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The aim of this paper is to describe an adaptive and predictive FPGA embedded architecture for vision systems dedicated to image
analysis. A large panel of image analysis algorithms with some common characteristics must be mapped onto this architecture.
Major characteristics of such algorithms are extracted to define the architecture. This architecture must easily adapt its structure to
algorithm modifications. According to required modifications, few parts must be either changed or adapted. An NoC approach is
used to break the hardware resources down as stand-alone blocks and to improve predictability and reuse aspects. Moreover, this
architecture is designed using a globally asynchronous locally synchronous approach so that each local part can be optimized sep-
arately to run at its best frequency. Timing and resource prediction models are presented. With these models, the designer defines
and evaluates the appropriate structure before the implementation process. The implementation of a particle image velocimetry
algorithm illustrates this adaptation. Experimental results and predicted results are close enough to validate our prediction models
for PIV algorithms.
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1. INTRODUCTION

More and more vision systems dedicated to a large panel
of applications (tracking, fault detection, etc.) are being de-
signed. Such systems allow computers to understand im-
ages and to take appropriate actions, often under hard
real-time constraints and sometimes under harsh envi-
ronments. Moreover, current algorithms are computing
resource-intensive. Traditional PC or DSP-based systems are
most of time unsuitable for such hard real-time vision sys-
tems. They cannot achieve the required high performance,
and dedicated embedded architectures must be designed. To
date, FPGAs are increasingly used because they can achieve
high-speed performances in a small footprint. Modern FP-
GAs integrate many different heterogeneous resources on
one single chip and the number of resources is incredibly
high so that one FPGA can handle all processing operations.
Data coming from the sensor or any acquisition device is di-
rectly processed by the FPGA; no other external resources
are necessary. These systems on chip (SoCs) become more
and more popular as they give an efficient quality of results
(QoR: area and time) of the implemented system. FPGA-
based SoCs are suitable for vision systems but their designs

are complex and time-consuming as hardware specialists are
required. It is crucial that designed architectures are adaptive
to dynamic or future algorithms to increase the design pro-
ductivity. Adding new parts or replacing some blocks to the
previous design may be required. FPGAs are reconfigurable,
which ensures architecture adaptations by functional block
modifications [1]. From an FPGA synthesis point of view, the
reuse aspect is as important as the QoR. New SoC architec-
tures and design methods break global problems down into
local ones and rely on networks on chip (NoCs) to compose
local solution [2, 3]. With NoC, it is possible to design the
blocks independently as stand-alone blocks and create the
NoC by connecting the blocks as elements in the network.

A regular topology NoC has much higher throughput
and a better scalability compared to on-chip buses. For large
SoCs with multiple IPs (intellectual property), bus archi-
tectures often fail to deliver required throughput and need
large chip areas. Regular topology NoC was proposed as on-
chip communication architectures primarily using switching
and routing techniques [2, 4]. To date, topologies use more
sophisticated techniques as related to literature [5]. Regu-
lar topology NoC is inspired by general-purpose multicom-
puter networks. A two-dimensional (2D) folded torus NoC is
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proposed by Dally and Towles in [4]. Two-dimensional mesh
NoC, such as CLICHÉ, Nostrum, Eclipse, and aSoC, is re-
spectively presented by Millberg et al. in [6], by Forsell in
[7], and by Liang et al. in [8]. RAW is amultiprocessor system
based on a 2Dmesh NoC [9]. SoCIN uses a 2Dmesh or torus
[10]. Spin has a fat-tree topology [11]. Octagon has a fixed
topology [12]. Proteo uses a ring topology [13]. 2D mesh
topology is preferred in most studies, because of its simplic-
ity and corresponding tile-based floorplan. However, most
NoCs are application/domain-specific and existing NoCs are
not specific to image processing domain. Our objective is to
apply the NoC concept to design an adaptive architecture for
image processing algorithms.

An important NoC design task is to choose the most suit-
able NoC topology for a particular application and mapping
of the application onto that topology. There are many im-
age processing algorithms, and their identifying characteris-
tics may be quite different. One topology is not suitable for all
image processing algorithms. Nevertheless, one topology can
be suitable for some algorithms with similar characteristics.
Image processing algorithms must be classified according to
some identified characteristics (input and output data flow,
global/local operations, etc.). For each category, an adaptive
NoC topology is presented. The overall project provides a li-
brary of NoC topologies, of architecture models and of inter-
changeable IP blocks. This provides a fast and efficient im-
plementation of any image processing algorithm on FPGA.
This paper addresses the first category of image algorithms,
which concerns image analysis applications. This application
consists of extracting some relevant parameters from a large
flow of data.

Understanding major characteristics of image analysis al-
gorithms leads to design an adaptive and predictive embed-
ded architecture using an NoC approach. The designer pre-
dicts the suitable structure according to the algorithm using
associated timing and resource prediction models.

The paper is organized into 6 further sections. In Sec-
tion 2, the main characteristics of image analysis applications
are used to define an adaptive NoC structure. Each module
is also explained as well as the communication protocol. Sec-
tion 3 presents architecture analysis. Its characterization and
modelling are presented in Section 4. The PIV application
is applied to the architecture in Section 5 in order to illus-
trate the principle of models definitions (timing and resource
models). Results are analyzed and interpreted in Section 6.
Section 7 contains the conclusion.

2. THE ADAPTIVE NoC ARCHITECTURE FOR IMAGE
ANALYSIS ALGORITHM

The aim of this section is to describe an adaptive architecture
for vision systems dedicated to image analysis algorithms.
This architecture is designed so that the linear effort prop-
erty presented in [3] is guaranteed. The effort of modifying
some parts only depends on these parts but not on the rest
of the architecture. The adaptivity of the architecture must
therefore be taken into account during the design process.
The first task consists of identifying the major characteristics
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Figure 1: Model of communication flows.

of image analysis algorithms. These characteristics are then
used to define an appropriate architectural model.

2.1. Architecture description

Image analysis consists of extracting some relevant parame-
ters from one or several images. Image analysis examples are
object segmentation, feature extraction, image motion and
tracking, and so forth [14, 15]. Any image analysis requires
four types of operations:

(i) acquisition operations for image capture;
(ii) storage operations;
(iii) processing operations;
(iv) control operations for the system supervision.

In an NoC concept, the global algorithm is divided into
local blocks to compose local solutions [16–18]. The local
blocks are called modules. Each module handles one type
of operation and all modules are connected as elements in
a network-based topology. Several modules may be required
for one type of operation. As an example, processing opera-
tions can be implemented on several processing modules to
improve speed.

A characteristic of image analysis applications is un-
balanced data flow between input and output. The input
data flow corresponds to a high number of pixels (images),
whereas the output data flow represents little data informa-
tion (selective results). From these unbalanced flows, two dif-
ferent communication topologies must be defined, each one
being adapted to the speed and flow of data.

For the input data flow, a parallel bus ensures high band-
width. For the result and command flows, a new flexible
communication topology needs to be identified. A dedicated
bus is not suitable due to the scalability constraint. This com-
munication topology must have an interface with an unlim-
ited number of modules. A shared unidirectional bus is de-
signed from the “token-ring” approach. This communica-
tion flows are shown in Figure 1.

This new communication model is a bit like the Harvard
model, which has physically separate storage and signal path-
ways for instructions and data. Our model is based on these
separated flows: the input data flow is separated from the
command flow. The reduced output data flow (the result
flow) is mixed with command flow.
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Figure 2: The proposed NoC architecture for vision systems dedi-
cated to image analysis algorithms.

Using the modular principle and the communication
ring, multiple clock domains can be defined. Some opera-
tions must run with the maximal clock frequency, other fre-
quencies are technically constrained. For example, the acqui-
sition operation depends on the acquisition device. With a
single clock domain, increasing the speed of a part of the
design leads to modification of the technically constrained
parts. Using a globally asynchronous locally synchronous
(GALS) approach, logic that constitutes one module is syn-
chronous and each module runs at its own frequency. Each
module can therefore be optimized separately to run at its
best frequency. Communications between modules are asyn-
chronous and they use a single-rail data path 4-phase hand-
shake designed in the wrapper. This GALS structure allows
many optimizations and an easier evolution [19–22].

All modules are inserted around the ring as shown in Fig-
ure 2. The number of modules is theoretically unlimited.

2.2. Modules description

The modular principle of the architecture can be shown at
different levels: one type of operation is implemented by
means of a module (acquisition, storage, processing, etc.).
Each module includes units that carry out a function (de-
coding, control, correlation, data interface, etc.), and these
units are shaped into basic blocks (memory, comparator,
etc.). Some units can be found inside different modules. Fig-
ure 3 shows all levels inside a module.

The number and type of modules depend on the appli-
cation. As image analysis algorithms require several types of
operations, this architecture accepts several types of mod-
ules.

(i) The acquisition module produces data that are pro-
cessed by the system. A prototype of this architecture
is built around a CMOS image sensor to have a real
SoC. But if a particular hardware characteristic is nec-
essary, the modularity of the system ensures easily re-
placing the CMOS sensor by any sensor, camera, or
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Figure 3: Module structure.

other source of data. This module produces all CMOS
image sensor commands and receives CMOS image
sensor data. One part takes the 10-bit pixel data from
the sensor and sends them to the storage module. A
simple preprocessing can be performed in this module
such as a binarization operation.

(ii) The storage module stores incoming images from the
acquisition module. Writing and reading cycles are su-
pervised by the control module. Whenever possible,
memory banks are FPGA-embedded memories. This
embedded memory is a shared dual-port memory.
The acquisition module writes data into memory and
this memory is shared between all processing modules
for reading operation. Two buses are used for parallel
memory accesses. Recent FPGAs can store more than
one image having 1280 × 1024 8-bit pixels, and more
than 5 images having 512 × 512 pixels, and this value
will increasingly grow up in the future. If more mem-
ory space is needed, an external memory device can be
used and the storage module carries out the interface
between the external device and the system.

(iii) The processing module contains the logic that is re-
quired for a given algorithm. The result from the image
analysis is then sent to the control module by means
of the communication ring. To improve performance,
more than one processing module can be used for the
parallel operations. If several processing modules are
used, the operations are distributed on all processing
modules.

The number of these modules is theoretically unlimited. The
control of the system is not distributed in all modules, but it
is fully centralized in the single control module, which per-
forms decisions and scheduling operations.

(i) The control module sends commands to each mod-
ule through the communication ring. These commands ac-
tivate predefined macrofunctions in the target module. The
integrity and the acceptance of the commands are checked
with a flag inserted in the same command frame that re-
turns to the control module. As all commands are sent from
this module, the scheduling must be specified in the control
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module. In the same way, this module receives resulting data
transferred from a processing module through other mod-
ules. Results are sent to the PC by a standard USB link.

2.3. Communication protocol

Each module is designed in a synchronous way having its
own frequency. Communications betweenmodules are asyn-
chronous via a wrapper and they use a single-rail data path 4-
phase handshake. Two serial flipflops are used between inde-
pendent clock domains to reduce the metastability [23, 24].
The wrapper includes two independent units (see Figure 4).
One receives frames from the previous module and the other
one sends frames to the following module at the same time.

Through the communication ring, the control mod-
ule sends frames containing command frames and empty
frames. Empty frames can be used by any module to send
results or any information back to the control module. So
the output-reduced data flow (the result flow) is mixed with
command flow in the communication ring. Each frame con-
sists of 6 bytes (see Figure 5). The first byte contains the target
module address and the command. In regular frame, differ-
ent pieces of information associated to the command word
are in the next four bytes. The last byte indicates the status
information (error, busy, received, and executed). The target
destination module sets this status according to its current
state. Then the instruction is sent through the communica-
tion ring and is received by the control module. The state flag
is analyzed. If an error occurs, the control module sends the
command again to the target module through the communi-
cation ring, or can reinitialize the whole system if necessary.

Table 1: Static and dynamic modules in the adaptive FPGA-based
system.

Control Processing Acquisition Storage

Parameters Dynamic Dynamic Static Dynamic

Scheduling Dynamic Static Static Static

Algorithm Dynamic Dynamic Static Dynamic

External device Static Static Dynamic Dynamic

3. ARCHITECTURE ANALYSIS

This architecture must adapt its structure to algorithmmod-
ifications. Four types of modifications are identified.

(i) Parameters adaptation: from a given image analysis al-
gorithm, some parameters can vary. These parameters
can be the size of full-analyzed images, the shape or the
location of studied windows, and so forth.

(ii) Parallel operations (scheduling): for a given algorithm,
the number of processingmodules can vary to improve
the parallelism. So the scheduling performed by the
control module changes.

(iii) Algorithm: processing module can accept any algo-
rithmmeeting the targeted characteristics described in
Section 2.1 (unbalanced data flow and parallelism).

(iv) External devices: any device can be replaced by another
one. Acquisition devices such as cameras, CCD sen-
sors, or other devices are interchangeable. Features of
the new device may differ from the previous one and
format of data as well. For each new acquisition device,
the acquisition module must be adapted.

According to the type of modifications, only some mod-
ules must be changed. Modifying one module inside the ar-
chitecture does not affect other modules, as modules are in-
dependent. Modules that depend on one or several modifica-
tions must be analyzed. All modules are numbered and clas-
sified into two categories.

(i) Modules that remain unchanged are static modules.
Functional blocks are immediately reused without any
modification.

(ii) Modules that are algorithm-dependent or archite-
cture-dependent are dynamic modules. A dynamic
module contains static and dynamic units/blocks. In
this case, only the dynamic units/blocks must be
changed.

A first analysis consists of identifying the static and dy-
namic modules in this architecture. The type of modification
will determine specific static and dynamic modules given in
Table 1. The reusability of this FPGA-based system is based
on the percentage between static and dynamic parts. All dy-
namic unit/blocks have a fixed interface to avoid modifica-
tions of static blocks linked to them.

Dynamic modules can be either predictive or nonpredic-
tive. Predictive modules are modules with resources and exe-
cution times estimated before the implementation process.

The acquisition module is camera-dependent but not
algorithm-dependent. Image acquisition depends on the size
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of the grabber and the camera frequency. This module is dy-
namic when a new sensor/camera is used, but it is static if no
replacement occurs. In an architectural point of view, chang-
ing an external device does not give any relevant information
concerning our adaptive architecture. This type of modifica-
tion is not described in this paper.

For other types of modifications, the storage module
should be adapted to the size and the number of stored im-
ages. This module remains static for a constant size of the
input image. If not, its only dynamic resource is the num-
ber of memory bits. The number of logic cells and registers
would remain similar. So its evolution is very easy to predict
and will not be described in this paper. The storage module
can be considered as a static module.

For the dynamic modules such as the processing and the
control modules, a more detailed analysis is required.

3.1. Processingmodule

The processing module is algorithm-dependent and
parameter-dependent. This module is static if the type and
the size of operations are identical; if not, it is dynamic.
The processing module contains several units as shown in
Figure 6. White units correspond to the static units and the
grey ones to the dynamic units. Most units are static and the
dynamic part corresponds to the processing itself. This unit
is connected to static units by means of fixed interfaces.

For each type of modification,
(i) some algorithms are parameterizable. When the pa-

rameters vary, this module is dynamic and predictive. The op-
erations remain identical, only the number and size of oper-
ations change. Therefore, it is possible to predict the number
of resources for a new version from the previous implemen-
tation;

(ii) when the number of processing modules increases,
the scheduling must be changed, but the operation inside a
processingmodule remains identical. The processingmodule
is then static;

(iii) for a new algorithm implementation, the processing
unit is an unpredictive dynamic block. Resources depend on
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Figure 7: Control module structure.

the new implemented operation. The HDL description and
its implementation are necessary to find out the number of
resources and the processing time. A hardware specialist is
required in the design flow for a complete HDL description.
A high-level development tool (DK Design Suite, ImpulseC,
etc.) can be integrated in the design flow for the dynamic
parts design. These tools estimate the needed resource and
time, and the automatic generation of the HDL IP blocks
can avoid the intervention of the hardware specialist. A first
analysis of this integration has been made. Results are not
optimized but remain satisfactory for most applications. The
design flow for such adaptive architecture is not presented in
this paper.

3.2. Control module

The control module is algorithm-dependent and scheduling-
dependent. This module is therefore fully dynamic for the
three types of modifications. Similar to the processing mod-
ule, white units correspond to the static units and the grey
ones to the dynamic units in the control module structure
shown in Figure 7. The interfaces of dynamic units are fixed.

Two blocks are dynamic inside the control module. The
memory block contains the command frames to send to all
modules. The sequencing block dispatches operations on all
modules. These blocks are predictive if the number of com-
mands and the number of processing modules are known.

In the next section, the architecture is characterized for
each type of modification. Resource and timing prediction
models are presented.

4. ARCHITECTURE CHARACTERIZATION
ANDMODELING

The quality of result (QoR) indicates the required area and
the execution time for the implemented algorithm. This QoR
ensures the evaluation of the adaptive architecture and helps
the designer to choose the suitable structure. Some predic-
tion models must be provided to the designer. These models
are more precisely a timing prediction model and a resource
prediction model.
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4.1. Resource predictionmodel

Global resources can be predicted by summing the resources
of all modules: acquisition (AM), storage (SM), control
(CM), and processing (PM). Several acquisition devices can
be used: two cameras for stereovision and sometimes more
than 2 for specific applications. The number of acquisition
modules (NAM) increases according to the number of acqui-
sition devices. In the same way, storage modules can be mul-
tiplied (NSM) to ensure concurrent memory accesses, and
several processing modules (NPM) can be inserted around
the ring to get a better execution time. The control is cen-
tralized into one control module whatever the application is.
Resources for the wrapper are included in the resources for
each module. FGPA integrates several communication links
that will be used for the communication ring. The resource
prediction model is given in

Rglobal = NAM × RAM +NSM × RSM + RCM +NPM × RPM,
(1)

where R can be replaced by Lc, Rg, or Mb, respectively for the
number of logic cells, registers, and memory bits.

According to the type ofmodification, static and dynamic
resources inside the architecture change so that the resource
prediction models differ. Therefore, models are presented for
both types of modifications.

The first type of modification is parameters adaptation
for one processing module (NPM = 1). When a parameter
changes, only the content of some frames is modified but not
the number. In a resource point of view, the control mod-
ule is considered as a static module in this case. The process-
ing module contains several units as shown in Section 3. The
static units are interface unit (IU), decode unit (DU), con-
trol unit (CtU), storage unit (SU), and communication unit
(CU) (wrapper). Only the processing unit (PU) is a dynamic
unit that depends on the implemented algorithm. The re-
sources for other modules are known, as these modules are
static modules. In the following equation, bold parameters
correspond to dynamic parts

Rglobal = NAM × RAM +NSM × RSM + RCM + RPM with

RPM = RIU + RDU + RCtU + RSU + RCU + RPU.
(2)

For some cases, the resources for this dynamic unit (RPU) can
be estimated from a previous implementation. In other cases,
the traditional way is the HDL description and resource esti-
mation bymeans of dedicated CAD tools. The design flow for
this adaptive architecture can integrate the DK Design Suite
tool for the dynamic block description and resource estima-
tion.

For the scheduling modification, all modules are static
modules except the control module. The scheduling depends
on the number (NPM) of processing modules. The number of
processing modules can vary but the structure of the process-
ing modules remains unchanged. Dynamic and static parts
for the control module are extracted from the previous anal-
ysis presented in Section 3. Two units are static units, the

communication unit (CU) that corresponds to the wrapper
and the decode unit (DU). Two other units are dynamic as
they contain static and dynamic blocks. The control unit has
a dynamic sequencing block (SB) and a static distribution
block (DB). The sequencing block (SB) supervises each pro-
cessing module, these resources depend on the number of
processing modules (NPM). The storage unit contains a static
addressing block (AB) and a dynamic memory block (MB).
The memory block stores all used frames for the algorithm.
The resources correspond to the number of resources for one
frame (RF) multiplied by the number of stored frames (NF).
In this case, (1) becomes

Rglobal=NAM× RAM +NSM × RSM+ RCM+NPM× RPM with

RCM=RDU + RCU +RDB + RAB +NPM × RSB +NF × RF.
(3)

For a new algorithm, (2) and (3) must be taken into account.

4.2. Timing predictionmodel

The global time to process one full image depends on three
operations:

(i) the communication across the ring;
(ii) the memory access;
(iii) the processing itself.

Three parameters are associated with these three operations:

(i) the global communication time Tcom depends on the
number of frames to send (NSF) and to a lesser degree
on the number of modules around the ring;

(ii) Tmem is the sum of all data transfer from storage mod-
ules to processing modules through the 32-bit dis-
patching bus;

(iii) the processing time Tproc fully depends on the algo-
rithm and on the number of processing modules.

According to the algorithm and to the configuration of the
architecture (number of each type of module), some opera-
tions can be performed simultaneously. Thus the global time
to process one full image (Tglobal) can be limited by a value:

Tglobal ≤ Tcom + Tmem + Tproc. (4)

It is difficult to define a general model, as a lot of configu-
rations for one algorithm exist. The timing prediction model
is considered for a specific algorithm.

5. AN EXAMPLE OF IMAGE ANALYSIS ALGORITHM
MAPPING ONTO THE ARCHITECTURE

As an example, a particle image velocimetry (PIV) algorithm
is mapped onto this adaptive architecture [25].

5.1. The PIV algorithm

PIV is a technique for flow visualization and measurement
[26, 27]. Particles are used as markers for motion visualiza-
tion in the studied flow. In our application, two single expo-
sure image frames are recorded by one CMOS sensor within
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Figure 8: Principle of PIV algorithm.

a short time interval Δt. Recorded images are divided into
32×32-pixel small subregions called interrogation windows.
From the interrogation window of the second image, a pat-
tern (subregion) is extracted. This pattern is shifted in the
corresponding interrogation window in the first image and
both are cross-correlated. The diagram of this principle is
presented in Figure 8. A traditional technique using grey-
level images is adapted to binary direct cross-correlation to
ensure an easier implementation in programmable logic de-
vices. Multiplications usually used in grey-level representa-
tions are replaced by XNOR logical operations according to

F(i, j) =
∑

x

∑

y

s1(x, y)XNOR s2(x − i, y − j), (5)

where s1 and s2, respectively, represent the pixel values of the
interrogation windows from images 1 and 2.

A PIV algorithm is suitable for parallel processing as the
direct cross-correlation computation is highly parallelizable.
Two cross-correlated interrogation areas are independent of
each other. The same operation is computed simultaneously
on different interrogation windows. This complex computa-
tion is therefore a good candidate for a hardware real-time
implementation and well adapted to our architecture. Input
data flow corresponds to 2 full binary images and the output
data flow corresponds to coordinates of resulting vectors for
each 32× 32-pixel subwindows.

Some command frames must be sent to each module to
adapt this algorithm to our architecture. The sequencing of
this frames sent from the control module to other modules is
shown in Figure 9.

5.2. Predictionmodels for PIV algorithm

Two types of modifications are studied for PIV algorithm.
(i) Parameters modification: from an algorithmic point of

view, several parameters depend on the experimental envi-
ronment for PIV applications. The size of images, camera
frequency, and other information are tailored for a given en-
vironment as they depend on the characteristics (size and
speed) of the fluid. As a consequence, it is sometimes im-
portant to change some parameters such as the size of the in-
terrogation window. Traditional interrogation windows for
PIV applications are 16× 16, 32× 32, or 64× 64 pixels with
or without overlapping windows. For different sizes of inter-
rogation window, the number of resulting vectors varies and
the size of correlation operations as well. So the processing
module is dynamic. Inside the control module, only the con-
tent of commands varies, but not its number. So the control
module is considered to be static.

(ii) Scheduling modification: the architecture accepts a
high number (theoretically unlimited) of processing mod-
ules. This number depends on the specified speed given by
the application. It has been shown in [25] that for a speci-
fied PIV application, the image processing designer evaluates
the number of processing modules according to the speed re-
quired for the PIV application (i.e., the number of vectors per
second). The image processing designer duplicates an identi-
cal processing module around the communication ring. An
immediate consequence is that the number of required re-
sources increases for each added module. Such adaptations
require several models used to find the most suitable struc-
ture without any implementation. The scheduling (specified
in the control module) can be changed that makes the con-
trol module the only dynamic module, all other modules be-
ing static.
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In order to find the required prediction models for these
two types of modifications, a first FPGA implementation of
our architecture with PIV algorithm is used to extract re-
sources and some relevant timing. The architecture is imple-
mented on an NIOS II board with a Stratix II 2S60 FPGA
[28] and an IBIS4 CMOS image sensor with the following
features:

(i) image size: 320 × 256 pixels. One pixel out of four is
used to compose the images (viewfinder mode);

(ii) first interrogation window: 32× 32 pixels;
(iii) pattern in second interrogation window: 16×16 pixels;
(iv) NAM = NSM = NPM = 1;
(v) frequencies: Facquisition = 50MHz, Fstorage = 100MHz,

Fcontrol = 150MHz, Fprocessing = 50MHz.

5.2.1. Resource predictionmodel for PIV

Table 2 gives the resources (logic cells, registers, and memory
bits) obtained with the first FPGA implementation.

PIV resource predictionmodel for parameter modification

From Table 2 and (2), the resource prediction models for pa-
rameters modification can be defined if a model can be found
for RPU (resources for the processing unit). Three blocks con-
stitute the processing unit:

(i) a memory block that stores 2 interrogation windows;
(ii) a comparison block that processes correlation and ac-

cumulation operations;

(iii) a supervision block.

The supervision block is a finite-state machine. The number
of resources for this block remains identical, around 69 logic
cells and 63 registers. The two other blocks depend on the
interrogation windows: logic cells (Lc) and registers (Rg) re-
sources are multiplied by 2 when the interrogation windows
grow from S × S to 2S × 2S. For the memory bits (Mb), the
storage block should contain an S× S window and its corre-
sponding pattern whose size is (S/2)× (S/2).

The global resource parameter R is replaced by Lc, Rg, or
Mb in the equations for resources concerning, respectively,
logic cells, registers, and memory bits. Using the result from
the first implementation, the resources for this processing
unit can be estimated:

LcPU = 69 + 186× S

32
,

RgPU = 63 + 217× S

32
,

MbPU = S2 +
(
S

2

)2
.

(6)

The global resources for all 3 types of resources are given by

Lc = 1038 + 186× S

32
,

Rg = 1142 + 217× S

32
,

Mb = 524320 + S2 +
(
S

2

)2
,

(7)

where S is the size of the interrogation window.

PIV resource predictionmodel for schedulingmodification

From Table 2 and (3), resource prediction models for
scheduling modifications can be defined if NF and RF are
known. The control module stores the seven command
frames used for the acquisition of the two full images. Then,
four specific frames are stored in the control module to start
the vector computation in a given processing module. So,

NF = 7 + 4×NPM. (8)

In the first implementation of our architecture, one process-
ing module is used. As a consequence NF = 11.

In Table 2, 24 logics cells are necessary to store 11 frames.
So the number of logic cells to store one frame (RF) is about 2
(for registers as well). Finally, the resource prediction model
is

Lc = 769 + 453×NPM,

Rg = 867 + 492×NPM,

Mb = 524320 + 1280×NPM,

(9)

where NPM is the number of processing modules.
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Table 2: Resource distribution associated with the first FPGA implementation.

Name Logic cells Registers (Rg) Memory bits (Mb)

Modules Units Blocks Modules Units Blocks Modules Units Blocks Modules Units Blocks

Control
(RCM)

Comm.
(RCU)

278

30

265

39

32

0

Decod.
(RDU)

44 42 32

Control
Distribution (RDB) 72

29
65

31
0

Sequencing (RSB) 43 34

Storage
Memory (RMB) 132

24
119

22
0

Addressing (RAB) 108 97

Storage
(RSM)

280 422 524288

Acquisition
(RAM)

264 225 0

Processing
(RPM)

Comm.
(RCU)

402

33

447

34

1280

0

Decod.
(RDU)

12 24 0

Control
(RCtU)

49 42 0

Storage
(RSU)

48 63 0

Interface
(RIU)

5 4 0

Processing
(RPU)

Storage
255

111
280

139
1280

1280

Comparison 75 78 0

Supervision 69 63 0

Communication
around the ring

Memory access

Processing Process Process

Tv: time for one vector

2 frames

C C C C

M32 M16 M32 M16

Nv = 1 Nv = 2

Figure 10: PIV timing diagram for NPM = 1.

5.2.2. Timing predictionmodel for PIV

PIV timing predictionmodel for parameter modification

With one processing module for the architecture, the timing
diagram corresponds to Figure 10.

In this case, the three operations defined in Section 4.2.
are performed sequentially. So

Tglobal = Tcom + Tmem + Tproc = Nv × Tv, (10)

where Nv is the number of vectors in one image and Tv is
the time to process one vector.

The required time to process one vector is divided into 3
parts:

Tv = Tvcom + Tvmem + Tvproc, (11)

where
(i) Tvcom is the communication time across the ring for

one vector. This time corresponds to the number of sent
frames for each vector (4 for PIV algorithm as detailed in
the sequencing in Figure 9) multiplied by the time for one
frame. Tvcom cannot be predicted before the implementa-
tion, and remains unchanged whatever the size of the inter-
rogation window is;
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(ii) Tvmem is the time for the data transfer from the stor-
age module to the processing module through the 32-bit dis-
patching bus. The data transfer concerns the S× S interroga-
tion window and its (S/2)× (S/2) corresponding pattern:

Tvmem = Tm(S) + Tm

(
S

2

)
, (12)

where Tm(S) is the time to read the S× S interrogation win-
dow and Tm(S/2) is the time to read the (S/2)× (S/2) pattern.
When the interrogation windows grow from S×S to 2S×2S,
the data transfer time is multiplied by 4 if S is larger or equal
to 32 bits. As the width of the bus is 32-bit long, the time for
a data transfer is only divided by 2 when the interrogation
windows decrease from S×S to S/2×S/2 if S is lower than 32
bits. This can be modelled by

Tm(S) = Tm(32)×
(
S

32

)2
if S ≥ 32,

Tm(S) = Tm(32)× S

32
if S ≤ 32,

(13)

where Tm(32) is the time to read a 32× 32-bit data block.
(i)Tvproc is the processing time itself. No implementation

is required to find this value. For a given position, the com-
parison between S × S interrogation windows and its corre-
sponding pattern is processed during S/2 clock periods. This
comparison is repeated for each possible position of pattern
inside the interrogation window (i.e., (S/2 + 1) × (S/2 + 1)
times). The deduced processing time is

Tvproc = Tclk × S

2
×
(
S

2
+ 1
)2
, (14)

where Tclk is the clock period.
All these times depend on the implementation target and

the frequency of each module. These times are extracted
from the first implementation, which is presented at the be-
ginning of the section. For our application, the clock period
of the processing module is 10 nanoseconds. The obtained
results are

Tvcom = 5.6μs, Tm(32) = 4.9μs, Tm(16) = 2.5μs.
(15)

Adding other timing expressions gives the PIV timing pre-
diction models:

Tv(μs) = 5.6 + 4.9× 5
4
×
(
S

32

)2

+ Tclk × S

2
×
(
S

2
+ 1
)2

if S > 32,

Tv(μs) = 5.6 + 4.9×
(
3S
64

)

+ Tclk × S

2
×
(
S

2
+ 1
)2

if S ≤ 32.

(16)

PIV timing predictionmodel for schedulingmodification

Without any information on the scheduling, only an upper
bound can be defined using (4). For one vector, this equation
becomes

Tv ≤ Tvcom + Tvmem + Tvproc. (17)

The processing operations (correlation operations) can be
performed simultaneously inside each processingmodule. So
this bound can be reduced by dividing the processing time by
the number of processing module, as in

Tv ≤
NPM × Tvcom +NPM × Tvmem + Tvproc

NPM

≤ Tvcom + Tvmem + Tvproc.
(18)

If the chosen scheduling is taken into account, a thinner
estimation can be performed. For the PIV algorithm used
in our architecture with multiple processing modules, the
communication through the ring and memory accesses can
be performed simultaneously. Frames for several modules
are mixed (C1, C2, C3, etc.) to take advantages of the two
memory-buses, reducing significantly the latency. As an ex-
ample, frames for processing modules 1 and 2 are alternated.
In this way, reading time for the first interrogation window is
finished when the second request begins. For this algorithm,
mixing two processing modules gives a good result as shown
in Figure 11. The time for the memory access is fully over-
lapped by other operations. (With longer memory access,
mixing 3 or more modules could be better.)

The processing operations begin when the frames for the
processing modules 1 and 2 are sent. Frames for other mod-
ules do not affect the global time. Only the time of the last
sequence (the last 4 vectors) increases the global time, but it
is ignored in our equations.

Therefore, the average processing time Tv for one vector
can be approximated to

Tv =
2× Tvcom + Tvproc

NPM

<
NPM × Tvcom +NPM × Tvmem + Tvproc

NPM
,

(19)

where NPM is the number of processing modules.
This equation is used if (NPM − 2)× Tvcom < Tvproc. The

average time to process one vector does not decrease any-
more if the global communication time becomes higher than
the processing time.

For both types of modifications, a timing prediction
model and a resource prediction model are extracted. The
image processing designer can predict the execution time and
the used resources according to modifications. These models
are validated with an implementation. All results and com-
parisons are given in the following section.

6. ANALYSIS OF RESULTS AND INTERPRETATION
FOR PIV

A PIV algorithm ismapped onto the architecture with several
sizes of the interrogation window and different scheduling
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Communication
around the ring

Memory access

Processing

C1 C2 C1 C2 C3 C4 C3 C4 C1 C2 C1 C2 C3 C4 C3 C4

M1 M1 M3 M3

M2 M2 M4 M4

M′
1 M1 M′

3 M3

M′
2 M2 M′

4 M4

P1

P2

P3

P4

P1

P2

P3

P4

Average time for 4 vectors

Figure 11: PIV timing diagram for NPM = 4.

Table 3: Resources distribution with several sizes of interrogation
window.

16× 16 window 32× 32 window 64× 64 window

Result Prediction Result Result Prediction

Logic cells 1068 1131 1224 1375 1410

Registers 1211 1251 1359 1600 1576

Mem. bits 524608 524640 525600 529344 529440

Table 4: Required time to process one vector with several sizes of
interrogation window.

16× 16 window 64× 64 window

Result Prediction Result Prediction

Tv(μs) 16.8 15.8 381 378.6

and the architecture is implemented in a Stratix 2S60 FPGA.
Results are given for 1 up to 6 processing modules inside the
ring and for 16 × 16 and 64 × 64 interrogation windows.
These experimental results will be compared with the pre-
diction models. The obtained results are given for parameter
modifications and then for scheduling modifications.

6.1. Efficiency of predictionmodels

6.1.1. Parameters modification results for PIV

Table 3 gives the results for 16 × 16, 32 × 32, and 64 × 64
interrogation windows with one processing module.

Table 4 gives timing estimations and results for the same
parameters.

The models match with the experimental results as
shown in Tables 3 and 4. These models are therefore accu-
rate enough to estimate the resources and the timing of the
chosen architecture without any implementation process.

6.1.2. Schedulingmodification results for PIV

The results for the architecture up to 6 processing mod-
ules are presented with a 32 × 32 interrogation window.
The predicted results are also added to enable comparisons.
Resources and timing results are, respectively, presented in
Tables 5 and 6.

The resource distribution model gives efficient results
that are close to the implementation results. Timing models

Table 5: Resources distribution when the number of processing
modules increases.

N
Logic cells Registers Memory bits

Obtained Predicted Obtained Predicted Obtained Predicted

2 1774 1681 1859 1851 526880 526880

4 2741 2595 2840 2835 529440 529440

6 3684 3509 3820 3819 532000 532000

are a little bit below the experimental values. The most un-
derestimated parameter is the communication around the
ring. According to the algorithm, the sequencing is not re-
ally optimized and the control module sometimes waits for
some results before sending a new frame (meanwhile, empty
frames are inserted into the flow). Current work concerns the
communication protocol to reduce this latency and to im-
prove the efficiency of the communication.

In order to ensure comparisons with other embedded
systems for PIV, the timing results are presented in different
ways (clock frequency, etc.).

6.2. Efficiency of the architecture

Previous section presents the efficiency of resource and tim-
ing prediction models when the size of interrogation win-
dows and the number of processing modules change. The in-
trinsic values of resources and processing time are not valued.

A specific and dedicated architecture gives better results
than an adaptive architecture, as the VHDL description is
optimized for this algorithm. However, our results are sat-
isfactory with regard to the execution time and can be com-
pared to the results provided by existing dedicated PIV sys-
tems. Our implemented architecture can handle high-speed
constraints such asmore than 80 000 vectors/s (for 32×32 in-
terrogation windows) and can be adapted to high-speed ap-
plications.

Performing comparisons between several systems is a
delicate task as each PIV system has its own characteristics,
and could be more adapted to particular cases. Neverthe-
less, coarse comparisons between our architecture and other
PIV systems are attempted. Some comparative results are
summed up in Table 7.

Three systems are compared with our architecture. The
first system is based on a “smart camera” as presented in [29].
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Table 6: Timing results when the number of processing modules increases.

N
Average time to process Predicted time to process Reachable pixel clock Number of vectors Images

1 vector(μs) 1 vector(μs) frequency (MHz) per second 1280× 1024/s.

2 31 28.7 33.0(×2)∗ 32258 25.2(×2)∗
4 16.5 14.3 62.1(×2)∗ 60606 47.3(×2)∗
6 11.8 9.6 87.1(×2)∗ 85106 66.5(×2)∗

∗ The maximum frequency that the vision system can follow with 2 processing modules is 33MHz if the motion vectors are processed between consecutive
images (between 1 and 2, between 2 and 3, etc.). This frequency is multiplied by 2 if each image is only used in one couple (processes between 1 and 2,
between 3 and 4, etc.).

Table 7: Some comparative results with other PIV systems.

Smart camera [29] GPUs [30] XC2V6000 [31] Our system [25]

Image size 1008× 1016 1024× 1024 1008× 1008 1280× 1024

Windows size 40× 40 32× 32 12× 12 32× 32

Algorithm
Discrete grey-level 12-bit
cross-correlation

Discrete grey-level FFT
correlation

Discrete grey-level
8-bit cross-correlation

Discrete binary cross-
correlation

Overlap 50% Yes, if multiple passes No No

Subpixel interpolation 3-point parabolic peak Centre-of-mass, Gauss fit No No

Speed (fps) 6.25 7 40 66

This architecture can be adapted to different applications but
it is restricted to a precise configuration for the PIV algo-
rithm. The second PIV system uses a programmable graphics
processing unit (GPU) [30] that makes the algorithm easier
to modify, but that is the slowest. The last one [31] uses a Vir-
tex II FPGA board for a very specific configuration of a PIV
algorithm. The execution time is optimized for one precise
PIV algorithm with fixed characteristics, but it is also the less
evolutive architecture.

All these algorithms are grey-level scale image process-
ing, whereas our architecture accepts only binary cross-
correlation. Our results rely on the quality of the threshold-
ing during the binarization process. Experimental results for
our adaptive architecture can be only compared with other
systems if a suitable binarization is used. In this case, our ar-
chitecture gives a high QoR in terms of speed.

7. CONCLUSION AND FURTHERWORK

This paper presents an adaptive FPGA-based architecture
for vision systems dedicated to image analysis algorithms.
This architecture must adapt its structure to image analy-
sis algorithms modification. Two approaches are used to en-
sure adaptivity. Using the NoC approach and major features
of image analysis algorithms, this architecture has been de-
signed by breaking down the global structure into stand-
alone and dedicated modules. Two appropriate communica-
tion topologies are used: a communication ring and a bus for
the incoming data. Using the GALS approach, all modules
are inserted around the communication ring via an asyn-
chronous wrapper. Thus each synchronous module can run
at its own frequency.

This architecture contains modules that can be dynamic
or static according to the type of modification. The image
processing designer finds out the appropriate structure and

changes the dynamic parts only. Timing and resource pre-
dictionmodels are given to ensure predictivity. A particle im-
age velocimetry algorithm is mapped onto the architecture.
Specific resource and timing prediction models are given for
this algorithm from the first implementation. Results of sev-
eral implementations (with some different parameters) are
compared with these models. Resource and timing predic-
tion models are close enough to the experimental results to
help the image processing designer to choose the configura-
tion (number of processing modules and interrogation win-
dow size) adapted to its constraints (camera frequency, size,
and speed of the fluid) before the new implementation pro-
cess.

Our architecture is compared with other systems. For this
PIV algorithm, our architecture is well adapted to high-speed
constraints. This paper shows that this architecture is well
adapted to algorithmmodifications. For a new image analysis
algorithm, it is necessary to adapt prediction models. Using
these adaptedmodels, the image processing designer can pre-
cisely estimate the execution time and the used resources be-
fore the new implementation process. Consequently, the de-
sign flow is fast, reliable, and the implementation results are
guaranteed.

Future work concerns the mapping of another image
analysis algorithms in multispectral application domain.
These new mappings will illustrate that the presented archi-
tecture can be adapted to other image analysis algorithms.
These multispectral image processing algorithms contain
several types of functions and the algorithmic complexity
is interesting for the adaptive architecture in terms of com-
munication protocol and scheduling. Another future work
will focus on adaptive architectures dedicated to other classes
of image processing algorithms. These architectures will be
based on other NoC topologies. As a result, the image pro-
cessing designer will use the topology library and adapts the
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structure according to the algorithm with the use of the tim-
ing and resource prediction models.
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