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1. INTRODUCTION

Nowadays, the design of embedded systems is a key issue for
the electronics industry [1]. Many ongoing research projects
address this issue by increasing the design abstraction level
from the circuit to the system level [2]. However, most
embedded systems gather analog and digital electronics
with embedded processor cores running large amounts of
embedded software.

A number of issues are unfortunately discovered after the
conception of embedded systems prototypes. These issues
include for example coupling between analog and digital
functions or unexpected hazard resulting from unexpected
low level effects. Of course, discovering such issues at the
prototyping step and revising the design and its implemen-
tation to get rid of them is time and money consuming.
Addressing these issues at the design time requires a mixed-
signal model gathering digital and analog functions [3]. A
number of approaches exist to provide these mixed-signal
models. They are considering different levels of abstraction
and different models of computations. These levels and
models are simulated with different tools and cosimulation
is used to cover the relations between them.

To be more specific, we observe that neither VHDL-AMS
nor SystemC are perfectly well suited to model the architec-

ture of these embedded systems. On the one hand, VHDL-
AMS is perfect to model analog and digital electronics, but
the simulation speed of processor cores is too slow in VHDL
for the simulation of embedded software [4]. On the other
hand, SystemC is perfect to model digital electronics and
processor cores executing embedded software, but it cannot
model analog electronics [5].

These observations led to the proposal of SystemC-AMS,
for which beta releases of the language and the simulation
engine are now available [6]. SystemC-AMS provides, in
addition to the SystemC discrete-event simulation kernel,
continuous-time models of computations for conservative
and nonconservative system modelling [7–9]. Moreover, a
specific AMS working group was created by OSCI [10] in
2006 to specify SystemC-AMS [11].

We want to investigate the potential of SystemC-AMS
to provide a unified framework for the design of embedded
systems. It could give the advantages of multiple levels and
multiple computational models in a single language based
on an open standard. Of course, as SystemC-AMS is still
under specification, it is unclear as of today if this is the most
valid approach, or if it provides significant gains over other
approaches, but the objective of our work presented in this
paper is to contribute to this specification and to provide the
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AMSWG with some applications of mixed-signal embedded
systems.

Considering the long-term challenge we are addressing
and the need for specific performances data to provide
a significant insight, we chose a pragmatic step-by-step
research strategy, and we begun with a rather simple case of
mixed-signal embedded system.

In many different applications, (automotive, industrial
control, etc.), embedded systems are typically formed by a
set of nodes connected through field busses such as I2C or
CAN. The nodes are typically mixed analog and digital SOCs,
including one (or several in the near future) processor core(s)
and an array of peripheral interfaces. In its most usual form,
the node is simply a microcontroller, connected to various
sensors or actuators.

In this paper, we show how to model the field bus
communications between the nodes of an embedded system.
Our methodology is based on three main parts: firstly,
a generic architecture of an I/O controller realizing the
interface between the processor cores and an I2C field bus;
secondly, a generic architecture for the analog part of this
interface, and a software tool to get the parameters of this
interface from industrial IBIS files; thirdly, a generic model
of the bus lines. Hence, our method is generic and it can be
applied to any field bus. This paper is based on our previous
work on the design and modelling of an I2C bus controller
in VHDL [12] and SystemC-AMS [13, 14]. It is an extended
revision of the (unpublished) paper presented in [15].

For didactical purposes, the paper is organised around
a platform presented in Figure 1. It represents a common
situation, where a microcontroller is connected to a System-
on-Chip through a field bus. Our model includes discrete-
event models for the digital cores, implemented in SystemC,
and continuous-time models for the analog interfaces and
for the bus lines, implemented in SystemC-AMS. Whereas
this methodology is generic, we will present it in the specific
case of the I2C and CAN busses.

The paper is divided into three main sections. Section 2
describes the architecture of the digital I/O controller.
Section 3 presents the architecture of the analog I/O, the
method to include data from an IBIS model into an equiv-
alent SystemC-AMS description of a circuit’s I/O buffers,
and the electrical model of the bus lines. Section 4 gives
several simulation results of field bus communication on the
platform and estimates the overhead of the analog parts of
the models compared to a totally digital simulation.

2. DIGITALMODELS

The modelling platform discussed below is presented in
Figure 2. It is centered on a field bus that connects four
nodes: among them two can be masters on the bus, while
the remaining two can only be slaves. The two masters are
a 8051 microcontroller in association with a bus controller
and a MIPS-based system on Chip. The two slaves are
memory devices which will be accessed in the course of
simulation by the two masters. Each node is modeled with a
mixed SystemC/SystemC-AMS description, where a device’s
digital core is modeled in SystemC and its analog interface

Master
μP

I/O
controller Bus line model

Peripheral
IBIS
I/O

analog
interface

Logic
core

SystemC SystemC-AMS SystemC

Figure 1: General structure of the modelling platform.
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Figure 2: Field-bus based modelling platform.

is modeled in SystemC-AMS. This section introduces the
digital architecture of the platform components, especially
focusing on the bus controller.

2.1. Bus controller

We first decided to model our platform around an I2C bus,
mainly because this standard provided a simple protocol
and an easy-to-implement mixed-signal interface. However,
it seemed appropriate to work on a generic structure that
could be applied to different protocols with only a minimum
of changes. Thus, this subsection presents our controller
architecture applied to the case of an I2C bus.

2.1.1. I2C protocol

Historically, the first I2C (Inter-Integrated Circuit) con-
trollers and the I2C protocol were designed by Philips at
the beginning of the eighties for television applications [16].
The I2C bus was invented to provide communication on a
two-wire bidirectional bus—a serial data (SDA) and clock
(SCL)—between a small number of devices (sensors, LCD,
microcontroller, etc.). Transfer frequency is up to 100 kbits/s
for standard mode, and up to 3.4 Mbits/s in high-speed
mode.

Data frame for the standard mode is made of a start bit,
a 7 bits address, a Read/Write bit, an acknowledge bit (ACK),
and a sequence of data bytes. Each data byte is followed by
an acknowledge bit issued by the target device. A stop bit
finalizes the transmission (Figure 3). Each bit is transmitted
on SDA in conjunction with the SCL clock.

(i) Transfers are initiated by a START condition. It
happens when a falling transition occurs on the SDA line
while SCL is high.

(ii) Transfers end with a STOP condition. It happens
when a rising transition occurs on the SDA line while SCL
is high (Figure 4).



Mohamad Alassir et al. 3
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Figure 3: I2C data frame.
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Figure 4: Start and stop condition.

(iii) Data is considered valid during the high state of SCL.
Therefore, SDA signal must remain stable during this half
period (Figure 5).

(iv) I2C allows multimaster communications and fea-
tures an arbitration management protocol for such trans-
missions. Arbitration takes place on the SDA line, while the
SCL line is at the high level. Bus control is given to the
master which transmits a low level while the others transmit
a high level. A master which loses arbitration switches to high
impedance its data output stage (Figure 6).

As a specification for our I2C controller model, we chose
the PCF8584 designed by Philips/NXP [17].

2.1.2. I2C controller digital block architecture

The architecture of the digital block is divided into three
blocks (Figure 7).

(i) A microprocessor interface handles communication
with the microprocessor core. It is built around a FIFO that
stores the successive requests coming from the microproces-
sor bus (8051 bus, VCI, AMBA, etc.). When the controller
has finished a transaction on the bus, and if a request is
stored in the FIFO, the FIFO is read and the interface extracts
the information needed by the sequencer (type of operation,
address, data) to perform the new communication. The
interface also includes an interrupt line connected to the
microprocessor core so that it can read a data received from
the I2C bus.

(ii) The core of the controller is a sequencer which
translates the request from the master into a detailed
sequence respecting the I2C protocol (frame generation, byte
transmission, or reception, etc.).

(iii) Finally, a signal generator module manages or drives
the SCL and SDA bus lines (Figure 8). This block manages
the acknowledge generation/detection depending on the
operating mode (transmitter or receiver). A shift register
either serializes data to be sent to the bus line in transmitting
mode or collects information from the bus in reception
mode. It also sets the transmission frequency by dividing
the system clock with a user-defined constant. The SDA and
SCL signals from this block will be interfaced with the analog
model presented in Section 3.
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Figure 5: Data validity period.
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Figure 6: Arbitration procedure with two masters.

2.2. Other devices

To develop the SoC node of the platform, we used a virtual
prototyping platform for system-on-chips called SoCLib
[18]. SoCLib provides a number of IP SystemC mod-
els (including processor cores, VCI interconnect, memory
devices, I/O controllers, timers, etc.), to easily simulate an
application on a user-assembled SoC or MPSoC architecture
built around a virtual component interface (VCI) bus [19].

We added our controller model to the SoCLib library and
used it to connect an MIPS processor core to an external
field bus. To do so, a SystemC wrapper has been developed to
interface our controller to the VCI bus provided by SoCLib.
The platform also includes a RAM component used by the
MIPS to store its code and data and a TTY terminal for
debug purposes. A SoCLib-generated platform synopsis can
be found in Figure 9.

We will not detail the remaining models, the I2C RAM,
and the 8051 microcontroller [20]. The first of this model is
a basic description of a memory component while the second
one is a standard description of this well-known circuit.

3. ANALOGMODELLING

We introduce in this section the analog modules of our
platform. All these devices were modeled in SystemC-AMS
v.0.15. First, we show the analog interface of the bus
controller, designed according to the requirements of the I2C
protocol. Then, for the slave devices, we present an interface
retrieved from an IBIS model of a standard component and
show how such IBIS models can be automatically translated
into a SystemC-AMS description. Finally, we focus on the
transmission lines, introducing a model that takes into
account the wires’ physical imperfections as well as the
mutual influence of adjacent transmission lines.
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3.1. Bus controller

Specifications of the I2C protocol indicate that the devices
must have open-drain or open-collector outputs (depending
on technology) in order to perform a wired-AND function to
manage multimaster mode. Both lines also feature a pullup
resistor to VCC (Figure 10(a)).

We modeled this analog interface with the SystemC-
AMS 0.15 library, by instantiating linear elements (resistors,
capacitors, voltages sources, etc.). Figure 10(b) represents the
interface model for the SDA line. It translates the logic levels
sent by the digital block to voltages across the bus lines. The
SCL model is similar.

In this model, the transistor is represented with an
interrupter and a resistor as no transistor model is available
in SystemC-AMS 0.15. A 20 pF capacitor is used to manage
the rising and falling times of the SDA signal. Finally, a pullup
resistor sets the line at a high state when no command is
applied on the bus. To read a value coming from the bus, a
threshold detection is applied to the SDA line and it provides
a logical value to the digital block.

Algorithm 1 gives a SystemC-AMS sample code of the
analog interface for either line of the bus. The electrical
parameters of the devices (including the output transistor)
were chosen to be in accordance with specifications found in
NXP’s PCF8584 controller datasheet [17].
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controller
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Figure 9: SoCLib simulation platform.

3.2. IBIS to SystemC-AMS conversion

In order to accurately model the analog behaviour of
the components connected on the bus, and integrate real
parameters of industrial components to our SystemC-AMS
models, we developed an IBIS-to-SystemC-AMS conversion
tool. It parses a standard IBIS source file to produce a
SystemC-AMS module we can directly instantiate in our
platform. This section briefly presents the IBIS standard and
then shows how these models can be used in our simulation
platform.

3.2.1. IBIS specifications

The input/output buffer information specification (IBIS)
[21] standard was originally introduced to give a behavioural
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Figure 10: (a) I2C electrical scheme (b) SystemC-AMS model.

description of a circuit’s inputs/outputs. This behaviour is
based on voltage/current curves obtained from measure-
ments or full simulation. It especially takes into account the
influence of the chip’s package on the I/O signal form.

An IBIS model is presented as a text file which includes
for each input or output pad an R, L, C equivalent circuit
modelling the influence of the package as well as another
circuit representing the response of the pad to a rising or
falling edge transition.

Figure 11 presents a model of an output buffer (input
buffers are modeled in a similar way). The voltage/current
curves included in the IBIS file give the response of the
CMOS inverter to a logic transition. However, the IBIS
standard specifies that this response is equivalent to another
R, L, C circuit. As a result, a SystemC-AMS module of
the electrical scheme presented in Figure 12 can accurately
model the behaviour of the output buffer. The figure also
shows how the module can be interfaced with a SystemC
description of the logic core of the component.

3.2.2. IBIS-to-SystemC-AMS conversion

To add IBIS models in our SystemC-AMS simulation
platform, we developed an IBIS file analyzer program
which parses the IBIS file to extract the I/O circuits useful
information and then automatically creates a SystemC-AMS
module using these parameters.

An IBIS file is made of several sections that first present
general information about the chip, display the R, L, C
values of the circuit’s package, enumerate the different I/O
pins, and specify their type (input, output, GND, etc.), then
they describe the behaviour of each I/O type found in the
chip. A sample of an IBIS file is presented in Algorithm 2.
Each section is specifically introduced by a keyword (such as
[Package] or [Pin] in the file sample). The aim of our tool

SCA SDF MODULE(ADC){ // Threshold Detector
sca sdf in<double> in;
sc out<bool> out;
�
void init(){}
void sig proc(){ if(in.read() > 2.5) out = 1;

else out = 0;}
�
SCA CTOR(ADC){}

};
�

SCA SDF MODULE(data conv){
sca sdf in<double> portin;
sc out<double> portout;
�
double portout ;
void init(){ portout = 1.0e3;}
void sig proc(){ portout = portin.read();

portout = portout ∗ 3.0e2;}
�
SCA CTOR(data conv){}

};
�

SC MODULE(SDA Mgr){
sc in<bool> sda in; // From digital block
sc out<bool> sda out; // To digital block
sca sdf signal<double> sda sdf; // To I2C Bus
�
sc signal<double> r value;
sc signal<bool> sig ;
sca elec port out; // Output port
sca elec port gnd; // Ground port
sca elec node y; // Internal node
�
sca sc2r ∗r1; sca c ∗c1;
sca rswitch ∗sw1; sca vd2sdf ∗conv1;
data conv ∗data conv1; can ∗can1;
�
SC CTOR(SDA Mgr){
�

ADC1 = new ADC(“ADC1”); // Threshold
ADC1->in(sda sdf); ADC1->out(sda out);

�
sw1 = new sca rswitch(“sw1”); // Switch
sw1->off val = true; sw1->p(y);
sw1->n(gnd); sw1->ctrl(sda in);

�
r1 = new sca sc2r(“r1”); // Resistor

r1->ctrl(r value); r1->p(out); r1->n(y);
�

data conv1 = new data conv(“data conv1”);
data conv1->portin(sda sdf);
data conv1->portout(r value);

�
c1 = new sca c(“c1”); // Capacitor

c1->value = 20.0e − 12;
c1->p(out); c1->n(gnd);

�
conv1 = new sca vd2sdf(“conv1”); // Output voltage

conv1->p(out); conv1->n(gnd);
conv1->sdf voltage(sda sdf);

}
};

Algorithm 1: I2C controller analog block code sample.
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is to scan the IBIS file, look for those keywords, and extract
useful information, in particular the number of each I/O type
as well as each type’s electrical characteristics, that is, the
value of the R, L, C elements.

The synopsis of our IBIS-to-SystemC-AMS converter
is presented in Figure 13. When running, it performs a
scanning phase followed by a generation phase.

When it parses the IBIS file, the program first counts the
number of different I/O models for the circuit as well as their
number of occurrences. Then, for each I/O model, it extracts
and stores the value of the R, L, C elements. To do so, the
program compares the first word of each line of the IBIS
file with a set of predefined keywords (e.g., “R pkg” for the
package resistance). If it matches with one of the keywords,
it saves the value of the element (which, in an IBIS file, is
usually written next to the keyword).

As an illustration, in the IBIS text file sample
(Algorithm 2), the program will count 8 I/O, among them
three identical (A0, A1, A2). It will also notice the R pkg,
L pkg and C pkg keywords and save the values located next
to these keywords (resp., 0.2Ω, 7 nH, and 1,5 pF).

When the scanning phase is completed, the program
generates the SystemC-AMS file. This file includes one top
level module with the correct number of I/Os. Each I/O
is instantiated as a separate module inside the top level
component and can be directly associated with a SystemC
digital simulation model (see Figure 1): on one hand, a signal
on an output pin is produced with the help of a switch
component, commanded by the digital model, on the other
hand, a voltage on an input pin is converted by a threshold
detector to generate a boolean value that is sent to the digital
model. Obviously, each I/O module models the electrical
circuits presented above, with the extracted values of the R,
L, C components. Algorithm 3 presents a sample of an in-out
pin module created from an IBIS file specification.

This tool was used to generate a SystemC-AMS model
out of the IBIS description of the CAT24WC0 2 Kbit I2C

[Package]
| variable typ min max
R pkg 0.20 100.00 m 0.40
L pkg 7.00 nH 4.10 nH 10.00 nH
C pkg 1.50 pF 1.00 pF 3.00 pF
|
|∗∗∗∗∗∗∗∗∗∗∗∗∗Pin Defintions∗∗∗∗∗∗∗∗∗∗∗∗
[Pin] signal name model name
|
1 A0 InputModel1
2 A1 InputModel1
3 A2 InputModel1
4 GND GND
5 SDA IOModel
6 SCL InputModel2
7 WP InputModel3
8 VCC POWER

Algorithm 2: IBIS text file sample.
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Figure 13: IBIS-to-SystemC-AMS converter tool synopsis.

EEPROM chip from catalyst semiconductors [22]. This
model serves as the analog interface of both slave memory
devices featured in the I2C platform.

3.3. Transmission linemodel

The bus lines feature a number of imperfections and can
suffer from any kind of signal integrity perturbation. This
section presents how the electrical model of the bus lines can
be included in our modelling platform.

So far, we have considered the bus lines as perfect
conductors immune to any kind of interference. Still, the
nature of the wires as well as their geometry can modify
the behaviour of the transmitted signals and, of course,
so does the external environment. These imperfections are
represented with R, L, C elements that we integrate in our
platform. Our line model below (Figure 14) is based on [23].

Each bus line includes the wire resistance and also an
inductance that represents the wire self-inductance. The
value of this inductance is given by the following formula,
where l is the wire length and d the wire diameter in
centimetres:

L = 0.002l
(

ln
(

4l
d

)
− 0.75

)
[μH]. (1)

In the situation of two (or more) adjacent lines, which
is likely to appear in the case of the I2C bus, a mutual
coupling phenomenon appears. It is represented by a parallel
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struct IBIS INOUT PIN : sc module
{

sc out<bool> i; // Input signal sent to digital block

sc in<bool> o; // Output signal sent by digital block
�

sca elec port pin; // Inout Pin

�
sca sdf signal<double> in sdf; // Pin Voltage

�
sca elec ref gnd; // Electrical Ground
sca elec node B; // Node between R pkg & L pkg
sca elec node A; // Node between R pkg & L fix
sca elec node V ; // Node between R fix & switch

�
// Declaration of IBIS RLC elements
sca r ∗R pkg, ∗R fixture; sca c ∗C pkg, ∗C fixture;
sca l ∗L pkg; sca vconst ∗V fixture;
sca rswitch ∗sw1; sca vd2sdf ∗conv pin;

�
// Threshold converts input voltage to bool value
THRESHOLD DETECTOR ∗thd in;

�
SC HAS PROCESS(IBIS INOUT PIN);

�
// Constructor: RLC values retrieved from IBIS file
IBIS INOUT PIN( sc module name insname,

double R pkg value, double C pkg value,
double L pkg value, double C fixture value,
double R fixture value, double V fixture value )

{
// PACKAGE ELEMENTS INSTANCIATION

C pkg->value = C pkg value;
C pkg->p(pin); C pkg->n(gnd);

�
L pkg->value = L pkg value;
L pkg->p(B); L pkg->n(pin);

�
R pkg->value = R pkg value;
R pkg->p(A); R pkg->n(B);

�
// PACKAGE ELEMENTS INSTANCIATION

C fixture->value = C fixture value;
C fixture->p(A); C fixture->n(gnd);

�
R fixture->value = R fixture value;
R fixture->p(Vfix); R fixture->n(B);

�
V fixture->value = V fixture value;
V fixture->p(Vfix); V fixture->n(gnd);

�
// Switch controlled by digital block

sw1->p(V); sw1->n(gnd);
sw1->ctrl(o); sw1->off val = true;

�
// Threshold: Pin Voltage is sent to digital
// block as bool value

thd in->threshold = 1.1;
thd in->in (in sdf); thd in->out(i);
};

}

Algorithm 3: SystemC-AMS code sample generated from IBIS
specification.
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Figure 14: Transmission line model.
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Figure 15: Transmission line model in n segments.

capacitance whose value depends on the diameter d of
the wires and the distance D between them. The mutual
capacitance is given by the following formula:

C = π0.0885

cosh−1(D/d)
[pF/cm]. (2)

In a first step, we considered that the mutual inductance
between the I2C wires is negligible.

The length of the bus lines, for instance in an automotive
context, can be quite important, up to several metres.
Therefore, the global line model of Figure 14 can be divided
into several segments, such as in Figure 15. With this
representation, we can take into account a distance variation
between two bus lines, affect only a part of the bus with a
perturbation, or simply use segments with different lengths
to respect the node topology in the system (Figure 16).

Our SystemC-AMS line model comes in the form of
one top module that instanciates n segment submodules.
The length of each segment can be parameterized in the
submodule constructor (Algorithm 4).

4. PLATFORM SIMULATION

We present in this section the simulation of our field-bus-
based platform, summarized in Figure 17. The SystemC and
SystemC-AMS description allow us to cosimulate the MIPS
or the 8051 embedded software with the hardware behaviour
of the components, whether analog or digital. This section
first gives some information about the code that is executed
during simulation, then shows its impact on the digital
blocks of the platform, especially the bus controllers. We
focus next on the analog response on the bus, presenting the
influence of the transmission line on the shape of the signal.
Finally, we provide simulation performances for our mixed
platform.

4.1. Embedded code

The aim of our simulation is to validate the functionality
of the bus controller by testing all the protocol features.
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struct LINE I2C:sc module
{

sca elec port scl1, scl2; // Segment ends for SCL
sca elec port sda1, sda2; // Segment ends for SDA
sca elec node lr1, lr2; // Node between L and R

�
double L value, R value, C value; // Elements value

�
sca r ∗R scl, ∗R sda;
sca l ∗L scl, ∗L sda;
sca c ∗C cpg;

�
SC HAS PROCESS(LINE I2C);

�
LINE I2C(sc module name insname, double length)
{ // Length in cm

L value = 7.8e − 9∗length;
R value = 0.5∗length;
C value = 0.1e − 12∗length;

�
// Elements Instanciation

�
L scl->p(scl1); L scl->n(lr1);
L scl->value = L value;

�
R scl->p(lr1); R scl->n(scl2);
R scl->value = R value;

�
L sda->p(sda1); L sda->n(lr2);
L sda->value = L value;

�
R sda->p(lr2); R sda->n(sda2);
R sda->value = R value;

�
C cpg->p(scl2); C cpg->n(sda2);
C cpg->value = C value;

};
};

Algorithm 4: Line segment SystemC-AMS code sample.

Node
1

Node
2

Node
3

Line model Line model

Segment 1 Segment 2

Figure 16: Line model and system topology.

Therefore, the embedded code found on the two master
devices mainly consists in bus access operations.

The following assembler code (Algorithm 5) is compiled
and stored in the internal ROM of the 8051 microcontroller.
When it runs, the program performs an I2C write operation:
the data byte 4Eh is written on the B4h cell address of the
slave RAM device.

This write operation takes place in two stages: first the IP
sends the cell address to the slave device (the A0 h value is
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Figure 17: I2C platform.

// Write in RAM(slave address = 0x50)
// the value 0x4E in cell 0xF1

�
main: MOV R0, #A0 // Put slave address in R0 register

MOV A, #B4 // Put cell address in A register
MOVX @RO, A // Send R0 + A to I2C IP
MOV R0, #A0 // Put slave address in R0 register
MOV A, #4E // Put data byte in A register
MOVX @RO, A // Send R0 + A to I2C IP

Algorithm 5: 8051 assembler code sample—byte writing opera-
tion.

made of the 50 h 7-bit slave address and the R/W bit set to
0), then it writes the data byte to this same slave device.

Similarly, Algorithm 6 gives a sample of the MIPS
code, featuring the assembler functions used to request the
controller IP a read or a write on the I2C bus, as well as the
interrupt subroutine which is called when a read data has
been received from the I2C bus and is available for the MIPS
master.

4.2. Digital simulation

When running, the codes found in the SoC and the
microcontroller send requests and therefore activate their
respective I2C controller. In particular, we can see in
Figure 18 a sequence featuring a write operation requested
by the 8051 to one of the RAM devices followed by an MIPS-
commanded read request of the same RAM cell address.

The SystemC chronogram shows the 8051 positioning
the 4 Eh byte on its data bus and the F1 h value on its
address bus, resulting on a first transmission on the I2C
bus, then the SoC bus controller performing a second
transmission to retrieve the data from the RAM component.
The chronogram shows the digital behaviour of the SDA bus
line (featured on the last row), as well as the SDA commands
sent by each component, indicating which device has control
of the bus at any given time. We can also notice that an IRQ
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// Interrupt Subroutine
void SwitchOnIt(int it)
{

int i;
�
// Identify the active interrupt of highest priority

for (i = 0; i < 8; i++) if (it&(1� i)) break;
�

switch (i)
{

case 0: break; // SwIt 0
case 1: break; // SwIt 1
case 2: read interface(); break; // It 0
case 3: break; // It 1
case 4: break; // It 2
case 5: break; // It 3
case 6: break; // It 4
case 7: break; // It 5
default: break;

}
}
�
// Main Program
int main(void)
{

write byte(0x50, 0x57, 0x69);
// Parameters = Slave Adr (stored in $4 register)
// Cell Adr (stored in $5 register)
// Data Byte (stored in $6 register)

�
read byte(0x51, 0xf1);
// Parameters = Slave Adr (stored in $4 register)
// Cell Adr (stored in $5 register)

�
while (1);
return 0;

}
�
// Byte Writing ASM Code Sample
write byte:

la $3,0xc0000000 // Load VCI target (I2C IP)
// address to $3 register

sll $4, $4, 9 // Slave adr in high part of register
or $4, $4, $5 // Cell adr in low part of register
sh $4, 0 ($3) // (save half-word)

// send target + cell adr to IP
sb $6, 1 ($3) // Send data byte to IP
nop
j $31 // return from subroutine

.end write byte
// Byte Reading ASM Code Sample
read byte:
�

la $3,0xc0000000 // Load VCI target (I2C IP)
// address to $3 register

sll $4, $4, 9 // Slave adr in high part of register
ori $4, $4, 0x100 // Set R/W Bit to Read
or $4, $4, $5 // Cell adr in low part of register
sh $4, 0 ($3) // save half-word ->
nop // send target + cell adr to IP
j $31 // return from subroutine

Algorithm 6: MIPS code sample.

signal is generated when the 4Eh value is available in the
MIPS I2C controller.

4.3. Analog simulation

The chronogram in Figure 19 represents the analog
behaviour of the I2C bus lines during a write transmission
issued by the MIPS-based SoC. It does not take into
account the transmission line model. On the first row of
the chronogram, the slave address (50 h) is first sent on the
bus, then on the second row, after an acknowledge from this
slave device, the master transmits the cell address (B4 h) it
wants to write into. Finally, on the third row, after another
acknowledge from the slave, the data byte (4 Eh) is sent to
the slave, followed by a last acknowledge from the slave and
a stop bit, signaling the end of transmission.

The chronogram also displays the shape of the analog
signal. The rising and falling times that can be seen depend
on the analog interface of the component that has control of
the bus when a particular bit is transmitted. In the case of
the chronogram in Figure 19, most of the bits are issued by
the 8051 bus controller interface, except for the acknowledges
which are issued by the IBIS-converted interface of the RAM
device.

Our platform also allows us to test the multimaster
arbitration of the I2C bus as it is implemented in our model.
In the chronogram shown in Figure 20, both masters send a
start bit at the same moment. The SDA bus line follows the
two commands as long as they are identical, and when they
differ, the master which sends a 0 bit (in this case the MIPS)
takes control of the bus and the 8051 stops transmitting on
SCL and SDA. Also of interest is the wired-AND function
performed on the SDA and SCL lines of the bus. This shows
that our mixed-signal controller model successfully performs
electrical multimaster arbitration.

Finally, Figure 21 presents the signal behaviour if we
take into account the line imperfections with the model
presented in Section 4. We can clearly see the effect of the
wire inductance and the mutual capacitance.

4.4. Simulation performances

Table 1 presents simulation speeds for various configurations
of the simulation platform presented in Section 4. The
measurements were performed on a Linux workstation
equipped with a Pentium M processor running at 1.73 GHz,
a L2 cache of 2 Mb, and 1 Gb of SDRAM. Sampling period
for the analog models is 100 nanoseconds.

Our aim is to measure the increase of simulation time
between a purely digital simulation in SystemC of a platform,
and a mixed SystemC/SystemC-AMS simulation of the same
platform. We first measure this overhead in the case of a
simplified platform made of a microcontroller node and a
slave RAM, first without and then with the transmission line
model. Results show that for the 8051 platform, the overhead
due to the AMS parts of the model is relatively important,
though simulation is still very fast.

In the second case that is the full 4-node platform
including the transmission line model, the impact is less
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Figure 18: Simulation with 8051 and MIPS master.

Table 1: I2C Platform simulation performance in cycles/s.

Application SystemC platform Sys.C + Sys.C-AMS equivalent plarform Overhead

8051 node + RAM with IBIS 149 300 106 400 29%

8051 node + RAM with IBIS + line model 149 300 87 500 41%

4-node platform without line model 25 800 23 500 9%

Complete I2C platform (Figure 19) 25 800 19 500 24%
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Figure 19: Analog simulation—byte writing operation.

prominent, mainly because the proportion of purely Sys-
temC components is more important. In this latter config-
uration, analog simulation of the I2C bus is performed only
9% slower than a digital-only simulation if we do not include
the line model, and 24% if we add a line segment model
between two nodes.

5. CONCLUSION

In this paper, we showed how to model field-bus communi-
cations in the context of embedded systems. We described a
heterogeneous model that features three main parts. Firstly,
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an I/O bus controller interfaces the processor cores with the
field bus. Secondly, an analog part represents the interface
of the I/O controller with the bus lines. To accurately model
the analog behaviour of the components, we introduced
an IBIS-to-SystemC-AMS converter to derive the analog
description of the field bus nodes analog interface from
industrial circuits. Thirdly, we modelled the bus lines as
an array of segments that take into account the electrical
imperfections of the bus lines.

Simulations showed the successful operations of the
I2C field bus. The SystemC-AMS simulation times showed
different overheads over digital SystemC: 40% for a 8051 to
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Figure 21: Bus lines simulation with transmission line model.

RAM I2C communication, and around 25% for an MIPS-
based SoC plus 8051 system. This overhead is acceptable for
a mixed-signal simulation.

The benefits of our approach are that it includes analog
and digital models in a single environment. It will therefore
allow to simulate interactions between analog and digital
functions that are usually discovered on the hardware
prototypes.

As a next step, we intend to show that our approach is
generic by applying it to other field busses such as CAN.
Further, this SystemC-AMS simulation platform stresses
the interest of this language as a unique tool from the
specification to the verification of AMS embedded systems,
gathering together software execution with analog and digital
behaviour.
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