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Signal processing algorithms become more and more efficient as a result of the developments of new standards. It is particularly
true in the field video compression. However, at each improvement in efficiency and functionality, the complexity of the algorithms
is also increasing. Textual specifications, that in the past were the original form of specifications, have been substituted by reference
software which became the starting point of any design flow leading to implementation. Therefore, designing an embedded
application has become equivalent to port a generic software on a, possibly heterogeneous, embedded platform. Such operation is
getting more and more difficult because of the increased algorithm complexity and the wide range of architectural solutions. This
paper describes a new platform aiming at supporting a step-by-step mapping of reference software (i.e., generic and nonoptimized
software) into software and hardware implementations. The platform provides a seamless interface between the software and
hardware environments with profiling capabilities for the analysis of data transfers between hardware and software. Such profiling
capabilities help the designer to achieve different implementations aiming at specific objectives such as the optimization of
hardware processing resources, of the memory architectures, or the minimization of data transfers to reach low-power designs.
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1. INTRODUCTION

Video and multimedia algorithms have changed a lot since
their first achievements in the early nineties. If we take the
example of ISO/IEC video coding standards (better known
as MPEG), we can observe that each successive codec genera-
tion released by MPEG has been substantially more complex
than the previous, typically yielding twice the compression
efficiency of its predecessor. Due to the growing complexity,
the textual specification of recent standards (since MPEG-
4) [1] has lost its normative role, being replaced by the
reference software implementation as the true normative
specification. Any ambiguous interpretation is solved by
referring to the software description. Therefore, the generic
and nonoptimized sequential software description became
the starting point for any implementation of a video stan-
dard. Unfortunately, working and reasoning on architectural
solutions, such as SW/HW partitioning, on a few tenth
of thousands of reference software lines of code is a very

time- and resource-consuming task [2]. In the traditional
way of designing hardware blocks, designers must find out
a suitable architecture and isolate the candidate hardware
components. Appropriate test vectors must be also generated
to test each of these processing elements. Such sequence
of tasks could result in more resource demanding than the
pure hardware development itself. Realizing this fact, two
initiatives have been taken within the MPEG standardization
committee. The first was to develop a generic-optimized
reference software version of the standard (MPEG-4 Part 7)
[3]. The second was to derive mixed SW/HW descriptions
from the reference software. The blocks described in a
hardware description language (HDL) are now included in
the standard (MPEG-4 Part 9 [4]).

Nowadays, reference software is the true starting point
for the implementation of video codecs on embedded sys-
tems and usually the reference software is written in C/C++.
The first step of such process is to identify from the reference
software candidate IP components for implementation in
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HW and separate them from what should remain SW and
should be optimized for the target-embedded platform.
The platform described in this paper supports the designer
in the identification and development of the different IP
components extracted from the reference software and in the
validation and test under the real test vectors. The validation
and test is not a simulation stage, but the real execution of the
partitioned system on a generic SW/HW architecture. The
result does not constitute the final algorithm implementa-
tion, but provides useful information for the exploration of
the SW/HW design space.

The paper is organized as follows. Section 2 exposes the
state-of-the-art of the existing platforms supporting rapid
prototyping of video and multimedia designs for embedded
implementations. Section 3 presents the concept of the
virtual socket platform. Section 4 describes in detail the
implementation of the virtual memory extension. Section 5
explains how useful profiling information can be extracted by
executing the algorithm on the platform. Section 6 outlines a
design methodology for the development of heterogeneous
implementations according to different optimizations start-
ing from a reference software by exploiting the features of the
virtual socket platforms. Section 7 demonstrates the usage of
the platform and associated tools in a real case study: the
design and optimization of an MPEG-4 motion estimation
module. Section 8 concludes the paper.

2. STATE-OF-THE-ART

Even if C/C++ language is not an appropriate language to
specify and model signal processing algorithms in the early
steps of the design flow of embedded systems, it is still widely
used in several contexts. Consequently, the first problem
embedded systems designers have to face is the conversion of
the generic sequential C/C++ reference software into a form
that begins to include architectural features of the selected
embedded platform. For instance, this means to identify
functions that can be processed by software or hardware
coprocessor units if available and to express them in a form
that exploits the available parallelism.

In the early stages of the design flow, designers should
have a feeling about the architecture of the system, that is,
decide which part of the algorithm must be in hardware
or software. Unfortunately, the intuition of the designer
becomes not reliable when dealing with complex systems.
It may lead to wrong initial decision that affects all other
stages of the design states. The possibility of quickly testing
possible solutions is a clear advantage to try to find the best
architecture. In platform-based design, the entire algorithm
must be mapped on the development platform, mapping
SW parts on embedded processors and HW parts on FPGA.
Platforms are composed of processors, dedicated hardware,
and reconfigurable hardware (FPGA). For example, the XUP
Virtex-II Pro Development System [5] provides an advanced
hardware platform that consists of a high-performance
Virtex-II Pro Platform FPGA (with PowerPC 405 cores)
surrounded by a comprehensive collection of peripheral
components that can be used to create a complex system.

Another example of such platform is the Celoxica RC1000-
PP PCI board [6].

From such class of platforms, in which the entire
algorithm is mapped on the platform itself, the sharing of
data between a host PC and the platform is possible [7]. The
main program still lies in the embedded processor and data
on the host are easily available by means of virtual serial
ports. However, the plugging of hardware modules inside
the reference software running on the host remains the most
difficult task.

The more advanced step is reached by the work of
Martyn Edwards and Benjamin Fozard [8]. An FPGA-
based algorithm (implemented on an external platform)
is activated from the host PC, directly from the reference
software. Such platform is based on the Celoxica RC1000-
PP board [6] and communicates with the host by using the
PCI bus. The main program is on the host processor, sends
control information to the FPGA, and transfers data in a
small shared memory which is part of the hardware platform.
In such case, the designer must explicitly transfer the data
necessary for the processing (on the platform) from the host
to the local memory. Other works addressing coprocessors
and relative coprocessors interfaces have been reported in
literature. Some examples are given in [9, 10]. However, the
problem of seamlessly plugging hardware modules is not yet
solved and the specification of the data transfers remains to
the charge of the designer.

The problem appears when dealing with large amount
of data and irregular accesses, as it occurs in complex
data-dominated video or multimedia systems. Explicitly
specifying all the data transfers might be a very burdensome
task. In some works on coprocessors, data transfers can be
generated automatically by the host like, for instance, in the
case reported in [11]. However, data are copied in the local
memory at a predefined location. Thus, the HDL module
must be aware of the physical addresses of the data in the
local memory. Again, the management of the addresses can
be a nontrivial and resource consuming task when dealing
with complex algorithms.

The virtual socket concept has been presented in [12–14]
and has been developed to support the mixed specification
of MPEG-4 Part 2 and Part 10 (AVC/H.264) specifications in
terms of reference SW including the plug-in of HDL modules
[4]. The platform is constituted by a standard PC, where the
SW is running and a PCMCIA card that contains an FPGA
and a local memory. In this platform, HDL modules on the
platform can be started directly from the reference software,
but the data transfers between the host memory and the local
memory on the platform must be explicitly specified by the
designer/programer.

In conclusion, testing the behavior of the implemen-
tation in HW of parts of a reference software is not
a trivial task. It is very resource-consuming in term of
design efforts, but is very attractive as a design exploration
methodology. Designers need a framework in which it is
easy to make seamless call the hardware components directly
from the reference software and test the performances of
the HW modules without worrying too much about low-
level implementations details. This is possible only if the
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hardware components are closely linked to the reference
software environment. Some HW/SW codesign platforms
can be used to support the algorithm-architecture adaptation
methodology [15], but all of them lack a simple procedure
capable of plugging seamlessly hardware modules described
in HDL within a pure reference software. The problem of the
current platforms is that either the memory management is a
burdensome task or the call to the hardware modules is done
by an embedded processor on the platform.

3. OVERVIEWOF THE VIRTUAL SOCKET PLATFORM

As a possible solution to the problem described in Section 2,
this paper presents an extension of the virtual socket
platform [12–14] capable of easily plugging and calling
hardware modules directly from the reference software
without worrying about the data transfers between the host
and the hardware modules. Specifying explicitly the data
transfers would not constitute a burdensome task when
dealing with simple deterministic algorithms for which the
data required by the HDL module are known exactly. Data
transfers cannot be explicitly specified in advance by the
designer in the case of complex designs, where design
tradeoffs are much more convenient and viable than worst
case designs. The idea is not to build a final embedded
system because the underlying hardware used in the platform
(wildcard and PC processor) is very different from the
hardware components of the platform used for a real
implementation. The idea is to provide a framework to
transform seamlessly C/C++ reference software into a mixed
HW/SW representation (C/C++ and VHDL). The step-by-
step transformation method is especially interesting when
dealing with large reference software packages composed of
several tens of thousand lines of codes. The work described
here allows the designer to transform step by step a large
reference software package into a mixed HW/SW without
worrying about data transfers between the software and
hardware environments.

Given a reference software and a given partitioning
between SW and HW, so as to test each HW candidate
module separately, the designer executes some parts of
the reference algorithm using the host processor and runs
the HW module on the virtual socket platform which is
the implementation support for the hardware. So as to
easily handle such mixed HW/SW specifications, it is very
convenient that the HDL module and the C/C++ functions
have access to the same user memory space. This latter is part
of the host software and contains all the data to be processed.
Such host memory space is trivially available by the processor
which executes the reference software, but it is much less
evident for the virtual socket platform which is the support
for the HW modules and lies on the FPGA.

The extension consists in adding virtual memory capa-
bilities to enable automatic data transfers between the host,
running the SW part and the platform, running the HW
modules. Thus, a portion of software reference code can be
easily replaced and executed by an HDL module without
the need of specifying any data transfer explicitly. HDL
modules are started directly from the reference software.
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Figure 1: Relations between the unified virtual memory, the
reference software algorithm, and the HDL module.

Having a shared memory-enforced by a cache-coherence
protocol—between the host PC running, the SW sections,
and the platform running HW modules—avoids the need
of specifying explicitly all the data transfers. The clear
advantage of this solution is that the data transfer needed
to feed the HDL module can be profiled so as to explore
different memory architecture solutions. Another advantage
of such direct map is that conformance with the original SW
specification is guaranteed at any stage and the generation of
test vectors is naturally provided by the way the HDL module
is plugged to the SW section. This platform can help in the
design of low-power designs thanks to the profiling of data
transfers [16] and enable algorithm-architecture codesign
methodology to build complex multimedia systems [17].

3.1. Principle

Figure 1 illustrates the principle of the platform with its
extension and shows the interactions between the unified
virtual memory (6), the reference software (1), and an HDL
module (4).

For a given algorithm described in a mixed C/C++ and
HDL form (1), the software parts are executed by the host
processor (5). The hardware parts are executed by the HDL
modules described in VHDL (4) implemented on the FPGA.
In the original version of the platform [12–14], hardware
modules only have access to the local memory on the
platform and all the data transfers from the host to the local
memory have to be explicitly specified in advance by the
designer. It is needless to underline how difficult this task
can become when the designer deals with complex signal
processing algorithms such as MPEG video codecs. Such
operations can be especially error prone when the volume
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of data is large compared to the small size of the local
memory. With the extension, the HDL modules (4) on the
FPGA and the C/C++ functions (1) on the host processor
(5) have access to the same user memory space (6). The
part of C/C++ code of the reference software the designer
intends to execute in hardware is replaced by the hardware
call function (2). The Start module ( ) function drives the
virtual socket platform and its extension (3) to trigger the
execution of the HDL module (4). The platform (3) manages
the data transfers between the main memory (6) and the
local memory on the platform (3-4).

3.2. Architecture of the platform

The virtual socket platform is composed of a PCMCIA card
and a set of software libraries in C to enable communications
between the PC and the platform. The PCMCIA card
contains an FPGA, memories, and an interface for the host
computer (PC). The virtual socket platform handles the
communications between the HDL modules implemented
on the FPGA on the PCMCIA card and the host PC. Figure 2
shows the connections between the HDL modules, the host
PC, and the virtual socket platform. The virtual memory
extension comprises the window memory unit (WMU) and
the virtual memory controller (VMC) hardware blocks and
a software library (virtual manager window) not represented
on the figure.

The extension is capable of automatically handling the
data transfers and is implemented with three components.
The window manager unit (WMU) hardware module trans-
lates virtual addresses into physical addresses. The virtual
memory controller (VMC) hardware module is a kind of
switch in order to manage two different modes: the original
and virtual modes. These modes correspond to the type of
access the HDL module asks for. If the HDL module sends a
physical address, the explicit mode is active. This mode is the
one implemented in the original platform. For further detail,
the reader can refer to [12–14]. If the HDL module sends
a virtual address to the virtual socket platform, the virtual
mode is active. In the virtual mode, the cache-coherence
protocol guarantees the coherency between the main and
local memories. This protocol is implemented in the window
manager unit (WMU) using a translation lookaside buffer
(TLB) in cooperation with the virtual manager window
(VMW) software library. The designer is free to choose one
of the two modes for requesting data from the HDL module.

3.3. Integration of an HDLmodule into the platform

The platform supports the call of an HDL module from the
reference software running on the PC. The first part explains
how such a call is written inside the reference software. The
second part explains how the VHDL code from the designer
must be inserted in the platform.

3.3.1. Call of the HDLmodule from the reference software

the segment of C code of the reference software the designer
wants to execute in hardware using a specific module

is replaced by the hardware call function with optional
parameters to configure the module. The hardware call
function is composed of the following simple steps.

(i) Open and configure the platform: the designer config-
ures the platform by using the Platform Init ( )
and VMW Init ( ) functions from the virtual socket
API and VMW API.

(ii) Parameters: the designer sets a given number of
parameters needed for the configuration of the HW
module. Sixteen parameters are available for each
HW module.

(iii) Start of the HDL module: the HDL module is started
with the Start module ( ) function which sends
first the parameters to the HDL module and then
triggers the execution. This function is part of
the VMW API. During the execution, the module
sends requests to the platform to obtain data. These
requests are treated by the virtual socket platform
and the virtual memory extension to feed the HDL
with the correct data coming from the unified virtual
memory.

(iv) Close the platform: when the entire job is finished, the
platform is closed.

The hardware call function is shown as in Algo-
rithm 1.

3.3.2. The wrapper around the hardwaremodule

the designer intends to test a hardware module correspond-
ing to a piece of reference software. This hardware module
has specific inputs and outputs. Around this hardware
module, a wrapper provides the link between the hardware
module and the virtual socket platform. Such wrapper is
connected to the virtual socket platform with the standard
interface and to the hardware module under test with its
specific inputs and outputs. The wrapper appears as a finite
state machine (FSM) and feeds the hardware module with
data coming from the virtual socket platform through the
standard interface. The wrapper is specific to each hardware
module under test because only the designer knows how to
feed the data into this hardware module. The FSM must
respect the constraints of the hardware module in terms of
data and timing. Consequently, there are several ways to
integrate the hardware module into the platform.

(i) Designers can use FIFO in front of the module to
test the true performances of the hardware module.
FIFOs are necessary to avoid that the hardware
module waits for data. Using the profiling feature of
the platform, designers can test the performances of
the module.

(ii) Designers can connect directly the interface of the
platform to the inputs and outputs of the hardware
module in order to test the functionality. Thus, the
profiling tool indicates at which moment the data are
accessed. In this case, the hardware module under test
must be able to wait for data at their inputs.
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Figure 2: Overview of the virtual socket platform.

int main (int argc, char ∗argv []) {
/∗ [· · · ] Reference Software Algorithm stops here ∗/
/∗ Beginning of the HDL module calling procedure ∗/
/∗∗∗∗∗∗∗ OPEN AND CONFIGURE THE PLATFORM ∗∗∗∗∗∗∗/

Platform Init ( ) ; // Virtual Socket

VMW Init ( ) ; // Virtual Memory Extension

/∗∗∗∗∗∗∗ PARAMETERS ∗∗∗∗∗∗∗/
Module Param . nb param = 4 ; // number of parameters

Module Param . Param [0] = A ; // parameter 1

Module Param . Param [1] = B ; // parameter 2

Module Param . Param [2] = C ; // parameter 3

Module Param . Param [3] = D ; // parameter 4

/∗∗∗∗∗∗∗ HDL MODULE START ∗∗∗∗∗∗∗/
Start module (1, &Module Param) ;

/∗∗∗∗∗∗∗ CLOSE THE PLATFORM ∗∗∗∗∗∗∗/
VMW Stop ( ) ; // Virtual Memory Extension

Platform Stop ( ) ; // Virtual Socket

/∗ End of the HDL module calling procedure ∗/
/∗ [· · · ] the Reference Software Algorithm continues ∗/
}

Algorithm 1

Figure 3 illustrates the links between the wrapper, the
virtual socket platform, and the hardware module under test.
In order that a hardware module can be tested using this
platform, minor constraints need to be considered.

(i) The HDL module must have a start process
signal as an input to trigger its execution.

(ii) The HDL module must have a process finished
signal as an output to indicate when the module
finishes.

(iii) In the case where the designer tests the functionality
of the module, this latter must accept latencies, the

time for the data to come from the main memory
through the virtual memory mechanism.

(iv) In the case in which the designer tests the perfor-
mances of the module, the wrapper must contain
FIFOs at the inputs and outputs so that the hardware
module does not presents latencies.

4. IMPLEMENTATION OF THE VIRTUAL
MEMORY EXTENSION

This section describes the implementation of the virtual
memory extension (VME) based on the original virtual
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Figure 3: The HDL module comprises a wrapper and the hardware
module under test.

socket platform. The first and second parts describe the
window manager unit (WMU) and the virtual memory
controller (VMC) hardware modules, respectively. A third
part describes the virtual memory window (VMW) software
library. Finally, the last part explains in detail how the virtual
memory extension operates.

4.1. Thewindowmanager unit (WMU)
hardwaremodule

The WMU is a component designed by Vuletić et al. [18].
It translates a virtual address into a physical address and
is the main component responsible for the cache-coherence
protocol, maintaining memory coherence between the main
memory of the host and the local memory on the platform.
In our framework, the virtual addresses refer to the unified
virtual memory space ((6) in Figure 1) and the physical
addresses refer to the local memory on the platform (see
left part of Figure 2). The WMU is composed of one major
element: the translation lookaside buffer (TLB) which is built
with a content addressable memory (CAM). It stores the
status of the data of each page. When a virtual address inputs
the WMU, this latter is translated into a physical address.
This latter is composed of an offset and the page number
(among the 32 pages available). The offset corresponds to the
location of the data in a given page. If the CAM search yields
a match between the page number of the physical address
and an entry of the CAM, it means that the data are already
present in the local memory. If no match exists, the VMW
library will intervene in order to copy the data required and
write the new entry in the page table in the TLB.

4.2. The virtual memory controller (VMC)
hardwaremodule

The VMC manages the two available modes: the virtual and
explicit modes. In the virtual mode, the virtual addresses
must be translated into physical addresses. Additional oper-
ations must be done compared to the original protocol (the

address translation, e.g.). The VMC intercepts some signals
in the standard interface between the HDL module and the
platform and sends these signals to the WMU which executes
the translation of the addresses. The signals intercepted
by the VMC are the address, the count (amount of data
requested by the HW module), and the strobe signals.

4.3. The virtual memorywindow (VMW)
software library

The VMW library is built on top of the FPGA card driver
(wildcard II API), the virtual socket API developed by Yifeng
Qiu and Wael Badawy (based on [12, 13]), and the WIN32
API. The VMW library is in charge of transferring the data
from the main memory of the host to the local memory on
the platform. The WMU raises an interrupt when such a
transfer is necessary. In this case, the VMW fills the pages of
the local memory with the requested data coming from the
virtual memory. The local memory is composed of 32 pages
of 2 kB. When the data on the local memory is dirty and must
be replaced by new data, the old data are copied back in the
main memory.

4.4. Mechanism

The goal of the virtual memory extension is to support the
direct access of HW modules to the software virtual memory
space located on the host PC. The HDL module can ask for
four types of access.

(i) Read data from the local memory on the platform.

(ii) Write data to the local memory on the platform.

(iii) Read data from the unified virtual memory space on
the host.

(iv) Write data to the unified virtual memory space on the
host.

The first two requests belong to the explicit mode in
which the HDL module sends physical addresses (relative
to the local memory). This mode is already implemented in
the original version of the platform. It will not be detailed
in this paper, the reader can refer to [12–14] for further
information.

The last two requests belong to the virtual mode in which
the HDL module sends virtual addresses (relative to the
unified virtual memory). In the virtual mode, the addresses
are the one of the data in the unified virtual memory
space. In other words, it enables the HDL module to have
a transparent access the host memory.

The following paragraphs explain in more details how
data in the virtual memory of the host is accessed from the
HDL without any intervention of the designer. The protocol
to write and read in the unified memory space are very
similar and for the sake of clarity, only the read protocol is
described.
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4.4.1. Send the pointers

the piece of reference code the designer wants to execute
in hardware is replaced first by the hardware call function
(see Section 3.3.1) in order to call the hardware module.
This latter needs data to work and the designer must specify
which data must be used. Pointers of the data are sent to the
HDL module by using parameters. For example, if the HDL
module needs two images as input, the designer specify the
pointers to the images using the parameters in the hardware
call function as in Algorithm 2.

When the execution of the hardware module is triggered
with the Start module ( ) function (part of the hardware
call function), the wrapper of the HDL module receives
the parameters (pointers) because it is the wrapper which
is connected to the virtual socket platform (see Figure 3).
According to these pointers, the wrapper can generate the
requests to the virtual socket platform to get the data.

4.4.2. The requests of themodule

the wrapper can generate the requests (i.e., the addresses)
from the pointers it just received. The way the requests
are done depends on how the data must be inputted in
the HDL module. In image processing, for example, there
are different ways to read an image, raster or blocks. If
the HDL module needs a raster format, the wrapper sends
the necessary requests in order that the data received from
the platform are in a raster format. The HDL module can
send either an explicit or a virtual request, that is, physical
addresses or virtual addresses. The use of the two modes is
further detailed in Section 6. The wrapper uses the existing
protocol of communication with the virtual socket to make
the requests (explicit or virtual). A read request consists in
asserting the following signals of the interface.

(i) hw mem hwaccel: number of the hardware mod-
ule.

(ii) hw offset: read address.

(iii) hw count: number of data to read.

(iv) memory read: strobe signal of the request.

A write request consists in asserting the following signals
of the interface.

(i) hw mem hwaccel1: number of the hardware mod-
ule.

(ii) hw offset1: write address.

(iii) hw count1: number of data to write.

(iv) output valid: strobe signal of the request and the
data.

4.4.3. Modemanagement

according to the type of request sent by the module, the
VMC will send the address, count, and strobe signals to the
WMU or not. If the request is explicit, the signals go directly
to the virtual socket platform and this latter sends the data

to the HDL module according to the initial protocol in the
original platform (see [12–14]). But if the access is virtual,
the requested address is virtual and it must be translated
into a physical address so that the platform can send the
corresponding data to the HDL module. The WMC catches
some signals from the standard interface and sends them to
the WMU which translates this virtual address into a physical
one.

4.4.4. The translation of the address

the WMU receives a virtual address from a HDL module
through the VMC. The WMU translates this virtual address
into a physical address. The translation mechanism is
illustrated in Figure 4.

The virtual address is 32 bits long. The page offset is 11
bits long because the size of a page in the local memory is
2 kb. Thus, the pattern to be translated is a word of 21 bits.
The translation consists in simply replacing the pattern by a
page number, knowing that the replacement strategy is FIFO.
The first request of the HDL module is going to result in
a miss because there is no data in the local memory yet.
Thus, the VMW will fill the first page of the local memory
with the requested data from the main memory. When the
WMU detects a new missed request, the second page of the
local memory is filled, and so on. When the 32 entries are
complete, the first page is used again; it is an FIFO strategy.
If the status of this page is dirty, the VMW will copy back the
data to the main memory before replacing the old data by the
new one.

Once the address is translated, the WMU checks if the
data corresponding to the virtual address is already present
in the local memory on the platform. If yes, the WMU
sends the corresponding physical address to the virtual socket
platform. If not, the WMU raises an interrupt and asks the
VMW to copy the requested data in the local memory. The
platform knows if the requested data is already present in the
local memory thanks to the cache-coherence protocol which
guarantees the coherence between the main memory and the
local memory. The check is done by verifying the status of the
data contained in the local memory thanks to the TLB/CAM
(see Section 4.1).

4.4.5. The automatic transfer of the data

if the WMU raises an interrupt, the requested data in the
main memory corresponding to the virtual address is copied
in the local memory. The VMW library transfers all the data
between the main memory (the unified virtual memory) and
the local memory. The collaboration of the WMU and the
VMW implements a cache-coherence protocol. This latter
keeps the status of the data of the local memory on the
platform.

(i) Dirty: data copied on the local memory and modified
by the HDL module.

(ii) Valid: data copied on the local memory and not
modified by the HDL module.

(iii) Invalid: no data copied at this address.
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Module Param . nb param = 2 ; // number of parameters

Module Param . Param [0] = &img1 ; // pointer to image no. 1
Module Param . Param [0] = &img2 ; // pointer to image no. 2

Algorithm 2

WMU-TLB-CAM
translation

FIFO strategy

Address requested by the IP block

Pattern to be translated Page offset

Not used Page number Page offset

Virtual address

Physical address

31

31

31

0

0

0

16 15 11 10

11 10

Figure 4: The translation of a virtual address into a physical address.

4.4.6. Answer to the request of themodule

when the data has been transferred, the WMU sends the
corresponding physical address to the virtual socket platform
which sends the data (which are now in the local memory)
to the HDL module. When the job of the HDL module is
entirely finished, the data processed by the HDL module are
copied back in the host memory in order that the reference
software can continue running with updated data, created
and/or modified by the execution of the HDL module.
Thanks to the VME, the data are updated without any
intervention of the designer.

Finally, from the designer point of view, using the virtual
memory extension, the whole process of data transfers is
completely transparent. The only issue the designer has to
care for is to generate the virtual addresses accordingly to the
data contained in the host memory space. The whole task of
transferring data to local memory is done by the platform
and its software support.

5. PROFILING FEATURES

Once the HDL module is correctly called by the reference
software and executed on the platform, it would be inter-
esting to get useful information on the execution of the
hardware module. The profiling feature of the platform can
provide such information by recording the data accesses
between the HDL module and the virtual socket platform.
Since in the field of signal processing, algorithms are
essentially data driven, optimizing the data transfers between
the different components is crucial for such signal processing
systems. Data transfers provide also a relevant contribution

to the overall power dissipation in embedded systems.
Consequently, these transfers must be carefully optimized in
order to be successful in low-power designs.

Table 1 is an example of profiling information given by
the platform. The column Rd/Wr indicates if the request of
the module is a read (r) or a write (w). The column Addr
contains the address of the data requested by the module. The
column Count indicates how much data is requested by the
module from the address specified in the previous column
(kind of a burst). The column Clk indicates at which clock
cycle the request appends. The origin corresponds to the time
at which the module begins its processing. The column event
indicates the type of event happening. “v” corresponds to a
virtual access, “o” corresponds to an explicit access, and “d”
indicates the end of the job of the HDL module.

The example corresponding to Table 1 consists of copy-
ing 1000 dwords from one place in the main memory to
another place in the same memory. The HDL module asks
for reading 255 data from the address 0× 366408 of the main
memory. Once the HDL module received the data, it copies
them to the new place in a main memory by asking for a
writing request at address 0 × 3673D8. The 1000 dwords are
copied by sets of 255 dwords. Each virtual access requests a
time overhead. In virtual mode, each virtual access requests 4
cycles. Therefore, between a read and write operations 1024
cycles are requested. The time (derived from the clock cycles
information) recorded by the platform is the time at which
the HDL module asks for data. When a request is sent by
the hardware module to the platform, the time is “stopped”
until the platform answers and data are inputted in the HDL
module. Thus, the profiling tool does not take into account
the time taken by the platform to feed the HDL module with
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Table 1: Example of profiling information given by the platform.

Rd/Wr Addr. (hex) Count Clk Event

r 0x366408 255 0 v

w 0x3673d8 255 1024 v

r 0x366804 255 2048 v

w 0x3677d4 255 3072 v

r 0x366c00 255 4096 v

w 0x367bd0 255 5120 v

r 0x366ffc 239 6144 v

w 0x367fcc 239 7168 v

– – – 8192 d

the requested data. It is as if the data arrived immediately
after the request. However, the time elapsed for the data
transfer from the local memory to the module is taken under
account. The profiling tool aims at studying how the HDL
modules asks data and not how it communicates with the
rest of the system because the architecture of the platform
will never be implemented in a real embedded system.

The profiling feature is implemented in hardware
(WMU) and in software (VMW). The WMU raises inter-
ruptions for each data transfers between the HDL module
and the virtual socket platform. The VMW library handles
these interruptions and records the profiling information in
a simple text file. It catches the information presented in
Table 1.

6. DESIGNMETHODOLOGY

6.1. Objectives

The main goal of the virtual socket platform and its
extension is to ease the communications between an SW
environment (i.e., a PC) and an HW module (i.e., an
FPGA) for the rapid evaluation and profiling of IP blocks
derived from a reference software specification. These IP
blocks are supposed to be used in the final implementation.
In other words, this platform is a support in the process
converting large C/C++ reference software packages into
mixed HW/SW description/implementations. A step-by-step
approach is the methodology adopted so as to reach the
desired final implementation. By using the virtual memory
extension, the data transfers between the SW environment
and the HW modules are handled automatically. If the
designer desires to convert entirely the reference software
into a hardware implementation, he can replace step-by-
step pieces of the C/C++ code with HW modules and
proceed with this approach until the entire SW algorithm is
converted and integrated in hardware. If the designer desires
to target the conversion to a mixed representation of the
reference software, he can stop at any intermediate step.
Section 7 describes a methodology based on the profiling
features of the virtual socket platform to reach optimized
implementations.

6.2. Methodology

Figure 5 illustrates the different steps of the proposed
methodology.

The first step (called “Building the module”) consists
in partitioning the C/C++ reference software into software
and hardware partitions. The methodology that identifies
these partitions is not the scope of this work and is not
further discussed here. The second task consists in writing
the hardware modules in HDL. This can be done manually
or by using any other C to HDL tools and methodologies,
according to the preferences of the designer. The third
task consists in inserting the HW module by replacing
the corresponding code by the hardware call function (see
Section 3.3.1) with parameters if necessary (e.g., the virtual
addresses of the data used by the module). The HDL module
must be also wrapped in order to satisfy the communication
protocol with the platform (see Section 3.3.2).

The second step (called “Conformance tests”) consists in
checking the conformance of the hardware module with
respect to the reference software. The equivalency of the
C/C++ and HW modules is checked relying on the virtual
socket platform and the virtual memory extension in the
virtual mode. The virtual memory feature simplifies the
conformance tests procedures because the designer does
not have to care about the data transfers between the
main memory and the local memory because this stage is
guaranteed by the platform. The conformance check is done
by comparing the results generated by the reference software
and the HW module. Such verification is done directly in
the reference software environment. No profiling is needed at
this step because the designer only checks the conformance
of the module and not its performances.

The third step (called “Optimization”) consists in opti-
mizing the HW module by using the virtual mode and the
profiling features of the platform. The designer can grasp
an overview of the data transfers exchanged between the
platform and the HW module. The way data are accessed
can be the object of further optimization steps. Updates of
the internal algorithm of the module can affect the way data
are accessed, the amount of requested data and the timing at
which the transfers are done. This phase helps the designer to
refine the HDL code of the HW module. Using the support
provided by the virtual memory extension, the designer
can forget about the data transfers between the reference
software and the HW module and has only to specify to
the module the virtual addresses of the data used by the
module. According to the profiling results, the designer faces
different cases. The time elapsed for the data transfers and the
processing time can be measured by the platform. According
to these values, three cases are possible.

(i) Transfers < computations: the processing is too long
compared to the data transfers. The optimization
effort must focus on the processing in order to reduce
the processing time.

(ii) Transfers = computations: the system is balanced.
While the transfers occur, the processing is executed.
When this latter finished, a new set of data is
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Figure 5: Flow chart representation of the design flow steps using the virtual socket platform.

immediately available at the same time. There is no
loss of efficiency.

(iii) Transfers > computations: the module is waiting for
data. The designer can choose either to reduce the
amount of data used by the module or to implement
an equivalent processing that is slower (by adding
algorithmic complexity so as to get better results if
possible and convenient) or by reducing resource
usage or power dissipation whenever appropriate.

According to the overall design policy of the system, the
designer can take appropriate design decisions by analyzing
profiling results given by the platform. Either the design fills

the requirements and the designer continues with the last
step, or the design does not fill the requirements and he
modifies the module until it is satisfactory (iteration of the
third step).

Once the design is satisfactory, the designer can enter
the fourth step (called “Adaptation”). This step consists in
adapting the HW module to a real target platform. The
explicit mode is used at the place of the virtual mode. At this
step, the data exchanged by the HW module and the platform
are well-defined. Data transfers are expressed explicitly using
physical addresses. At the end of this step, the HW module
sends physical addresses, relative to the final implementation
design.
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7. CASE STUDY: DESIGN OF ANMPEG-4
MOTION ESTIMATIONMODULE

This design case intends to show how the virtual socket
platform can be used to explore algorithmic/architecture
tradeoffs so as to achieve the highest possible performances
under bandwidth and processing constraints. In this context,
an example of the implementation of a motion estimation
with a reduced search strategy HW component is developed.
The platform structure, and the processor possibilities,
represents a real advantage for the effective implementation
of a reduced search strategy algorithm that matches the
HW platform capabilities. The performances of an HW
block can be considerably increased and optimized using the
described methodology and the profiling results obtained
by the platform. The profiling information extracted by
the virtual socket platform (specifically the timing per-
formance) is investigated by using the virtual memory
accesses mode.

7.1. Motion estimation in a video encoding context

The motion estimation is well known to be the most
computation-intensive stage of video coding process and
has been the subject of many research works (on both
algorithmic and architecture sides) which aim at reducing
the implementation complexity. For brevity, we cannot here
provide an accurate review of the wide literature on the
subject, we suggest referring, for instance, to [19, 20], and
their references, for an updated review of the state-of-the-art.
We just remind the main families of approaches developed so
far.

The first family is the so-called “reduced search algo-
rithms,” which aims at reducing the complexity by limiting
the measure of the matching criterion to only a (small) subset
of candidate vectors in the search window. The key element
here is the “intelligence” of the search algorithm that may
completely change depending on the requirements of the
video coding application (portable video telephony, HDTV
for sport events, etc.).

A second family is constituted by the approaches in which
the complexity reduction is achieved by using multiresolu-
tion searches on subsampled image search windows.

A third approach is to use simplified matching criteria in
place of the classical maximum absolute difference (MAD)
criterion.

A fourth family of approaches is based on various
preprocessing stages that reduce the images to binary images
for which simple XOR operations are used for the evaluation
of the MAD.

7.2. On the choice of the design case study

For most of the algorithms, composed of one or more
algorithmic elements from the different families sketched
above, dedicated optimized implementations using systolic
arrays and/or specific data flows handling are needed to
achieve effective performances. While a lot of effort has been
devoted to developing such reduced complexity solutions

(search algorithm plus data flow implementation), much less
effort has been devoted to study how to be able to scale
the solutions versus the different parameters such as the
size of the search window, the available memory bandwidth
(that usually is an off-chip memory), and the processing
power. Most of the solutions require a close coupling between
data flow handling and the dedicated hardware. Nowadays,
with the appearance of powerful processors with specialized
instruction sets and new families of FPGA with embedded
arithmetic for which the MAD evaluation is no longer a
difficult burden, some of the reduced complexity solutions
presented in the past have lost their interest. Modularity,
flexibility to cover the different coding applications, and the
possibility of upgrading using the more recent results and
improvements are more desirable and possible implementa-
tion objectives.

For such reasons in this case study, we focus on architec-
tures that present a wide degree of flexibility and modularity
of the different elements versus the various performance and
implementation parameters of motion estimation so as to be
able to cover different applications ranging from high-quality
HDTV up to mobile video. The family of approaches sup-
ported is the reduced search algorithms on a specific search
window. The recent results, including the comparison with
other approaches, have shown that using appropriate (for
the video application) reduced search algorithms is possible
to achieve optimal coding results [21]. The main idea of the
architecture so as to achieve the desired level of flexibility and
reprogramability for the search is thus to separate the data
access and the matching criterion implementation stages
from the intelligence of the algorithmic search. Therefore,
the coprocessor architecture, depending on the support
platform and matching criterion used, can be programed
freely by the user at high level with his preferred intelligent
search, exploiting the resource budget in terms of available
candidate vectors for each search. The implementation
objective of the architecture is not only an efficient hardware
implementation not only to speed up matching operations,
but also to provide the possibility of randomly matching any
area in a search window without any other limitation on
the access sequence. The random-block access in the search
window is obtained with a specific data flow architecture
and address generation strategy. This accelerator has been
presented in [19]. The flexibility of the hardware accelerator
supports all the different motion estimation modes which
appear in the recent extension of the MPEG video standard
family such as AVC. The search-window size is parametric so
that it can be configured according to the search window size
of the profile under consideration or reduced according to
the desired application.

7.3. Design flow

This section describes the application of the proposed
methodology supported by the virtual socket platform to the
design of the motion estimation module that satisfies the
objectives described above. The sections follows the design
flow described in Figure 5.
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Figure 6: Full-search and reduced-search strategies.

7.3.1. Building themodule

the conception and the integration of the HW accelerator
represent the first step of the design flow. Therefore, the
first step in the design flow must be the partitioning of
the algorithm. The motion estimation takes place in the
MPEG encoder, described in the reference software which
is the starting point of the implementation. The piece of
code relative to the motion estimation process is identified
in the reference code, and then implemented. A full-search
algorithm is implemented in a first time. The motion
estimation process is regular, as illustrated in Figure 6, and
all possible positions of the pattern in the search window
are searched. In this case, the number of matching depends
on the sizes of the pattern and of the search window
(i.e., for 16 × 16 pattern and a 56 × 40 search window,
1025 matching are needed). Obviously, with such high
number of operations (i.e., >1000 matching), the motion
estimation represents then the most computation intensive
stage of the video encoding. During a matching process, the
architecture does not support any interruption. Therefore,
the wrapper of the module requests an FIFO memory in
front of the data interfaces (input and output). Finally, the
HW module is integrated into the platform. The piece of
code in the reference software relative to motion estimation
is replaced by the hardware call function (see Section 3.3.1).
The fundamental information, as the sizes the addresses of
the pattern and the search window, is transferred to the
HW module through the hardware call function and its
parameters structure.

7.3.2. Conformance tests

since the HW module has been correctly designed and
produces the requested results, the second step is completed.
The conformance of the module is tested in the complete
software environment by testing the results of the reference

Table 2: Profiling results for the full-search algorithm.

Rd/Wr Addr. (hex) Count Clk Event

r 0x366408 64 0 v

r 0x366538 560 256 v

w 0x362f90 1 20950 v

– – – 20959 d

software using the results of the HW module. As far as the
results of the HW module are not matching the reference
software, the loop must be iterated by debugging and
redesigning the module until it is correct. This step can be
considered as an HW debugging step, and can complete the
common simulation phase.

7.3.3. Optimization—first iteration

the third step consists in analyzing, profiling, and optimizing
the HW module. The profiling results with a full-search
methodology are obtained for the implementation setting
on a search window with a size of 56 × 40 and 16 × 16
blocks. The frequency of the motion accelerator is 50 MHz.
The study of the profiling highlights several aspects. Table 2
shows a fraction of the profiling results for this configuration.
At the beginning of the processing, the FIFO receives the
input data. The pattern is transferred and followed by the
search window. The two first rows of Table 2 represent these
two transfers. The data is stored on the hard disk space,
therefore virtual accesses are required. The pointers of the
pattern and the search window are used by the FSM of the
wrapper to generate all the required addresses. As 32 bits (i.e.,
4 pixels) are transferred at each access, the pattern and the
search window are transferred, respectively, in 64 and 560
accesses. Due to the virtual mode overhead, each access is
performed in 4 cycles. At the end of the processing, one write
access enables the resulting motion vector to be stored into
the output FIFO. The whole processing is completed in 20950
cycles. As the data transfers (pattern and search window) are
done in 12480 nanoseconds (i.e., 624 accesses) and the whole
matching processing (the 1025 possible matching) is finished
in 369000 nanoseconds, the profiling confirms that a simple
matching is processed at this frequency in 360 nanoseconds.

Moreover, the profiling results confirm that the pro-
cessing represents the major part of the require time.
With a higher resolution (for HDTV, e.g.), the size of
the search window increases and the processing time even
more. The processing stage must be improved in priority.
Consequently, the search strategy is modified and the HW
module modified.

7.3.4. Optimization—redesign

the architecture refinements are applied to implement a
reduced search algorithm so as to decrease the processing
time of the module.

Contrary to the full-search strategy, a reduced search
aims at minimizing the number of matching, in this variant
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the objective is achieved by using previous matching infor-
mation (i.e., the values of the vectors previously computed in
time and space). As mentioned previously, using appropriate
(for the video application) reduced search algorithms, it is
possible, at the same time, to achieve optimal coding results
[21] and reduce the processing time for each macroblock
motion estimation. Figure 6 represents a reduced search (4
matching represented) strategy versus a full-search one.

The list of candidate matching to process is reduced
according to the user’s search algorithm. The motion estima-
tion accelerator receives this list of candidates and processes
only the listed positions. The possibility of the HW module
of randomly matching any area in a search window without
any other limitation on the access sequence is exploited in a
first phase. In other terms, even with a random access, the
performance per matching is not changed.

Therefore, the MAD matching implementation has not
been modified. The implemented pipelined architecture
enables to match a block and a portion of search window,
row by row. The modification is done on the data structure
to guarantee the data access. The data structure modification
is detailed in a previous work [19]. Moreover, the address
generation process is modified. The address generation is
provided by a flexible unit to enable the translation of the
user search strategy into the hardware setup. Contrary to
previous work, this unit is not included into the HW accel-
erator (FPGA or embedded processor), the host processor is
in charge of the generation to increase the system flexibility
and to take advantage of the virtual memory mode in the
different configurations to be tested (e.g., different sizes of
the search window).

To integrate the HW module, the wrapper is modified by
including an FIFO memory dedicated to matching addresses
in front of the address interface. Moreover, a control register
is added to start the accelerator or to define the number of
matching. The resulting wrapper is presented in Figure 7.

7.3.5. Optimization—second iteration

the motion vector is usually highly correlated with the
previous vectors. So as to exploit this feature, the user
algorithm defines the different matchings to be processed.
The proposed algorithm is presented below. The algorithm
is split into two phases. As shown in Figure 8, initially nine
motion vectors in a 3 × 3 corresponding neighborhood of
the previous image (Image T-1) are listed as candidates. In
the current image (Image T), the four motion vectors early
processed are considered. The zero motion vector should also
always be considered, therefore it is added as a candidate. In
view of the profiling results in terms of data transfer and
processing time, the user can then determine the number
of matching (or motion vectors) that are still available as
process budget. Therefore, depending on the amount of the
budget left measured by the profiling results, the user can add
some random vectors following, for instance, a Gaussian law
centered on the current position.

These new candidate vectors are processed. In a second
phase, the resulting score of each candidate vector enables
them to be ranked (Figure 9). Vector additions of better

Motion estimation wrapper
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memory
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N# of matching
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32

16

32

32
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Figure 7: Motion estimation accelerator.
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Figure 8: Determination of first set of candidate vectors.

ranked vectors are executed to define a second set of
candidate vectors. Once again, the number of combinations
to define new candidates depends on the profiled user
budget [21]. Conformance with optimal coding results can
be obtained with less than 60 candidate vectors in a 56 × 40
search window (phase 1 and phase 2 aggregate together) and
can be directly validated by executing the HW module and
the SW.

The scheduling of the tasks is described in Figure 10. The
input data (pattern and search window) and the addresses of
the matching to process are transferred to the HW module
during task 1. Tasks 2 and 6 represent, respectively, the
processing of the first and the second sets of candidate
vectors. Tasks 3 and 7 correspond, respectively, to the transfer
of the resulting vectors form the HW module to the host
processor. Task 4 represents the computation of the second
set of vectors. Finally, task 5 corresponds to the transfer from
the PC to the HW module of the matching addresses relative
to the second vector set. The data are still resident into the
internal memory cache of the HW module, therefore are not
required.

By using the proposed reduced search strategy, the
number of matching has been reduced to 100 (50 candidate
vectors for each phase). The profiling tests show that the first
phase is achieved in 23 480 nanoseconds (random access and



14 EURASIP Journal on Embedded Systems

Best
matching

Rank 1
vector:

Rank 2
vector:

Rank 3
vector:

Rank X
vector:

Scalar
combination New set of

“candidate” vectors

Normalization

...

...

· · ·

Figure 9: Determination of second set of candidate vectors.

Data resources

Host PC

Wildcard

HW module

User reduced search
algorithm

4

1 5

3 7 2 6

Figure 10: Scheduling of the different tasks.

data transfer included). The second phase requires only the
new set of candidate vectors (matching address) as input
data. This phase can be finished in 11 000 nanoseconds.
Consequently, the whole process, excluding the determina-
tion of the second vector set, can be achieved in 34 000
nanoseconds. Depending on the complexity of the search
algorithm, the acceleration of the processing, in comparison
to the full-search strategy, can be very high (in this example
a ratio equals to 10). Obviously, the required time for the
determination of the second vector set has to be taken into
account.

The data access flexibility of the VMW platform enables
to easily implement and explore different search window
sizes. With a 80 × 40 search window, the data transfer
is measured to be equal to 17 280 nanoseconds and the
processing time for a full search is 585 000 nanoseconds
(for the 1625 possible matchings ). With a reduced-search
strategy of 200 candidate vectors, the processing time for the
whole processing (excluding the determination of the second
vector set) is then 61 280 nanoseconds. The processing time
is much lower than for a full-search strategy (even with a
56 × 40 search window) and the acceleration achievable by
the HW platform is even higher.

7.4. Discussion

Using the VMW platform capabilities and plugging the
motion estimation accelerator are possible to easily explore
a wide variety of optimization solutions without the need

of detailing all necessary data transfers explicitly. The host
processor remains in charge of the definition of the list
of candidate matching. In summary, the system is highly
flexible on three features and provides the following.

(i) A simple data-flow control (with virtual data access).

(ii) An easy integration of the HW accelerator implemen-
tation.

(iii) Profiling information on the data flow and the pro-
cessing time for all tested implementation options.

Moreover, the system does not only provide flexibility
of exploring and testing solutions, but also provides direct
results of algorithmic-architectures tradeoffs in terms of
overall coding performance increases. For instance, the user
can scale the resource budget in terms of available candidate
vectors for each search in view of the required performances
and select the best configuration for the video encoding
under test. Using the profiling information measured, the
data transfer time and the processing time, the designer can

(i) adjust the number of vectors to obtain optimal cod-
ing results or in general select the tradeoff between
the coding performances and desired processing
time;

(ii) adjust/modify the search algorithm complexity (e.g.,
three vectors can be considered or different reduced
search strategy investigated);

(iii) adjust/increase the size of the search window looking
for optimal tradeoffs between coding performances
and required memory bandwidths.

The major challenges of the architecture design of the
co-processor for motion estimation are to guarantee the
random access of any search strategy and to enable the
setting of the size of the search window, hence providing
sufficient processing resources for the different encoding
applications. So as to guarantee the random access in any
position of a search window, the search window pixels have
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to be accessible to the matching engine and need to be stored
in the FPGA to reduce the number of accesses to the external
memory, so as not to exceed the available bandwidth. A
current investigation aims at minimizing the size of the
internal cache in function of the kind of image sequence. The
profiling statistics enable the number of virtual accesses to be
measured, therefore the number of misses in the local cache.
Different cache sizes can be quickly implemented thanks to
the virtual access mode, therefore a local cache can be defined
for the target sequences. Other parameters can be considered.
Indeed, this definition represents a tradeoff between the
optimum size and the latency tolerated which is correlated to
the ratio between the processing and the data transfer times.
Therefore, the cache memory size can be defined in view of
the processing time, in other words, with consideration of the
selected search algorithm parameters (algorithm, number of
matching, or search window size).

8. CONCLUSION

This paper describes the implementation of a platform
that enables SW and HW environments to share the same
virtual memory space. The platform helps the designer in
the different design steps aiming at developing implemen-
tations of heterogeneous embedded systems starting from a
specification described by a reference software. The platform
provides a seamless environment and a clear methodology to
help designers to turn C/C++ reference software into HDL
modules. The conformance tests become straightforward.
The main advantage of the platform is that it provides a step-
by-step approach for designing, evaluating, and integrating
hardware modules into a heterogeneous environment. The
profiling capabilities on the data transfers between the SW
and HW components of the platform support the designer to
explore different implementation and optimization options
at different stages of the design process. Initially, design
efforts can be focused on the module functionality without
worrying about data transfers. Then, by using the profiled
data transfer, designers can focus on appropriate memory
architectures, on algorithm/architecture tradeoffs, or on any
other design optimizations that match the specific desired
criteria of the design that affects or are affected by data
transfers between modules.
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