Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 175043, 21 pages
doi:10.1155/2009/175043

Research Article

Trade-Off Exploration for Target Tracking Application in
a Customized Multiprocessor Architecture

Jehangir Khan,! Smail Niar,! Mazen A. R. Saghir,? Yassin El-Hillali,’

and Atika Rivenq-Menhaj!

I Université de Valenciennes et du Hainaut-Cambrésis, ISTV2 - Le Mont Houy, 59313 Valenciennes Cedex 9, France
2 Department of Electrical and Computer Engineering, Texas A¢-M University at Qatar, 23874 Doha, Qatar

Correspondence should be addressed to Smail Niar, smail.niar@univ-valenciennes.fr

Received 16 March 2009; Revised 30 July 2009; Accepted 19 November 2009

Recommended by Markus Rupp

This paper presents the design of an FPGA-based multiprocessor-system-on-chip (MPSoC) architecture optimized for Multiple
Target Tracking (MTT) in automotive applications. An MTT system uses an automotive radar to track the speed and relative
position of all the vehicles (targets) within its field of view. As the number of targets increases, the computational needs of the MTT
system also increase making it difficult for a single processor to handle it alone. Our implementation distributes the computational
load among multiple soft processor cores optimized for executing specific computational tasks. The paper explains how we
designed and profiled the MTT application to partition it among different processors. It also explains how we applied different
optimizations to customize the individual processor cores to their assigned tasks and to assess their impact on performance and
FPGA resource utilization. The result is a complete MTT application running on an optimized MPSoC architecture that fits in a
contemporary medium-sized FPGA and that meets the application’s real-time constraints.

Copyright © 2009 Jehangir Khan et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Technological progress has certainly influenced every aspect
of our lives and the vehicles we drive today are no exception.
Fuel economy, interior comfort, and entertainment features
of these vehicles draw ample attention but the most impor-
tant objective is to aid the driver in avoiding accidents.

Road accidents are primarily caused by misjudgment of a
delicate situation by the driver. The main reason behind the
driver’s inability to judge a potentially dangerous situation
correctly is the mental and physical fatigue due the stressful
driving conditions. In cases where visibility is low due to
poor weather or due to night-time driving, the stress on the
driver increases even further.

An automatic early warning and collision avoidance
system onboard a vehicle can greatly reduce the pressure on
the driver. In the literature, such systems are called Driver
Assistance Systems (DASs). DASs not only automatize safety
mechanisms in a vehicle but also help drivers take correct and
quick decisions in delicate situations. These systems provide
the driver with a realistic assessment of the dynamic behavior

of potential obstacles before it is too late to react and avoid a
collision.

In the past few years, various types of DASs have been
the subject of research studies [1-3]. Most of these works
concentrate on visual aid to the driver by using a video
camera. Cameras are usually used for recognizing road signs,
lane departure warnings, parking assistance, and so forth.
Identification of potential obstacles and taking corrective
action are still left to the driver. Moreover, cameras have
limitations in bad weather and low-visibility conditions.

Our system uses a radar installed in a host vehicle
to scan its field of view (FOV) for potential targets, and
partitions the scanned data into sets of observations, or
tracks [4]. Potentially dangerous obstacles are then singled
out and visual and audio alerts are generated for the
driver so that a preventive action can be taken. The output
signals generated by the system can also be routed to an
automatic control system and safety mechanisms in case
of the vehicles equipped for fully autonomous driving. We
aim to use a low-cost automotive radar and complement
it with an embedded tracking system for achieving higher

performance. The objective is to reduce the cost of the system
without sacrificing its accuracy and precision.
The principle contributions of this work are as follows.

(i) design and development of a new MTT system
specially adapted to the requirements of automotive
safety applications,

(ii) feasible and scalable Implementation of the system
in a low-cost configurable and flexible platform
(FPGA),

(iii) optimization of the system to meet the real time
performance requirements of the application and to
reduce the hardware size to the minimum possible
limit, this not only helps to reduce the energy
consumption but also creates room for adding more
functionality into the system using the same low-cost
platform.

We implement our system in FPGA using a multiprocessor
architecture which is inherently flexible and adaptable.
FPGAs are increasingly being used as the platforms of choice
for implementing complex embedded systems due to their
high performance, flexibility, and fast design times. Multi-
processor architectures have also become popular for several
reasons. For example, monitoring processor properties over
the last three decades shows that the performance of a single
processor has leveled off in the last decade. Using multiple
processors with a lower frequency, results in comparable
performance in terms of instructions per second to a single
highly clocked processor and reduces power consumption
significantly [5]. Dedicated fully hardware implementation
may be useful for high-speed processing but it does not
offer the flexibility and programmability desired for system
evolution. Fully hardware implementations also require
longer design time and are inherently inflexible. Applications
with low-power requirements and hardware size constraints,
are increasingly resorting to MPSoC architectures. The move
to MPSoC design elegantly addresses the power issues faced
on the hardware side while ensuring the speed performance.

2. MTT Terminology and Building Blocks

2.1. Terminology. In the context of target tracking applica-
tions, a target represents an obstacle in the way of the host
vehicle. Every obstacle has an associated state represented by
a vector that contains the parameters defining the target’s
position and its dynamics in space (e.g., its distance, speed,
azimuth or elevation, etc.).

A state vector with n elements is called n-state vector. A
concatenation of target states defining the target trajectory
or movement history at discrete moments in time is called a
track.

The behavior of a target can ideally be represented by
its true state. The true state of a target is what characterizes
the target’s dynamic behavior and its position in space in a
100% correct and exact manner. A tracking system attempts
to estimate the state of a target as close to this ideal state as
possible. The closer a tracking system gets to the true state,

EURASIP Journal on Embedded Systems

the more precise and accurate it is. For achieving this goal, a
tracking system deals with three types of states

(i) The Observed State or the Observation corresponds to
the measurement of a target’s state by a sensor (radar
in our application) at discrete moments in time. It
is one of the two representations of the true state
of the target. The observed state is obtained through
a measurement model also termed as the observation
model (refer to Section 4.2). The measurement model
mathematically relates the observed state to the true
state, taking into account the sensor inaccuracies and
the transmission channel noises. The sensor inac-
curacies and the transmission noises are collectively
called measurement noise.

(ii) The Predicted State or the Prediction is the second
representation of the target’s true state. Prediction
is done for the next cycle before the sensor sends
the observations. It is a calculated “guess” of the
target’s true state before the observation arrives. The
predicted state of a target is obtained through a
process model (refer to Section 4.1). The process model
mathematically relates the predicted state to the true
state while taking into account the errors due to the
approximations of the random variables involved in
the prediction process. These errors are collectively
termed as process noise.

(iil) The Estimated State or the Estimate is the corrected
state of the target that depends on both the obser-
vation and the prediction. The correction is done
after the observation is received from the sensor. The
estimated state is calculated by taking into account
the variances of the observation and the prediction.
To get a state that is more accurate than both the
observed and predicted states, the estimation process
calculates a weighted average of the observed and
predicted states favoring the one with lower variance
more over the one with larger variance.

In this paper, the term scan refers to the periodic sweep
of radar field of view (FOV) giving observations of all the
detected targets. The FOV is usually a conical region in space
inside which an obstacle can be detected by the radar. The
area of this region depends upon the radar range (distance)
and its view angle in azimuth.

The radar Pulse Repetition Time (PRT) is the time interval
between two successive radar scans. The PRT for the radar
unit we are using is 25 ms. This is the time window within
which the tracking system must complete the processing of
the information received during a scan. After this interval,
new observations are available for processing. As we shall
see latter, the PRT puts an upper limit on the latency of the
slowest module in the application.

2.2. MTT Building Blocks. A generalized view of a Multiple
Target Tracking (MTT) system is given in Figure 1. The
system can broadly be divided into two main blocks, namely
Data Association and Filtering ¢ Prediction. The two blocks
work in a closed loop. The Data Association block is

EURASIP Journal on Embedded Systems

Data association

Track
maintenance

Estimated
target
states

Observations

from the
sensor

Filtering
& prediction

Observation to track
assignment

Gate computation

FIGURE 1: A simplified view of MTT.

further divided into three subblocks: Track maintenance,
Observation-to-Track Assignment and Gate Computation.

Figure 1 represents a text book view of the MTT sys-
tem as presented in [6, 9]. Practical implementation and
internal details may vary depending on the end use and
the implementation technology. For example, the Filtering
& Prediction module may be implemented choosing from
a variety of algorithms such as «-f filter [4, 6], mean-
shift algorithm [7], Kalman Filter [6, 8, 9], and so forth.
Similarly, the Data Association module is usually modeled as
an Assignment Problem. The assignment problem itself may
be solved in a variety of ways, for example, by using the
Auction algorithm [10], or the Hungarian/Munkres algorithm
(11, 12].

The choice of algorithms for the subblocks is driven
by factors like the application environment, the amount of
available processing resources, the hardware size of the end
product, the track precision, and the system response time,
and so forth.

3. Hardware Software Codesign Methodology

For designing our system, we followed the y-chart codesign
methodology depicted in Figure 2.

On the right hand side, the software design considera-
tions are taken into account. This includes the choice of the
programming language, the software development tools, and
so forth. On the left hand side, the hardware design tools, the
choice of processors, the implementation platform, and the
application programming interface (API) of the processors
are defined. In the middle, the MPSoC hardware is generated
and the software is mapped onto the processors.

After constructing the initial architecture, its perfor-
mance is evaluated. If further performance improvement
is needed, we track back to the initial steps and optimize
various aspects of the software and/or the hardware to
achieve the desired performance. The modalities of the
“track back” step are mostly dependent on the experience
and expertise of the designer. For this work, we used a
manual track back approach based on the profiling statistics
of the application. As a part of our ongoing work, we are
formalizing the design approach to help the designer in

HW aspects SW aspects

" Application
development <.
_environment

|
\
|
I

Improve

1
1
1
1
]

]
I
1
1
1

! Re-arrange

|

\

]
|
1
1
I
1
1
I
1
1

architecture application
\
\ 1
\ 1
\ 1
\ Improve /
\ 1 . /
. Code generation mapping |

/

\
1
|
|
p |
process I . ,
| strategies
. I
I
1
1

F1GURE 2: The Y-chart flow for codesign.

choosing the right configuration parameters and mapping
strategies.

Following the codesign methodology, we first developed
our application, details of which are described in the next
section. After developing the application, we move on to
the architectural aspects of the system which are detailed in
Section 6.

4. Application Design and Development:
Our Approach

As stated above, the choice of algorithms for the MTT system
and the internal details are driven by various factors. We
designed the application for mapping onto a multiprocessor
system. A multiprocessor architecture can be exploited
very efficiently if the underlying application is divided
into simpler modules which can run in parallel. Moreover,
simple multiple modules can be managed and improved
independently of one another as long as the interfaces among
them remain unchanged.

For the purpose of a modular implementation, we
organized our MTT application into submodules as shown
in Figure 3. The functioning of the system is explained as
follows. Assuming a recursive processing as shown by the
loop in Figure 1, tracks would have been formed on the
previous radar scan. When new observations are received
from the radar, the processing loop is executed.

In the first cycle of the loop, at most 20 of the incoming
observations would simply pass through the Gate Checker,
the Cost Matrix Generator, and the Assignment Solver on
to the filters’ inputs. A filter takes an observation as an
inaccurate representation of the true state of the target, and
the amount of inaccuracy of the observation depends on the
measurement variance of the radar. The filter estimates the
current state of the target and predicts its next state before

Data association

Track maintenance

EURASIP Journal on Embedded Systems

Observationless
gate identifier

New target
identifier

Cost matrix

Obs-to-track assignment

Assignment

Track
Init/del

Filtering & prediction

Prediction
(time update)

. Estimates
Correction

Gate computation

Gate checker
l I generator I ek II

(measurement
update)

FiGure 3: The Proposed MTT implementation.

the next observation is available. The estimation process
and the MTT application as a whole rely on mathematical
models. The mathematical models we used in our approach
are detailed below.

4.1. Process Model. The process model mathematically
projects the current state of a target to the future. This can
be presented in a linear stochastic difference equation as

Yy =AY 1 + BUy + Wi_1. (1)

In (1), Yx_; and Yy are n-dimensional state vectors that
include the n quantities to be estimated. Vector Yy,
represents the state at scan k — 1, while Y} represents the state
at scan k.

The n x n matrix A in the difference equation (1) relates
the state at scan k — 1 to the state at scan k, in the absence
of either a driving function or process noise. Matrix A is the
assumed known state transition matrix which may be viewed
as the coefficient of state transformation from scan k — 1
to scan k, in the absence of any driving signal and process
noise. The n X | matrix B relates the optional control input
Ui € R to the state Yy, whereas Wi_; is zero-mean additive
white Gaussian process noise (AWGN) with assumed known
covariance Q. Matrix B is the assumed known control matrix,
and Uy is the deterministic input, such as the relative position
change associated with the host-vehicle motion.

4.2. Measurement Model. To express the relationship
between the true state and the observed state (measured
state), a measurement model is formulated. It is described as
a linear expression:

Zr = HY, + V. (2)

Here Z; is the measurement or observation vector
containing two elements, distance d and azimuth angle

0. The 2 X n observation matrix H in the measurement
equation (2) relates the current state to the measurement
(observation) vector Zg. The term Vi in (2) is a random
variable representing the measurement noise.

For implementation, we chose the example case given in
[8]. In the rest of the paper, the numerical values of all the
matrix and vector elements are borrowed from this example.
In this example, the matrices and vectors in equations (1)
and (2) have the forms shown below:

yu 1TO0O
Y21 0100 d
Yy = , A= , Zy = . 3)
»31 001T 0
V31 0001

Here yi; is the target range or distance; y,; is range rate
or speed; ys3; is the azimuth angle; y4 is angle rate or
angular speed. In vector Zj, the element d is the distance
measurement and 6 is the azimuth angle measurement.
Matrix B and control input Uy are ignored here because they
are not necessary in our application.

The radar Pulse Repetition Time (PRT) is denoted by T
and it is 0.025 seconds for the specific radar unit we are using
in our project.

Having devised the process and measurement models, we
need an estimator which would use these models to estimate
the true state. We use the Kalman filter which is a recursive
Least Square Estimator (LSE) considered to be the optimal
estimator for linear systems with Additive White Gaussian
Noise (AWGN) [9, 13].

4.3. Kalman Filter. The Filtering ¢ Prediction block in
Figure 3 is particularly important as the number of filters
employed in this block is the same as the maximum number
of targets to be tracked. In our work, we fixed this number at

EURASIP Journal on Embedded Systems

20 as the radar we are using can measure the coordinates of
a maximum of 20 targets. Hence this block uses 20 similar
filters running in parallel. If the number of the detected
targets is less than 20, the idle filters are switched off to
conserve energy.

Given the process and the measurement models in (1)
and (2), the Kalman filter equations are

Yi =AY, +BUj, (4)

Py = AP AT +Q, (5)

K =P H'(HPH" +R)71, (6)
Yi = ¥, +K(2Z - HY), (7)
Py = (I - KH)P;. (8)

Here ffk’ is the state prediction vector; ?k_l is the state
estimation vector, K is the Kalman gain matrix, P, is the
prediction error covariance matrix, Py is the estimation error
covariance matrix and I is an identity matrix of the same
dimensions as Px. Matrix R represents the measurement
noise covariance and it depends on the characteristics of the
radar.

The newly introduced vectors and matrices in (4) to (8)
have the following forms:

yn i
N Y21 ~ Y3 1000
Y = { > Y = {2_1 , H= ,
r31 Y31 0010
yan Vn
i r 10° 0
R= = N (9)
1 122 0 2910
qi1 412 q13 414 0 0 O 0
q21 422 q23 o4 0 330 0 0
Q= =
qs1 432 q33 (34 0 0 O 0
qa1 qa2 qa3 qaa 0 0 0 13%10°8

Here }A’l’l is the range prediction, }A’{l is the speed
prediction, Y3, is the azimuth angle prediction, Yy, is the
angular speed prediction, ¥}, is the range estimate, Y5, the
speed estimate, 1?31 is the angle estimate and lastly 1741 is the
angular speed estimate, all for instant k.

Matrices K and P, have the following forms:

ki ki P11 P21 P31 Pa

K- ko1 kin , Py - Pz:1 P2:2 P2:3 P2:4 10)
k31 ks> P31 P32 P33 P3a
ki ki Pa1 P2 P13 Pus

Matrix P is similar in form to P, except for the
superscript “—"The scan index k has been ignored in the

N~

F1GURE 4: The Kalman filter.

elements of these matrices and vectors for the sake of
notational simplicity. The Kalman filter cycles through the
prediction-correction loop shown pictorially in Figure 4. In
the prediction step (also called time update), the filter
predicts the next state and the error covariance associated
with the state prediction using (4) and (5), respectively.
In the correction step (also called measurement update), it
calculates the filter gain, estimates the current state and the
error covariance of the estimation using (6) through (8),
respectively.

Figure 5 shows the position of a target estimated by the
Kalman filter against the true position and the observed
position (measured by the radar). The efficacy of the filter
can be appreciated by fact that the estimated position follows
the true position very closely as compared with the observed
position after the 20 transitional iterations.

In the case of a system dedicated to tracking a single
target, the estimated state given by the filter would be used
to null the offset between the current pointing angle of
the radar and the angle at which the target is currently
situated. This operation would need a control loop and an
actuator to correct the pointing angle of the radar. But since
we are dealing with multiple targets at the same time, we
have to identify which of the incoming observed states to
associate with the predicted states to get the estimation for
each target. This is the job of data association function. The
data association submodules are explained one by one in the
following sections.

4.4. Gate Computation. The first step in data association is
the gate computation. The Gate Computation block receives
the predicted states ¥, and the predicted error covariance P
from the Kalman Filters for all the currently known targets.
Using these two quantities the Gate Computation block
defines the probability gates which are used to verify whether
an incoming observation can be associated with an existing
target. The predicted states f/k_ are located at the center of
the gates. The dimensions of the gates are proportional to the
prediction error covariance Py . If the innovation “Zy — HY; ”
(also called the residual) for an observation, is greater than
the gate dimensions, the observation fails the gate and hence

6
Position (true, measured and estimated)
‘Estimated
24 - T S
22 - ,] B A
,E\) I " I Tl i 1 |
: 20 ’ L “lf\“ [r‘ﬁ‘n ul\'l‘!w‘.m‘m - “ ‘I ‘lv‘\‘\
: | UMLLA L
g 18 A T
A Measured - ‘ ‘ ‘
16 M T
14 4

400 600 800 1000 1200 1400 1600 1800

Iterations (n)

FiGure 5: Estimated target position.

it cannot be associated with the concerned prediction. If an
observation passes a gate, then it may be associated with the
prediction at the center of that gate. In fact, observations for
more than one targets may pass a particular gate. In such
cases all these observations are associated with the single
prediction. The Gating process may be viewed as the first
level of “screening out” the unlikely prediction-observation
associations. In the second level of screening, namely the
assignment solver (discussed latter in Section 4.7), a strictly
one-to-one coupling is established between observations and
predictions.
The gate computation model is summarized as follows.

_Define Y to be the innovation or the residual vector (Zj —

HY,). In general, for a track i, the residual vector is

Yi=Z—HY,. (11)
Now define a rectangular region such that an observation
vector Z (with elements zx;) is said to satisfy the gate of a

given track if all elements y; of residual vector 17,» satisfy the
relationship

‘ZkZ*Hf’J’ = ‘}N’il

< Kgio;. (12)

In (11) and (12), 7 is an index for track i, G is gate and [is
replaced either by d or by 6, whichever is appropriate (see
(17) and (18)). The term o, is the residual standard deviation
and is defined in terms of the measurement variance o2 and
prediction variance 0}%;. A typical choice for K¢ is [Kg =
3.0]. This large choice of gating coefficient is typically made
in order to compensate for the approximations involved in
modeling the target dynamics through the Kalman filter
covariance matrix [4]. This concept comes from the famous
3 sigma rule in statistics.

In its matrix form for scan k and track i, (11) can be
simplified down to

~ Vik di — ¥4,
Vi - {{ “] - [{"“}. (13)
Yik21 0 — Vi

EURASIP Journal on Embedded Systems

Consequently (12) gives
Yik1n

~ < KGIO}. (14)
Yik21

The residual standard deviations for the two state vector
elements are defined as follows

Ord = AT11 + P22> (15)
0r9 = 22 + Pas- (16)

From (14), (15), and (16), we get

| Vici1 | = | Yika| <3.0\rii + p (17)
| Vikar | = | Jiko| < 3.0yra2 + pay (18)

Equations (17) and (18) together put the limits on the
residuals yixs and yikg. In other words, the difference between
an incoming observation and prediction for track i must
comply with (17) and (18) for the observation to be assigned
to track i. The Gate Checker subfunction, explained next,
tests all the incoming observations for this compliance.

4.5. Gate Checker. The Gate Checker tests whether an
incoming observation fulfills the conditions set in (17) and
(18). Incoming observations are first considered by the
Gate Checker for updating the states of the known targets.
Gate checking determines which observation-to-prediction
pairings are probable. At this stage the pairing between the
predictions and the observations are not done in a strictly
one-to-one fashion. A single observation may be paired
with several predictions and vice versa, if (17) and (18) are
complied with. In effect, the Gate Checker sets or resets the
binary elements of an N X N matrix termed as the Gate Mask
matrix M where N is the maximum number of targets to be
tracked,

Predictions
r - N
my mpy - MIN
My My -+ NN
M = observations,
MN1 MN2 MNN

if obs i obey (V-D.7) & (V6D.8) for track j,

otherwise.
(19)

If an observation i fulfills both the conditions of (17) and
(18) for a prediction j, the corresponding element m;; of
matrix M is set to 1 otherwise it is reset to 0. Matrix M would
typically have more than one 1’s in a column or a row. The
ultimate goal for estimating the states of the targets is to have
only one "1 in a row or a column for a one-to-one coupling
of observations and predictions. To achieve this goal, the first
step is to attach a cost to every possible coupling. This is done
by the Cost Generator block explained next.

EURASIP Journal on Embedded Systems

4.6. Cost Matrix Generator. The Mask matrix is passed on
to the Cost Matrix Generator which attributes a cost to each
pairing. The costs associated with all the pairings are put
together in a matrix called the Cost Matrix C.

The cost ¢;; for associating an observation i with a
prediction j is the statistical distance dj; between the
observation and the prediction when m;; is 1. The cost is
an arbitrarily large number when m;; is 0. The statistical
distance d,zj is calculated as follows.

Define

Sij=HP H" +R. (20)

Here i is an index for observation i and j is the index for
prediction j in a scan, S;; is the residual covariance matrix.
The statistical distance d,vzj is the norm of the residual vector,

2 _ vTo-1y
di; =Y S;; Yij (21)
Predictions

ci1 €12 -t QN
€1 €2 *** OGN

C=|]) Observations

: (22)

CN1 CN2 *** CNN
Arbitrary large number if m;; is 0

Gji=1 .
dj if myj is 1

Equation (20) can be written in its matrix form and
simplified down to

- _
S = Pn 7"11 7P13 . (23)
P31 Pt

Using (13), (21), and (23), dizj is calculated as follows:
P33tra —pis Yiki1
[P Fiar]|: o :| |:~ :|
2 —Ps1 Putru Yik21

4= . 24
5T n) % (o v) —pnw g 2

Recall here that yix11 = Vikd and Yik21 = Yiko-

The cost matrix demonstrates a conflict situation where
several observations are candidates to be associated with a
particular prediction and vice versa. A conflict situation is
illustrated in Figure 6.

The three rectangles represent the gates constructed by
the Gate Computation module. The predicted states are
situated at the center of the gates. Certain parts of the
three gates overlap one another. Some of the incoming
observations would fall into these overlapping regions of
the gates. In such cases all the predictions at the center of
the concerned gates are eligible candidates for association
with the observations falling in the overlapping regions. The

2 way conflict

\ Gate 1
P o
Gate 2
(3
3 way conflict Gate 3

® Predictions
B Observations

F1GURE 6: Conflict situation in data association.

mask matrix M and the cost matrix C corresponding to this
situation are shown below,

Predictions
———

010

100

111

M= Observations,

(25)

Predictions

© d%z ©

C = d%l 0 00

2 2 2
d31 d32 d33

Observations.

The prediction with the smallest statistical distance dizj
from the observation is the strongest candidate. To resolve
these kinds of conflicts, the cost matrix is passed on to the
Assignment Solver block which treats it as the assignment
problem [10, 12].

4.7. Assignment Solver. The assignment solver determines
the finalized one-to-one pairing between predictions and
observations. The pairings are made in a way to ensure
minimum total cost for all the finalized pairings. The
assignment problem is modeled as follows.

Given a cost matrix C with elements ¢;;, find a matrix
X = [x;j] such that

C= Zn: i cijxij is minimized (26)
i=1j=1
subject to:
Zx,,- =1, Vj,
1 (27)

dDxij=1, Vi
j

Here x;; is a binary variable used for ensuring that an
observation is associated with one and only one prediction

and a prediction is associated with one and only one
observation. This requires x;; to be either 0 or I, that is,
Xij S {0, l}.

Matrix X can be found by using various algorithms. The
most commonly used among them are the Munkres algorithm
[12] and the Auction algorithm [10]. We use the former in our
application due to its inherent modular structure.

Matrix X below shows a result of the Assignment Solver
for a 4 X 4 cost matrix. It shows that observation 1 is to be
paired with prediction 3, observation 2 with prediction 1 and
so on:

Predictions
——

0010

1000
X = Observations. (28)
0001

0100

The finalized observation-prediction pairs are passed on to
the the relevant Kalman filters to start a new cycle of the loop
for estimating the current states of the targets, predicting
their next states and the error covariances associated with
these states.

All the steps IV-C through IV-G are repeated indefinitely
in the loop in Figure 3. However, there are certain cases
where some additional steps have to be taken too. Together
these steps are called Track Maintenance. The Track Mainte-
nance and the circumstances where it becomes relevant are
explained in the next section.

4.8. Track Maintenance. The Track Maintenance block con-
sists of three functions namely the New Target Identifier, the
obs-less Gate Identifier and the Track Init/Del.

In real conditions there would be one or more targets
detected in a scan which did not exist in the previous scans.
On the other hand there would be situations where one or
more of the already known targets would no longer be in the
radar range. In the first case we have to ensure if it is really
a new target or a false alarm. The New target Identification
subblock takes care of such cases. In the latter case we have
to ascertain that the target has really disappeared from the
radar FOV. The Observation-less Gate Identification subblock
is responsible for dealing with such situations.

A new target is identified when its observation fails all
the already established gates, that is, when all the elements of
arow in the Gate Mask matrix M are zero. Such observations
are candidates for initiating new tracks after confirmation.
The confirmation strategies we use in our work are based on
empirical results cited in [4]. In this work, 3 observations
out of 5 scans for the same target initiate a new track. The
new target identifier starts a counter for the newly identified
target. If the counter reaches 3 in five scans, the target is
confirmed and a new track is initiated for it. The counter
is reset every five scans thus effectively forming a sliding
window.

The disappearance of a target means that, no observa-
tions fall in the gate built around its predicted state. This is
indicated when an entire column of the Mask matrix is filled

EURASIP Journal on Embedded Systems

with zeros. The tracks for such targets have to be deleted after
confirmation of their disappearance. The disappearance is
confirmed if the concerned gates go without an observation
for 3 consecutive scans out of 5. The obs-less gate identifier
starts a counter when an empty gate is detected. If the
counter reaches 3 in three consecutive scans out of 5, the
disappearance of the target is confirmed and its track is
deleted from the list. The counter is reset every five scans.
The Track Init/Del function prompts the system to
initiate new tracks or to delete existing ones when needed.

5. Implementation Platform and the Tools

For the system under discussion we work with Altera’s NiosII
development kit StratixIl edition as the implementation
platform. The kit is built around Altera’s StratixII EP2S60
FPGA.

5.1. Design Tools. The Niosll development kits are com-
plemented with Altera’s Embedded Design Suite (EDS).
The EDS offers a user friendly interface for designing
NiosII based multiprocessor systems. A library of ready-
to-use peripherals and customizable interconnect structure
facilitates creating complex systems. The EDS also provides
a comprehensive API for programming and debugging the
system. The NiosII processor can easily be reinforced with
custom hardware accelerators and/or custom instructions
to improve its performance. The designer can choose from
three different implementations of the NiosII processor and
can add or remove features according to the requirements of
the application.

The EDS consists of the three tools, namely the Quar-
tusIl, the SOPC Builder and the NiosII IDE.

The system design starts with creating a QuartuslI
project. After creating a project, the user can invoke the
SOPC Builder tool from within the Quartusll. The designer
chooses processors, memory interfaces, peripherals, bus
bridges, IP cores, interface cores, common microprocessor
peripherals and other system components from the SOPC
Builder IP library. The designer can add his/her own custom
IP blocks and peripherals to the SOPC Builder component
library. Using the SOPC Builder, the designer generates the
Avalon switch fabric that contains all the decoders, arbiters,
data path, and timing logic necessary to bind the chosen
processors, peripherals, memories, interfaces, and IP cores.

Once the system integration is complete, RTL code is
generated for the system. The generated RTL code is sent
back into the Quartusll project directory where it can be
synthesized, placed and routed and finally an FPGA can be
configured with the system hardware.

After configuring the FPGA with a Nios II based
hardware, the next step is to develop and/or compile software
applications for the processor(s) in the system. The NiosII
IDE is used to manage the NiosIl C/C++ application and
system library or board support package (BSP) projects
and makefiles. The C/C++ application contains the software
application files developed by the user. The system library
includes all the header files and drivers related to the system

EURASIP Journal on Embedded Systems

Munkres algorithm analysis with GProf for 10 iterations

2000 Lo+d

1500 g

1000 s
= =

Runtime (ms)
for 10 iterations
(3]

w
S
o

Lt
500 - =
0 H-u-a-rerteetr e = 2e oo oo
234567 8 91011121314151617

Number of targets

ik [y

=@ I [A
cml kK[|4

—+— Call to Munkres —*%— Step 4
—&— Step 1 —o— Step 5
k- Step 2 —+— Step 6
-%- Step 3

F1GURE 7: Munkres algorithm profile obtained through GProf.

Munkres analysis with performance counter for 10 iterations

1600
1400 4
1200
1000 Vi
800 ¢
600 %=

AT
400 >

P

200 1% o
| ot rapdly

== E 2k 2 : == 353 R

6 8§ 91011121314 151617 181

Number of targets

N

\

Runtime (ms)

N

SN

KN

et
Al
~ETE

NSl
w N
N
~N

5

el
o
[=)

—— Call to Munkres —*— Step 4
—=— Step 1 —e— Step 5
& Step 2 —— Step 6
—-%- Step 3

F1Gurk 8: Profile of Munkres Algorithm obtained through Perfor-
mance Counter.

hardware components. The system library can be used to
select project settings such as the choice of stdin, stdout,
stderr devices, system clock timer, system time stamp timer,
various memory locations, and so forth. Thus using the
system library, the designer can choose the optimum system
configuration for an application.

5.2. Application Profiling and the Profiling Tools. A NioslI
application can be profiled in several ways, the most popular
among them being the use of the GProf profiler tool and the
Performance Counter peripheral.

5.2.1. GProf. The Gprof profiler tool, called nios2-elf-gprof,
can be used without making any hardware changes to the
NioslI system. This tool directs the compiler to add calls to
the profiler library functions into the application code.

The profiler provides an overview of the run-time behav-
ior of the entire system and also reveals the dependencies
among application modules. However adding instructions to
each function call for use by the GNU profiler affects the
code’s behavior in numerous ways. Each function becomes

larger because of the additional function calls to collect
profiling information. Collecting the profiling information
increases the entry and exit time of each function. The
profiling data is a sampling of the program counter taken at
the resolution of the system timer tick. Therefore, it provides
an estimation, not an exact representation of the processor
time spent in different functions [14].

5.2.2. Performance Counter. A performance counter periph-
eral is a block of counters in hardware that measure the
execution time taken by the user-specified sections of the
application code. It can monitor as many as seven code
sections. A pair of counters tracks each code section. A 64-
bit time counter counts the number of clock ticks during
which the code in the section is running while a 32-bit event
counter counts the number of times the code section runs.
These counters accurately measure the execution time taken
by designated sections of the C/C++ code. Simple, efficient
and minimally intrusive macros are used to mark the start
and end of the blocks of interest (the measured code sections)
in the program [14].

Figure 7 shows the Munkres algorithm’s profile obtained
through Gprof. The algorithm was executed on NiosIl/s
with 100 MHz clock and 4 KB instruction cache. The call
to Munkres represents the processor time of the overall
algorithm for up to 20 obstacles. Step1 through Step6
represent the behavior of individual subfunctions which
constitute the algorithm.

Figure 8 shows the profile of the same algorithm obtained
through the performance counter for the same processor
configuration. Clearly the two profiles have exactly the same
form. The difference is that while Gprof estimates that for
20 obstacles the algorithm takes around 4500 ms to find a
solution, the performance counter calculates the execution
time to be around 1500 ms. This huge difference is due to
the overhead added by Gprof when it calls its own library
functions for profiling the code.

We profiled the application with both the tools. The
Gprof was used for identifying the dependencies and the
performance counter for precisely measuring the latencies.
All the performances cited in the rest of the paper are those
obtained by using performance counter.

6. System Architecture

We coded our application in ANSI C following the generally
accepted efficient coding practices and the O3 compilation
option. Before deciding to allocate processing resources to
the application modules, we profiled the application to
know the latencies, resource requirements and dependencies
among the modules. Guided by the profiling results, we
distributed the application over different processors as
distinct functions communicating in a producer-consumer
fashion as shown in Figure 9. Similar considerations have
been proposed in [2, 15, 16].

The proposed multiprocessor architecture includes dif-
ferent implementations of the NiosII processor and various
peripherals as system building blocks.

10

FIFO FIFO

EURASIP Journal on Embedded Systems

FIFO

Track maintenance
processor #23

Riis -

Assignment solver
processor #22

Gating module
processor #21

-

Radar

I-cache D-cache I-cache

D-cache

I-cache D-cache

Local on-chip mem

=

FIFO

Local on-chip mem

Local on-chip mem

Shared memory interconnect

Track maint to KF interconnect

Assign solver to KF interconnect

KF to gating interconnect

o o o
= = =
=] =] =~
KF1 KF2 KF20
processor #1 processor #2 processor #20
I-cache | D-cache I-cache D-cache I-cache D-cache
Local on-chip mem Local on-chip mem Local on-chip mem

FIGURE 9: The proposed MPSoC architecture.

The NioslI is a configurable soft-core RISC processor
that supports adding or removing features on a system-by-
system basis to meet performance or cost goals. A NioslI
based system consists of NiosII processor core(s), a set of on-
chip peripherals, on-chip memory and interfaces to off-chip
memory and peripherals, all implemented on a single FPGA
device. Because Niosll processor systems are configurable,
the memories and peripherals can vary from system to
system.

The architecture hides the hardware details from the pro-
grammer, so programmers can develop NiosII applications
without specific knowledge of the hardware implementation.

The NioslI architecture uses separate instruction and
data buses, classifying it as Harvard architecture. Both the
instruction and data buses are implemented as Avalon-
MM master ports that adhere to the Avalon-MM interface
specification. The data master port connects to both memory
and peripheral components while the instruction master
port connects only to memory components.

The Kalman filter, as mentioned earlier, is recursive
algorithm looping around prediction and correction steps.
Both these steps involve matrix operations on floating
point numbers. These operations demand heavy processing
resources to complete in a timely way. This makes the filter
a strong candidate for mapping onto a separate processor.
Thus for tracking 20 targets at a time, we need 20 identical
processors executing Kalman filters.

The Gate Computation block regularly passes infor-
mation to Gate Checker which in turn, is in constant
communication with Cost Matrix Generator. In view of these
dependencies, we group these three blocks together, collec-
tively call them the Gating Module and map them onto a
single processor to minimize interprocessor communication.

Interprocessor communication would have required addi-
tional logic and would have added to the complexity of the
system. Avoiding unnecessary interprocessor communica-
tion is also desirable for reducing power consumption.

The assignment-solver is an algorithm consisting of six
distinct iterative steps [12]. Looping through these steps
demands a long execution time. Moreover, these steps have
dependencies among them. Hence the assignment solver has
to be kept together and cannot be combined with any of the
other functions. So we allocated a separate processor to the
assignment solver.

The three blocks of the Track Maintenance subfunction
individually don’t demand heavy computational resources,
so we group them together for mapping onto a processor.
As can be seen in Figure 9, every processor has an I-cache,
a D-cache and a local memory. Since the execution time of
the individual functions and their latencies to access a large
shared memory, are not identical, dependence exclusively on
a common system bus would become a bottleneck. Addi-
tionally, since the communication between various functions
is of producer-consumer nature, complicated synchronization
and arbitration protocols are not necessary. Hence we chose
to have a small local memory for every processor and a
large off-chip memory device as shared memory for non
critical sections of the application modules. As a result
the individual processors have lower latencies for accessing
their local memories containing the performance critical
codes. In Sections 7.2 and 7.4 we will demonstrate how to
systematically determine the optimal sizes of these caches
and the local memories.

Every processor communicates with its neighboring
processors through buffers. These buffers are dual-port
FIFOs with handshaking signals indicating when the buffers

EURASIP Journal on Embedded Systems

are full or empty and hence regulating the data transfer
between the processors. This arrangement forms a system
level pipeline among the processors. At the lower level, the
processors themselves have a pipelined architecture (refer to
Table 1). Thus the advantages of pipelined processing are
taken both at the system level as well as at the processor level.
An additional advantage of this arrangement is that changes
made to the functions running on different processors do not
have any drastic effects on the overall system behavior as long
as the interfaces remain unchanged. The buffers are flushed
when they are full and the data transfer resumes after mutual
consent of the concerned processors. The loss of information
during this procedure does not affect the accuracy because
the data sampling frequency as set by the radar PRT, is high
enough to compensate for this minor loss.

Access to the I/O devices is memory-mapped. Both data
memory and peripherals are mapped into the address space
of the data master port of the NiosII processors. The NiosII
processor uses the Avalon switch fabric as the interface to its
embedded peripherals. The switch fabric may be viewed as a
partial cross-bar where masters and slaves are interconnected
only if they communicate. The Avalon switch fabric with
the slave-side arbitration scheme, enables multiple masters
to operate simultaneously [17]. The slave-side arbitration
scheme minimizes the congestion problems characterizing
the traditional bus.

In the traditional bus architectures, one or more bus
masters and bus slaves connect to a shared bus. A single
arbiter controls the bus, so that multiple bus masters do not
simultaneously drive the bus. Each bus master requests the
arbiter for control of the bus and the arbiter grants access
to a single master at a time. Once a master has control of
the bus, the master performs transfers with any bus slave.
When multiple masters attempt to access the bus at the same
time, the arbiter allocates the bus resources to a single master,
forcing all other masters to wait.

The Avalon system interconnect fabric uses multimaster
architecture with slave-side arbitration. Multiple masters can
be active at the same time, simultaneously transferring data
to independent slaves. Arbitration is performed at the slave
where the arbiter decides which master gains access to the
slave only if several masters initiate a transfer to the same
slave in the same cycle. The arbiter logic multiplexes all
address, data, and control signals from masters to a shared
slave. The arbiter logic evaluates the address and control
signals from each master and determines which master, if
any, gains access to the slave next. If the slave is not shared,it is
always available to its master and hence multiple masters can
simultaneously communicate with their independent slaves
without going through the arbiter.

6.1. System Software. When processors are used in a system,
the use of system software or an operating system is
inevitable. Many NioslI systems have simple requirements
where a minimal operating system or a small footprint
system software such as Altera’s Hardware Abstraction
Layer (HAL) or a third party real-time operating system is
sufficient. We use the former because the available third party
real time operating systems have large memory footprints

11

while one of our objectives is to minimize the memory
requirements.

The HAL is a lightweight runtime environment that
provides a simple device driver interface for programs
to communicate with the underlying hardware. The HAL
application programming interface (API) is integrated with
the ANSI C standard library. The API facilitates access to
devices and files using familiar C library functions.

HAL device driver abstraction provides a clear distinc-
tion between application and device driver software. This
driver abstraction promotes reusable application code that
is independent of the underlying hardware. Changes in
the hardware configuration automatically propagate to the
HAL device driver configuration, preventing changes in the
underlying hardware from creating bugs. In addition, the
HAL standard makes it straightforward to write drivers for
new hardware peripherals that are consistent with existing
peripheral drivers [17].

6.2. Constraints. The main constraints that we have to
comply with are as follows.

We need the overall response time of the system to be
less than the radar PRT which is 25ms. This means that
the slowest application module must have less than 25 ms
of response time. Hence the first objective is to to meet this
deadline.

The FPGA (StratixII EP2S60) we are using for this
system, contains a total of 318 KB of configurable on-chip
memory. This memory has to make up the processors’
instruction and data caches, their internal registers, periph-
eral port buffers and locally connected dedicated RAM or
ROM. Thus the second constraint is that the total on-chip
memory utilization must not exceed this limit. We can use
off-chip memory devices but they are not only very slow
in comparison to the on-chip memory but they also have
to be shared among the processors. Controlling access to
shared memory needs arbitration circuitry which adds to the
complexity of the system and further increase the access time.
On the other hand we cannot totally eliminate the off-chip
memory for the reasons stated above. In fact we must balance
our reliance on the off-chip and on-chip memory in such a
way that neither the on-chip memory requirements exceed
the available amount of memory nor the system becomes too
slow to cope with the time constraints.

Another constraint is the amount of logic utilization.
We must choose our hardware components carefully to
minimize the use of the programmable logic on the FPGA.
Excessive use of programmable logic not only complicates
the design and consumes the FPGA resources but also
increases power consumption. For these reasons we optimize
the hardware features of the the individual processors and
leave out certain options when they are not absolutely
essential for meeting the time constraints.

7. Optimization Strategies

To meet the constraints discussed above, we plan our
optimization strategies as follows.

12

TasLe 1: Different NiosII implementations and their features.

Nios II/f Nios II/s Nios Il/e
Fast Standard Economy
Pipeline 6 Stages 5 Stages None
HW Multiplier 1 Cycle 3 Cycles Emulated in
and Barrel Shifter Software
Branch Prediction =~ Dynamic Static None
Instr. cache Configurable Configurable None
Data cache Configurable None None
Logic elements 1400-1800 1200-1400 600-700

(i) Select the appropriate processor type for each module
to execute it in the most efficient way.

(ii) Identify the optimum cache configuration for each
module and customize the concerned processor
accordingly.

(iii) Explore the needs for custom instruction hardware
for each module and implement the hardware where
necessary.

(iv) Identify the performance critical sections in each
module and map them onto the fast on-chip memory
to improve the performance while keeping the on-
chip memory requirements as low as possible.

(v) Look for redundancies in the code and remove them
to improve the performance.

In the following sections we explain these strategies one
by one.

7.1. Choice of Niosll Implementations. The NiosIl proces-
sor comes in three customizable implementations. These
implementations differ in the FPGA resources they require
and their speeds. NioslI/e is the slowest and consumes the
least amount of logic resources while NiosIl/f is the fastest
and consumes the most logic resources. Niosll/s falls in
between NiosII/e and NiosII/f with respect to logic resource
requirements and speed.

Table 1 shows the salient features of the three implemen-
tations of the NiosII processor.

Note here that the code written for one implementation
of the processor will run on any of the other two with a dif-
ferent execution speed. Hence changing from one processor
implementation to another requires no modifications to the
software code.

The choice of the right processor implementation is
dependent on the speed requirements of a particular appli-
cation module and the availability of sufficient FPGA logic
resources. Optimization of the architecture trades off the
speed for resource saving or vice versa depending on the
requirements of the application.

A second criterion for selecting a particular implementa-
tion of the NioslI processor is the need (or lack thereof) for
instruction and data cache. For example if we can achieve the
required performance for a module without any cache, the
NioslI/e would be the right choice for running that module.

EURASIP Journal on Embedded Systems

Influence of I-cache & D-cache sizes on the Kalman filter
with NiosII/F 100 MHz

0.016

0.014 N\

0.012 >— .

0.008

Time (secs)

0.006

0.004

i

0.002 [S SO G NP N

0 2 4 8 16 32 64
D-cache size (KB)

-®- [-cache = 32KB
—»— I-cache = 64KB

—o— I-cache = 4KB
—#— [-cache = 8KB
A J-cache = 16 KB

Figure 10: Kalman Filter performances for different Caches Sizes.

6 Kalman filter Nosill/F 4 KB D-cache all mem sections off chip

14 1

12

10 1

8

Time (ms)

6_

4_

2 4

Kalman Matadd Mat Mul Mat sub Mat trans Mat inv

B Without FP custom instructions
B With FP custom instructions

FiGure 11: Kalman Filter performances with 4 KB I-cache.

On the other hand, if a certain application module needs
instruction and data cache to achieve a desired performance,
NioslI/f would be chosen to run it. If only instruction cache
can enable the processor to run an application module with
the desired performance then we shall use NiosII/s for that
module. The objective is to achieve the desired speed with
the least possible amount of hardware.

7.2. 1-Cache and D-Cache. The Niosll architecture sup-
ports cache memories on both the instruction master port
(instruction cache) and the data master port (data cache).
Cache memory resides on-chip as an integral part of the
NiosII processor core. The cache memories can improve the
average memory access time for NiosIl processor systems
that use slow off-chip memory such as SDRAM for program
and data storage.

The cache memories are optional. The need for higher
memory performance (and by association, the need for

EURASIP Journal on Embedded Systems

Influence of I-cache & D-cache sizes on gating module
with NiosI/F 100 MHz

0.9

0.8
0.7

0.6
0.5

0.4 (
SN AN .
-
2

Time (secs)

0.1

o-——o *——o

4 8 16 32 64
D-cache size (KB)

-@- [-cache = 32KB
—»— I-cache = 64 KB

—— J-cache = 4KB
—#— [-cache = 8KB
&+ J-cache = 16 KB

FIGURE 12: Cache behavior for gating Module.

cache memory) is application dependent. Many applications
require the smallest possible processor core, and can trade-
off performance for size. A NioslI processor core might
include one, both, or neither of the cache memories. Further-
more, for cores that provide data and/or instruction cache,
the sizes of the cache memories are user-configurable. The
inclusion of cache memory does not affect the functionality
of programs, but it does affect the speed at which the
processor fetches instructions and reads/writes data.
Optimal cache configuration is application specific. For
example, if a Niosll processor system includes only fast,
on-chip memory (i.e., it never accesses the slow off-chip
memory), an instruction or data cache is unlikely to offer
any performance gain. As another example, if the critical
loop of a program is 2 KB, but the size of the instruction
cache is 1KB, this instruction cache will not improve
execution speed. In fact, an instruction cache may degrade
performance in this situation [17]. We must determine the
optimum instruction and data cache sizes that are necessary
for achieving the desired performance for each module.
Both the Instruction and Data Cache sizes for NiosIl/f
can range from 0KB to 64 KB in discrete steps of 0KB,
2 KB, 4KB, 8 KB, 16 KB, 32 KB, and 64 KB. We experimented
with various combinations of I-cache and D-caches sizes
to determine the optimum cache sizes for each module.
In the following sections we discuss the outcome of these
experiments and the guidance that we took from them.

7.2.1. Kalman Filter Cache Requirements. Using the perfor-
mance counter with a NioslI/F processor, we measured the
performance of the Kalman filter with different instruction
and cache sizes. Figure 10 shows the influence of I-cache
and D-cache sizes on the processor time of the Kalman filter
running on NiosIl/f with 100 MHz clock using the off-chip
RAM.

13

Two very important conclusions can be drawn from
this figure. One, whatever the I-cache or D-cache size,
the processor time does not exceed 15ms. Two, beyond
16 KB I-cache and 2KB D-cache, the execution time is
mostly independent of the D-cache size. Based on these
observations, we can say that 16 KB is the optimum I-cache
size for the processors executing the Kalman filters. However,
as mentioned earlier, for tracking a maximum of 20 obstacles
we need 20 of these processors. Viewed in isolation, 16 KB
may not seem a large amount of memory but replicating it 20
times is practically not possible. To find out the total amount
of memory required by this configuration, we compiled a
QuartuslI project with a NiosII/f having 16 KB I-cache. The
total on-chip block memory used by a single processor,
accounted for 7% of the memory available on our FPGA
(StratixII EP2S60). Besides, we have to keep in mind that
the other processors in the system also have on-chip memory
requirements. Consequently we have to settle for a smaller I-
cache and hence lower speed to avoid this prohibitive on-chip
memory usage.

The good news here is that even with 4 KB I-cache and
no D-cache, the processor time is below the 25 ms threshold.
Thus an I-cache of 4 KB would be the right choice for the
Kalman filters in these circumstances. Furthermore, since
we do not a use a D-cache, replacing NioslI/f by NiosIl/s
would help reduce the logic size from the 1400-1800 LEs
range down to the 1200-1400 range which accounts for a
sizeable gain in size, considering the 20 processors for the
filters.

Figure 11 shows the performance of the Kalman filter
on NioslI/s with 4 KB I-cache, no D-cache, 100 MHz clock
and using off-chip memory exclusively. Even by keeping
all memory sections in the off-chip device and using no
floating point custom instructions, the runtime is around
15ms. Thus we can conserve the scarce on-chip memory
by using only 4KB of I-cache for the processors running
Kalman filters without slowing down the system beyond
tolerable limits. The on-chip block memory usage in this
case drops down to only 3% of that exploitable on the FPGA
which is more than 50% drop. For 20 Kalman processors the
total on-chip memory usage is 60% of that available to the
user.

7.2.2. Gating Module Cache Requirements. The gating mod-
ule’s behavior with respect to the I-cache and D-cache is
shown in Figure 12. A remarkable speed up is observed when
I-cache size changes from 4 KB to 8 KB and again when it
changes from 8 KB to 16 KB. Beyond 16 KB the speed up for
the I-cache is insignificant.

The D-cache size does not matter much as long as it is
more than zero. The overall processor run time is minimum
(70 ms) when I-cache size is 16 KB and D-cache size is 2 KB.
Therefore, the right I-cache and D-cache sizes for the Gating
module are are 16 KB and 72 KB, respectively. The total on-
chip memory usage for the processor with this configuration
is 8% of that available on the FPGA. This also includes the
memory used by the internal registers of the processor.

Using these cache sizes we charted the performance
of the processor while varying the number of obstacles

14
Gating module performance on NiosII/F 100 MHz with
16 KB I-cache, 2 KB D-cache and using off chip SDRAM
80
70 %l
60
7z 50 <
T 40 //
E -
= 30 o
20 Pt =4 s -
L - L x -
10 '*****7"‘*?*1**¥3F**ii
oSl eIy
0 R e
23 4567 8 91011121314 151617 1819 20

Number of obstacles

-x- Innov_d calcultor
—*— Innov_a calcultor

—— Cost Mat Gen
—s— Gate checker
& Gate mask generator

FiGure 13: Gating Module performances with 16 KB I-cache and
2 KB D-cache.

from 2 through 20 as shown in Figure 13. The Innov_d
and Innov_a calculators are two subroutines used by the
Gate Mask Generator function to calculate distance and
angle innovations. The sum of the times taken by these
two subroutines is roughly equal to the time taken by the
Gate Mask Generator. The Gate Checker and the Gate Mask
Generator functions are in turn called by Cost Mat Gen which
is the top level function of the Gating module. The Cost
Mat Gen represents the overall behavior of the whole Gating
Module.

Although the overall runtime for 20 obstacles is min-
imum (70 ms) for the given configuration, yet it is much
higher than the 25 ms we are aiming for. In Sections 7.3.2
and 7.4.2 we discuss the techniques employed for further
improving this execution time.

7.2.3. Munkres Algorithm Cache Requirements. Using a cost
matrix with floating point elements and a range of instruc-
tion and data cache sizes, Munkres algorithm showed the
behavior depicted in Figure 14.

The first observation here is that when the D-cache
size is more than zero, the runtime decreases profoundly
whatever the I-cache size. Looking closely at the figure we can
eliminate 4 KB from the list of competitors for the I-cache
size. An 8 KB I-cache along with 16 KB D-cache results in the
minimum execution time, that is, 71.07 ms. Hence this is the
optimum I-cache/D-cache combination for this module. A
NioslI system with these cache sizes uses 9% of the on-chip
block memory available on the FPGA.

Figure 15 shows the performance of the algorithm using
this system composition for the number of obstacles ranging
from 2 to 20.

We notice here that the two main contributors to the
total runtime are Step 4 and Step 6. This is because these two
functions contain nested loops and they are invoked multiple
times during the solution finding process.

EURASIP Journal on Embedded Systems

Effects of I-cache & D-cache sizes on Munkres algorithm
with NiosII/F 100 MHz 20 obstacles

0.5
0.45 +
0.4 -%x\
0.35 \\
~ 03
\
< 025
: \
=02 \\
0.15
———|
% | o
0.1 q\\'\\g . .
0.05
0
0 2 4 8 16 32 64
D-cache size (KB)
—— J-cache = 4KB -®- I-cache = 32KB
—#— [-cache = 8KB —*— I-cache = 64KB
-4 J-cache = 16KB
FIGURE 14: Cache performances for Munkres Algorithm.
Munkres algorithm on NiosII/F 100 MHz, 8 KB I-cache,
16 KB D-cache using off chip SDRAM
80
70 a
60
2 M
\E] 50
QE) 40
R X
30
H
20 ol e
10 v B o el al
0 | oo ettt e ?j_*\"’.

23456 7 8 91011121314151617 1819 20

Number of obstacles

—— Call to Munkres —*— Step 4
—=— Step 1 —o— Step 5
A Step 2 —+— Step 6
—-%- Step 3

F1GURE 15: Munkres Algorithm performance with 8 KB I-cache and
16 KB D-Cache.

The overall run time for 20 obstacles, is 71 ms which is
higher than the 25 ms bound. We need to further optimize
the processor to decrease this runtime. In Sections 7.3.3,
7.4.3, and 7.5 we explain the steps taken for achieving this
goal.

7.3. Floating Point Custom Instructions. The floating-point
custom instructions, optionally available on the NiosII pro-
cessor, implement single precision floating-point arithmetic
operations in hardware. They accelerate floating-point oper-
ations in NiosII C/C++ applications. The basic set of floating

EURASIP Journal on Embedded Systems

point custom instructions includes single precision floating-
point addition, subtraction, and multiplication. Floating-
point division is available as an extension to the basic
instruction set.

The NioslI software development tools recognize a C
code that takes advantage of the floating-point instructions
present in the processor core. When the floating-point
custom instructions are present in the target hardware,
the NiosII compiler generates the code to use the custom
instructions for floating-point operations, including addi-
tion, subtraction, multiplication, division and the newlib
math library [14].

The best choice for a hardware design depends on
a balance among floating-point usage, hardware resource
usage and system performance. While the floating-point
custom instructions speed up floating-point arithmetic,
they add substantially to the size of the hardware design.
When resource usage is an issue, it is advisable to rework
the algorithms to minimize floating-point arithmetic (see
Section 7.5).

We used the floating point custom instructions in the
processors to assess the tradeoffs between performance and
hardware size for each processor. Sections 7.3.1, 7.3.2 and
7.3.3 examine the outcome of this assessment and the
recommendations based thereon.

7.3.1. Kalman Filter and Floating Point Custom Instructions.
As mentioned earlier, the Kalman filter’s runtime never
exceeds 15 ms so there is no need at the moment to accelerate
it further at the cost of precious FPGA resources. Neverthe-
less we tested the floating point custom instructions’ impact
on the Kalman filter’s performance for better understanding
the trade-offs and for exploring the opportunities for the
eventual future optimization. Figure 11 shows the results of
these tests.

An overall speed up of more than 50% is achieved in
comparison to the scenario when no floating point custom
instructions are used. The most significant improvement
is witnessed in case of the Mat Mul subfunction. This
improvement can be attributed to two factors. One, Mat Mul
relies heavily on floating point multiplication and second, it
is called 11 times in a single iteration of the filter algorithm.
Floating point custom instructions are the most effective in
such situations hence this remarkable improvement. This
speed up comes at the cost of a bulkier hardware. The
hardware size increases by 8% when floating point custom
instructions are used. We stick to our earlier decision of using
regular NiosII/s with 4 KB I-cache and no other add-ons for
the Kalman filter in the present work. Since the use of floating
point instructions reduces the execution time for the Kalman
filter considerably, in our future work we will take this option
to process more than one targets per processor.

7.3.2. Gating Module and Floating Point Custom Instructions.
In case of the Gating Module the use of floating point custom
instructions is a necessity rather than an option. The reason
is that even with the optimum cache size selection, the
Gating Module takes 70 ms to execute. Moreover, the Gating

15

module runs on only one processor so we don’t have to
replicate the floating point custom instructions hardware.
Figure 16 shows the performance of the Gating Module after
the floating point custom instructions are added to the
processor.

Floating point custom instructions with NioslI processor
for the Gating Module improve the overall performance by
approximately 50%. If we compare Figure 16 with Figure 13,
we notice two interesting differences between the two figures.
The first and very obvious difference is the drop from 70 ms
to 37 ms of the overall runtime for 20 obstacles.

The second difference is that the curve for the Gate
Checker, which was earlier above the Innov_a and Innov_d,
is now below them. This change in behavior is due to the
fact that in addition to the floating point multiplication and
division, the Gate Checker uses the sqrt() function of the
ANSI C math library. The sqrt() function itself relies on
multiply and divide operations internally. Hence the floating
point custom instructions improve the performance of the
Gate Checker more than the Innov_a and Innov_d which do
not use the sgrt() function.

Although by using the floating point custom instruction
we managed to bring the execution time from 70 ms down
to 37 ms for the Gating Module, yet we are still above our
25ms target. In Section 7.4.2, we explore other possibilities
of improving the performance of the Gating Module even
further.

7.3.3. Munkres Algorithm and Floating Point Custom Instruc-
tions. Floating point custom instructions bring Munkres
algorithm’s execution time from 71 ms down to 47 ms for 20
obstacles, as shown in Figure 17.

Although this is a 33.8% improvement yet 47 ms is
almost twice the time we aim to attain, that is, 25 ms. This
motivates us to look for ways and means to further decrease
this time. To arrive at this goal, we employ several techniques
as explained in Sections 7.4.3 and 7.5.

7.4. On-Chip versus Off-Chip Memory Sections. The HAL-
based systems are linked using an automatically generated
linker script that is created and managed by the NioslII IDE.
The linker script controls the mapping of the code and
the data within the available memory sections. It creates
standard code and data sections (.text, .data, and .bss), plus a
section for every physical memory device in the system.

Typically, the .text section is reserved for the program
instructions. The .data section is the part of the object
module that contains initialized static data, for example,
initialized static variables, string constants, and so forth.
The .bss (Block Started by Symbol) section defines the space
for non initialized static data. The heap section is used for
dynamic memory allocation, for example, when malloc() or
new() are used in the C or C++ code, respectively. The stack
section is used for holding the return addresses (program
counter) when function calls occur.

In general, the NiosII design flow automatically specifies
a sensible default partitioning. However, we may wish to
change the partitioning in certain situations. For example, to
improve the performance, we can place performance-critical

16
Gating module performance on NiosII/F 100 MHz with 16 KB
I-cache, 2 KB D-cache and floating point custom instructions
/
35 ~
30 / -
1
25 =
2 -
A
15 < -
/ «) X%
10 // — — a X
/ A 1 x = -
> pecim e e
cGPEINEE o sy

23 45678 91011121314 151617 1819 20

Number of obstacles

—— Cost Mat Gen -%- Innov_d calcultor
—=— Gate checker

-4 Gate mask generator

—*— Innov_a calcultor

FiGure 16: Gating Module performance with 16 KB I-cache, 2 KB
D-Cache and Floating Point Custom Instructions.

Munkres algorithm on NiosII/F 100 MHz, 8 KB I-cache,
16 KB D-cache, FP custom instruction & using off chip SDRAM

45 !

Time (ms)
(38
w
N
[>

g L/

e | e

MRV N
»
[EN

5] e
0 P e RS e 2 E
2345678 91011121314151617 1819 20

Number of obstacles

X
=N

Px

=

—— Call to Munkres —*— Step 4
—=— Step 1 —o— Step 5
A Step 2 —+— Step 6
-%- Step 3

FIGURE 17: Munkres Algorithm performance with 8 KB I-cache,
16 KB D-Cache and Floating Point Custom Instructions.

code and data in the fast on-chip RAM. In these cases, we
have to allocate the memory sections manually.

We can control the placement of the .text, .data, heap and
stack memory partitions by altering the NioslI system library
or BSP settings. By default, the heap and the stack are placed
in the same memory partition as the .rwdata section. We
can place any of the memory sections in the on-chip RAM
if needed, to achieve the desired performance.

Ideally we would put all the memory sections in the fast
on-chip memory but the amount of the on-chip memory in

EURASIP Journal on Embedded Systems

TABLE 2: Memory requirements of various application modules.

Section Name Memory Foot Print

Kalman filter

Whole Code + Initialized Data 81 KB

.text Section alone 69.6 KB

.data Section alone 10.44KB
stack Section alone approximately 2KB

heap section alone approximately 1KB

Gating module

Whole Code + Initialized Data 63 KB

.text Section alone 51.81 KB
.data Section alone 8.61 KB

stack Section alone approximately 2 KB

heap section alone approximately 1 KB

Munkres algorithm

Whole Code + Initialized Data 62 KB

.text Section Alone 52.34KB
.data Section Alone 10.44 KB
.stack Section Alone approximately 2 KB

heap section alone approximately 1 KB

the FPGA is limited. Hence we have to rely greatly on the
off-chip SDRAM or SSRAM. However accessing the off-chip
memory is inherently far slower than the on-chip memory.
Moreover, different processors would have to go through
the arbitration logic to access the shared off-chip memory
device. This would increase the memory access time even
further. Consequently, on the one hand we cannot use the
off-chip memory exclusively since it would slow the system
down beyond the acceptable limits. On the other hand, we
have to minimize our dependence on on-chip memory for
each processor due to the scarcity of the on-chip memory.
We therefore have to balance our reliance on dedicated
on-chip memory and the shared off-chip memory without
compromising the performance too much.

Compiling the application modules in the NiosII IDE
gives us an estimate of the memory needs of these modules.
We selected the appropriate compiler compression options
to generate a compact object code for each module. Table 2
summarizes the memory requirements of all the application
modules.

We can see in this table that the memory requirements
of the whole code and the .text sections for all the modules
are too high to be accommodated in the on-chip memory.
However if a certain module uses malloc() or new() abun-
dantly, placing the heap section in the on-chip memory can
improve its speed by a large margin. Similarly if a module
makes frequent calls to other functions, putting the stack
section in the on-chip memory can help achieve a higher
execution speed for that module.

We performed experiments by placing the memory
sections for the different modules in the off-chip and the on-
chip memories and observed some interesting results. These
results are discussed in the following sections.

EURASIP Journal on Embedded Systems

7.4.1. Kalman Filter and Memory Sections. Although the
Kalman filter takes 15ms with only 4KB I-Cache and
no further optimization, yet we investigated the prospects
of improving it further through on-chip memory place-
ment. The outcome of this investigation is summarized in
Figure 18. As before Kalman represents the overall algorithm
and the other bars are its constituent subfunctions. These
results are obtained with 4 KB I-cache and using floating
point instructions.

Even with all memory sections in the off-chip device, the
runtime is 6.35ms while moving only the stack section to
the on-chip memory reduces this time by more than 50%.
Since the stack section of the memory requires only 2 KB,
we can bring the time down to 3.2ms by connecting 2 KB
of on-chip dedicated memory to the processors for the stack
and using a NiosII/S with 4 KB of I-cache and floating point
custom instructions. One of our experiments showed that if
we use a NioslI/f with 16 KB I-cache and 2 KB D-cache and
all the other optimizations implemented, we can reduce the
processing time for the filter to 1 ms. This opens up a new
venue for our future work where we shall route several targets
into a Kalman filter to reduce the number of processors for
the filters. With this arrangement, we have two options. We
can reduce the number of processors for the filters from 20
to 2 and thereby losing some of the flexibility. Alternatively,
we can run all the 20 filters on separate processors and
guarantee flexibility of being able to switch to other types
of filters instead of the Kalman filter depending on the
target characteristics. At the moment we are using the latter
option.

7.4.2. Gating Module and Memory Sections. The Gating
Module’s performance for different memory placement
experiments is shown in Figure 19. Here we can deduce
that a minimum execution time of 22 ms for 20 obstacles
can be achieved by keeping all the memory sections in
the on-chip memory. But this would require the on-chip
RAM to be at least 61 KB. This combined the I-cache and
D-cache, adds up to 79 KB. Obviously this is a very high
requirement considering the limited amount of the on-chip
memory. The next best solution of 23 ms is obtained when
we place the stack and the heap sections in the on-chip
memory. There is a very small speed loss but in this case
only 3 KB of dedicated on-chip memory is sufficient to get
this speed up. Clearly this is a considerable gain in on-
chip memory saving compared to the earlier requirement
of 79 KB. So the Gating Module can operate satisfactorily by
using a NiosII/F processor with 16 KB I-cache, 2 KB D-cache,
3KB dedicated on-chip RAM and floating point custom
instructions.

The Innov_d and Innov_a calculators together account
for more than half the execution time taken by the gating
module (cf. Figure 16). Executing these two on separate
processors in parallel will pave the way for scaling the system
for more than 20 targets. As an alternative scaling solution
we are currently experimenting on DSP-VLIW processors to
exploit data level parallelism and hardware accelerators, since
after the optimizations, we have enough space available for
adding more circuitry (see Section 10).

17

7.4.3. Munkres Algorithm and Memory Sections. Placing
various memory sections on chip does not have a noteworthy
influence on the Munkres algorithm performance, although
there was some improvement as shown in Figure 20. We
gain only 6 ms if all the memory sections are put on chip.
The next best gain is achieved by putting the heap on chip.
this is due to the use of a few malloc() statements in the
code. While neither of these gains is enough to reduce the
execution time below 25 ms, the former is not even feasible
given the memory foot print of the algorithm. We have to
look elsewhere for a possible and practicable solution. The
following section explains our approach to this issue.

7.5. Floating Point versus Integer Cost Matrix For Munkres
Algorithm. Munkres algorithm operates on the cost matrix
iteratively to find an optimum solution. It looks for the
minimum value in every column and row of the cost matrix
such that only one value in a row and a column is selected.
It comes out with a solution when the sum of the selected
elements of the cost matrix reaches its minimum. This
procedure remains the same whether the elements of the
cost matrix are floating point numbers or integer numbers.
We found out that if we truncate the fractional part of the
floating point elements of the cost matrix, the final solution
is the same as in the case of the floating point cost matrix.
Hence we can replace the floating point cost matrix by a
“representative” integer cost matrix without sacrificing the
accuracy of the final solution. This does not require that the
all the elements of the cost matrix have to be different from
one another; the algorithm still finds a unique solution even
if all the elements of the cost matrix have the same numerical
value hence it does not require “distinct” integer values in the
cost matrix. The advantage of this manipulation however, is
that with the integer cost matrix the mathematical operations
become simpler and faster, reducing the runtime of the
algorithm by a large margin. Additionally, using an integer
cost matrix obviates the need for the floating point custom
instruction hardware. Consequently the size of the processor
is reduced by 8%.

We made the necessary modifications to the Munkres
algorithm and the cost matrix generating function to incor-
porate this rearrangement. A glimpse of the advantage of
these transformations can be seen in Figure 21 which shows
the optimal cache configuration for the integer version of the
Munkres algorithm.

Certainly 8 KB I-cache and 16 KB D-cache are still the
best choices, the point worth noting here is that with the
integer cost matrix, the runtime for the overall algorithm
drops down to 24 ms as opposed to the 82 ms with floating
point cost matrix (refer to Figure 14). This drop takes place
while all the memory sections are placed in the off-chip
SDRAM.

The Munkres algorithm analysis shows the following
facts: Step 4 and Step 6 are the most time consuming sub-
functions of the algorithm in the same order (cf. Figure 17).
Although, after optimization, for 20 targets a single processor
executes the algorithm within the required time interval,
yet to scale the system up for more than 20 targets, these
subfunctions can be executed on separate processors in

18

Execution time for Kalman filter on NiosII and
floating point custom instructions

5
4 -
3
2 4
0 - T T T T T

Time (ms)

All mem Text Data Heap Stack All mem
sections gection Section gection section sections
off chip on chip onchip on chip on chip on chip
B Mat inv B Mat Mul

B Mat trans ® Mat add

= Mat sub

Figure 18: Effects of on chip and off chip memory sections on
Kalman Filter performances.

Gating module on NioslII/F with 16 KB I-cache, 2 KB D-cache
& 100 MHz clock

Time (ms)

234567 8 91011121314151617 1819 20

Number of obstacles

B All mem secs off chip
B Heap on chip

Heap & stack on chip
® All mem secs on chip

FiGgure 19: Effects of on chip and off chip memory sections on
Gating Module.

parallel, to reduce the execution time of the algorithm. In
a similar fashion to Gating Module, as an alternative, we
are currently experimenting with DSP-VLIW processors to
exploit data level parallelism and hardware accelerators.

7.6. Track Maintenance. So far we have not mentioned
the track maintenance block of the MTT application in
the context of optimization. The reason for this deliberate
omission is that a very short processing time is required for
this block. A simple NioslI/e processor executes this block in
8 ms. In future we may even eliminate this processor and run
the track maintenance block as a second task on one of the
other processors.

EURASIP Journal on Embedded Systems

Effects of various memory sections on the performance

of Munkres algorithm for 20 obstacles
48
47 +
46

45

44 1

43 7

42

I
40 - T T T T T

Time (ms)

Allmem Text Data Heap Stack All mem
sections section section section section sections
off chip onchip onchip onchip onchip on chip

FiGure 20: Effects of on chip and off chip memory sections on
Munkres algorithm performances.

Effects of I-cache & D-cache sizes on Munkers algorithm
with NiosII/F 100 MHz, 20 obstacles & integer cost matrix

0.2 %

\

j=3
-
w

Time (secs)

(=)
=

S —r— %

0 2 4 8 16 32 64
D-cache size (KB)

—e— I-cache = 4KB
—#— J-cache = 8KB
& J-cache = 16 KB

-%- [-cache = 32KB
—%— I-cache = 64KB

FiGure 21: Cache Behavior for Munkres Algorithm with Integer
Cost Matrix.

8. Discussion

After the success of the last optimization of the Munkres
algorithm discussed in Section 7.5, we investigated the other
modules for similar optimizations. We found out that this
technique cannot be extended to all the modules in the
application for the following reasons.

(i) The Kalman filter calculates the predicted states,
prediction error covariances, estimated states and estimation
error covariance for the targets. The differences in the values
of these quantities from one radar scan to another are very
small and they occur to the right of the decimal point. It
takes hundreds of scans for these changes to flow over to
the left of the decimal point. Hence the integer part of these
floating point numbers remain unchanged for hundreds of
scans. Nevertheless, these small differences play an important

EURASIP Journal on Embedded Systems

role not only in the filter itself but also in the Gating
Module.

In the filter, the estimated state and estimation error
covariance are fed back to the prediction stage of the filter.
The prediction stage uses them as the basis of predictions for
the next scan. If we use just the integer parts of quantities,
there would be no change in the estimated values for
hundreds of scans. Obviously, this would introduce an error
into the predictions. Due to the cyclic feedback between the
prediction and correction stages of the filter, an avalanche of
errors would be generated in a few seconds.

(i) The predicted states and the prediction error
covariances are also used by the Gating Module to locate
the centers of the probability gates and to calculate the
difference between the measured and the predicted target
coordinates, that is, innov_d and innov_a, respectively. If
we use only the integer part of the predicted and mea-
sured coordinates, there would be two catastrophic errors
introduced into the system. First, because of the non-
changing integer parts of the predicted coordinates, the
gates would be centered at the same fixed locations for
hundreds of scans. Second, for the same reasons, innov_d
and innov_a would remain zero for hundreds of cycles. Zero
innovations mean that the predicted coordinates are exactly
identical to the measured coordinates which is practically
impossible.

(iii) The Gating Module uses the prediction error covari-
ance to calculate the dimensions of the probability gates.
Using the constant integer part of the covariance would fix
the gate dimensions to a constant size for hundreds of scans.
This again, is unrealistic and would inject even more error
into the system.

(iv) For the Munkres algorithm (the Assignment Solver)
the case is different. The Assignment Solver is the last step
of the application loop. By the time the application reaches
this step, most of the floating point operations have already
been completed resulting in the Cost Matrix. The output
of the Assignment Solver is the Matrix X which has either
1’s or 0's as its elements. The 1’s in the matrix are used to
identify the most probable observation-prediction pairs. No
arithmetic operations are performed on the Matrix X.

Altera provides a tool called C2H compiler which is
intended to transform C code into a hardware accelerator.
At a stage in our work we tried this tool but it turned
out that it has some serious limitations. It can be used
for codes operating only on integers. So, for the above
stated reasons, we could use it only for the Munkres
algorithm. But again, the tool can accelerate only a single
function and that function too must not involve complex
computations. So we could not use it for Step 4 and Step 6
of the algorithm where we needed it most. The tool simply
stops working when we try to accelerate either of these two
functions.

In case of small functions (like Step3) where it does
work, the hardware size of the accelerator is almost half that
of the processor to which it is attached while the speedup is
nominal. In brief, if this tool is improved to remove these
limitations it can be very useful. In its current status it is far
from its stated goals.

19

9. Related Work

To our understanding, comprehensive literature about the
implementation of a complete MTT system in FPGA, does
not exist. Works about the application of MTT to DAS’s are
even harder to find.

Some work has been done on different isolated com-
ponents of the MTT system but in different contexts. For
example an implementation of the Kalman filter only, is
proposed in [18]. It is not only limited to the filter but it also
is a fully hardware implementation. As mentioned earlier in
the introduction, fully hardware designs lack the flexibility
and programmability needed for the ever evolving modern
day embedded applications. Moreover, the authors report
two alternative implementations of the Kalman filter namely
the Scalar-Based Direct Algorithm Mapping (SBDAM) and
the Matrix-Based Systolic Array Engineering (MBSAE).
The former consumes 4564 logic cells whereas the latter
consumes 8610 logic cells for a single filter each. Apart
from the large sizes, the internal components of both the
implementations are manually organized and re-organized
to get the desired performance. This is obviously not scalable
and repeatable in a complex system like ours where the filter
is not the only component to be optimized.

An attempt to implement an MTT system in hardware for
a maritime application is documented in [19]. In addition
to being a completely hardware implementation, the work
presented here is inconclusive.

The data association aspect of MTT has been dealt with
nicely in [11] but the physical implementation of the system
is not a consideration in this work. Only matlab simulations
are reported for that part of the MTT.

Although the title of [20] sounds very close to our
work, yet this work describes the theory of the Extended
Kalman Filter (EKF) with a smoothing window. The paper
discusses the velocity estimation of slow moving vehicles and
emphasizes on the necessity of reducing the liberalization
errors in the process. While the paper presents a viable
solution to the problem of liberalization errors in EKF, the
physical implementation of the EKF or the tracking system
does not figure among the objectives of the work.

A systolic array based FPGA implementation of the
Kalman filter only, is reported in [21]. This work con-
centrates on the use of a matrix manipulation algorithm
(Modified Faddeev) for reducing the complexity of the
computation. This article again, presents an interesting
account of implementing the Kalman filter in an efficient
way. In cases where very fast filtering is the main objective,
this may be a good solution.

In fact software forms of the algorithms like EKF [20] and
Modified Faddeev based implementation of the Kalman filter
[21] can be easily integrated into our system. For example
EKEF is useful in situations where a target exhibits a abrupt
changes in its dynamic behavior as in hilly regions. Similarly,
other algorithms like [21] can be added on if required. So the
works discussed above can be considered as complementary
rather than competitors to our work.

Most of the available works treat the individual compo-
nents of the MTT (mainly the Kalman filter) in isolation.

20

However, putting these and other components together to
design a coherent MTT application and adapting it to
automotive safety utilization, is not a trivial task.

Our work is unique in several aspects. In contrast to
the works mentioned above, we consider a complete MTT
system implementation. Our reconfigurable MPSoC archi-
tecture of the system is inherently flexible, programmable
and scalable. Thus it can evolve very easily with advances
in technology and with improvements in application algo-
rithms. Moreover, the use of several concurrently running
processors meets the overall real time deadlines. Several
low frequency processors running concurrently consume less
power compared to a single processor with a high clock
frequency and doing the same job [5]. The reconfigurability
of the processors and other components in our design, allow
for customizing them according to application requirements
while keeping the hardware size as small as possible. The
system we propose is a complete plug-and-play solution that
can be easily integrated with the existing electronic systems
onboard a vehicle.

10. Summary and Conclusion

We presented the procedure we adopted for designing and
optimizing an application specific MPSoC. The Multiple
Target Tracking (MTT) application is designed for Driver
Assistance Systems (DAS). These systems are used in vehicles
for collision avoidance and early warning for assisting the
driver.

First, we described a general view of the MTT application
and then we presented our own approach to the design
and development of the customized application for Driver
Assistance. We developed the mathematical models for the
application and coded the application in ANSI C. We divided
the application into easily manageable modules that can be
executed in parallel.

After developing the application, we profiled it to iden-
tify performance bottlenecks and dependencies among the
application modules. This helped us in allocating processing
resources to the application modules and in laying out
our optimization strategies. Using three different hardware
implementations of the NioslII soft core embedded processor
and other components, we devised a heterogeneous MPSoC
architecture for the system.

To formulate our optimization strategies we also identi-
fied the constraints to be met. The constraints include the
25ms time limit for the application execution, the limited
amount of available on-chip memory and the size of the
system hardware.

To avoid overusing the on-chip memory we optimized
the I-cache and D-cache sizes for each application module.
Understanding the I-cache and D-cache requirements not
only helped us in accelerating the system but also in selecting
the right configuration of the NiosIl processor for each
module.

The optimum cache configurations reduced the execu-
tion times by at least 50%. The Gating Module and the
Assignment Solver needed further acceleration to arrive at

EURASIP Journal on Embedded Systems

TaBLE 3: Summary of the final system.

Kalman Gating Munkres Track Maint.
Number 20 1 1 1
of proc.
NIOSII S F F E
type
I cache 4 16 8 0
in KB
D cache 0 2 16 0
in KB
Local mem 0 3 3 0
in KB
% Mem. used 60 8 9 1
on FPGA
FP custom No Yes No No
instructions
Run time 15 23 24 8
in mSec

FPGA resource usage (LEs)
Stratix II EP2S60 (total 60,000 LEs)

FIFOs and

interconnects
12000

Gating module
1726

Track maintenance

600 Assignment solver

1700

FIGURE 22: System Hardware Size.

25ms cut-off set by the radar PRT. We incorporated the
floating point custom instructions hardware in the relevant
processors to accelerate them further. Floating Point Custom
instructions reduced the runtime from 70 ms to 37 ms (47%
speedup) for the Gating Module and from 71 ms to 47 ms
(34% speedup) for the Assignment Solver. To bring these
times below 25 ms, we needed to speed these modules up
even more.

Shifting the whole application to the fast on-chip mem-
ory could greatly improve the speed however it is not feasible
due to the large memory footprint of the application and the
limited amount of the on-chip memory. We experimented
with placing different memory sections like the stack and the
heap in the fast on-chip RAM. Placing only the stack and
the heap memory sections on-chip for the Gating Module,
brought the runtime down to 23 ms which is below the 25 ms
cut-off and hence we settled for it.

EURASIP Journal on Embedded Systems

For the Assignment Solver (Munkres algorithm) we could
gain only 6 ms in runtime by putting the entire module in
the on-chip memory. This gain is neither enough to get us to
our goal nor we can afford to put the entire module on chip,
in the finalized system.

Exploring the algorithm we found that the final output
of the algorithm remains unchanged if we drop down the
fractional part of the floating point elements of the input Cost
Matrix. This manipulation of the input matrix reduced the
runtime for the algorithm to 24 ms without compromising
the accuracy of the final solution. It also allowed us
to do away with the floating point custom instructions.
Consequently we use the lighter NiosIl/s instead of heavier
NioslI/f for the assignment solver.

Speed was not the only objective in choosing the system
components and the optimization strategies, we wanted to
keep the on-chip memory utilization and the hardware size
in check too. We traded speed for FPGA resource economy
where we could afford it, for example, in the case of the
Kalman filters.

Taking into account the results of the optimizations,
we finalized the components and their respective features.
Table 3 summarizes the salient features of the finalized
architecture with reference to Figure 9. The whole system fits
in a single StratixII EP2S60 FPGA. The design uses 42,000
of the 60,000 logic elements (LEs) available on the FPGA as
shown in Figure 22 and it meets the runtime constraints of
the application.

References

[1] A.Techmer, “Application development of camera-based driver
assistance systems on a programmable multi-processor archi-
tecture,” in Proceedings of IEEE Intelligent Vehicles Symposium
(IV°07), pp. 1211-1216, Istanbul, Turkey, June 2007.

[2] M. Beekema and H. Broeders, “Computer Architectures
for Vision-Based Advanced Driver Assistance Systems,”
http://www.xs4all.nl/~hcl1/paper_ca_st.pdf.

[3] STMicroelectronics and Mobileye, “Stmicroelectronics and
mobileye deliver second generation system-on-chip for vision-
based driver assistance systems,” Press release, May 2008.

[4] S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems, Artech House, Boston, Mass, USA, 1999.

[5] Frank Schirrmeister Imperas, Inc., “Multi-core processors:
fundamentals, trends, and challenges,” in Proceedings of the
Embedded Systems Conference, 2007, ESC351.

[6] E. Brookner, Tracking and Kalman Filtering Made Easy, John
Wiley & Sons, New York, NY, USA, 1998.

[7] V. Nedovi, “Tracking moving video objects using mean-
shift algorithm,” Project Report, http://staff.science.uva.nl/~
vnedovic/MMIR2004/vnedovicProjReport.pdf.

[8] Z. Salcic and C.-R. Lee, “FPGA-based adaptive tracking
estimation computer,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 37, no. 2, pp. 699706, 2001.

[9] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Basic Engineering, vol. 82, pp.
35-45, 1960.

[10] D. P. Bertsekas and D. A. Castaon, “A forward/reverse auc-
tion algorithm for asymmetric assignment problems,” http://
web.mit.edu/dimitrib/www/For_Rev_Asym_Auction.pdf.

21

[11] P. Konstantinova, et al., “A study of target tracking algorithm
using global nearest neighbor approach,” in Proceedings of the
International Conference on Computer Systems and Technolo-
gies (CompSysTech *03), Sofia, Bulgaria, June 2003.

[12] Munkres’ Assignment Algorithm, Modified for Rectangu-
lar Matrices http://csclab.murraystate.edu/bob.pilgrim/445/
munkres.html.

[13] G. Welch and G. Bishop, “An introduction to the Kalman
Filter,” 2001, http://www.cs.unc.edu/~welch/kalman/.

[14] Altera Corporation, http://www.altera.com/literature/an/
an391.pdf.

[15] R. Joost and R. Salomon, “Advantages of FPGA-based multi-
processor systems in industrial applications,” in Proceedings of
the 31st Annual Conference of IEEE Industrial Electronics Soci-
ety (IECON °05), pp. 445-450, Raleigh, NC, USA, November
2005.

[16] H. Penttinen, T. Koskinen, and M. Hnnikinen, “Leon3 MP
on Altera FPGA,” Final Project Report, August 2007, Altera
Innovate Nordic.

[17] Altera Corporation, NIOS II Processor Reference Handbook,
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

[18] Z. Salcic and C.-R. Lee, “Scalar-based direct algorithm
mapping FPLD implementation of a Kalman filter,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 36, no.
3, part 1, pp. 879-888, 2000.

[19] Y. Boismenu, Etude d’une carte de tracking radar, These de
doctorat, Universit de Bourgogne, Dijon, France, 2000.

[20] A. Goransson and B. Sohlberg, “Tracking low velocity vehicles
from radar measurements,” in Proceedings of the IASTED
International Conference on Circuits, Signals, and Systems (CSS
’03), pp. 51-55, Cancun, Mexico, May 2003.

[21] G. Chen and L. Guo, “The FPGA implementation of Kalman
filter,” in Proceedings of the 5th WSEAS International Con-
ference on Signal Processing, Computational Geometry and
Artificial Vision, Malta, 2005.

	1. Introduction
	2. MTT Terminology and Building Blocks
	2.1. Terminology
	2.2. MTT Building Blocks

	3. Hardware Software Codesign Methodology
	4. Application Design and Development: Our Approach
	4.1. Process Model
	4.2. Measurement Model
	4.3. Kalman Filter
	4.4. Gate Computation
	4.5. Gate Checker
	4.6. Cost Matrix Generator
	4.7. Assignment Solver
	4.8. Track Maintenance

	5. Implementation Platform and the Tools
	5.1. Design Tools
	5.2. Application Profiling and the Profiling Tools
	5.2.1. GProf
	5.2.2. Performance Counter

	6. System Architecture
	6.1. System Software
	6.2. Constraints

	7. Optimization Strategies
	7.1. Choice of NiosII Implementations
	7.2. I-Cache and D-Cache

	8. Discussion
	9. Related Work
	10. Summary and Conclusion
	References

