
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 82174, 12 pages
doi:10.1155/2007/82174

Research Article
Embedded Vehicle Speed Estimation SystemUsing
an Asynchronous Temporal Contrast Vision Sensor

D. Bauer, A. N. Belbachir, N. Donath, G. Gritsch, B. Kohn, M. Litzenberger, C. Posch,
P. Schön, and S. Schraml

Austrian Research Centers GmbH - ARC, 1220 Vienna, Austria

Received 28 April 2006; Revised 12 September 2006; Accepted 30 October 2006

Recommended by Udo Kebschull

This article presents an embedded multilane traffic data acquisition system based on an asynchronous temporal contrast vision
sensor, and algorithms for vehicle speed estimation developed to make efficient use of the asynchronous high-precision timing
information delivered by this sensor. The vision sensor features high temporal resolution with a latency of less than 100 μs, wide
dynamic range of 120 dB of illumination, and zero-redundancy, asynchronous data output. For data collection, processing and
interfacing, a low-cost digital signal processor is used. The speed of the detected vehicles is calculated from the vision sensor’s
asynchronous temporal contrast event data. We present three different algorithms for velocity estimation and evaluate their ac-
curacy by means of calibrated reference measurements. The error of the speed estimation of all algorithms is near zero mean and
has a standard deviation better than 3% for both traffic flow directions. The results and the accuracy limitations as well as the
combined use of the algorithms in the system are discussed.
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1. INTRODUCTION

The need for traffic data acquisition is growing as increasing
traffic density calls for extensive use of traffic management
systems that rely on high-quality real-time traffic flow infor-
mation. Such systems, for example, support the operation of
variable speed limit or lane closing signs which adapt to the
actual traffic situation, possibly preventing critical traffic sit-
uations, such as congestions, before they occur. Lane occu-
pation and average velocity are important input parameters
for traffic management systems but also detailed knowledge
about the variation of the velocity distribution of the vehi-
cles helps to predict immanent traffic congestion [1–3]. Basis
for such prediction methods is precise speed estimation for
single vehicles and not only average traffic velocity.

As traffic speed monitoring and vehicle counting using
buried induction loops involves relatively high installation
and maintenance costs, highway authorities switch to non-
invasive technologies such as microwave radar, infrared, ul-
trasound, and video detection. The advantages of nonopti-
cal techniques are their relative independence from weather
and light conditions, however, most of these devices need
to be installed centered above the single lane they service.

Advanced video detection is capable of monitoring several
lanes simultaneously from a side mount position and deliv-
ers an image of the traffic situation, but performance suf-
fers from poor lighting or bad weather conditions. Further-
more, real-time video detection is computationally expensive
and relies on high-performance signal processing hardware,
large amounts of memory, and high-bandwidth data links.
As costs per installation for advanced video detection systems
remain high, the density of installation along a highway route
is limited and may not reach the density necessary to acquire
enough data for reliable traffic flow prediction.

Traffic speed monitoring and vehicle counting systems
using video detection and image processing techniques have
been reported, for example, by Coifman et al. [4], Cathey
and Dailey [5], and Grammatikopoulos et al. [6]. None of
these however have been implemented as embedded systems
but run their algorithms on workstations. In [4] a network of
DSPs in combination with a Pentium processor was used to
estimate vehicle speeds and compare to 5min. average traf-
fic speed as reference. In [5, 7] a theoretical estimate of the
speed measurement accuracy using uncalibrated cameras is
given. In [6] video tracking and speed estimation of vehicles
is performed. However, [5, 6] do not provide comparison to
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reference speed measurements, while [7] compares estima-
tion results to average traffic speed. In [8] real-time detection
of vehicles in a tunnel using a dual-DSP smart camera is pre-
sented, but with no speed estimation. Reference [9] gives a
general overview on video processing techniques for traffic
applications but most of the presented examples are compu-
tationally too expensive for embedded processing.

The embedded vision system presented in this paper
overcomes some of the limitations of traditional video pro-
cessing mentioned above. A specialized optical sensor [10,
11] delivers zero-redundancy, asynchronous data containing
precise timing information of moving objects at a compara-
tively small data rate. The analog preprocessing of the visual
motion information on the sensor focal plane allows for us-
ing a low-cost low-power DSP for data post processing, lim-
iting system size, cost, and price. The proposed system fea-
tures vehicle detection and counting and individual vehicle
speed estimation and has been implemented as a compact
low-power embedded system. Three different algorithms for
speed estimation which exploit the unique characteristics of
the asynchronous data are described and compared. The ac-
curacy of the speed estimations is evaluated by means of
ground truth data from a calibrated reference system.

The article is organized as follows: Section 2 describes the
vision sensor and the embedded system, Section 3 explains
the algorithm for vehicle detection as a prerequisite for the
vehicle speed estimation, the algorithms for which are de-
scribed in Section 4. Section 5 contains an estimation of the
accuracy and error analysis. In Section 6, the speed estima-
tion results are compared to ground truth data and the ac-
curacy is evaluated for the different algorithms. As all algo-
rithms run concurrently on the processor, a measure for the
level of confidence is established, and a procedure for estab-
lishing the final system output is presented.

2. DESCRIPTION OF THE EMBEDDED SYSTEM

In this section, the temporal contrast vision sensor and the
embedded traffic monitoring system that has been specifi-
cally designed to process the asynchronous data stream pro-
duced by the imager are described.

In contrast to traditional CCD or CMOS imagers that
encode image irradiance and produce constant data volume
at a fixed frame-rate irrespective of scene activity, the sensor
contains an array of autonomous self-signaling pixels which
individually respond to relative changes in light intensity by
placing their address on an asynchronous arbitrated bus with
a latency of less than 100 μs. Pixels that are not stimulated by
a change in illumination, or temporal contrast, are not trig-
gered hence static scenes produce no output. Because there
is no pixel readout clock, no time quantization takes place at
this point. The sensor operates largely independent of scene
illumination, directly encodes object reflectance, and greatly
reduces redundancy while preserving precise timing infor-
mation. Because output bandwidth is automatically dedi-
cated to dynamic parts of the scene, a robust detection of fast
moving vehicles is achieved. The high dynamic range of the
photosensitive element (> 120 dB or 6 decades) makes the
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Figure 1: Schematics of the embedded vision system architecture.

sensor ideal for applications under uncontrolled light condi-
tions.

The pixel location in the imager array is encoded in the
event data that are reflected as coordinates in the result-
ing image space by address-event-representation (AER) [12].
The scene information is transmitted event-by-event to an
Analog Devices BF533 “blackfin” DSP via an asynchronous
data bus. The imager is capable of transmitting 100 kilo-
events per second (kevents/s) and more; however, for a typ-
ical traffic surveillance scenario the peak data rate from the
128× 128 pixel imager is not higher than 50 kevents/s on av-
erage.

Figure 1 depicts the general architecture of the embedded
sensory system, which comprises the vision sensor, a first-
in first-out (FIFO) buffer memory and the DSP. Following
a data available request (Req) from the sensor, the location
(i.e., address) of the event generating pixel within the array
is transmitted to a FIFO on a 16-bit parallel bus, implement-
ing a simple 4-phase handshake protocol. The FIFO with a
depth of 512 events responds with an acknowledge signal
(Ack) making the bus available for the next address event
(AE) data transmission [12]. The FIFO is placed between the
sensor and processor to cope with peaks of AE activity and is
capable of handling up to 40MHz memory access frequency.
A process running on the DSP buffers the data for further
processing as long as the FIFOs “not empty” (!EMPTY) sig-
nal is active. Every AE received by the DSP is labeled by at-
taching the processor clock ticks with 4 millisecond precision
as a time stamp. These data are the basis for the vehicle speed
estimation.
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Figure 2: Still video image from a conventional camera (a) and image representation of a typical address-event data stream (b) from the
image sensor pointed at a highway scene. The frame integration time in (b) is 100ms. Three ROIs covering the three lanes are marked in (b)
by white rectangles.

The DSP also controls 24-bit resolution bias generator
DACs on the sensor chip that generate all internal bias cur-
rents, thus allowing on-the-fly adjustments of functional pa-
rameters like contrast detection thresholds [13]. Data for the
DAC setting are clocked and latched into shift registers via a
3-line serial interface to the DSP. The embedded system pro-
vides an Ethernet connection to interface to host computer
or any other IP-client.

The traffic data acquisition system consists of a sensor
board and a DSP board, both of 7 × 7 cm2 dimensions. The
system is mounted above the road at a mounting height of
7 to 12m, either overhead or at the roadside. It is capable of
monitoring traffic on up to four lanes simultaneously, de-
pending on the mounting position. Due to its low power
consumption, the system is suitable for autonomous solar or
battery supply operation. Detailed technical specifications of
the embedded traffic data system can be found in [14].

3. VEHICLE DETECTION

The images in Figure 2 show a comparison of a still video
picture and 64 × 64 pixel frame of AER data of a highway
traffic scene. In order to visualize the AER data, events have
been collected for a 100-millisecond interval and rendered
like a video frame. The different gray shadings encode pixel
activity per unit time. Note that the white and black vehicles
both have very similar representation in the AER data stream
illustrating the sensitivity of the imager even to small contrast
changes.

In order to take full advantage of the efficient coding
of the visual information in the AER data, a reasonable al-
gorithm directly processes the spatiotemporal information
contained in the data stream. Figure 3 depicts two example
illustrations of 4 second of AER data streams produced by
vehicles moving along a road on two different lanes mov-
ing towards the imager (v = −100.2 km/h) and away (v =
+41.5 km/h) from the imager, respectively. The pixel event
activity is plotted for the imager i and j axis versus time.
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Figure 3: (a) Spatiotemporal representation of the AE data for two
vehicles. (b) Instantaneous AER data rates for the two examples.

The event rate is encoded in grey levels from 0 (white) to
15 kevents/s (dark). Each vehicle produces compact point
clouds of AEs in (t, i) and (t, j) space representing the ve-
hicles track when moving towards the imager. The temporal
development of the instantaneous address event activity in
kevents/s is plotted below the vehicle traces.

Due to the image sensors specific sensitivity to temporal
contrast, each vehicle produces a distinct activity peak of al-
most equal magnitude in sceneries of highly variable or wide
dynamic range illumination. The system thus reliably detects
vehicles without the need to adjust parameters such as opti-
cal aperture or sensor gain.
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Figure 4: (a) Example of the vehicle detection shown for the AER
data from an ROI produced by five vehicles. (b) Development of
the smoothed event activity within this ROI. The black horizon-
tal lines indicate five detected vehicles in time interval 110 to 125 s.
Dashed and dashed-dotted lines indicate the lower and upper de-
tection thresholds.

The vehicle detection algorithm is based on the observa-
tion of activity peaks in predefined regions-of-interest
(ROIs) corresponding to highway lanes [15]. The AER ac-
tivity is accumulated in 10-millisecond frames in every ROI
separately and the resulting activity is stored in one element
of the ring buffer. For every ROI, a ring buffer with a length
of 10 elements is installed. The sum activity, that is, the sum
of all activity values in the ring buffer (in total 100 millisec-
onds), is compared with the “high” threshold. If the sum ac-
tivity is larger than the “high” threshold, then the beginning
of a vehicle is detected and the corresponding AE stream is
buffered as long as the sum activity is above the “low” thresh-
old. If the sum activity falls below the “low” threshold, then
the end of the vehicle is detected and the buffering of the AE
stream is stopped. The threshold hysteresis is used to avoid
spurious vehicle detected triggered by imager noise on one
hand and to allow a robust detection of the vehicle end on
the other hand. Figure 4 shows an example for the detection
of 5 vehicles on the center lane of a highway together with
the temporal development of the ROI ring buffer value. The
high and low thresholds are indicated by dashed and dash-
dot lines. Horizontal black lines show the detection times for
the vehicles. In a further processing step, the stored AE buffer
corresponding to one vehicle is used to calculate the velocity,
which is explained in Section 6.

4. TEST DATA ACQUISITION AND EVALUATION

Figure 5 depicts the test site used for evaluating the vehi-
cle speed estimation where the system is mounted on a bar
above a two lane test track. The dashed lines indicate the
positions of two calibrated light-barrier speed measurement
units with a resolution of 0.1 km/h and a precision of better
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Mounting tilt angle β 71.9◦

Lens aperture angle α 42.6◦

Figure 5: Setup of the reference measurement test site.

than 0.1 km/h. Reference speeds V1 and V2 are measured at
distances 7m and 16m from the sensor base point. These
speed data are used as ground-truth for the verification of the
speed-estimation algorithms. Cases where V1 and V2 differ
by more than 1 km/h are rejected to assure near constant ve-
hicle speed. A total number of 273 test cases have been evalu-
ated. For the selected test cases, the average of V1 and V2 was
used as the reference speed Vref.

The difference of the estimated speed to the mean ref-
erence speed is the error verr. Assuming that all systematic
errors have been removed by calibration, the quality of the
speed estimation for a set of measurements is given by the
width of the standard deviation σ(verr). The measurements
have been conducted under bright daylight conditions.

5. SPEED ESTIMATION ALGORITHMS

In order to estimate the velocity of the detected vehicles, the
pixel indices i have to be transformed into the real world co-
ordinate x. Note that the x-axis is parallel and y-axis is per-
pendicular to the moving direction of the vehicles.

From the geometric setup involving the sensor mount-
ing height h, the aperture angle α and the tilt angle β, the
real-world coordinate x (Figure 5) can be calculated from the
pixel indices i according to the following equation:

x = h · tan
(
β + arctan

(
tan

α

2
·
(

2 · i
M − 1

− 1
)))

. (1)

M is the total number of pixels of a sensor column. Only
a downward tilt angle was assumed and the transformation
holds only for objects on the road surface. The above equa-
tion is evaluated for i = 1, . . . , 128 and the corresponding x
values are stored in a look-up table. Thus, a fast transforma-
tion from the pixel index i to the coordinate x is performed
by applying this table.
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Figure 6: (a) The (x, t)-point cloud representing a vehicle, the leading and trailing edges of the vehicle are indicated by the letters L and
T. (b) The (x, t)-point cloud representing the leading edge extracted from (a). The inset shows the cumulative event sum over time at the
x = 11m position.

5.1. Edge-based approaches

5.1.1. Edge extraction

The vehicle detection algorithm provides an (x, t)-point
cloud of the complete vehicle. Figure 6 shows an example for
the resulting point cloud for a vehicle extracted from real-
live data. The negative slope of the point cloud correspond-
ing to a vehicle moving towards the sensor system in the −x
direction (corresponding to v < 0) is clearly visible in the fig-
ure. The higher density for points with smaller distance (i.e.,
small x) is explained by the denser geometric projection of
the imager rows onto the ground near the sensor system.

For the edge-based velocity estimation algorithms, a cer-
tain edge has to be extracted out of the vehicle’s point cloud.
In general, it is possible to detect different edges in the ve-
hicle. For velocity estimation purposes, the most important
edges are the leading and the trailing edges typically caused
by the vehicle’s shadow on the ground.

Based on the (x, t)-point cloud representing the vehicle
(Figure 6(a)), a time histogram with a temporal resolution of
10 milliseconds for a certain x value is generated. Note that
this temporal resolution of the AER processing corresponds
to a 100 frames per second video processing if compared with
traditional techniques. The calculation of the cumulative ac-
tivity is based on the time histogram. For extracting the lead-
ing edge, the summation is performed from the smallest time
instance to the largest time instance of the histogram (inset,
Figure 6(b)). For the trailing edge the direction of summa-
tion is done vice versa.

The time at which the activity exceeds a certain threshold
is stored for the considered x value. For the shown example,
one point of the leading edge at x = 11m is extracted. 20%
of the maximum of the cumulative activity has shown to be
an appropriate threshold for this kind of edge detection.

This is done for a number of N x-values of a predefined
region of interest (ROI) corresponding to a certain lane, thus
obtaining a new point cloud in (x, t). For the example con-
sidered here, N = 48.

Due to the edge extraction routine, the amount of data
is further reduced to N points (x, t). This point cloud repre-
sents the track of the leading edge (Figure 6(b)) of the vehi-
cle’s point cloud shown in Figure 6(a).

5.1.2. Velocity-estimation algorithms

(a) Histogram method

This section describes an efficient method for vehicle speed
estimation from AER data streams. The method is based on
the estimation of the slope of the AER point cloud represent-
ing a certain edge of a vehicle.

In a first step, vehicles are detected in the unstructured
AER data stream by a vehicle detection algorithm detailed in
Section 3. The next processing step is to isolate the trace of
either the leading or the trailing edge of a vehicle, which is
already described in the section above. The edge extraction
provides an (x, t)-point cloud consisting of N points.

For the point cloud of the leading edge (for the case
shown in Figure 6) consisting ofN points, the velocities from
every combination among these points are computed. More
precisely, we calculate N · (N − 1)/2 velocities according to

vkl = xk − xl
tk − tl

(2)

with l, k = 1, . . . ,N . Note that, as vkl = vlk holds, this value
is considered only once. These velocities are entered in a his-
togram which ranges from 20 to 300 km/h.

The width of the histogram bins is 2 km/h. Empirical
tests have shown that a too fine resolution, for example,
1 km/h, yields a cliffy pulse in the histogram. Finding the
correct maximum in a cliffy pulse is not straightforward and
therefore broader histogram bins are used. The drawback of
the resulting rough velocity resolution is eliminated by calcu-
lating the center of gravity (CoG) of the pulse. Details regard-
ing the CoG are explained further ahead. In Figure 7, the ve-
locity histogram for the leading edge shown in Figure 6 is de-
picted. The empty histogram bins for velocities > 120 km/h
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Figure 7: The velocity histogram corresponding to the leading edge
depicted in Figure 6. The inset shows the full range of the velocity
histogram (0–300 km/h).

are not shown for a better visibility of the histogram peak.
Furthermore, it can be seen that due to the rough velocity
resolution the resulting pulse is very smooth.

The remaining part of the algorithm is to find the posi-
tion of the maximum in the histogram and the calculation of
the CoG. For this purpose, the weighted average of the max-
imum bin and its two neighboring bins are calculated:

v = fmax−1 · vmax−1 + fmax · vmax + fmax+1 · vmax+1

fmax−1 + fmax + fmax+1
, (3)

where fk denotes the frequency of a certain velocity and thus
is the height of a histogram bin and vk denotes the corre-
sponding velocity. The subscript k denotes the number of the
histogram bin. Due to the calculation of the CoG, the effec-
tive resolution is better than the histogram bin width. Inten-
sive investigations based on a huge amount of test data have
shown that it is optimal to use only 3 histogram bins for the
CoG calculation. For the histogram shown in Figure 7, the
velocity estimate is 42.8 km/h.

Using relatively wide histogram bins and the CoG meth-
od leads to an efficient determination of the pulse maximum.
Nevertheless, the velocity resolution is sufficiently high. Fur-
thermore, the present velocity estimation algorithm allows
for calculating a confidence measure for assessing the quality
of the calculated speed value:

c = fmax−1 + fmax + fmax+1

N · (N − 1)/2
· 100%. (4)

The denominator normalizes the confidence measure,
because the entire number of calculated velocity values is
N · (N − 1)/2 and therefore, the maximum confidence is
100%. A confidence value of almost 100% is only achieved
for very smooth edges. For this reason, the above stated con-
fidence measure is very conservative. For the histogram in
Figure 7, the confidence value is 52.8%.

The requirements for a good confidence measure are that
it yields small values, if the detected edge is very noisy or if the

edge extraction algorithm provides an edge which is actually
a mixture of two edges. Large confidence values are expected
if the considered edge is well pronounced. All these require-
ments are satisfied by the above stated confidence measure.

A noisy edge results in a broad pulse in the histogram.
The broad pulse results in a small numerator in (4), because
only a small part (3 bins) of the complete broad pulse is con-
sidered. A small numerator and a constant denominator re-
sult in a small confidence value. On the other hand, if a well
pronounced edge is present, the histogram consists of a sharp
pulse consisting of only a few bins. Therefore, the numerator
and thus the confidence measure are large. If the edge is a
mixture of two edges (suboptimality of the edge extraction
algorithm), then two or more peaks can be found in the his-
togram and thus the numerator is small, because there are
a lot of histogram bin with high frequency, which are not
considered in the numerator. The defined confidence mea-
sure for the quality of the velocity estimate allows rejecting
results from broad distributions or distributions without a
pronounced maximum originating from measurement arti-
facts.

(b) Line-fit method

This method is also based on the extracted edge of a de-
tected vehicle. As the name of the algorithm already reveals,
the main principle of the considered method is to fit a line
into the extracted edge. This is done by the least squares (LS)
approach. The general line equation adapted to the velocity
estimation problem can be written as

x = k · t + d, (5)

where k is the velocity and d is only an x-shift (useless for
the actual velocity calculation). The (x, t)-point cloud repre-
senting the extracted edge consisting of N points is used to
find the line characterized by k and d which minimizes the
mean square error to the points of the point cloud. With the
following relationship between the parameters k and d of the
line and the coordinates x and t of the point cloud:

⎛
⎜⎜⎜⎜⎝

x1
x2
...
xN

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x

= k ·

⎛
⎜⎜⎜⎜⎝

t1
t2
...
tN

⎞
⎟⎟⎟⎟⎠ + d =

⎛
⎜⎜⎜⎜⎝

t1 1
t2 1
...

...
tN 1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
T

·
(
k
d

)

︸ ︷︷ ︸
p

, (6)

the best estimates (in the LS sense) for the parameters k and
d can be calculated using

p = (TT · T)−1 · TT · x. (7)

Note that (TT ·T)−1 is a 2×2 matrix and therefore a very
efficient implementation of the matrix inversion is possible.

In order to suppress the influence of outlier on the esti-
mated velocity, the line fit is repeated 3 times. Between the
line-fit iterations, outliers are removed by a distance crite-
rion. If the distance of a certain point of the point cloud to



D. Bauer et al. 7

8

9

10

11

12

13

14

15

16
x
(m

)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

t (s)

Data points
First fit
Second fit
Third fit

Figure 8: The point cloud of the extracted edge and the fitted lines.

the estimated line is larger than a certain threshold
∣∣xi − (k · ti + d

)∣∣ > dTHRESHOLD, (8)

then this point is assumed to be an outlier and is not used for
the following iteration step.

The work flow of the whole algorithm is as follows:

First line fit based on the whole point cloud⇒ k1,d1

First outlier rejection:|xi(k1 · ti + d1)| > dTHRESHOLD 1

Second line fit based on a reduced point cloud⇒ k2,d2

Second outlier rejection:|xi(k2 · ti + d2)| > dTHRESHOLD 2

Third line fit based on a further reduced point cloud⇒k3,d3
Note that the second threshold is stricter than the first

threshold in order to further thin out the point cloud. The
resulting parameter k3 is the final velocity estimate.

Furthermore, a confidence measure for the velocity esti-
mate can be calculated:

c = N −NOUTLIER

N
· 100%, (9)

where NOUTLIER denotes the number of outliers. Thus, if no
outliers are present,that is, the extracted edge is very smooth,
then the confidence value is 100%. If the edge is noisy or the
edge is actually a mixture of two or more edges, then the
number of outliers increases and thus the confidence value
decreases.

For the edge shown in Figure 6, the line fit algorithm pro-
vides the lines within the point cloud shown in Figure 8.

For this special case, the first and the second fit are iden-
tical because the distance threshold for the first outlier rejec-
tion is 2m and thus the outlier on the top of Figure 8 is not

rejected. Thus the basis for the line fitting in both cases is
identical and therefore obviously the results are identical. At
the stage of the second outlier rejection the above mentioned
outlier is rejected because the second threshold is set to 1m.
The resulting slope of the line allows calculating a velocity
measure which is in this case 42.6 km/h with a confidence
level of 97.9%.

The confidence measure for this velocity estimation algo-
rithm provides rather larger values. Really small confidence
values (< 30%) are very unlikely even for very noisy edges.

5.2. AER projection

Other than the algorithms described before, this method
does not rely on a leading or trailing edge extraction. With
this method the AEs belonging to a vehicle’s point cloud in
(t, x)-space are time shifted for a speed hypothesis v, yielding
a corrected time t’,

t′ = t − x

v
. (10)

The data are then projected onto t′-axis using the cor-
rected time by computing the distributionN(v, t′) with a res-
olution of 10 milliseconds. The maximum value of the his-
togram for this projection is stored. Figure 9 shows the (t′, x)
data for a vehicle with reference speed −105.5 km/h and his-
tograms for two speed hypotheses. The left pane shows the
general case where v does not match the reference speed
(−70 km/h) and the right pane shows the case of the best es-
timate (−106 km/h).

The algorithm relies on the fact that a correct hypothesis
for v will yield the largest maximum in the corresponding
N(v, t′) histogram. This is explained by the compensation
of the slope of the point cloud resulting in a projection of
the largest number of the t′ values into a single histogram
bin. Figure 10 shows the maximum histogram values versus
the speed hypothesis v with a resolution of 1 km/h and in-
dicates the speed estimate of −106 km/h. A second peak at
−122 km/h is produced by the trailing edge of the vehicle. As
the trailing edge is always at roof height of an approaching
vehicle, h is smaller than assumed and the speed estimate is
too high. As seen from the shape of the distribution with its
central maximum and a pronounced roll-off to both sides,
the production of extreme outliers is very improbable with
this method.

As the computational cost is high implementation on the
embedded processor is only possible by reducing the num-
ber of events in a first step by simple random picking of
100 events and testing a number of speed hypothesis with
a coarse speed resolution. In a second step, the procedure is
repeated with 250 data points and a finer speed resolution
around a neighborhood of the v found in the first iteration.

5.3. Implemented speed selection

The implemented firmware routines first evaluate the speed
with the line-fit and histogram methods and determine
the best result by the confidence measure. If none of the
two confidence values exceeds the confidence threshold the
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Figure 9: AE data with corrected time t′ for two speed hypotheses and their projection histograms.
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Figure 10: Dependence of the maximum value of the projection
histograms on the speed hypothesis. The best estimate is indicated
by an arrow.

projection method is performed to achieve a robust speed
result at the risk of a lower estimation quality.

The three algorithms have been implemented in C/C++
with minor code optimization, such as using fixed point no-
tation for some variables. On the embedded system proces-
sor, all three algorithms run simultaneously for each detected
car and use roughly 30% of the CPU time.

6. ACCURACY ESTIMATION

The following section gives an estimation of the accuracy
of the vehicle speed estimation method. The system accu-
racy is limited by the finite temporal resolution of the AER
time stamping and the precision of the world coordinate

transformation that depends on a correct calibration of the
optical system.

Speed is calculated by the quotient of a distance d and the
time delay t that it takes a vehicle to pass this distance,

v = d

t
. (11)

In the presented system, d is the length of the ROI used
for the speed estimation of typically 8m and t is the time that
the vehicle takes to cross the ROI. Although the presented
algorithms frequently use much shorter inter-pixel distances
and time delays, the speed estimation basically depends on
the precision of d and t. Their uncertainty is governed by
the uncertainty of the length of the ROI and the temporal
resolution, respectively.

As d is a difference of pixel positions xi and the pixel event
response to a moving edge will occur uniformly in the pixels
center, the pixel resolution of the imager itself is not influ-
encing the accuracy of d. The uncertainty of d is mainly in-
fluenced by the calibration error caused by an imprecisemea-
surement of the mounting parameters during the installation
procedure.We further assume an ideally flat road surface and
the object size being substantially larger than the geometrical
projection of the pixel on the road surface.

Errors in mounting parameters result in an erroneous
transformation from imager pixel- to real-world coordinates
and consequently in an uncertainty in d. From (1), we can
derive d provided that the ROI is situated between imager
lines 1 and 48. With parameters α, β, and h from Figure 5
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and (1), we get

d = xi=48 − xi=1 = x(h,β)i=48 − x(h,β)i=1 = 7.73m.
(12)

It is assumed that the error of the aperture angle α is neg-
ligible, because it is a constant value that can be calibrated
very precisely under lab conditions and is not influenced
by installation procedures. Alternatively, the aperture angle
can be derived precisely from parameters found in the lens
datasheet and the imager dimensions.

For a simple manual calibration with Δh = 0.1m and
Δβ = 0.5◦ the new distance results in

dΔh,Δβ = xΔh,Δβ;i=48 − xΔh,Δβ;i=1
= x(h + Δh,β + Δβ)i=48
− x(h + Δh,β + Δβ)i=1 = 8.13m.

(13)

The resulting distance error is Δd = 0.4m. These uncertain-
ties results in a systematic error in the speed measurement
leading to a nonzero mean error. The mean velocity error
due to a suboptimal calibration is

Δv(d, t) = v · Δd
d
= v · 5.2%. (14)

With a larger calibration effort, for example, by using
specialized equipment during installation, the values for h
and β could be quantified with much higher accuracy. For
such a calibration the error could be neglected (Δd = 0) and
this will result in a purely statistical error for the speed mea-
surement.

The temporal precision is found in the error of the time
delay measurement, given by the sum of the variance of the
pixel latencies (indexed L) and the error introduced by the
activity histogram time stamping for edge extraction with
10-millisecond resolution (indexed TS). For a set of events
both values are statistic in nature and not a fixed value, thus
the width of their distribution is used to derive an error,

σt =
√(

σtL
)2

+
(
σtTS

)2
. (15)

The typical pixel response time is < 100 μs for daylight con-
ditions with a variance of < 50 μs and is therefore negligible
compared to the temporal resolution of the time stamp. As
events occur randomly in time, the time stamping error is
distributed equally between 0 and 10 milliseconds, the vari-
ance of this distribution will be assumed as the time mea-
surement error,

σt ∼ σtTS = 10ms
2
√
3

∼ 2.9ms. (16)

The error in the time measurement leads to a nonzero
standard deviation in the speed error distribution and is in-
dependent of the calibration. Using σt, we calculate the stan-
dard deviation of the error. Assuming a vehicle passing the
ROI with speed 100 km/h, we get

σv(d, t) =
(
∂v

∂t

)
· σt = 0.29 km/h. (17)

The precision of the speed measurement is therefore
mainly influenced by the quality of the optical calibration,
regarding the system mounting height and camera tilt angle.

Other possible sources for errors are imager noise and
lens imperfections, such as lens distortion. Imager noise in-
fluences the quality of the edge extraction and adds to the sta-
tistical error. Lens distortion has a systematic effect on real-
world coordinate transformation and adds to the systematic
error. These error contributions have been neglected.

7. RESULTS ANDDISCUSSION

Figures 11 and 12 show the results of 273 single vehicle speed
estimations for both driving directions on both lanes, us-
ing the histogram method of Section 5.1.2(a) and the line-
fit method of Section 5.1.2(b), for measured speeds between
−120 km/h and 80 km/h. The dashed line in the figures is
the y = x line. The standard deviation of the error for dis-
crete speed intervals is shown as a bar chart. The results for
the leading and trailing edges are shown separately. Note that
the leading edge of the approaching vehicles (v < 0), formed
by the ground shadow, shows a smaller error than the lead-
ing edge of departing vehicles (v > 0) which is formed by
the car body and is smeared out. A similar effect can be seen
vice versa for the trailing edges. An additional systematic er-
ror is caused by the trailing edge of approaching cars, which
is always the roof edge and appears faster than the ground
shadow. For both methods the standard deviation of the er-
ror is below 3% formost of the speed intervals1 when the ap-
proaching vehicles leading edges and departing vehicles trail-
ing edges are considered. The errors for the rest of the test
cases are in the 5 to 7 km/h regime for the above mentioned
reasons.

Figure 13 shows the results of the projection method of
Section 5.2. This method does not extract the leading or trail-
ing edge but rather picks the most dominant edge of the ve-
hicle, that is, the one with the strongest contrast. The fig-
ure shows that the standard deviation of the error is much
smaller for the departing vehicles. As the back view of cars is
rather featureless, the dominant edge is the ground shadow
for the departing vehicles, thus delivering good speed results
with a standard deviation of the error below 3 km/h. The
front view of the approaching cars seen from an elevated po-
sition is a mixture of high contrast edges from bonnet, wind-
shield, and roof. Therefore, the velocity is calculated from a
set of “smeared” edges, producing a worse result with stan-
dard deviation of roughly 6%.

All results presented have been produced under daylight
conditions. Note that the speed estimation also works in the
night, by extracting the AE point cloud produced by the
high contrast head- and taillights. Due to the nature of the
temporal contrast imager, the sensor produces no bloom-
ing or overexposure effects, thus allowing the robust speed
estimation also during night operation. The speed result,

1 The calculation of the standard deviation is based on the data of 5–20
vehicles for each speed interval.
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Figure 11: Results of the histogram method for the extracted leading and trailing edges.
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Figure 12: Results for the LS line fitting method for the extracted leading and trailing edges.
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Figure 13: Results of the AE projection method. Note that this method does not rely on edge extraction, thus only one result per test drive
is given.

Table 1: Comparison of the three speed estimation algorithms.

Method Driving direction Edge Mean (verr) km/h σ (verr) km/h Success rate (%) Applied confidence threshold2

Histogram

v > 0 leading 0.65 4.4 100

10%
— trailing 0.61 1.8 100

v < 0 leading −0.83 2.3 99.3

— trailing 8.50 4.3 98.6

Line-fit

v > 0 leading 1.90 4.3 100

60%
trailing 0.63 2.1 98.5

v < 0 leading −0.68 2 99.3

— trailing 8.50 4.2 95

Projection
v > 0 — −0.08 2 100

N/A
v < 0 — 0.72 5 100

2 For definitions of the confidence measures for both methods, compare Sections 5.1.2(a) and 5.1.2(b).

however, has to be corrected to the mean height of vehicle
headlights above ground.

The advantages of the histogram method are that it is
simple, robust, and easy to implement on the DSP. The
method is able to produce good velocity estimates even in
case of noisy or spurious AE data by robustly finding the
slope of the most dominant velocity in a point cloud from
the largest peak in the velocity histogram.

The line fit method is able to produce similar quality esti-
mates for good noise-free AE data but is rather sensitive even
to the presence of single noise events degrading the line fit
result.

The projection method is very robust against noisy AEs
appearing in the data stream and against badly pronounced
leading or trailing edges, which may cause problems with the
previously described algorithms. Due to the integrating na-
ture of the method, it will always pick the most pronounced
edge. This might not be the ground shadow but, for exam-
ple, the vehicle’s roof for which the geometric projection into
world coordinates does not hold. Consequently, the qual-
ity of the velocity estimate is not as good as for the two

other methods. Furthermore, no confidence measure can be
derived by this algorithm, however, due to the robustness of
the method, extreme outliers do not occur.

Table 1 shows an overview of all results with the mean er-
rors and the success rates. The rate of successfully estimated
car speeds is determined by the confidence level produced by
each method. The table also gives the confidence threshold
that was used to accept a result. As obvious from the pre-
sented results, only the leading edges of the approaching and
the trailing edges of departing vehicles are evaluated by the
embedded system firmware when using the histogram and
line-fit methods. Using the three methods combined allows
to derive a good speed estimate with a better than 3% stan-
dard deviation of the error for almost any of the presented
test cases.

The results are comparable to results postulated in [6],
where an error of ±3 km/h is estimated from a single refer-
ence measurement using GPS data. In [7] the distribution
of single vehicle speed estimates were compared to speeds
averaged over 20 second intervals measured with induction
loops.
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Our work is the first to report the comparison of a
substantial number (273) of single vehicle speed estimates
directly to single vehicle speed reference measurements.

Possible limitations to the reliability of the system stem
from the approach to detect vehicles within regions-of-
interests. If a passing vehicle occupies more area of the lane
1 ROI than of the lane 2 ROI, then the car is detected on
lane 1, and the corresponding velocity is calculated correctly
and vice versa. However, lane changes are critical if the vehi-
cle is passing the ROI-zone more or less exactly between two
neighboring lanes. In this case, the system’s behavior cannot
be predicted and is possibly erroneous.

The systems firmware comprises a shadow suppression
algorithm, which is capable of distinguishing between two
vehicles moving in parallel or a vehicle and its shadow. How-
ever, as the problem is not trivial, the algorithm might fail in
cases where shadows are very long or are cast diagonally on
the street.

8. CONCLUSION

A compact embedded vision system for traffic data acqui-
sition on up to 4 lanes was presented comprising an Ana-
log Devices “blackfin” DSP and a contrast sensitive asyn-
chronous vision sensor. The sensor features a 120 dB wide
dynamic range, focal-plane contrast change detection, and
an efficient AER data coding. Three different algorithms for
vehicle speed estimation based on processing the AER data
stream with 10-millisecond temporal resolution and their
implementation in the embedded system firmware have been
described. All three algorithms run concurrently on the em-
bedded processor consuming 30% of the CPU time without
special code optimization. The selection of the best speed es-
timate is made by computing a confidence measure for two
of the speed estimations. For the first time, the speed estima-
tion error has been evaluated by comparing with single vehi-
cle reference speed measurements performed on a two-lane
test track. Measuring the leading and trailing edges of the ap-
proaching and departing vehicles, respectively, a nearly unbi-
ased measurement with a mean error below 1 km/h has been
achieved. The statistic error was less than 3% for the major-
ity of speed intervals. A patent application covering the sys-
tem concept and speed estimation algorithms has been filed
[16].
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