
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 235032, 12 pages
doi:10.1155/2009/235032

Research Article

Cascade Boosting-Based Object Detection fromHigh-Level
Description to Hardware Implementation

K. Khattab, J. Dubois, and J. Miteran

Le2i UMR CNRS 5158, Aile des Sciences de l’Ingénieur, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France

Correspondence should be addressed to J. Dubois, jdubois@u-bourgogne.fr

Received 28 February 2009; Accepted 30 June 2009

Recommended by Bertrand Granado

Object detection forms the first step of a larger setup for a wide variety of computer vision applications. The focus of this paper
is the implementation of a real-time embedded object detection system while relying on high-level description language such
as SystemC. Boosting-based object detection algorithms are considered as the fastest accurate object detection algorithms today.
However, the implementation of a real time solution for such algorithms is still a challenge. A new parallel implementation, which
exploits the parallelism and the pipelining in these algorithms, is proposed. We show that using a SystemC description model
paired with a mainstream automatic synthesis tool can lead to an efficient embedded implementation. We also display some of the
tradeoffs and considerations, for this implementation to be effective. This implementation proves capable of achieving 42 fps for
320× 240 images as well as bringing regularity in time consuming.

Copyright © 2009 K. Khattab et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Object detection is the task of locating an object in an image
despite considerable variations in lighting, background, and
object appearance. The ability of object detecting in a scene
is critical in our everyday life activities, and lately it has
gathered an increasingly amount of attention.

Motivated by a very active area of vision research, most
of object detection methods focus on detecting Frontal Faces
(Figure 1). Face detection is considered as an important
subtask in many computer vision application areas such
as security, surveillance, and content-based image retrieval.
Boosting-based method has led to the state-of-the-art detec-
tion systems. It was first introduced by Viola and Jones as
a successful application of Adaboost [1] for face detection.
Then Li et al. extended this work for multiview faces, using
improved variant boosting algorithms [2, 3]. However, these
methods are used to detect a plethora of objects, such
as vehicles, bikes, and pedestrians. Overall these methods
proved to be time accurate and efficient.

Moreover this family of detectors relies upon several
classifiers trained by a boosting algorithm [4–8]. These
algorithms help achieving a linear combination of weak

classifiers (often a single threshold), capable of real-time face
detection with high detection rates. Such a technique can
be divided into two phases: training and detection (through
the cascade). While the training phase can be done offline
and might take several days of processing, the final cascade
detector should enable real-time processing. The goal is to
run through a given image in order to find all the faces
regardless of their scales and locations. Therefore, the image
can be seen as a set of subwindows that have to be evaluated
by the detector which selects those containing faces.

Most of the solutions deployed today are general purpose
processors software. Furthermore, with the development of
faster camera sensors which allows higher image resolution
at higher frame-rates, these software solutions are not always
working in real time. Accelerating the boosting detection can
be considered as a key issue in pattern recognition, as much
as motion estimation is considered for MPEG-4.

Seeking some improvement over the software, several
attempts were made trying to implement object/face detec-
tion on multi-FPGA boards and multiprocessor platforms
using programmable hardware [9–14], just to fell short in
frame rate and/or high accuracy.

2 EURASIP Journal on Embedded Systems

The first contribution of this paper is a new structure
that exploits intrinsic parallelism of a boosting-based object
detection algorithm.

As for a second contribution, this paper shows that
a hardware implementation is possible using high-level
SystemC descriptionmodels. SystemC enables PC simulation
that allows simple and fast testing and leaves our structure
open to any kind of hardware or software implementation
since SystemC is independent from all platforms. Main-
stream Synthesis tools, such as SystemCrafter [15], are
capable of generating automatic RTL VHDL out of SystemC
models, though there is a list of restrictions and constraints.
The simulation of the SystemC models has highlighted
the critical parts of the structure. Multiple refinements
were made to have a precise, compile-ready description.
Therefore, multiple synthesis results are shown. Note that
our fastest implementation was capable of achieving 42
frames per second for 320× 240 images running at 123 MHz
frequency.

The paper is structured as follows. In Section 2 the
boosted-based object detectors are reviewed while focusing
on accelerating the detection phase only. In Section 3 a
sequential implementation of the detector is given while
showing its real time estimation and drawbacks. A new paral-
lel structure is proposed in Section 4; its benefits in masking
the irregularity of the detector and in speeding the detection
are also discussed. In Section 5 a SystemC modelling for the
proposed architecture is shown using various abstraction
levels. And finally, the firmware implementation details as
well as the experimental results are presented in Section 6.

2. Review of Boosting-Based Object Detectors

Object detection is defined as the identification and the
localization of all image regions that contain a specific object
regardless of the object’s position and size, in an uncontrolled
background and lightning. It is more difficult than object
localization where the number of objects and their size are
already known. The object can be anything from a vehicle,
human face (Figure 1), human hand, pedestrian, and so
forth. The majority of the boosting-based object detectors
work-to-date have primarily focused on developing novel
face detection since it is very useful for a large array of
applications. Moreover, this task is much trickier than other
object detection tasks, due to the typical variations of hair
style, facial hair, glasses, and other adornments. However,
a lot of previous works have proved that the same family
of detector can be used for different type of object, such
as hand detection, pedestrian [4, 10], and vehicles. Most of
these works achieved high detection accuracies; of course a
learning phase was essential for each case.

2.1. Theory of Boosting-Based Object Detectors

2.1.1. Cascade Detection. The structure of the cascade detec-
tor (introduced in face detection by Viola and Jones [1])
is that of a degenerated decision tree. It is constituted of
successively more complex stages of classifiers (Figure 2).

Figure 1: Example of face detection.

No object

Object
21 3 4

Rejected subwindows

All subwindows Further processing

Figure 2: Cascade detector.

A B C D

+1
+1

+1
−1

−1−1
−1

−1 +1
+1

+1

Figure 3: Rectangle features.

The objective is to increase the speed of the detector by
focusing on the promising zones of the image. The first
stage of the cascade will look over for these promising zones
and indicates which subwindows should be evaluated by
the next stage. If a subwindow is labeled at the current
classifier as nonface, then it will be rejected and the decision
upon it is terminated. Otherwise it has to be evaluated
by the next classifier. When a sub-window survives all the
stages of the cascade, it will be labeled as a face. Therefore
the complexity increases dramatically with each stage, but
the number of sub-windows to be evaluated will decrease
more tremendously. Over the cascade the overall detection
rate should remain high while the false positive rate should
decrease aggressively.

2.1.2. Features. To achieve a fast and robust implementation,
Boosting based faces detection algorithms use some rectangle
Haar-like features (shown in Figure 3) introduced by [16]:
two-rectangle features (A and B), three-rectangle features
(C), and four-rectangle features (D). They operate on
grayscale images and their decisions depend on the threshold
difference between the sum of the luminance of the white
region(s) and the sum of the luminance of the gray region(s).

Using a particular representation of the image so-called
the Integral Image (II), it is possible to compute very rapidly

EURASIP Journal on Embedded Systems 3

P1
A B

C D

P2

P3 P4

Figure 4: The sum of pixels within Rectangle D can be calculated by
using 4 array references; SD= II [P4] – (II [P3] + II [P2] – II [P1]).

the features. The II is constructed of the initial image by
simply taking the sum of luminance value above and to the
left of each pixel in the image:

ii
(
x, y

) =
∑

x′<x,y′<y
i
(
x′, y′

)
(1)

where ii(x, y) is the integral image, and i(x, y) is the original
image pixel’s value. Using the Integral Image, any sum of
luminance within a rectangle can be calculated from II using
four array references (Figure 4). After the II computation, the
evaluation of each feature requires 6, 8, or 9 array references
depending on its type.

However, assuming a 24× 24 pixels sub-window size, the
over-complete feature set of all possible features computed in
this window is 45 396 [1]: it is clear that a feature selection
is necessary in order to keep real-time computation time
compatibility. This is one of the roles of the Boosting training
step.

2.1.3. Weak Classifiers and Boosting Training. A weak classi-
fier hj(x) consists of a feature f j , a threshold θj , and a parity
pj indicating the direction of the inequality sign:

hj(x) =
⎧
⎨

⎩

1, if pj f j(x) < pjθj ,

0, otherwise.
(2)

Boosting algorithms (Adaboost and variants) are able to
construct a strong classifier as a linear combination of weak
classifiers (here a single threshold) chosen from a given, finite
or infinite, set, as shown in (3):

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1,
T∑

t=1
αtht(x) > θ,

0, otherwise,

(3)

where θ is the stage threshold, αt is the weak classifier’s
weight, and T is the total number of weak classifiers
(features).

This linear combination is trained in cascade in order to
have better results.

There, a variant of Adaboost is used for learning object
detection; it performs two important tasks: feature selection
from the features defined above and constructing classifiers
using selected features.

The result of the training step is a set of parameters (array
references for features, constant coefficients of the linear
combination of classifiers, and thresholds values selected by

Adaboost). This set of features parameters can be stored
easily in a small local memory.

2.2. Previous Implementations. The state-of-the-art initial
prototype of this method, also known as Viola-Jones algo-
rithm, was a software implementation based on trained
classifiers using Adaboost. The first implementation shows
some good potential by achieving good results in terms of
speed and accuracy; the prototype can achieve 15 frames per
second on a desktop computer for 320 × 240 images. Such
an implementation on general purpose processors offers a
great deal of flexibility, and it can be optimized with little
time and cost, thanks for the wide variety of the well-
established design tools for software development. However,
such implementation can occupy all CPU computational
power for this task alone; nevertheless, face/object detection
is considered as prerequisite step for some of the main
application such as biometric, content-base image retrieval
systems, surveillance, and autonavigation. Therefore, there is
more and more interest in exploring an implementation of
accurate and efficient object detection on low-cost embedded
technologies. The most common target technologies are
embedded microprocessors such as DSPs, pure hardware
systems such as ASIC, and configurable hardware such as
FPGAs.

Lot of tradeoffs can be mentioned when trying to
compare these technologies. For instance, the use of embed-
ded processor can increase the level of parallelism of the
application, but it costs high power consumption, all while
limiting the solution to run under a dedicated processor.

Using ASIC can result better frequency performance
coupled with high level of parallelism and low power
consumption. Yet, in addition to the loss of flexibility, using
this technology requires a large amount of development,
optimization, and implementation time, which elevates the
cost and risk of the implementation.

FPGAs can have a slightly better performance/cost trade-
offs than previous two, since it permits high level of
parallelism coupled with some design flexibility. However
some restriction in design space, costly rams connections as
well as lower frequency comparing to ASIC, can rule-out its
use for some memory heavy applications.

For our knowledge, few attempts were made trying
to implement Boosting-based face detection on embedded
platforms; even so, fewer attempted such an implementation
for other object type, for example, whole body detection
[10].

Nevertheless, these proposed architectures were config-
urable hardware-based implementations, and most of them
could not achieve high detection frame rate speed while
keeping the detection rate close of that of the original
implementation. For instance, in order to achieve 15 frames
per second for 120×120 images,Wei et al. [11] choose to skip
the enlargement scale factor from 1.25 to 2. However such a
maneuver would lower the detection rate dramatically.

Theocharides et al. [12] have proposed a parallel archi-
tecture taking advantage of a grid array processor. This array
processor is used as memory to store the computation data

4 EURASIP Journal on Embedded Systems

and as data transfer unit, to aid in accessing the integral
image in parallel. This implementation can achieve 52 frames
per second at a 500MHz frequency. However, details about
the image resolution were not mentioned.

Another complex control scheme to meet hard real-time
deadlines is proposed in [13]. It introduces a new hardware
pipeline design for Haar-like feature calculation and a system
design exploiting several levels of parallelism. But it sacrifices
the detection rate and it is better fitted for portrait pictures.

And more recently, an implementation with NoC
(Network-on-Chip) architecture is proposed in [14] using
some of the same element as [12]; this implementation
achieves 40 frames per second for 320 × 240 images.
However detection rate of 70% was well below the software
implementation (82% to 92%), due to the use of only 44
features (instead of about 4600 in [1]).

3. Sequential Implementation

In software implementation the strategy used consists of
processing each sub-window at a time. The processing on
the next sub-window will not trigger until a final decision
is taken upon the previous one, that is, going through a set of
features as a programmable list of coordinate rectangles.

In attending to implement such a cascade algorithm,
each stage is investigated alone. For instance, the first stage
classifier should be separated from the rest since it requires
processing all the possible subwindows in an image, while
each of the other relies on the result of previous stage and
evaluates only the subwindows that passed through.

3.1. First Classification Stage. As mentioned earlier this
classifier must run all over the image and reject the subwin-
dows that do not fit the criteria (no face in the window).
The detector is scanned across locations and scales, and
subsequent locations are obtained by shifting the window
some number of pixels k. Only positive results trigger in the
next classifier.

The addresses of the positive sub-windows are stored in a
memory, so that next classifier could evaluate them and only
them in the next stage. Figure 5 shows the structure of such
classifier. The processing time of this first stage is stable and
independent from the image content; the algorithm here is
regular. The classifier complexity on this stage is usually very
low (only one or two features are considered; the decision is
made of one to comparisons, two multiplications, and one
addition).

3.2. Remaining Classification Stages. Next classification
stages, shown in Figure 6, do not need to evaluate the
whole image. Each classifier should examine only the positive
results, given by the previous stage, by reading their addresses
in the memory, and then takes a decision upon each one
(reject or pass to the next classifier stage).

Each remaining classifier is expected to reject the major-
ity of sub-windows and keep the rest to be evaluated later in
the cascade. As a result, the processing time depends largely
on the number of positive sub-windows resulted from the

Yes

No

Features
parameters

Load II
values

Integral
image II

Decision

EndShift & scale

Positives sub-windows
addresses

Process
next

image

Figure 5: First cascade stage.

Features
parameters

Load II
values

Integral image (II)

Decision
Positives sub-

windows
addresses n

Positives sub-windows
addresses n−1

Figure 6: nth Stage classifier.

Yes

Change of
classifier

Load II
values

Decision

EndShift/positive
addresses

Positives sub-windows
addresses

No

Integral image

Figure 7: Sequential implementation.

previous stage. Moreover the classifier complexity (number
of comparisons, multiplications, and additions) increasse
with the stage level.

3.3. Full Sequential Implementation. The full sequential
implementation of this cascade is proposed in Figure 7.

For a 320 × 240 image, scanned on 11 scales with a
scaling factor of 1.25 and a step of 1.5, the number of total
sub-windows to be investigated is 105 963. Based on tests
done in [1], an average of 10 features is evaluated per sub-
window. As a result, the estimated number of decision made
over the cascade, for a 320 × 240 image, is 1.3 million as an
average. Thereafter around 10 millions memory access (since
each decision needs 6, 8, or 9 array references to calculate
the feature in play). Note that the computation time of the
decision (linear combination of constants) as well as the time
needed to build the integral image is negligible comparing to
the overall memory access time.

EURASIP Journal on Embedded Systems 5

Considering the speed of the memory to be 10 nanosec-
ond per access (100MHz), the time needed to process
a full image is around 100millisecond (about 10 images
per second). However, this rate can vary with the image’s
content. Nevertheless, this work has been performed several
times [1–3] using standard PC, and the obtained processing
rate is around 10 images/s; the implementation is still not
well suited for embedded applications and does not use
parallelism.

4. Possible Parallelism

As shown in Section 3, Boosting-based face detector got
a few drawbacks: first, the implementation still needs to
be accelerated in order to achieve real time detection, and
second the processing time for an image depends on its
content.

4.1. Algorithm Analysis and Parallel Model. A degraded
cascade of 10 stages is presented in [1]. It contains less than
400 features and achieves a detection rate between 75% and
85%. Another highly used and more complex cascade can be
found in OpenCV [17] (discussed later in Section 5.2). This
cascade includes more than 2000 features spread on 22 stages
and achieves higher detection rates than the degraded version
(between 80% and 92%) with less false positive detections.
Analyzing those 2 cascade, one could notice that about 35%
of the memory access takes place on each of the first two
classifier while 30% on all remaining stages, which leads us
to suggest a new structure (shown in Figure 8) of 3 parallel
blocks that work simultaneously: in the first two blocks we
intend to implement, respectively, the first and second stage
classifiers, and then a final block assigned to run over all
remaining stages sequentially.

Unlike the state-of-the-art software implementation, the
proposed structure tends to run each stage as a standalone
block. Nevertheless, some intermediate memories between
the stages must be added in order to stock the positive-label
windows addresses.

The new structure proposed above can upsurge the speed
of the detector in one condition: since that the computation
complexity is relatively small and the time processing
depends heavily on the memory access, an integral image
memory should be available for each block in order to
gain benefit of three simultaneous memory accesses. Figure 8
shows the proposed parallel structure. At the end of every
full image processing cycle, the positive results from Block1
trigger the evaluation of Block2. The positive results from
Block2 trigger the evaluation of Block3. And the positive
results from Block3 are labeled as faces. It should be noted
that blocks cannot process simultaneously on the same
image, that is, if at a given moment Block2 is working on
the current image (I1), then Block1 should be working on
the next image (I2) and Block3 should be working on the
previous image (I0). As mentioned in Section 3, the first
classifier stage is slightly different from the others since
it should evaluate the whole image. Hence, a “shift-and-
scaling” model is needed. The positive results are stored in

a memory (mem.1) and copied in another memory (mem.2)
in order to be used on the second stage. The positive results
are stored in a memory (mem.3, duplicated in mem.4) in
order to be used in the final block.

The final block is similar to the second, but it is designed
to implement all the remaining stages. Once the processing
on mem.4 is finished, block 3 works the same way as in
the sequential implementation: the block run back and forth
through all remaining stages, to finally give the addresses of
the detected faces.

This can be translated into the model shown in Figure 9.
A copy of the integral image is available to each block as well
as three pairs of logical memory are working in ping pong to
accelerate the processing.

The given parallel model ought to run at the same
speed rate as its slower block. As mentioned earlier, the
first stage of the cascade requires more access memory and
therefore more time processing than the second stage alone
or all the remaining stages together. In the first classifier
stage, all 105 963 sub-windows should be inspected using
four features with eight array references each. Therefore,
it requires about 3.4 million of memory access per image.
Using the same type of memory as in Section 3.3, an image
needs roughly 34 millisecond (29 images per second) of time
processing.

4.2. Parallel Model Discussion. Normally the proposed struc-
ture should stay the same, even if the cascade structure
changes, since most of the boosting cascade structures have
the same properties as long as the first two cascade stages.

One of the major issues surrounding boosting-based
detection algorithms (specially when applied on to object
detection in a non constraint scene) is the inconsistency
and the unpredictable processing time; for example, a white
image will always takes a little processing time since no sub-
window should be cable of passing the first stage of the
cascade. As opposite, an image of thumbnails gallery will take
much more time.

Though this structure not only gives a gain in speed, this
first stage happens to be the only regular one in the cascade,
with fixed time processing per image. This means that we can
mask the irregular part of the algorithm by fixing the detector
overall time processing.

As a result, the whole system will not work at 3 times
the speed of the average sequential implementation, but a
little bit less. However, theoretically both models should be
running at the same speed if encountering a homogenous
image (e.g., white or black image). Further work in Section 5
will show that the embedded implementation can benefit
from some system teaks (pipelining and parallelism) within
the computation that will make the architecture even faster.

Due to the masking phenomena in the parallel imple-
mentation, decreasing the number of weak classifiers can
accelerate the implementation, but only if the first stage of
the cascade is accelerated.

For this structure to be implemented effectively, its
constraints must be taken into consideration. The memory,
for instance, can be the most greedy and critical part;

6 EURASIP Journal on Embedded Systems

BLOCK 1:

BLOCK 2:

BLOCK 3:

Positives sub-
windows
addresses

IIiImage

Shift & scale

Mem.1

Mem.2

Features

Features

Decision

Decision

Features Decision

Mem.4

Mem.3

IIi − 2

IIi − 1

- 100% sub-
 windows

- 35% total
 memory access

- 4 to 8 features

- <50% sub-
 windows

- 35% total
 memory access

- 8 to 20 features

- <15% sub-
 windows

- 30% total
 memory access

- Up to 2000
 features

Figure 8: Parallel structure.

BLOCK 1

BLOCK 2

BLOCK 3

IIi − 2

IIi − 3

IIi − 1

Sub-windows
addresses

Sub-windows
addresses

Sub-windows
addresses

Sub-windows
addresses

Decision

Figure 9: Data Flow.

the model requires multiple memory accesses to be done
simultaneously.

It is obvious that a generic architecture (a processor, a
global memory and cache) will not be enough to manage

up to seven simultaneous memory accesses on top of the
processing, without crashing it performances.

5. Architecture Definition:
Modelling Using SystemC

Flexibility and target architecture are two major criteria for
any implementation. First, a decision has been taken upon
building our implementation using a high level description
model/language. Modelling at a high-level of description
would lead to quicker simulation, and better bandwidth
estimation, better functional validation, and for most it can
help delaying the system orientation and thereafter delaying
the hardware target.

5.1. SystemC Description. C++ implements Object-
Orientation on the C language. Many Hardware Engineers
may consider that the principles of Object-Orientation are
fairly remote from the creation of Hardware components.
Nevertheless, Object-Orientation was created from design
techniques used in Hardware designs. Data abstraction is the
central aspect of Object-Orientation which can be found in
everyday hardware designs with the use of publicly visible
“ports” and private “internal signals”. Moreover, component
instantiation found in hardware designs is almost identical
to the principle of “composition” used in C++ for creating
hierarchical design. Hardware components can be modelled
in C++, and to some extent, the mechanisms used are
similar to those used in HDLs. Additionally C++ provides

EURASIP Journal on Embedded Systems 7

IIi − 1

Sub-windows
addresses

Sub-windows
addresses

BLOCK 1

IIi − 2

Sub-windows
addresses

Sub-windows
addresses

BLOCK 2

IIi − 3
BLOCK 3

Integral
image trans-

formation
module

Decision

Figure 10: SystemC architecture implementation.

inheritance as a way to complement the composition
mechanism and promotes design reuse.

Nonetheless, C++ does not support concurrency which
is an essential aspect of systems modelling. Furthermore,
timing and propagation delays cannot easily expressed in
C++.

SystemC [18] is a relatively newmodeling language based
on C++ for system level design. It has been developed as
standardized modeling language for system containing both
hardware and software components.

SystemC class library provides necessary constructs to
model system architecture from reactive behaviour, schedul-
ing policy, and hardware-like timing. All of which are not
available using C/C++ standalone languages.

There is multiple advantages of using SystemC, over a
classic hardware description languages, such as VHDL and
Verilog: flexibility, simplicity, simulation time velocity, and
for most the portability, to name a few.

5.2. SystemC Implementation for Functional Validation and
Verification. The SystemC approach consists of a progres-
sive refinement of specifications. Therefore, a first initial
implementation was done using an abstract high-level timed
functional representation.

In this implementation, we used the proposed parallel
structure discussed in Section 4.

This modeling consists of high-level SystemC modules
(TLM) communicating with each other using channels,
signals, or even memory-blocks modules written in SystemC
(Figure 10). Scheduling and timing were used but have not
been explored for hardware-like purposes. Data types, used
in this modelling, are strictly C++ data types.

As for the cascade/classifiers, we chose to use the database
found on Open Computer Vision Library [17] (OpenCV).
OpenCV provides the most used trained cascade/classifiers
datasets and face-detection software (Haar-Detector) today,
for the standard prototype of Viola-Jones algorithm. The
particular classifiers, used on this library, are those trained

SystemC model

Simulation

Validation

Figure 11: SystemC functional validation flow.

for a base detection window of 24×24 pixels, using Adaboost.
These classifiers are created and trained, by Lienhart et al.
[19], for the detection of upright front face detection. The
detection rate of these classifiers is between 80% and 92%,
depending on the images Database.

The output of our implementation is the addresses of
the sub-windows which contain, according to the detector,
an object of particular type (a face in our case). Functional
validation is done by simulation (Figure 11). Then, multiple
tests were done, including visual comparisons on a dataset
of images, visual simulation signals, and other tests that
consist of comparing the response of each classifier with
its correspondent implemented on OpenCV’s Haar-Detector
software. All of these tests indicate that we were able to
achieve the same result in detection rate as using the software
provided by OpenCV. The images, used in these tests, were
taken from the CMU+MIT face databases [20].

The choice of working with faces, instead of other object
types, can help the comparison with other recent works.
However, using this structure for other object-type detection
is very feasible, on the condition of having a trained dataset
of classifiers for the specific object. This can be considered
a simple task, since OpenCV also provides the training
software for the cascade detector. Even more, classifiers
from other variant of boosting can be implemented easily,
since the structure is written in a high-level language. As a
result, changing the boosting variant is considered a minor
modification since the architecture of the cascade detector
should stay intact.

5.3. Modelling for Embedded Implementation. While the
previous SystemC modelling is very useful for functional
validation, more optimization should be carried out in order
to achieve a hardware implementation. Indeed, SystemC
standard is a system-level modelling environment which
allows the design of various abstraction levels of systems.
The design cycle starts with an abstract high-level untimed or
timed functional representation that is refined to a bus-cycle
accurate and then an RTL (Register Transfer Level) hardware
model. SystemC provides several data types, in addition to
those of C++. However these data types are mostly adapted
for hardware specification.

8 EURASIP Journal on Embedded Systems

BLOCK1

Decision

Shif_scale

Mem_Ctrl

Sw
itch M

U
X

BLOCK2/BLOCK3

Decision

Mem_Ctrl

Images

SRAM SRAM

SDRAM SDRAM

S
R

A
M

Integral
image

BLOCK 3

BLOCK 2

BLOCK 1

SD
R

A
M

Figure 12: The global architecture in SystemC modules.

Besides, SystemC hardware model can be synthesizable
for various target technologies. Numerous behavioural syn-
thesis tools are available on the market for SystemC (e.g.,
Synopsys Cocentric compiler, Mentor Catapult, System-
Crafter, and AutoESL). It should be noted that for, all those
available tools, it is necessary to refine the initial simulatable
SystemC description in order to synthesize into hardware.
The reason behind is the fact that SystemC language is a
superset of the C++ designed for simulation.

Therefore, a new improved and foremost a more refined
“cycle accurate RTL model” version of the design implemen-
tation was created.

Our design is split into compilation units, each of which
can be compiled separately. Alternatively, it is possible to
use several tools for different parts of your design, or even
using the partition in order to explore most of the possible
parallelism and pipelining for more efficient hardware
implementation. Eventually, the main block modules of the
design were split into a group of small modules that work
in parallel and/or in pipelining. For instance, the module
BLOCK1 contains tree compilation units (modules): a
“Decision” Module which contains the first stage’s classifiers.
This module is used for computation and decision on each
sub-window. The second module is “Shift-and-Scale” used
for shifting and scaling the window in order to obtain
all subsequent locations. Finally, a “Memory-Ctrl” module
manages the intermediate memory access.

As result, a SystemC model composed of 11 modules
(Figure 12): tree for BLOCK1, two for BLOCK2, two for
BLOCK3, one for the Integral image transformation, two for
the SRAM simulation, and one for the SDRAM intermediate
memory (discussed later in this chapter).

Other major refinements were done: divisions were
simplified in order to be power of two divisions, dataflow
model was further refined to a SystemC/C++ of combined

finite state-machines and data paths, loops were exploited,
and timing and scheduling were taken into consideration.
Note that, in most cases, parallelism and pipelining were
forced manually. On the other hand, not all the modules
were heavily refined; for example, the two module of SRAM
were used in order to simulate a physical memory, which will
never be synthesized no matter what the target platform is.

5.4. Intermediate Memory. One of the drawbacks of the
proposed parallel structure (given in Section 4) is the use
of additional intermediate memories (unnecessary in the
software implementation). Logically, an interblocks memory
unit is formed out of two memories working in ping-pong.

A stored address should hold the position of a particular
sub-window and its scale; there is no need for two-
dimensional positioning, since the Integral Image is created
as a monodimensional table for a better RAM storage.

For a 320×240 image and an initial mask’s size of 24×24,
a word of 20 bits would be enough to store the concatenation
of the position and the scale of each sub-window.

As for the capacity of the memories, a worse case scenario
occurs when half of the possible sub-windowsmanage to pass
through first block. That leads to around 50 000 (50% of the
sub-windows) addresses to store. Using the same logic on the
next block, the total number of addresses to store should not
exceed the 75 000. Eventually, a combined memory capacity
of less than 192Kbytes is needed.

Even more, the simulation of our SystemC model shows
that even when facing a case of consecutive positive decisions
for a series of sub-windows, access onto those memories
will not occur more than once every each 28 cycles (case of
mem.1 and mem.2), or once each 64 cycles (case of mem.3
and mem.4).

Due to these facts, we propose a timesharing system
(shown in Figure 13) using four memory banks, working
as a FIFO block, with only one physical memory. Typical
hardware implementation of a 192 Kbytes SDRAM or
DDRAMmemory, running on a frequency of at least 4 times
the frequency of the FIFO banks, is necessary to replace the
four logical memories.

SystemC simulation shows that 4 Kbits is enough for each
memory bank. The FIFOs are easily added using SystemC
own predefined sc fifo module.

6. Hardware Implementation and
Experimental Performances

6.1. Hardware Implementation. SystemC hardware model
can be synthesizable for various target technologies. How-
ever, no synthesizer is capable of producing efficient hard-
ware from a SystemC program written for simulation. Auto-
matic synthesis tool can produce fast and efficient hardware
only if the entry code accommodates certain difficult require-
ments such as using hardware-like development methods.
Therefore, the results of the synthesis design implementation
and the tool itself and the different levels of refinements done
depend heavily on the entry code. Figure 14 shows the two
different kinds of refinements needed to achieve a successful

EURASIP Journal on Embedded Systems 9

I/O

MUX MUX

FIFO FIFO FIFO FIFO

BLOCK
1

BLOCK
2

BLOCK
2

BLOCK
3

SDRAM

Figure 13: Intermediate Memories structure.

SystemC model

C to RTL
synthesis tool

HDL to hardware
synthesis tool

HDL

Implementation

Refinement

Figure 14: SystemC to hardware implementation development
flow.

fast implementation, using a high-level description language.
The first type of refinements is the one set by the tool itself.
Without it, the tool is not capable of compiling the SystemC
code to RTL level. Even so, those refinements do not lead
directly to a good proven implementation. Another type
of refinements should take place in order to optimize the
size, the speed and sometimes (depending on the used tool)
power consumption.

For our design, several refinement versions have been
done on different modules depending on their initial speed
and usability.

The SystemC scheduler uses the same behavior for
software simulation as for hardware simulation. This works
to our advantage since it gives the possibility of choosing
which of the modules to be synthesized, while the rest works
as SystemC test bench for the design.

Our synthesis phase was performed using an automatic
tool, named SystemCrafter, which is a SystemC synthesis tool
that targets Xilinx FPGAs.

Table 1: The synthesis results of the components implementations.

Logic utilization Used Available Utilization

Integral
Image

Number of occupied Slices 913 10752 8%

Number of Slice Flip Flops 300 21504 1%

Number of 4 input LUTs 1761 21504 8%

Number of DSPs 2 48 4%

Maximum frequency 129MHz

BLOCK 1

Number of occupied Slices 1281 10752 12%

Number of Slice Flip Flops 626 21504 3%

Number of 4 input LUTs 2360 21504 11%

Number of DSPs 1 48 2%

Maximum frequency 47MHz

BLOCK 2

Number of occupied Slices 3624 10752 34%

Number of Slice Flip Flops 801 21504 4%

Number of 4 input LUTs 7042 21504 33%

Number of DSPs 3 48 6%

Maximum frequency 42MHz

It should be noted that the used SystemC entry code can
be described as VHDL-like synchronous and pipelined C-
code (bit accurate): most parallelism and pipelining within
the design were made manually using different processes,
threads, and state-machines. SystemC data types were used
in order to minimize the implementation size. Loops were
exploited, and timing as well as variables lengths was always
a big factor.

Using the SystemCrafter, multiple VHDL components
are generated and can be easily added or merged into/with
other VHDL components (notably the FIFO’s modules).
As for the testbench set, the description was kept in
high-level abstraction SystemC for faster prototyping and
simulation.

Basically, our implementation brings together three
major components: the integral image module, the first stage
decision module, and the second stage decision module
(block 3 of the structure is yet to be implemented). Other
components such as memory controllers and FIFO’s mod-
ules are also implemented but are trifling when compared to
the other big three.

Each of these components was implemented separately in
order to analyze their performances. In each case, multiple
graphic simulations were carried out to verify that the
outputs of both descriptions (SystemC’s and VHDL’s) are
identical.

6.2. Performances. The Xilinx Virtex-4 XC4VL25 was
selected as a target FPGA. The VHDL model was back
annotated using the Xilinx ISE. The synthesis results of the
design implementation for each of the components are given
in Table 1.

The synthesis results of the design implementation for
the whole design (BLOCK1, BLOCK2 and integral image
combined) are given in Table 2.

10 EURASIP Journal on Embedded Systems

Table 2: The synthesis results of the entire design implementation.

Logic utilization Used Available Utilization

Number of occupied Slices 5941 10752 55%

Number of Slice Flip Flops 1738 21504 8%

Number of 4 input LUTs 11418 21504 53%

Number of DSPs 6 48 13%

Maximum frequency 42MHz

Table 3: The synthesis results of the decision modules implemen-
tation.

Logic utilization Used Available Utilization

BLOCK 1
Decision

Number of occupied Slices 1281 10752 12%

Number of Slice Flip Flops 626 21504 3%

Number of 4 input LUTs 2360 21504 11%

Number of DSPs 1 48 2%

Maximum frequency 47MHz

BLOCK 2
Decision

Number of occupied Slices 3624 10752 34%

Number of Slice Flip Flops 801 21504 4%

Number of 4 input LUTs 7042 21504 33%

Number of DSPs 3 48 6%

Maximum frequency 42MHz

The clock rate of the design did not exceed the rate of
its slowest component (BLOCK2). The design is capable of
running with a frequency of 42MHz. In the first block, a
decision is taken on a sub-window each 28 clock cycles.
Hence, this system is capable of achieving only up to 15
frames per second or 320× 240 images.

Accelerating BLOCK1 and BLOCK2 is essential in order
to achieve higher detection speed. BLOCK1 includes three
important modules: “Decision” module, “Shift-and-Scale”
module, and “Memory ctrl” module. As for BLOCK2 it
includes only “Decision” module and “Memory ctrl” mod-
ule. The decision modules however use some division and
multiplication operators, which are costly in clock cycle
frequency. Therefore, each “Decision” module of these two
components is synthesized alone, and their synthesis results
are shown in Table 3.

As expected the “Decision” Modules in both BLOCK1
and BLOCK2 are holding the implementation onto a low
frequency.

Analyzing the automatic generated VHDL code shows
that despite all the refinement already done, the System-
Crafter synthesis tool still produces a much complex RTL
code than essentially needed. Particularly, when using arrays
in loops, the tool creates a register for each value, and
then wired it into all possible outputs. Things get worse
when trying to update all the array elements within one
clock cycle. A scenario which occurs regularly in our
design, for example, updating classifiers parameters after a
Shifting or a Scaling. Simulation tests proved that these last
manipulations can widely slowdown the design frequency.

Table 4: The synthesis results for the new improved decision
modules.

Logic utilization Used Available Utilization

BLOCK 1
Decision

Number of occupied Slices 713 10752 7%

Number of Slice Flip Flops 293 21504 1%

Number of 4 input LUTs 1091 21504 5%

Number of DSPs 1 48 2%

Maximum frequency 127MHz

BLOCK 2
Decision

Number of occupied Slices 2582 10752 24%

Number of Slice Flip Flops 411 21504 2%

Number of 4 input LUTs 5082 21504 24%

Number of DSPs 3 48 6%

Maximum frequency 123MHz

Table 5: The synthesis results of the refined implementation for the
entire design.

Logic utilization Used Available Utilization

Number of occupied Slices 4611 10752 43%

Number of Slice Flip Flops 1069 21504 5%

Number of 4 input LUTs 8527 21504 40%

Number of DSPs 6 48 13%

Maximum frequency 123MHz

Therefore more refinement has beenmade for the “Decision”
SystemC modules. For instance, the arrays updating were
split between the clock cycles, in a way that no additional
clock cycles are lost while updating a single array element per
cycle.

The synthesis results for new improve and more refined
decision modules are shown in Table 4. The refinements
made allow faster, lighter, andmore efficient implementation
for the two modules. A new full system implementation is
made by inserting the new “Decision” modules, its results
and performances are shown in Table 5. The FPGA can
operate at a clock speed of 123MHz. Using the same logic
as before, a decision is taken on a sub-window each 28 clock
cycles; therefore the new design can achieve up to 42 frames
per second on 320× 240 images.

The simulation tests, used in Section 5.2 for the func-
tional validation of the SystemC code, were carried out on
the VHDL code mixed with a high-level test bench (the same
SystemC test bench used for the SystemC validation model).
The outputs of the VHDL code were compared to the outputs
of the OpenCV’s implementation after the first two classifi-
cation stages. These tests prove that we were able to achieve
the same detection results as in using the software provided
by OpenCV. The design can run on even faster pace, if more
refinements and hardware considerations are taken. How-
ever, it should be noted that using different SystemC synthe-
sis tools can yield different results. After all, the amount and
effectiveness of the refinements depend largely on the tool
itself.

EURASIP Journal on Embedded Systems 11

Other optimizations can be done by replacing some of
the autogenerated VHDL codes from the crafter by manually
optimized ones.

7. Conclusion

In this paper, we proposed a new architecture for an
embedded real-time object and face detector based on a fast
and robust family of methods, initiated by Viola and Jones
[1].

First we have built a sequential structure model which
reveals to be irregular in time processing. As estimation, the
sequential implementation of a degraded cascade detector
can achieve on an average of 10 frames per second.

Then a new parallel structure model is introduced. This
structure proves to be at least 2.9 times faster than the
sequential and provides regularity in time processing.

The design was validated using SystemC. Simulation and
hardware synthesis were done, showing that such an algo-
rithm can be fitted easily into an FPGA chip, while having the
ability to achieve the state-of-the-art performances in both
frame rate and accuracy.

The hardware target, used for the validation, is an FPGA
based board, connected to the PC using an USB 2.0 Port. The
use of SystemC description enables the design to be easily
retargeted for different technologies. The implementation
of our SystemC model onto a Xilinx Virtex-4 can achieve
theoretical 42 frames per second detection rate for 320× 240
images.

We proved that SystemC description is not only inter-
esting to explore and validate a complex architecture. It can
also be very useful to detect bottlenecks in the dataflow
and to accelerate the architecture by exploiting parallelism
and pipelining. Then eventually, it can lead to an embedded
implementation that achieves state-of-the-art performances,
thanks to some synthesis tools. More importantly, it helps
developing a flexible design that can be migrated to a wide
variety of technologies.

However, experiments have shown that refinements
made to the entry SystemC code add up to substantial
reductions in size and total execution time. Even though,
the extent and effectiveness of these optimizations is largely
attributed to the SystemC synthesis tool itself and designer’s
hardware knowledge and experience. Therefore, one very
intriguing perspective is the exploration of this design using
other tools for comparison purposes.

Accelerating the first stage can lead directly to a whole
system acceleration. In the future, our description could
be used as a part of a more complex process integrated
in a SoC. We are currently exploring the possibility of a
hardware/software solution, by prototyping a platform based
on a Wildcard [21]. Recently, we had successful experiences,
implementing a similar type of solutions in order to accel-
erate a “Fourier Descriptors for Object Recognition using
SVM” [22] and motion estimation for MPEG-4 coding [23].
For example, the Integral Image block as well as the first and
second stages can be executed in hardware on the wildcard,
while the rest can be implemented in software on a Dual core
processor.

References

[1] P. Viola and M. Jones, “Rapid object detection using a
boosted cascade of simple features,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’01), vol. 1, pp. 511–518, 2001.

[2] S. Li, L. Zhu, Z. Q. Zhang, A. Blake, H. J. Zhang, and H.
Shum, “Statistical learning of multi-view face detection,” in
Proceedings of the 7th European Conference on Computer Vision,
Copenhagen, Denmark, May 2002.

[3] J. Sochman and J. Matas, “AdaBoost with totally corrective
updates for fast face detection,” in Proceedings of the 6th
IEEE International Conference on Automatic Face and Gesture
Recognition, pp. 445–450, 2004.

[4] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians
using patterns of motion and appearance,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV
’03), vol. 2, pp. 734–741, October 2003.

[5] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of online learning and an application to boosting,” in
Proceedings of the ECCLT, pp. 23–37, 1995.

[6] J. Kivinen and M. K. Warmuth, “Boosting as entropy pro-
jection,” in Proceedings of the 12th Annual Conference on
Computational Learning Theory (COLT ’99), pp. 134–144,
ACM, Santa Cruz, Calif, USA, July 1999.

[7] P. Pudil, J. Novovicova, and J. Kittler, “Floating searchmethods
in feature selection,” Pattern Recognition Letters, vol. 15, no. 11,
pp. 1119–1125, 1994.

[8] J. Sochman and J. Matas, “WaldBoost: learning for time
constrained sequential detection,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’05), vol. 2, San Diego, Calif, USA, June
2005.

[9] M. Reuvers, Face detection on the INCA+ system, M.S. thesis,
University of Amsterdam, 2004.

[10] V. Nair, P. O. Laprise, and J. J. Clark, “An FPGA-based
people detection system,” EURASIP Journal on Applied Signal
Processing, no. 7, pp. 1047–1061, 2007.

[11] Y. Wei, X. Bing, and C. Chareonsak, “FPGA implementation
of AdaBoost algorithm for detection of face biometrics,” in
Proceedings of the IEEE International Workshop on Biomedical
Circuits and Systems, 2004.

[12] T. Theocharides, N. Vijaykrishnan, andM. J. Irwin, “A parallel
architecture for hardware face detection,” in Proceedings of
the IEEE Computer Society Annual Symposium on Emerging
Technologies and Architectures (VLSI ’06), 2006.

[13] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, and R. Mareachen,
“Face detection for automatic exposure control in handheld
camera,” in Proceedings of the 4th IEEE International Confer-
ence on Computer Vision Systems (ICVS ’06), 2006.

[14] H.-C. Lai, R. Marculescu, M. Savvides, and T. Chen,
“Communication-aware face detection using noc architec-
ture,” in Proceedings of the 6th International Conference on
Computer Vision (ICVS ’08), vol. 5008 of Lecture Notes in
Computer Science, pp. 181–189, 2008.

[15] http://www.systemcrafter.com/.
[16] C. Papageorgiou, M. Oren, and T. Poggio, “A general frame-

work for object detection,” in Proceedings of the International
Conference on Computer Vision, 1998.

[17] Open Source Computer Vision Library, February 2009,
http://sourceforge.net/projects/opencvlibrary/.

[18] S. Swan, An Introduction to System Level Modeling in SystemC
2.0, Cadence Design Systems, Inc., 2001.

12 EURASIP Journal on Embedded Systems

[19] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis
of detection cascades of boosted classifiers for rapid object
detection,” in Proceedings of the 25th Pattern Recognition
Symposium (DAGM ’03), pp. 297–304, 2003.

[20] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 22–38, 1998.

[21] Annapolis Microsystems Inc, Annapolis WILDCARD Sys-
tem Reference Manual, Revision 2.6, 2003, http://www
.annapmicro.com/.

[22] F. Smach, J. Miteran, M. Atri, J. Dubois, M. Abid, and J.-P.
Gauthier, “An FPGA-based accelerator for Fourier Descriptors
computing for color object recognition using SVM,” Journal of
Real-Time Image Processing, vol. 2, no. 4, pp. 249–258, 2007.

[23] J. Dubois, M. Mattavelli, L. Pierrefeu, and J. Mitéran, “Con-
figurable motion-estimation hardware accelerator module for
the MPEG-4 reference hardware description platform,” in
Proceedings of the International Conference on Image Processing
(ICIP ’05), vol. 3, Genova, Italy, 2005.

	1. Introduction
	2. Review of Boosting-Based Object Detectors
	2.1. Theory of Boosting-Based Object Detectors
	2.1.1. Cascade Detection
	2.1.2. Features
	2.1.3. Weak Classifiers and Boosting Training

	2.2. Previous Implementations

	3. Sequential Implementation
	3.1. First Classification
	3.2. Remaining Classification Stages
	3.3. Full Sequential Implementation

	4. Possible Parallelism
	4.1. Algorithm Analysis and Parallel Model
	4.2. ParallelModel Discussion

	5. Architecture Definition: Modelling Using SystemC
	5.1. SystemC Description
	5.2. SystemC Implementation for Functional Validation and Verification
	5.3. Modelling for Embedded Implementation
	5.4. Intermediate Memory

	6. Hardware Implementation and Experimental Performances
	6.1. Hardware Implementation
	6.2. Performances

	7. Conclusion
	References

