel
coordinate register, the whole processes of filling up PQ and
reading from PQ and writing to “Label Memory” start again.

8. Synthesis and Implementation

The rainfall watershed architecture was designed in Handel-
C and implemented on a Celoxica RC10 board containing
a Xilinx Spartan-3 FGPA. Place and route were completed
to obtain a bitstream which was downloaded into the FPGA
for testing. The watershed transform was computed by the
FPGA architecture, and the arrowing and labelling results
were verified to have the same values as software simulations
in Matlab. The Spartan-3 FPGA contains a total of 13312
slices. The implementation results of the architecture are
given in Table 3 for an image size of 64 × 64 pixels. An
image resolution of 64 × 64 required 2658 and 37 slices for
the arrowing and labelling architecture, respectively. This
represents about 20% of the chip area on the Spartan-3
FPGA.

9. Summary

This paper proposed a fast method of implementing the
watershed transform based on rainfall simulation with a
multiple bank memory addressing scheme to allow parallel
access to the centre and neighbourhood pixel values. In a
single read cycle, the architecture is able to obtain all five
values of the centre and four neighbours for a 4-connectivity
watershed transform. This multiple bank memory has the
same footprint as a single bank design. The datapath
and control architecture for the arrowing and labelling
hardware have been described in detail, and an implemented
architecture on a Xilinx Spartan-3 FGPA has been reported.
The work can be extended to implement an 8-connectivity
watershed transform by increasing the number of memory
banks and working out its addressing. The multiple bank
memory approach can also be applied to other watershed
architectures such as those proposed in [10–13, 15].

References

[1] S. E. Hernandez and K. E. Barner, “Tactile imaging using
watershed-based image segmentation,” in Proceedings of the
Annual Conference on Assistive Technologies (ASSETS ’00), pp.
26–33, ACM, New York, NY, USA, 2000.

[2] M. Fussenegger, A. Opelt, A. Pjnz, and P. Auer, “Object
recognition using segmentation for feature detection,” in
Proceedings of the 17th International Conference on Pattern
Recognition (ICPR ’04), vol. 3, pp. 41–44, IEEE Computer
Society, Washington, DC, USA, 2004.

[3] W. Zhang, H. Deng, T. G. Dietterich, and E. N. Mortensen,
“A hierarchical object recognition system based on multi-
scale principal curvature regions,” in Proceedings of the 18th
International Conference on Pattern Recognition (ICPR ’06),
vol. 1, pp. 778–782, IEEE Computer Society, Washington, DC,
USA, 2006.

[4] M. S. Schmalz, “Recent advances in object-based image com-
pression,” in Proceedings of the Data Compression Conference
(DCC ’05), p. 478, March 2005.

[5] S. Han and N. Vasconcelos, “Object-based regions of interest
for image compression,” in Proceedings of the Data Compres-
sion Conference (DCC ’05), pp. 132–141, 2008.

[6] T. Acharya and P.-S. Tsai, JPEG2000 Standard for Image
Compression: Concepts, Algorithms and VLSl Architecturcs,
John Wiley & Sons, New York, NY, USA, 2005.

[7] V. Osma-Ruiz, J. I. Godino-Llorente, N. Saáenz-Lechón, and
P. Gómez-Vilda, “An improved watershed algorithm based on
efficient computation of shortest paths,” Pattern Recognition,
vol. 40, no. 3, pp. 1078–1090, 2007.

[8] A. Bieniek and A. Moga, “An efficient watershed algorithm
based on connected components,” Pattern Recognition, vol. 33,
no. 6, pp. 907–916, 2000.

[9] H. Sun, J. Yang, and M. Ren, “A fast watershed algorithm based
on chain code and its application in image segmentation,”
Pattern Recognition Letters, vol. 26, no. 9, pp. 1266–1274, 2005.

[10] M. Neuenhahn, H. Blume, and T. G. Noll, “Pareto optimal
design of an FPGA-based real-time watershed image seg-
mentation,” in Proceedings of the Conference on Program for
Research on Integrated Systems and Circuits (ProRISC ’04),
2004.

[11] C. Rambabu and I. Chakrabarti, “An efficient immersion-
based watershed transform method and its prototype archi-
tecture,” Journal of Systems Architecture, vol. 53, no. 4, pp. 210–
226, 2007.

[12] C. Rambabu, I. Chakrabarti, and A. Mahanta, “Flooding-
based watershed algorithm and its prototype hardware archi-
tecture,” IEE Proceedings: Vision, Image and Signal Processing,
vol. 151, no. 3, pp. 224–234, 2004.

[13] C. Rambabu and I. Chakrabarti, “An efficient hillclimbing-
based watershed algorithm and its prototype hardware archi-
tecture,” Journal of Signal Processing Systems, vol. 52, no. 3, pp.
281–295, 2008.

[14] D. Noguet and M. Ollivier, “New hardware memory manage-
ment architecture for fast neighborhood access based on graph
analysis,” Journal of Electronic Imaging, vol. 11, no. 1, pp. 96–
103, 2002.

[15] C. J. Kuo, S. F. Odeh, and M. C. Huang, “Image segmentation
with improved watershed algorithm and its FPGA implemen-
tation,” in Proceedingsof the IEEE International Symposium on
Circuits and Systems (ISCAS ’01), vol. 2, pp. 753–756, Sydney,
Australia, May 2001.

	1. Introduction
	2. The Watershed Algorithm Based on Rainfall Simulation
	3. Graph-Based Memory Implementation
	3.1. Determining How Many Banks Are Needed
	3.2. Filling the Banks
	3.3. Accessing Data in the Banks
	3.4. Sorting the Data from the Banks

	4. Arrowing Architecture
	4.1. Memory Counter
	4.2. The Priority Encoder
	4.3. Centre and Neighbour Coordinate
	4.4. The Smallest-Valued Neighbour Block
	4.5. The Plateau-Inner Block
	4.6. The Arrowing Block
	4.7. Pixel Status

	5. Example for the Arrowing Architecture
	6. Labelling Architecture
	6.1. The Reverse Arrowing Block

	7. Example for the Labelling Architecture
	8. Synthesis and Implementation
	9. Summary
	References

