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1. INTRODUCTION

Modular exponentiation is the core operation of successful
public-key cryptosystems such as RSA [1] and ElGamal
encryption [1]; modular arithmetic also plays a key role in
elliptic curve cryptography [1]. The RSA scheme requires
exponentiation on k-bit positive integers, with k ranging
typically from 512 to 2048; the ElGamal scheme uses
exponentiation on prime numbers (at least 1024 bits).
When dealing with large integers, modular exponentiation
typically iterates some modular multiplication algorithm.
As a result, fast, space-efficient algorithms for modular
multiplication [1, 2] have been developed to achieve efficient
implementations.

Montgomery’s algorithm [2, 3] can effectively speedup
the modular multiplications required during an exponen-
tiation process. The method reformulates the (demanding)
algebraic operations brought about by modular multipli-
cation and uses a fixed power of 2 as a computational
basis, which best suits digital implementations. Several
approaches have been proposed in the literature for the
implementation of Montgomery’s multiplication [2]. In view
of the expanding demand of security services on embedded
machinery, great efforts have been recently devoted to
developing efficient implementations of that algorithm on
FPGAs, DSPs, and microcontrollers [4-15].

The present work focuses on the implementation of
Montgomery’s algorithm on digital signal processors and
proposes an enhanced version of the finely integrated
product scanning (FIPS) approach [2]. Among the several
alternatives [2], the FIPS strategy best exploits both the
multiply-and-accumulate capabilities and the double-path
organisation of most DSP platforms.

When comparing this approach with the state-of-the-art
on embedded cryptosystems, a few works have addressed
recently the reformulation of Montgomery’s multiplication
for DSPs architectures [9, 12]. The works of Itoh et al. [9] and
Krishnamurthy et al. [12] mostly tackled the implementation
of a complete public-key cryptosystem and considered one
DSP platform exclusively. The implementation aspects of the
FIOS and the FIPS algorithm have been discussed in [11, 14],
but those papers addressed embedded RISC architectures
only.

Thus, to the purpose of improving the efficiency of
embedded public-key cryptosystem, the paper reformulates
the basic FIPS structure and provides an enhanced algorithm
design that matches computational efficiency with flexibility.
The approach performs effectively in very long instruction
word (VLIW) architectures, and therefore DSPs can be
envisioned as the target platform under the (reasonable)
assumption that today’s DSP devices are built on a VLIW
schema.
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Inputs: {@, b} (structural fixed parameters: n’, r).
Outputs: ¢ = a-b-r (mod n).

l.t=a-b,

2.m = t-n'(modr),

3.u=(t+m-n)/r,

4.if (u > n), then return (u — n) else return wu.

ArLGoriTHM 1: Montgomery’s reduction algorithm MP(aq, b).

The paper is organized as follows. Section 2 briefly intro-
duces Montgomery’s multiplication and the FIPS algorithm.
Section 3 describes the enhanced FIPS formulation and
presents the related theoretical analysis. Section 4 presents
the results obtained by implementing the reformulated
algorithm on different DSP platforms.

2. MONTGOMERY MULTIPLICATION IN
EMBEDDED CRYPTOSYSTEMS

2.1. Montgomery’s reduction algorithm

For any pair of integers, a,b < n, Montgomery’s algorithm
computes

MP(a,b) = a-b-r~! mod n, (1)

where r is an integer that is larger than » and is coprime
to n, that is, GCD (n,r) = 1, and r ! is the modular
inverse of r : r~!-r = 1(mod n). For computational reasons
clarified below, MP(-) is not usually fed with the actual
operands, {a,b}, but processes their so-called n-residual
representations, {a, b}. The n-residual, @, of an integer a < n
is defined as @ = a-r(mod n). Montgomery’s algorithm can
be outlined as shown in Algorithm 1.

The procedure is parameterised by the unique number,
n/, that satisfies: r-r=! — n-n’ = 1; such quantity and the
quantity r ~! are computed once for each modulus setting
by the extended Euclidean algorithm [16]. A critical step
in the MP(-) algorithm involves the division operation at
step (3), having r as a denominator. In digital hardware
implementations, one chooses r such that r = 2k hence
the ratio operation turns into a bit-shift; such a setting
satisfies the constraint GCD (n,r) = 1 because, in practical
cryptosystems, 7 is either a prime number or the product of
two odd primes. Thus, k is eventually set such that: 25~ <
n < 2k,

Montgomery’s algorithm operates in the residual space,
since it computes MP(@,b) and returns the n-residual
representation of the product result: MP(a,b) = ¢ =
a-b-r(modn). Therefore, at run-time, the method requires
that both operands are mapped into the n-residual domain,
and eventually that the result is back-converted to the integer
domain; both those phases prove quite demanding from a
computational perspective. Thus, Montgomery’s algorithm
is really effective when those prologue and epilogue pro-
cedures are less relevant than the product computation
itself. This explains why the MP(a,b) approach boosts

computational performances in modular exponentiation: in
that case, many iterated modular multiplications involve
a common modulus and do not require repeated back-
conversions of results from the residual domain to the
original integer representation.

2.2. Digital implementation algorithms

In real implementations of MP(a,b), very large integers
are split and processed on a word-by-word basis. In the
following, w and z will denote the word size (in bits)
and the number of words required to represent an integer,
respectively. Therefore, r takes on the value r = 2.

The literature classifies implementation approaches
according to the sequencing of multiplications and reduc-
tions; “integrated” approaches interleave multiplications and
reductions, while “product scanning” algorithms compute
sequentially the words of the product result. Thus, the finely-
integrated product scanning (FIPS) algorithm [2] works out
MP(a, b) by interleaving the computations of products a-b
and m - n. Both multiplications follow the product-scanning
method, hence the FIPS structure features two nested loops,
the outer of which scans the words of the product itself.

Figure 1 outlines the FIPS pseudocode formalized by Koc
etal. [2]. Registers S and C are handled by the adder circuitry
and hold the sum and the carry values, respectively. The
quantity ¢ (as per step (1) of MP(a, b)) accumulates partial
results from either (a. b) or (m-n) and is here hosted by an
array, t[-], of three registers (each register is of size w bits).
Since each inner loop contains multiply-and-accumulate
(MAC) operations, the algorithm fits the architectures of
DSP devices, which typically provide parallel, fixed-point
multipliers.

In the pseudocode, each ADD(#[1], C) function call
at steps O4, 09, 012, and O17 has two crucial effects:
(1) the carry C from each summation is added to the
array element t[1], and (2) the carry value resulting from
the latter addition propagates to the array element ¢[2].
Carry propagation, however, can convey some inefficiency:
each of those steps triggers two additions even when the
addition (¢[1] + C) does not actually generate a carry; in
a parallel architecture, this might lead to an imbalanced
use of functional units and ultimately affect pipelining. In
principle, one might insert if statements to detect carry
propagation in advance; such a trick, however, would severely
compromise computational efficiency, due to pipeline-flush
effects generated by conditional branches within the most
nested loops. Moreover this approach would expose the
system to timing attacks [17].

2.3. Architectural issues in the FIPS algorithm

In the original FIPS formulation, all elements of the array
t[-] have equal size, w, favouring implementations on flexible
hardware. The method assumes that z < W and, as observed
in [2], allocates log, [zW (W —1)] words for the accumulator
(W = 2"). DSP-based implementations, however, would
more likely support such a structure with one contiguous
register of suitable size, K (see Figure2). Such a simple



P. Gastaldo et al.

The basic FIPS algorithm
Ol. fori=0to(z—1)
beginloop
02. forj=0to(i—1)
beginloop
03. (C,S):=t[0] +a[j]-bli - j]
O4. ADD(¢[1], C)
05. (G, S):=S+ mlj]-n[i— j]
0e6. t[0]:=S
07. ADD(t[1], C)
endloop
08. (C,S):=t[0] +a[i]-b[0]
09. ADD(t[1], C)
o10. ml[i] :== S-n’'[0]mod w
O11. (C, S):=S + mli]-n[0]
012. ADD([1], C)
013. t[0]:=t[1]; t[1]:=¢t[2]; t[2]:=0
endloop
014. fori=zto(2z—1)
beginloop
0O15. forj=(Gi—-z+1)to(z—1)
beginloop
016. (G, S):=t[0] + @ [j]-bli, j]
017. ADD(¢[1], C)
018. (G, 8):=S+mljl-n[i- j]
019. t[0]:= S
020. ADD(t[1], C)
endloop
021. m(i — z]:=t[0]
022. t[0]:=¢t[1]; ¢[1]:=¢[2]; £[2]:= 0
endloop

/*MAC operation, a-b*/

/* MAC operation, m-n */

/* MAC operation, ab*/
/* carry propagation */
/* mod(-) is a truncation */
/* MAC operation, m-n */

/* MAC operation, a-b*/

/* MAC operation, m-n */

FiGURE 1: The basic version of the FIPS algorithm [2].

__________________________________

F1GURE 2: The DSP-oriented version of the FIPS algorithm: single-
accumulator register array.

reformulation exploits any extended accumulator and fits
two main features of modern DSPs: (1) the lowest section, ¢
[0], of the array holds the w least significant bits and directly
implements (mod w) arithmetic; (2) arithmetic circuitry
subsumes carry propagation at steps {O4,09,012,017},
thus avoiding multiple accesses to the array elements. The
pseudocode in Figure 3 presents an excerpt of the reformu-
lated FIPS algorithm and shows that one accumulator can

boost performance in the innermost j-loop by supporting the
MAC operations, a-b and m-n. The single-accumulator con-
figuration requires that the underlying architecture ensures a
consistent support of the precision, and the related criterion
to design the register size, K, was analysed in [2]. The content
of the accumulator ACC can be upper bounded by

ACC = (2z+2)(2" — 1) ¥ AaccUP). 2)
Thus, a design criterion for dimensioning K requires that
K >log,[(2z+2)(2" - 1)°]. (3)

3. ENHANCED DSP-ORIENTED DESIGN OF THE
FIPS ALGORITHM

In spite of the apparent trivial reformulation, the constraint
(3) may give rise to some architectural issues when embed-
ding the FIPS algorithm on commercial DSPs. In such cases,
the manufacturer’s choices set the type and the number of
available multipliers; performance optimisation now clearly
requires that the quantity, w, matches the word size of the
multipliers available on the target DSP platform. As a result,
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Intermediate FIPS algorithm
El. fori=0toz—1
beginloop
E2. forj=0toi—1
beginloop
E3. ACC = ACC +alj]-bli — j]
E4. ACC =ACC + mlj]-n[i— j]
endloop
E5. ACC = ACC + ali]-b[0]
E6. m[i] = ACC-n'[0] mod w
E7. ACC = ACC + m[i]-n[0]
E8. ACC =ACC > w
endloop
E9. fori=zto2z—1
()

F1Gure 3: FIPS algorithm: code for the single-accumulator config-
uration.

TaBLE 1: Required width of the extended accumulator in the
formulation of the FIPS algorithm.

Lo . Cryptosystem configuration
Multiplier circuitry-word size yptosy &

512bit 1024 bit 2048 bit
16 bit 39 40 41
32 bit 69 70 71

multiplier specifications eventually set the register size, K, for
the single-accumulator configuration.

Table 1 gives the required width, K, of the extended accu-
mulator when using 16-bit and 32-bit multipliers for three
typical public-key settings (512, 1024, and 2048 bits). For
example, a 2048-bit cryptosystem requires an accumulator
holding at least 71 bits on a 32-bit DSP. The table actually
points out that the single-accumulator reformulation implies
hardware specifications that can hardly fit commercial fixed-
point DSPs.

The research presented in this paper improves on the
basic FIPS algorithm by removing these potential sources of
inefficiency under two constraints: to exploit only registers
of size w and 2w and to keep computational efficiency
unaffected as compared with the single-accumulator config-
uration. The proposed structure allocates four registers, each
having size 2w: registers REG1 and REG2 accumulate results
from MAC operations a-b and m-n, respectively, in the inner
loop; ACCX stores the associate carry values; register ACCY
finally accumulates the partial results stored in REG1 and
REG2 and prepares the computation of m[i] in the outer
loop at step O10. This configuration matches the double-
path organisation of DSP platforms by decoupling the two
MAC operations in the inner loop.

A more significant enhancement to the basic FIPS
algorithm reformulates the structure of outer loop. The
original code section shows that the computation of the
value m[i] completes at line O10 and is subsequently

used at line O11. Such a dependency might clearly affect
efficiency by preventing a full exploitation of the processor
functional units. Two adjustments to the critical code section
overcome that dependency: first, the dependency is removed
by pipelining the inter-dependent operations across two
consecutive loop cycles; secondly, the multiple-accumulator
structure (REG1 and REG2 in the inner loop, ACCY in
the outer loop) favours parallelism in the computation of
intermediate results. Such an optimisation applies only to the
first i-loop of the FIPS algorithm, as the second i-loop does
not suffer from that dependency.

The pseudocode in Figure 4 outlines the complete ver-
sion of the enhanced FIPS algorithm for parallel architec-
tures. The outer loop (EE4-EE20) starts by storing in ACCY
the higher part of the eventual result for the MAC operation
(EE5), which uses the contributions (Q and m) from the
previous (i—1)th iteration; such a configuration actually
eliminates the dependency between line O10 and O11 of the
original algorithm. Then, register ACCY accumulates partial
results from a MAC operation (EE7) and the inner loop
(REGI and REG2); the summation at line EE15 prepares the
completion of m[i] at line EE17.

As a result of the optimization, the inner loop EE9-
EE14 preserves a MAC-parallel structure, while the overall
structure can be supported without a single, three-word
long accumulator. The reformulation clearly requires the
introduction of a prologue section at lines EE1-EE3.

4. EXPERIMENTAL RESULTS

The efficiency performance of the enhanced FIPS imple-
mentation was evaluated experimentally on commercial
fixed-point DSP devices. To assess the general validity of
the enhancements, the practical tests involved two differ-
ent families of platforms, namely, the Texas Instruments
TMS320C6201 device [18] and the Analog Devices ADSP-
TS201S “TigerSHARC” processor [19]. Both DSPs feature
very long instruction word (VLIW) architectures. The
former DSP [18] offers two independent data paths and
supports up to eight instructions in parallel; the eight inde-
pendent functional units include a pair of 16-bit multipliers
and six ALUs (32/40bit). The load-store architecture is
supported by thirty-two 32-bit general-purpose registers,
and the common off-register memory hierarchy consists
of a 32-bit address space partially mapped into an on-
chip RAM. The latter device, TigerSHARC [19], features
a static superscalar architecture supporting a computation
pipeline, dual computation blocks, and can execute up to
four instructions per cycle. Each computation block hosts
an ALU, a multiplier, a shifter, a 32-word register file, and
a communications logic unit (CLU); multipliers can operate
both on 16-bit and 32-bit operands, and accumulators
support 64-bit integers.

To attain a reliable comparison of performances, both
the enhanced formulation and the single-accumulator con-
figuration of the FIPS algorithm were tested on both DSP
platforms. The experimental results for each platform will be
reported separately in the following.
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The enhanced FIPS algorithm for parallel architectures
EEl. REGL:=a[0]-b[0]

EE2. Q:=REG1 mod w

EE3. REGI:=REGI > w

EE4. fori=1toz—1

beginloop
EE5. ACCY:= Q + m[i — 1]-n[0]
EE6. ACCY:= ACCY > w
EE7. ACCY:= ACCY + ali]-b[0]
EES. forj=0toi—1

beginloop
EE9. REG1:= REGI +al[j]-bli — j]
EE10. ACCX:= ACCX + (REGI > w)
EE11. REGI:= REG1 mod w
EE12. REG2:= REG2 + m[j]-nli — j]
EE13. ACCX:= ACCX + (REG2 > w)
EE14. REG2:= REG2 mod w
endloop

EE15. ACCY:= ACCY + REGI + REG2
EE1l6. Q:= ACCY mod w
EE17. m(i]:= Q-n'[0] mod w
EE18. REGI1:= ACCX mod w
EE19. ACCX:=ACCX > w
EE20. REG2:= ACCY > w

endloop

EE21. ACCY:= Q + mli— j]-n[0]
EE22. REG2:= REG2 + (ACCY> w)
EE23. fori=zto2z—1

beginloop

EE24. forj=(i—z+1)to(z—1)

beginloop
EE25. REG1:= REGI +a[j]-bli — j]
EE26. ACCX:= ACCX + (REG1 > w)
EE27. REGI:= REG1 mod w
EE28. REG2:= REG2 + m[ j]-n[i — j]
EE29. ACCX:= ACCX + (REG2 > w)
EE30. REG2:= REG2 mod w

endloop

EE31. REG2:= REG2 + REG1

EE32. m[i — z]:= REG2 mod w

EE33. REG1:= ACCX mod w

EE34. ACCX:=ACCX > w

EE35. REG2:= REG2 > w
endloop

F1GURE 4: The enhanced FIPS algorithm.

4.1. TMS320C6201 DSP platform

The TMS320C6201 device [18] provides 16-bit multipliers
and supports up to 40-bit data size. As a result of the design
issues discussed in the previous section, those hardware
specifications lead to using a word size of at most w =
16 bits for FIPS-based cryptosystems. Table 1 shows that, due
to the bound (3) on the accumulator size, the DSP device
could support the single-accumulator configuration for at
most a 1024-bit cryptosystem having z = 64 words. Thus,
the performance of the enhanced formulation of FIPS has
been compared with that of the basic FIPS for a 1024-bit
configuration.
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FIGURE 5: Performance comparison between the two FIPS versions
on TMS320C6201 for a 1024-bit implementation of modular
multiplication.

The computational cost to work out MP(a,b) allowed
one to assess the overall increase in efficiency provided by the
algorithm optimisation. For the TMS320C6201 device, the
original FIPS algorithm exploiting the single-accumulator
configuration required 19372 clock cycles, whereas the
enhanced reformulation completed in 17346 clock cycles,
thus yielding a 11% reduction in running time; Figure 5
reports on these results. This proved that the enhanced FIPS
algorithm improved on the implementation performance
without even exploiting the single-accumulator configura-
tion. Such a result confirmed that the reformulation of
the FIPS algorithm successfully combined flexibility and
efficiency.

A functional explanation of these improvements in per-
formance can be obtained by using the resource-utilisation
feedback reports [20], provided by the TMS320C6201
compiler for the two FIPS implementations. Five quality
parameters characterize the results of loop pipelining [20]:

(i) loop carried dependency bound =the minimum interval
due to dependencies among quantities across different
loop iterations (a dependency occurs when one iter-
ation of a loop writes a value that must be read in a
future iteration),

(ii) unpartitioned resource bound =the smallest iteration
delay before the dispatching of instructions to either
data path,

(iii) partitioned resource bound =the smallest iteration
delay after the dispatching of instructions to either
data path,

(iv) iteration interval =the number of clock cycles between
the start of consecutive loop iterations,

(v) iterations in parallel =the pipeline depth.

Table 2 compares the compiler feedback reports rel-
ative to the inner loops of each FIPS implementations.
As expected, the original FIPS algorithm in the single-
accumulator configuration shows performs slightly better in
terms of inner-loop pipelining; this is due to the fact that
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TaBLE 2: Feedback report for the TMS320C6201.

Code quality parameter

Loop carried dependency bound 0 2
Unpartitioned resource bound 2

Partitioned resource bound 2 3
Iteration interval 2 3
Iterations in parallel 5 4

the partial results of MAC operations accumulate in a single
register. This confirms that the inner-loop design undergoes
a tradeoff between flexibility and efficiency.

The measures reported in Table 3 confirm that the inner
loop design of the FIPS reformulation can profitably balance
the resource management, although it obviously increases
the number of instructions dispatched to some specific units.

Overall, compiler-feedback reports prove that the
enhanced version of FIPS improves on the global computa-
tional performance of the single-accumulator configuration,
even when the latter can take advantage of a most efficient
design of the inner loop.

The effectiveness of the proposed reformulation of FIPS
is indeed confirmed by the results obtained from the
experimental session involving a 2048-bit cryptosystem. In
this case, as per Table 1, the hardware specifications of the
DSP device do not allow the implementation of the single-
accumulator configuration, since w = 16bits and z = 128
words. Thus, Figure 6 reports on the computational cost
to work out MP(a, b) for a standard FIPS implementation
and for the enhanced algorithm proposed by this research.
The standard FIPS algorithm required 113610 clock cycles
to compute MP(4, b), whereas the enhanced reformulation
completed in 63294 clock cycles, thus yielding a 45%
reduction in running time.

4.2. ADSP-TS201S DSP platform

The “TigerSHARC” DSP [19] supports fixed-point multiply
and accumulates operations with 16-bit or 32-bit input
operands and a configurable result accumulator of 32, 40,
or 64bits. These hardware specifications virtually remove
any practical limit to the word length of the supported
cryptosystems when a word size w = 16bits is adopted.
On the other hand, target implementations of FIPS having
word size w = 32 bits cannot rely on the single-accumulator
configuration, for example, Table 1 shows that a 64-bit
accumulator could not even support a 512-bit cryptosystem.

Therefore, to compare performances consistently, the
experiments targeted a 1024-bit cryptosystem and involved
three different FIPS implementations:

(i) a single-accumulator configuration, with w = 16 bits
(thus, z = 64 words),
(ii) a basic FIPS algorithm, with w = 32 bits (thus, z = 32
words),
(iii) the enhanced reformulation, with w = 32 bits (thus,
z = 32 words).

Single ACC. FIPS Enhanced FIPS

120000

100000 —

80000

\
_

60000 —

Clock cycles

40000

20000

N\

Enhanced FIPS

FIGURE 6: Performance comparison between the two FIPS versions
on TMS320C6201 for a 2048-bit implementation of modular
multiplication.
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FIGURE 7: Performance comparison between the three FIPS versions
on TigerSHARC for a 1024-bit implementation of modular multi-
plication.

Figure 7 compares the computational costs to work
out MP(a,b) for the three cases. The single-accumulator
configuration required 17246 clock cycles; the standard 32-
bit FIPS required 8694 clock cycles, whereas the enhanced
reformulation completed in 6131 clock cycles, thus yielding
a 65% and a 30% reduction in running time, respec-
tively. These results indeed confirm the effectiveness of the
enhanced design of FIPS.

The empirical performances of the Analog Device plat-
form were interpreted by using the feedback report from
the TS201S compiler [21], including quality parameters
obtained from modulo scheduling. Table 4 reports on the
measured results, related to the inner loops of the two FIPS
implementations using w = 32 bits, namely, lines 03-07
and EE9-EE14 for the original version and the enhanced
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TABLE 3: Resource usage report for the TMS320C6201.

Single ACC. FIPS Enhanced FIPS

A B A B
.L units compares/long data arithmetic 1 1 0 0
.S units shift/branch/ALU/field op. 1 0 2 1
.D units data/addition/subtraction 2 2 2 2
.M units multiply 1 1 1 1
X cross paths 1 1 2 2
Logic ops (.LS) 0 0 1 1
Addition ops (.LSD) 0 1 3 2
Bound (.L .S .LS) 1 1 2 1
Bound (.L.$.D.LS .LSD) 2 2 3 2

TaBLE 4: Feedback report from the ADSP-TS201S compiler.

TaBLE 5: Resource utilisation report for the ADSP-TS201S.

Code quality Original Enhanced
parameter FIPS FIPS
In Int 6 4

SC 3 4
MVE unroll 1 1

res MII 0 0

rec MII 6 4
Cycle count (stalls) 7 (1) 3(0)

version, respectively. Quality performance is described by the
following parameters [21]:

(i) initiation interval (InInt) = the number of cycles
between the starting of two consecutive loop itera-
tions;

(ii) stage count (SC) = the number of initiation intervals
until the first iteration of the loop has completed;

(iii) modulo variable expansion unroll factor (MVE unroll)
= the number of times the loop must be unrolled
so that the scheduling has no overlapping register
lifetimes;

(iv) minimum initiation interval due to resources (res MII)
= the lower limit for the initiation interval, imposed
by the fact that at least one of the resources is used at
maximum capacity;

(v) minimum initiation interval constrained by recurrences
(rec MII) = the lower limit for the initiation interval
imposed by the recurrences in the code;

(vi) cycle count = the number of clock cycles required to
execute one iteration of the loop, including stalls; the
number of stalls is given between brackets.

Empirical evidence witnesses the efficiency of the
enhanced implementation, as the latter version outper-
formed the basic implementation. Those results explain
the significant increase in computational speed measured
experimentally.

Table 5 reports on the experimental measures in terms
of resource utilisation; for each resource, the table gives

Original FIPS Enhanced FIPS
Sequencer 14.3% 25.0%
Instruction slots 67.9% 100.0%
IALU 71.4% 62.5%
JALU 57.1% 100.0%
X compute block — 87.5%
X compute block ALU — 100.0%
X compute block multiplier — 25.0%
X compute block shifter 28.6% 50.0%
Y compute block 57.1% 37.5%
Y compute block ALU 57.1% 50.0%
Y compute block multiplier 28.6% 25.0%
Ureg move/Immediate load 42.9% 12.5%

the percentage of utilisation during the entire loop. The
sequencer parameter is associated with the programme
sequencer, entrusted with address dispatching and efficient
scheduling of arithmetic operations. Instruction slots count
the accesses to the slots providing the instructions. JALU and
IALU refer to the integer ALU registers, which in general
store operands and intermediate or final results of integer
computations. Finally, compute block, compute block ALU,
compute block multiplier, and compute block shifter measure
the resource usage of the two independent processing blocks
(X and Y) supported by the TS201S DSP.

The feedback from the compiler shows that the proposed
implementation of FIPS attained a more efficient manage-
ment of the compute blocks X and Y. The arithmetic schedul-
ing exhibited a much better balance, whereas the original
FIPS version tended to stress unit Y to the disadvantage of
its counterpart X which mostly remained idle.

The overall efficiency of the proposed implementation of
FIPS is validated by the results obtained with the experiment
involving a 2048-bit cryptosystem. Figure 8 compares the
computational costs to work out MP(a, b) for the three cases.
The single-accumulator configuration (w = 16 bits, z = 128
words) required 59104 clock cycles; the standard 32-bit FIPS
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whereas the enhanced reformulation completed in 20348
clock cycles, thus yielding a 65% and a 35% reduction in
running time, respectively.
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