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The design flow is roughly divided into two parts: system level and implementation. At system level, our supports for hardware
resource estimation and performance evaluation are applied. At implementation level, technology-dependent tools are used to
realize the run-time reconfiguration. The design case is part of a WCDMA decoder on a commercially available reconfigurable
platform. The results show that using run-time reconfiguration can save over 40% area when compared to a functionally equivalent
fixed system and achieve 30 times speedup in processing time when compared to a functionally equivalent pure software design.
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1. INTRODUCTION

Reconfigurability is an important issue in the design of
system-on-chip (SoC) because of the increasing demands
on silicon reuse, product upgrade after shipment, and bug-
fixing ability. The reconfigurability is usually achieved by em-
bedding reconfigurable hardware into the system. The re-
sult is a heterogeneous SoC that has the advantages of both
reconfigurable hardware and traditional types of comput-
ing elements such as general-purpose processors (GPP) and
application-specific integrated circuit (ASIC). Such combi-
nation allows parts of the system to be reconfigured at run
time while the rest is still running. This feature is referred to
as run-time reconfiguration (RTR), which can significantly
increase silicon reusability.

As today’s applications become more and more com-
plex, the implementation needs more hardware resources.
It means that either larger chips or more chips are needed,
which might not be suitable for many products such as
portable devices that require to have a limited dimension.
With RTR, tasks that are nonoverlapping either in time do-
main or space domain can be mapped onto the same recon-
figurable logic. Tasks that are required initially can be con-

figured in the beginning. When another task is required, the
configuration to load it can then be triggered. For example,
in a typical smartphone environment, different wireless tech-
nologies, such as GSM, WCDMA, WLAN, and WiMax in the
future, have to be supported. However, it is not likely that
these wireless technologies will be used at the same time.
Therefore, it is possible to put them into reconfigurable logic
and dynamically load the one that is needed.

A number of reconfigurable platforms are commercially
available. Xilinx [1] and Altera [2] provide fine-grain FPGA
platforms. They contain embedded processor cores, which
make it possible to design rather complex systems in such
FPGA platforms. PACT XPP [3] and QuickSilver [4] provide
coarse-grain reconfigurable computing platforms, which are
suitable for DSP-type tasks. The Triscend A7S [5] and the
Motorola MRC6011 [6] are configurable SoCs, which bring
both high flexibility and high performance.

The drawbacks of the RTR are configuration latency and
power consumption related to the configuration process,
which can largely degrade the system performance. How
to address these problems and evaluate the effects of re-
configuration at an early phase of the design are not sup-
ported in existing system-level design methodologies and
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tools. In addition, at system level, how to support and make
system partitioning for not only software and hardware, but
also reconfigurable logic, needs to be studied.

The ultimate goal of our work is to develop a complete
design methodology and highly automatic tools for design of
reconfigurable SoC (RSoC). In this paper, we present a de-
sign flow instantiation for implementing part of a WCDMA
decoder in an RTR system. At system level, our supports for
system partitioning and performance evaluation are applied
[7, 8]. At implementation level, commercial and technology-
dependent tools are applied. The structure of the paper is as
follows. Related work is presented in Section 2. Brief expla-
nations of the case study and the target platform are given in
Section 3. The system-level design flow instantiation is pre-
sented in Section 4, and low-level implementation work is
presented in Section 5. Finally, the conclusions are given in
Section 6.

2. RELATEDWORK

System-level design covers various issues, such as partition-
ing, task scheduling, and synthesis. In [9], an SW/HW par-
titioning and online task scheduling approach are presented.
In [10], a survey of various SW/HW partitioning algorithms
is presented, and a new approach to map loops into recon-
figurable hardware is proposed. In [11], a codesign envi-
ronment for DSPs/FPGAs-based reconfigurable platforms is
presented. Both applications and architectures are modeled
as graphs, and an academic system-level CAD tool is used.
In [12], a macro-based compilation framework to replace
logic synthesis and technology mapping is presented. In [13],
a synthesis approach based on list-scheduling is presented.
The target system is a single application that can be divided
into a number of dependent tasks. The approach considers
HW/SW partitioning, temporal partitioning, as well as con-
text scheduling. In [14, 15], an HW/SW cosynthesis frame-
work for real-time embedded reconfigurable system is pre-
sented. Each application consists of a number of dependent
tasks and has its own period. A task can be mapped either
onto a host processor or dynamically reconfigurable hard-
ware (DRHW). Synthesis is performed by statically schedul-
ing the applications over a hyperperiod, which is the least
common multiple of the different application periods. In
[16], a SystemC simulation environment for RTR systems is
presented. The idea is to remove the unloaded module from
the activation list of the SystemC kernel. In [17], various
system-level approaches to reduce the effect of configuration
latency are studied.

Different from these approaches, our ultimate goal is not
to develop a fully automatic system partitioning approach,
which we believe will not succeed. This is because nowadays’
applications and platforms are becoming so complex that it
is not possible to quantitatively characterize them precisely
in the early design phase so that complex mathematical for-
mulas can be applied to fully partition the design in such a
way that optimal solutions can be guaranteed. However, pro-
viding supports to designers at this phase can help to prune
the design space and possibly avoid re-designs. In our work,
approaches to support partitioning and modeling for fast de-
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Figure 1: The WCDMA base-band receiver system.

sign space exploration are provided. To reduce coding effort,
a tool to automatically generate reconfigurable components
is developed.

3. APPLICATION AND TARGET PLATFORM

Reconfigurable system is a promising alternative to de-
liver both flexibility and performance at the same time.
Technology-dependent tools and high-level abstract sup-
porting tools have been proposed to solve the various design
problems at different abstraction levels. However, a complete
overview of how to integrate them into a single design flow
is missing. In this work, we use a real case study to demon-
strate our design flow of RTR systems. The design case is a
set of wireless communication functions [18], and the target
is a RTR-type implementation on VP20FF1152 development
board from Memec Design group [19], which contains one
Virtex2P XC2VP20 FPGA [1] that supports partial RTR.

The whole WCDMA base-band receiver system is de-
picted in Figure 1. The case study focuses on the detector
portion (shaded area in Figure 1) of the receiver and a lim-
ited set of the full features were taken into account. It uses
384 kbits/s user data rate without handover. The functions
are an adaptive filter, a channel estimator, a multipath com-
biner, and a correlator bank. The adaptive filter is performing
the signal whitening and part of the matched filtering imple-
mented traditionally with the RAKE receiver. The channel es-
timator module calculates the phase references. In the com-
biner part, the different multipath chip samples are phase ro-
tated according to the reference samples and combined. Fi-
nally, the received signal is despread in the correlator bank.

4. SYSTEM-LEVEL DESIGN FLOWAND
INSTANTIATION STEPS

Our design flow is divided into system-level design and
implementation-level design. The task at system-level design
is to make various partitioning decisions and evaluate system
performance. At implementation level, executable code and
HW netlist are generated using technology-dependent tools.
A generic view of the system-level design flow is depicted in
Figure 2. The following new features are identified in each
phase when reconfigurability is taken into account.

(i) System requirements/specification capture needs to
identify requirements and goals of reconfigurability
(e.g., flexibility for specification changes and perfor-
mance scalability).



Yang Qu et al. 3

System
requirements/
specification

capture

Architecture
template

system-level
IP

Architecture
definition

System
partitioning

Mapping

System-level
simulation

System-level
design

Figure 2: A generic system-level design flow.

(ii) Architecture definition needs to model the reconfig-
urable technologies of different types and vendors at
abstract level and include them in the architecture
models.

(iii) System partitioning needs to analyze and estimate the
functions of the application for SW, fixed HW, and
reconfigurable HW. The parts of the targeted system
that will be realized on reconfigurable HW must be
identified. There are some rules of thumb that can be
applied. If an application has roughly several same-
sized hardware accelerators that are not used at the
same time, these accelerators can be implemented onto
DRHW. If an application has some parts in which
specification changes are foreseeable or there are fore-
seeable plans for new generations of the applications,
it may be beneficial to implement it onto DRHW.

(iv) Mapping needs to map functions allocated to recon-
figurable hardware onto the respective architecture
model. The special concerns at this step are the tem-
poral allocation and the scheduling problem. Alloca-
tion and scheduling algorithms need to be made either
online or offline.

(v) System-level simulation needs to observe the perfor-
mance impacts using reconfigurable resources for a
particular system function. The effect of configuration
overhead should be highlighted in order to support de-
signers to perform system analysis or design space ex-
ploration.

It should be noted that reconfigurability does not appear as
an isolated phenomenon, but as a tightly connected part of
the overall SoC design flow. Our approach is therefore not
intended to be a universal solution to support the design
of any reconfigurability. Instead, we focus on a case, where
the reconfigurable components are mainly used as coproces-
sors in SoCs. In addition, we assume that RTR system de-
sign does not start from scratch, but it is a more advanced
version of an existing device. The new architecture is de-
fined partly based on the existing architecture and partly
using the system specification as input. The initial architec-
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ture is often dependent on many things not directly resulting
from the requirements of the application. The company may
have experience and tools for certain processor core or semi-
conductor technology, which restricts the design space and
may produce an initial hardware/software (HW/SW) parti-
tion. Therefore, the initial architecture and the HW/SW par-
tition are often given at the beginning of system-level de-
sign.

SystemC 2.0 is selected as the backbone of the approach
since it provides a universal environment to model HW/SW
and seamlessly cosimulate them at different abstract levels.
The way that the SystemC-based approach incorporates dy-
namically reconfigurable parts into architecture is to replace
SystemC models of some hardware accelerators, as shown in
Figure 3(a), with a single SystemC model of reconfigurable
block, as shown in Figure 3(b). The objective of the SystemC-
based extensions is to provide a mechanism that allows de-
signers to easily test the effects of implementing some com-
ponents in DRHW. Referring to the system-level design flow,
as shown in Figure 2, we provide estimation support for sys-
tem partitioning and modeling support for system-level sim-
ulation.

4.1. Estimation approach to support system analysis

The estimation approach [20] is used to support system
analysis to identify functions that are beneficial to be im-
plemented in DRHW. It focuses on VirtexII-like FPGA [1]
DRHW, in which the main resources are lookup-tables
(LUTs) and multipliers. The estimation approach starts from
function blocks represented using C language, and it can pro-
duce the following estimates for each function block: execu-
tion time in terms of running the function on DRHW and
resource utilization of DRHW. The framework of the estima-
tion approach is shown in Figure 4. The designer decides the
granularity of partitioning by decomposing the algorithm
down to function blocks. The estimation tool produces the
estimates for each of the functions.
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4.1.1. High-level synthesis-based hardware estimation

A graphical view of the hardware estimation is shown in
Figure 4. Taking control-data flow graph (CDFG) and a
model of embedded FPGA as inputs, the hardware estimator
carries out a high-level synthesis-based approach to produce
the estimates. Main tasks performed in the hardware estima-
tor as well as in a real high-level synthesis tool are schedul-
ing and allocation. Scheduling is the process in which each
operator is scheduled in a certain control step, which is usu-
ally a single clock cycle, or crossing several control steps if
it is a multi-cycle operator. Allocation is the process in which
each representative in the CDFG is mapped to a physical unit,
for example, variables to registers, and the interconnection of
physical units is established.

In the estimator, a function block is represented as a
CDFG, which is a combined representation of data flow
graph (DFG) that exposes the data dependence and paral-
lelism of algorithms, and control flow graph (CFG) that cap-
tures the control relation of a group of DFGs. A SUIF-based
[21] front-end pre-processor is used to extract CDFG from
the C code. First it dismantles all high-level loops (e.g., while
loop and for loop) into low-level jump statements and re-
strict the produced code to minimize the number of jumps.
Then, basic blocks are extracted. A basic block contains only
sequential statements without any jump in between. Data
dependence inside each basic block is analyzed, and a DFG
is generated for each basic block. After the creation of all
DFGs, the control dependence between these DFGs is ex-
tracted from the jump statements to construct the CDFG.
Finally, profiling results, which are derived using gcov [22],
are inserted into the CDFG as attributes.

The basic construction units of the embedded FPGA are
static random access memory (SRAM)-based lookup tables
(LUT) and certain types of specialized function units, for ex-
ample, custom-designed multiplier. Routing resources and
their capacity are not taken into account. The model of the
embedded FPGA is in a form of mapping-table. The index of
the table is the type of the function unit, for example, adder.
The value mapped to each index is hardware resources in

terms of the number of LUTs and the number of specialized
units for this type of operation.

As-soon-as-possible (ASAP) scheduling and as-late-as-
possible (ALAP) scheduling [23] determine the critical paths
of the DFGs, which together with the control relation of the
CFGs are used to produce the estimate of hardware execution
time. For each operator, the ASAP and ALAP scheduling pro-
cesses also set the range of clock cycles within which it could
be legally scheduled without delaying the critical path. These
results are required in the next scheduling process, a mod-
ified version of force-directed-scheduling (FDS) [24], which
intends to reduce the number of function units, registers, and
buses required by balancing the concurrency of the opera-
tions assigned to them without lengthening the total execu-
tion time. The modified FDS is used to estimate the hardware
resources required for function units.

Finally, allocation is used to estimate the hardware re-
sources required for interconnection of function units. The
work of allocation is divided into 3 parts: register allocation,
operation assignment, and interconnection binding. In reg-
ister allocation, each variable is assigned to a certain regis-
ter. In operation assignment, each operator is assigned to a
certain function unit. Both are solved using the weighted-
bipartite algorithm, and the common objective is that each
assignment should introduce the least number of intercon-
nection units that will be determined in the last phase, the
interconnection binding. In this approach, multiplexer is the
only type of interconnection unit, which eases the work of
interconnection binding. The number and type of multiplex-
ersis are determined by simply counting the number of dif-
ferent inputs to each register and each function unit. After
allocation, the clock frequency is determined by searching
for the longest path between two registers. Because routing
resources are not modeled, the delay takes into account only
the function units and the multiplexers.

We assume that all variables have the same size, since our
goal is to quickly produce estimates with pure ANSI-C code
instead of generating optimal synthesizable RTL code, which
often uses some kinds of subset C code and applies special
meanings to variables. Our estimation framework also sup-
ports to explore parallelism for loops. This is done at the
SUIF-level, where we provide a module that allows designers
to perform loop unrolling (loops must have fixed number
of iterations) and loop merging (loops must have the same
number of iterations).

4.1.2. Instantiation for the case study

For the case study, we started with C-representation of the
system. It contained a main control function and the four
computational tasks, which lead to a simple system parti-
tion that the control function was mapped onto SW and the
rest onto RTR hardware. The estimation tool was used first
to produce the resource estimates. The results are listed in
Table 1, where LUT stands for lookup table and register refers
to word-wide storages. The multiplexer refers to the hard-
wired 18× 18 bits multipliers embedded in the target FPGA.

Based on the resource estimates, the dynamic context
partitioning was done as follows. The channel estimator was
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Table 1: Estimates of FPGA resources required by the function
blocks.

Functions LUT Multiplier Register

Adaptive filter 1078 8 91

Channel estimator 1387 0 84

Combiner 463 4 32

Correlator 287 0 17

Total 3215 12 224

assigned to one context (1387 LUTs), and the other three pro-
cessing blocks were assigned to a second context (1078 + 463
+ 287 = 1828 LUTs). This partition resulted in both balanced
resource utilization and less interface complexity compared
to other alternatives. In implementation phase, both contexts
are mapped onto the same region of the target FPGA, and the
system dynamically loads the one that is needed.

4.2. Modeling of DRHWand the supporting
transformation tool

The modeling of reconfiguration overhead is divided into
two steps. In the first step, different technology-dependent
features are mapped onto a set of parameters, which are the
size of the configuration data, the clock speed of configu-
ration process, and the extra delays apart from the loading
of the configuration data. Thus, by tuning the parameters,
designers can easily evaluate the tradeoffs between different
technologies without going into implementation details. In
the second step, a parameterized SystemC module that mod-
els the behavior of run-time reconfiguration process is cre-
ated. It has the ability to automatically capture the reconfigu-
ration request and present the reconfiguration overhead dur-
ing performance simulation. Thus, designers can easily eval-
uate the tradeoffs between different technologies by tuning
the parameters.

4.2.1. DRHWmodeling approach

We model DRHW in such a way that the component can
automatically capture reconfiguration requests during sim-
ulation and trigger reconfigurations when needed. In addi-
tion, a tool to automate the process that replaces some ex-
isting SystemC models by a DRHW SystemC model is devel-
oped, so system designers can easily perform the test-and-
try and thus the design space exploration process is easier. In
order to let the DRHW component be able to capture and
understand incoming messages, SystemC modules must im-
plement predefined but interface methods, such as read(),
write(), get low addr(), and get high addr(). With the forth-
coming SystemC TLM 2.0 standard [25], new interface meth-
ods could be defined to comply with the TLM 2.0. Equiva-
lently, OCP standard transaction-level interfaces [26] can be
used.

A general model of RSoC is shown in Figure 5. The left-
hand side depicts the architecture of the RSoC. The right-
hand side shows the internal structure of the DRHW com-
ponent. It is a single hierarchical SystemC module, which
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Figure 5: A generic model of RSoC.

implements the same bus interfaces as other HW/SW mod-
ules do. A configuration memory is modeled, which could be
an on-chip or off-chip memory that holds the configuration
data. Functions mapped onto DRHW (F1 to Fn) are individ-
ual SystemC modules that implement the predefined bus in-
terfaces with separate system address space. The input split-
ter (IS) is an address decoder and it manages all incoming
interface-method-calls (IMCs). The configuration scheduler
(CS) monitors the status of the mapped function and con-
trols reconfiguration processes.

The DRHW component works as follows. When the IS
captures an IMC, it will hold the IMC and pass the control
to the CS, which decides if reconfiguration is needed. If so
and the CS detects the DRHW is free to use, it issues a re-
configuration that uses the technology-dependent parame-
ters to generate the memory traffic and the associated delays
to mimic the reconfiguration latency. If the CS detects the
DRHW is loaded with another module, a request to recon-
figure the target module will be put into a FIFO queue and
the reconfiguration will be started after the DRHW has no
running module. After finishing the reconfiguration, the IS
will dispatch the IMC to the target module. This is a generic
description of the context switching process, and designers
can develop different CS models when different types of RTR
hardware are used such as partial reconfiguration or multi-
context device. In our approach, context switching with pre-
emption is not supported because of its high implementation
cost in DRHW.

There is a state diagram common to each of the mapped
function modules. Based on the state information, the CS
makes reconfiguration decisions for all incoming IMCs and
DONE signals. A state diagram of partial reconfiguration is
presented in Figure 6. For single context and multicontext re-
configurable resources, similar state diagrams can be used in
the model. In fact, different techniques for reducing the ef-
fect of the configuration latency can be applied, for example,
configuration prefetching [27]. The idea is to load a module
before it is needed. In the state diagram, this can be achieved
by enabling the branch 2 when the module is known to be ex-
ecuted soon, so the module can be loaded before an IMC to it
is issued. However, prefetching conditions should be decided
at design time and stored in a table, which can be accessed by
the CS at run-time.
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4. Other modules finish & enough resources
5. IMC to the module occurs
6. Module finishes
7. CS flushes the module

Figure 6: State diagram of functions.

4.2.2. An automatic code transformer for
DRHW component

In order to reduce the coding effort, we have developed a tool
that can automatically transform SystemC modules of the
function blocks into a DRHW component. The inputs are
SystemC files of a static architecture and a script file, which
specifies the names of the mapped functions and the asso-
ciated design parameters such as configuration latency. The
tool contains a hard-coded DRHW template. It first parses
the input SystemC code to locate the declarations of the can-
didate components (the C++ parser is based on opencxx
[28]). Then the tool creates a DRHW component by fill-
ing the DRHW template with the declarations and estab-
lishing appropriate connections between the CS, the IS, and
the functions. Finally, in the top-level structure, original Sys-
temC modules of the mapped functions are replaced with the
generated DRHW component. During simulation, reconfig-
urations will be automatically monitored and saved in a text
file for analysis. A value change dump (VCD) file will also be
produced to visualize the reconfiguration effects.

4.2.3. Instantiation for the case study

For the case study, we first created a SystemC model of a
fixed system, which had two purposes in the design. The first
was to use its simulation results as reference data, so the data
collected from the reconfigurable system could be evaluated.
The second purpose was to automatically generate the recon-
figurable system model from it via the transformation tool.

In the fixed system, each of the four WCDMA decoding
functions was mapped to an individual hardware accelera-
tor, and pipelined processing was used to increase the per-
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Figure 7: Simulation waveform shows the reconfiguration latency.

formance. A small system bus was modeled to connect all of
the processing units and storage elements. The channel data
used in the simulation was recorded in text files, and the pro-
cessor drove a slave I/O module to read the data from the file.
The SystemC models were described at transaction level, in
which the workload was derived based on the estimation re-
sults but with manual adjustment. The results showed that
1.12 milliseconds were required for decoding all 2560 chips
of a slot when the system was running at 100 MHz.

The transformation tool was then used to automatically
generate the reconfigurable system model from the fixed
model. The reconfiguration latency of the two dynamic con-
texts was derived based on the assumption that the size of
the configuration data was proportional to the resource uti-
lization, the number of LUTs required. The total available
LUTs and size of full bitstream were taken from the Xilinx
XC2VP20 datasheet. In the future, accurate approaches to
derive the reconfiguration latency will be studied.

The performance simulation showed that the system re-
quired two reconfigurations per processing one slot of data.
This is presented by the cxt0 cfg and cxt1 cfg in Figure 7.
When the configuration clock was running at 33 MHz and
the configuration bit width was 16, the reconfiguration la-
tency was 2.73 milliseconds and the solution was capable of
processing 3 slots of data in a frame.

5. LOW-LEVEL IMPLEMENTATION

The task at low-level implementation is to generate C code
for SW, RTL-VHDL code for HW, and further generate ex-
ecutable binary code and netlist. For the HW part, there are
commercial high-level synthesis tools that could be used to
reduce the design time. However, considering the cost of such
tools and the fact that the four WCDMA decoding functions
can be implemented straightforward, we manually generated
synthesizable RTL code for HW implementation. Simulation
of the reconfigurable system was also performed at the RTL
level by using the dynamic circuit switching (DCS)-based
technique [29]. Multiplexers and selectors are inserted af-
ter the outputs of the modules and before the inputs of the
modules. They are automatically switched on or off accord-
ing to the configuration status. In the cycle-accurate sim-
ulation model, the reconfiguration is modeled as pure de-
lay. For implementing the RTR, technology-dependent tools
were used. Reconfigurations are triggered and managed by
the main controlling SW task. The reconfiguration is imple-
mented using the SystemACE compact flash (CF) solution
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and the configuration data is stored in a CF card. A sim-
ple device driver that controls the SystemACE module is de-
veloped and the reconfiguration request is implemented as
function calls to the SystemACE device driver.

5.1. Detailed design and implementation

In the low-level design phase, the main controlling SW task
is mapped onto the embedded PowerPC core in the target
FPGA, and the data memories are mapped onto the embed-
ded block memories. Other components are mapped onto
Xilinx IP cores, if corresponding matches can be found, for
example,the bus model to the Xilinx processor local bus
(PLB) IP core. In addition to the basic functionality, we
added a few peripherals for debugging and visualization.
Vendor-specific tools were used in the system refinement and
implementation phases. Other than the traditional design
steps for HW/SW implementation, additional steps for in-
terface refinement, configuration design,and partially recon-
figurable module (PRM) design were needed.

5.2. Interface refinement

The number of signals crossing the dynamic region and the
static region must be fixed, since the dynamic region can-
not adapt itself for changing the number of wires. In our
work, the step to define the common set of boundary sig-
nals shared between the PRMs is referred to as interface re-
finement. In Xilinx FPGAs, the boundary signals are imple-
mented as bus macros [30], which are prerouted hard macros
used to specify the exact routing channels and will not change
when modules are reconfigured. Because each bus macro is
defined to hold 4 signals and there are only a limited num-
ber of bus macros, the boundary signals cannot be oversized.
Therefore, it is more beneficial to minimize the number of
signals crossing the dynamic region and the static region,
which can also relax the constraint during placement and
routing. In this case study, the number of boundary signals
is reduced to 82, which correspond to the signals connected
to the two 16-bit dual-port data memories and the PLB bus
adapter. 21 bus macros are needed.

5.3. Partial reconfigurablemodule design

Synthesis results of the four functions are listed in Table 2.
When considering the estimation, the results are over-
estimated at about 55% in average. The main reasons arethat:
(1) the estimator assumes fixed-length computation for all
variables, (2) the estimator maps all multiplexers directly to
LUTs but real synthesis tools usually utilize the internal mul-
tiplexers in individual logic elements. For the PRM, the Xil-
inx module-based partial reconfiguration design flow [30]
was used. First, each of the four detector functions was im-
plemented as a single block. Then a context wrapper that
matches the boundary signals was generated to wrap the
channel estimator as one module and the other three as an-
other module. The static part was assigned to the right side
of the FPGA, because most used IO pads were in the right
side. The dynamic region was in the left side of the FPGA.

Table 2: HW synthesis results.

Functions LUT Multiplier Register (bits)

Adaptive filter 553 8 1457

Channel estimator 920 0 2078

Combiner 364 4 346

Correlator 239 0 92

The size of the configuration data was 279 KB for the context
1 and 280 KB for the context 2.

Routed PRMs on the dynamic region are shown in
Figure 8. The context 1 that contains the channel estimator
is shown in Figure 8(a), and the context 2 that contains the
other three modules is shown in Figure 8(b). In addition, a
routed design after module assembly is shown in Figure 8(c),
which is the integration of the context 2 and the static part.
The bus macros that are used for providing reliable connec-
tions for the boundary signals are marked by the block in the
middle.

5.4. Comparisonwith other approaches

In addition to the RTR implementation, a fixed hardware
implementation and a pure software implementation were
made as reference designs. In the fixed-hardware implemen-
tation, the processing blocks were mapped onto static ac-
celerators and the scheduling task was mapped onto SW
that ran on the PowerPC core. The resource requirements
were 4632 LUTs (24% of available resources), 55 Block RAMs
(62%) and 12 Block Multipliers (13%). The system was run-
ning at 100 MHz. The execution time for processing one slot
of data was 1.06 ms. Compared to the fixed reference system,
the dynamic approach achieved over 40% resource reduction
in terms of the number of LUTs, but at the cost of 8 times
longer processing time.

For the full software implementation, the design was
done as a standalone approach and no operating system was
involved. Everything was running in a single PPC core and
data were entirely stored in internal Block RAMs. For the
same clock frequency, the processing time of one slot of data
was 294.6 milliseconds, which was over 30 times of the pro-
cessing time in run-time reconfiguration case. This did not
fulfill the real-time requirements.

6. CONCLUSIONS

The main advantage of RTR systems is the combined flex-
ibility and performance. However, implementing RTR does
require extra efforts in the various design stages, from the
abstract system-level down to the timing-accurate circuit-
level. In this work, we present a design flow instantiation
for RTR systems. It combines design supports at system level
for design partitioning and system modeling to evaluate the
effect of reconfiguration overhead. In implementation level,
commercial and technology-dependent tools are applied. A
set of wireless communication functions is used in the case
study. Compared to a completely fixed implementation, the
reduction of LUTs is over 40%. Compared to a full software
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Figure 8: Routed design of PRM on the dynamic region.

implementation, the run-time reconfiguration approach is
over 30 times faster. The commercial off-the-shelf FPGA
platform caused limitations on the implementation of run-
time reconfiguration. Although the selected approach used
partial reconfiguration, the required configuration time af-
fected the performance a lot in the data-flow type WCDMA
design case. The ratio of computing to configuration time
was about 1/8 in this design case. The results clearly show that
the configuration overhead is nowadays the main bottleneck
of RTR systems. In the future, techniques to reduce its effect
will be studied. In addition, improvements of our system-
level design supporting tools are needed, such as power anal-
ysis and more accurate HW resource estimation approach,
which will be studied.
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