Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 61721, 9 pages
doi:10.1155/2007/61721

Research Article

Applications of Fast Truncated Multiplication in Cryptography

Laszlo Hars

Seagate Research, 1251 Waterfront Place, Pittsburgh, PA 15222, USA

Received 30 June 2006; Revised 3 September 2006; Accepted 17 October 2006

Recommended by Sandro Bartolini

INTRODUCTION

Truncated multiplications compute truncated products, contiguous subsequences of the digits of integer products. For an n-digit
multiplication algorithm of time complexity O(n®), with 1 < a < 2, there is a truncated multiplication algorithm, which is
constant times faster when computing a short enough truncated product. Applying these fast truncated multiplications, several
cryptographic long integer arithmetic algorithms are improved, including integer reciprocals, divisions, Barrett and Montgomery
multiplications, 2xn-digit modular multiplication on hardware for n-digit half products. For example, Montgomery multiplication
is performed in 2.6 Karatsuba multiplication time.

Copyright © 2007 Laszlo Hars. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(digit products summed up), requiring simple control struc-

Embedded systems, like cell phones, cable modems, wireless
routers/modems, portable media players, DVD players, set-
top TV boxes, digital VCRs, secure disk drives, FLASH mem-
ories, smart cards, cryptographic tokens, and so forth often
use some forms of public key cryptography, employing long
integer arithmetic. These devices are usually resource con-
strained, and so speed improvements of the used algorithms
are important, allowing slower clocked processors, memory,
and so reducing power consumption, heat dissipation, and
costs.

Many of these cryptographic algorithms are based on
modular arithmetic operations. The most time critical one
is modular multiplication. Exponentiation is performed by a
chain of these, and it is the fundamental building block of
RSA, ElGamal, or elliptic curve cryptosystems or the Diffie-
Hellman key exchange protocol [1]. For modular reduction,
division is normally used, which can be performed via mul-
tiplication with the reciprocal of the divisor, so fast recipro-
cal calculation is also important. In most of these calcula-
tions, computing only parts of the full products are suffi-
cient.

We present new speedup techniques for these and other
arithmetic operations, critical for embedded applications.
Optimization of memory usage was important, too, but it is
not the subject of this paper.

For operand sizes of cryptographic applications (128,...,
4096 bits), school multiplication is used the most often

ture. Speed improvements can be achieved with Karatsuba’s
method and the Toom-Cook 3- or 4-way multiplication, but
asymptotically even faster algorithms are slower for these
operand lengths [2, 3]. We consider digit-serial multipli-
cation algorithms of time complexity O(n%), 1 < « < 2,
that is, no parallel- or discrete-Fourier-transform based tech-
niques, which require different optimization methods (see
[4]).

This paper is the second part of a manuscript accepted for
CHES’05. Because of page limitations only the first half was
presented and included in the proceedings [5]. All results of
the full paper were introduced in the CHES’04 Rump session
with the URL to the author’s website, where the draft paper
was available since early 2003.

The main results of [5], used in this paper, are the fol-
lowing.

(I) Squaring is about twice faster than multiplication at
O(n*) complexity algorithms, 1 < a < 2.

(II) The LS and MS half products are of equal complexity,
within an additive linear term. (This is a nontrivial re-
sult, because the carry propagation has to be handled
properly.)

(IIT) The least speedup factors of specific truncated products
are shown in Table 1.

In tables below, new results are typeset in ifalics, and new

formulas are .

EURASIP Journal on Embedded Systems

2

TABLE 1
Product School Karatsuba Toom-Cook-3 Toom-Cook-4
Half: Ve 0.5 0.8078 0.8881 0.9232
Middle third: &, 1 1 1.6434 1.6979
Third quarter 0.375 0.6026 0.9170 0.9907

2. TRUNCATED PRODUCTS

Truncated multiplication computes a truncated product, a
contiguous subsequence of the digits of the product of two
integers. If they consist of the LS or MS half of the digits, they
are sometimes called short products or half products. These
are the most often used truncated products together with the
computation of the middle third of the product digits, also
called middle product.

No exact speedup factor is known for truncated mul-
tiplications, which are based on full multiplications faster
than school multiplication. For half products computed by
Fourier-transform-type multiplications, no constant time
speedup is known.

Fast truncated product algorithms are introduced and
analyzed in [5]. A recursive procedure can be defined, when
several smaller full or truncated products cover the desired
digit sequence to be computed. In [5] such covers are inves-
tigated and the time complexity of the resulting algorithms
are determined.

3. MODULAR ARITHMETICIN CRYPTOGRAPHY

Messages and other types of data appear in computers as a
sequence of bits, which can be interpreted as (long) inte-
gers. Encryption is to apply a (hard to invert) one-to-one
transform on them. Such transforms can be constructed with
common integer arithmetic operations, like additions and
multiplications. To prevent (intermediate) results to grow
too long, some measures are necessary. Binary truncation is
not suitable in general, because the operation would not be
invertible, which was useful at decryption. Modular arith-
metic is better, with a fixed modulus, which is a huge prime
number, or a product of two large primes in the commonly
used cryptosystems.

Modular arithmetic is a system of arithmetic for inte-
gers, where numbers “wrap around” after they reach a cer-
tain value—the modulus, that is, larger numbers are replaced
with their remainders of a division by the modulus. The op-
eration of finding the remainder is the modulo operation,
written as “mod”: 10 mod 3 = 1.

4. CRYPTOGRAPHIC APPLICATIONS

Symmetric-key cryptosystems typically use the same key for
encryption and decryption. Its significant disadvantage is the
key management involved. Each pair of communicating par-
ties must share a different key. On the other hand, in public-
key cryptosystems, the public key is freely distributed, while
its paired private key is secret. The public key is typically used

for encryption or signature verification, while the private or
secret key is used for decryption or for digital signatures on
documents.

Truncated products are most important in public-key
cryptography, where long integer arithmetic is used, like at
RSA, ElGamal, and elliptic curve cryptosystems, but there are
many others. We will present speedup techniques for their
basic operations after an overview of these cryptosystems.
Details are in [1].

4.1. RSA cryptosystem

RSA encryption (decryption) of a message (ciphertext) g
is done by modular exponentiation g¢modm with differ-
ent encryption (e) and decryption (d) exponents, such that
(g°)¥modm = g. The exponent e is the public key, together
with the modulus m = p - g, the product of two large primes.
d is the corresponding private key. The security lies in the
difficulty of factoring m.

4.2. ElGamal cryptosystem

The public key is (p, a, a?), fixed before the encrypted com-
munication, with randomly chosen «, a4, and prime p. En-
cryption of the message m is done by choosing a random k €
(1, p—2], computing y = a* mod pand § = m - («*)* mod p.

Decryption is done with the private key a, by computing
first the modular inverse of y, then (y~1)* = (a~*)*mod p,
and multiplyingitto 8 : § - («=*)*mod p = m.

4.3. Elliptic curve cryptography

Prime field elliptic curve cryptosystems are gaining popular-
ity especially in embedded systems, because of their smaller
need in processing power and memory than RSA or ElGamal.
An elliptic curve E over GF(p) (the field of residues mod-
ulo the prime p > 2) is defined as the set of points (x, y)
(together with the point at infinity O) satisfying the reduced
Weierstrass equation,

E:fX,Y)2Y?-X’~-a-X-b=0modp. (1)

The data to be encrypted is represented by a point P on a
chosen curve. Encryption by the key k is performed by com-
puting Q = P+P+- - -4+P = k- P, called scalar multiplication
(the additive notation for exponentiation). It is usually com-
puted with variations of the double-and-add method. When
the resulting point is not the point at infinity O, the addition
of points P = (xp, yp) and Q = (xq, yq) leads to the resulting
point R = (xg, yr) through the following computation:

xg = A* —xp — xqg mod p, @)
yr = A (xp — xg) — ypmod p,

where

A= (yp—ya)- (xpfo)flmodp if P =Q,

-1 . (3)
A= (3x3+a)- (2yp) modp ifP=0Q.

Laszlo Hars

TABLE 2
School Karatsuba Toom-Cook-3 Toom-Cook-4
) log 3/1og2 log5/1og3 log7/log4
= 1.5850 = 1.4650 = 1.4037

The addition described above (and extended naturally to
handle the point at infinity) is commutative and associative
and defines an algebraic group on the points of the elliptic
curve (with O being the neutral element, and the inverse of
the point (x, y) being (x, —y)); see the details in [6].

5. TIME COMPLEXITY

Multiplication is more expensive (slower and/or more hard-
ware consuming) even on single digits, than addition or
store/load operations (or if single-cycle multiplications are
implemented, they restrict the clock speed, like at ARM10).
Many computing platforms perform additive- and data-
movement operations parallel to multiplications (PowerPC,
Pentium MMX, Athlon SSE, ARM 10, most DSPs), so they do
not take extra time. In order to obtain general results and to
avoid complications from architecture-dependent constants,
we measure the time complexity of the algorithms with the
number of digit multiplications performed.

For the commonly used multiplication algorithms, even
for moderate operand lengths (4,...,8 machine words or
more) the number of digit multiplications is well approxi-
mated by n*(= My(n)), where « is listed in Table 2. (These
are recursive algorithms, derived from polynomial interpo-
lation, when the digits of the operands are treated as coeffi-
cients of the powers of the unknown. See, e.g., [7]. Here we
only use them as black-box library functions.)

On shorter operands asymptotically slower algorithms
could be faster, when architecture dependent minor terms
are not yet negligible. (We cannot compare different mul-
tiplication algorithms, running in different computing en-
vironments, without knowing all these factors.) For exam-
ple, when multiplying linear combinations of partial results
or operands, a significant number of nonmultiplicative digit
operations are executed, that cannot be performed in paral-
lel to the digit multiplications. They affect some minor terms
in the complexity expressions and could affect the speed re-
lations for shorter operands. To avoid this problem, when
we look for speedups for certain multiplication algorithms,
when not all of their product digits are needed, we only con-
sider algorithms performing no more auxiliary digit opera-
tions than what the corresponding full multiplication performs.

When each member of a family of algorithms under this
assumption uses internally one kind of black-box multiplica-
tion method (School, Karatsuba, Toom-Cook-k), the speed
ratios among them are about the same as that of the black-
box multiplications. Consequently, if on a given computa-
tional platform and operand length one particular multi-
plication algorithm is found to be the best, say it is Karat-
suba, then, within a small margin, the fastest algorithm dis-
cussed in this paper is also the one, which uses Karatsuba

r=291421-2-x

r=r-((2+1926-27%)-x-r)
r=r-((2+1926-2718) —x-r)
r=r-((2+1.530-27%) —x 1)

FIGURE 1: 34.5-bit initial reciprocal.

multiplication. This is why there is no need to measure run-
ning time of the presented algorithms, in all different com-
puting systems imaginable. Just use the often readily avail-
able speed ratios of the various full multiplication functions
on that particular computing system.

6. RECIPROCAL

Reciprocals are used as building blocks of more complex
modular arithmetic operations, like of Barrett’s modular
multiplication algorithm. They are often included in func-
tion libraries, which support cryptographic operations, pro-
tocols.

At calculating 1/x, it is convenient to treat the n-digit in-
teger x, as a binary fixed-point number, assuming the binary
point in front of the first nonzero bit (0.5 < x < 1) and scale
(shift) the result after the reciprocal calculations to get the
integer reciprocal y = [d*/x].

The well-known Newton iteration is a fast algorithm for
computing reciprocals. It starts with a suitable initial esti-
mate of the reciprocal, which can be read from a look-up ta-
ble or computed with a handful of operations. In 32-bit plat-
forms 6-digit multiplications and 5 additions are enough, as
shown in Figure 1, with constants in the innermost paren-
theses. The first line represents a linear approximation of the
reciprocal of 0.5 < x < 1, followed by three slightly modi-
fied Newton iterations. The constants, resulted from numer-
ical optimizations, provide the smallest worst case approx-
imation error. On sufficiently precise arithmetic engines, it
provides more than 34 bit accurate initial estimate r of 1/x.

Each Newton iteration of r — r - (2 — rx) doubles the
number of accurate digits. With an initial error ¢,

1
r=-(1-¢),
x

7’<—T-(2—7’x)=%(1—8)(2—(1—8)) = %(l—sz).
(4)

If started with 32-bit accuracy, the iterations give approxi-
mate reciprocal values of k = 64, 128, 256,... bit accuracy.
The newly calculated r values are always rounded to k dig-
its, and the multiplications, which computed them, need not
be more than k-digit accurate. Some work can be saved by
arranging the calculations according to the modified recur-
rence expression r — 2r +r2(—x). The most significant digits
of r do not change, so we just calculate the necessary new
digits and attach them to r:

rie1 = rill digits [2F +1,..., 28 of r2(—x)]. (5)

4 EURASIP Journal on Embedded Systems
TABLE 3 TABLE 4
School Karatsuba Toom-Cook-3 Toom-Cook-4 School Karatsuba Toom-Cook-3 Toom-Cook-4
0.5 0.9039 1.4379 1.5927 0.625 1.1732 1.7596 1.9416
Having an m = 2k-digit accurate reciprocal rx, we per- the main term (and so the asymptotic complexity of the

form an m-digit squaring (m - (m + 1)/2 steps with school
multiplication) and a 2m X 2m multiplication with the result-
and 2m digits of —x. Only the digits m + 1 - - - 2m have to be
calculated. This is a third-quarter product [5]. With school
multiplication it takes 1.5m?-digit products. Together with
the m-digit squaring it is 2m? + O(m) steps. Summing these
up, for n-digit accuracy, the time complexity is Ry(n) =
201 +22+4%+ - - -+ (n/2)?) = 2/3n?> — 2/3. However, there
is still a better way to organize the work.

Algorithm R. Arrange the calculation according to: ri; —
7 + (1 — rex). Here, rix ~ 1 — d~2¢(2*-digit accuracy if we
started with 1 accurate digit approximation), so the m = 2k
MS digits of rxx are all d — 1, they need not be calculated.

We use 2m digits of —x, instead of x, but only the mid-
dle m digits of the 3m-digit long product are needed (mid-
dle third product [5]). The result is multiplied with r, but
only the MS m digits are interesting (the first multiplicand
is shifted), which is an MS half product. It is still a shifted
result, so appending the new m digits to the previous ap-
proximation gives the new one (with the notation —x(2) :=
MSym(d" — x)):

e = 1kllre X (16 ® —x(2m)). (6)

The series of multiplications take

‘ (601 +))a)zk:l,ZAH-n/ZMa(k) ‘ (7)

time. They sum up to the ratios shown in Table 3, compared
to the corresponding multiplication time M,(n).

Note 1. There are no other digit operations in this algorithm
than multiplications and load/stores (and the initial negation
of x, if no parallel digit multiply-subtract operation is avail-
able). Therefore, it conforms to our complexity requirements
(fewer auxiliary operations than at multiplications).

We have left out all of the details with the rounding (see
[8]). One needs to keep some guard digits with b accurate
bits. These would increase to 2b accurate guard bits at the
next iteration, but the rounding errors (omitted carries) de-
stroy some of them. With the proper choice of b the rounding
problems remain in the guard digits and the accuracy of the
rest doubles at each Newton iteration.

The most important results are that n-digit accurate re-
ciprocals can be calculated in half of the time of an n x n-digit
school multiplication, or 90% of one Karatsuba multiplica-
tion.

Note 2. The speedup techniques in Algorithm R (concate-
nations instead of additions and the precalculation of —x)
are necessary to avoid large number of additions, forbidden
in our complexity model. However, they only improve mi-
nor terms of the time complexity. For the Karatsuba case

reciprocal algorithm) is the same as in [9], the results for the
Toom-Cook multiplications are new.

7. LONG DIVISION

Newton’s method calculates an approximate reciprocal of the
divisor x. Multiplying the dividend y with it gives the quo-
tient. (Another multiplication and subtraction give the re-
mainder. See more at Barrett’s multiplication, below.) For
cryptography the interesting case is 2n-digit long dividend,
over n-digit divisor. The quotient is also n-digit long, de-
pendent on the MS digits of y. (Other length relations can
be handled by cutting the dividend into pieces or padding it
with 0’s.)

The Karp-Markstein trick [3] incorporates the final mul-
tiplication (y - 1/x) into the last Newton iteration:

Zn/2 < w2 X Yon-1,..,3n/2>

(8)

)
[; = Zn/ZHT’n/Z X (y3n/2—1,4..,n — Znpn ® X).

The complexity of the final Newton iteration remains the
same, but the multiplication step becomes faster: y, -
My(n/2) = yo - Ma(n)/2%. It is added to the complexity ex-
pression of the reciprocal above, giving the complexity of cal-
culating the quotient of a 2n-digit dividend over an n-digit
divisor (relative to M,(n)) (see Table 4). With school mul-
tiplication the division is significantly faster than multipli-
cation (but only half as many digits are computed). With
Karatsuba multiplication it is only 17% slower (at practical
operand lengths the speed is closer to 1.3 - My(n): [8]), and
the most common Toom-Cook divisions are still faster than
2 multiplications. The source of this speedup is the dissec-
tion of the operands and working on individual-digit blocks,
making use of the algebraic structure of the division.

In cryptographic applications (RSA elliptic curves) many
divisions are performed with the same divisor (the fixed
modulus at modular reduction). In this case, the time for cal-
culating the reciprocal becomes negligible compared to the
time consumed by the large number of multiplications, so
the amortized cost of the division is only one half multiplica-

tion: .

Historical note

In [9] the Karatsuba case was analyzed and also a faster di-
rect division algorithm was presented, which reduces the co-
efficient for the Karatsuba division to 1 (14.5% speedup).
Unfortunately, the direct division algorithm needs compli-
cated carry-save techniques, which increase the number of
auxiliary operations well beyond the limit of our complex-
ity model. In [10] practical direct division with Karatsuba

Laszlo Hars >
TABLE 5
(Ald" +A0) —a-b
g — A%y School Karatsuba Toom-Cook-3 Toom-Cook-4
2 2.6155 2.7762 2.8464
r—Ay—qgxm
ifr<0:r — r+d!
whiler zm:r—r—-m TaBLE 6
School Karatsuba Toom-Cook-3 Toom-Cook-4
FIGURE 2: Barrett’s multiplication. 1.5 2.1155 2.2762 2.3464
TABLE 7
complexity was presented. Its empirical complexity coeffi- School Karatsuba Toom-Cook-3 Toom-Cook-4
cient was around 2 on a particular computer, but that in- 1.5 1.8078 2.5316 2.6211

cludes all the nonmultiplicative operations, so we cannot di-
rectly compare it to the results here.

8. BARRETT MULTIPLICATION

Modular multiplications can start with regular multiplica-
tions, then we subtract the modulus as many times as possi-
ble (q = [ab/m]), keeping the result nonnegative. The most
significant half of the product is enough to determine this
quotient, which is computed fast by multiplication with the
precomputed reciprocal of m. Using only the necessary dig-
its, which influence the result, leads to the following.

Algorithm B.

abmodm=ab— [a—ni)Jm=LS(ab)— (MS(ab) x y) X m

with y = [%J
)

To take advantage of the unchanging modulus, 4 = 1/m is
calculated beforehand to multiply with. It is scaled to make
it suitable for integer arithmetic, that is, y = [d*"/m] is cal-
culated (n-digit and 1-bit long). Multiplying with that and
keeping the most significant n bits only, the error is at most
2, compared to the exact division. The MS digits of ab and
[ab/m|m are the same, so only the LS n digits of both are
needed. These yield the algorithm given in Figure 2. There,
too, the truncated products are assumed to be calculated
faster than the full products.

In practice, a few extra bits precision is needed to guar-
antee that the last “while” loop does not cycle many times.
This increase in length of the operands makes the algorithm
with school multiplications slightly slower than the Mont-
gomery multiplication [11]. Also, y and g require 2n-digit
extra memory. On the other hand, the advantage of this
method is that it can be directly applied to modular reduc-
tion of messages in crypto applications; there is no need to
transform data to special form and adapt algorithms. The
precomputation is simple and fast (taking less time than one
modular multiplication in case of school, or Karatsuba mul-
tiplication).

The dominant part of the time complexity of Barrett’s
multiplication is | (1 +2y,)Ma(n) |, a significant improve-

ment over the previous best results of 3 (2 for the school mul-

tiplication) in [10]. The speed ratios over M,(n) are shown
in Table 5.

Modular squaring

Since the nonmodular square a’ is calculated twice faster

than the general products ab [5], the first step of the Bar-
rett multiplication becomes faster. The rest of the algorithm
is unchanged, giving the speed ratio of modular

squaring over the n X n-digit multiplication time M,(n) (see
Table 6).

Constant operand

With precalculations we can speedup those Barrett multipli-
cations, which have one operand constant. It is very impor-
tant in long exponentiations computed with the binary- or
multiply-square exponentiation algorithms, where the mul-
tiplications are either squares or performed with a constant
(in the RSA case it is the message or ciphertext).

With b constant, one can precalculate the » digits long
B’ = MS,(b/m). With it

a-bmodm=axb-(axf)xm. (10)

The corresponding algorithm runs faster, in 3y,My(n) <
(1+2y4)M,(n) time. Another idea is expressing the modular
multiplication, with fractional parts: abmod m = {ab/m}m.
This leads to an even faster algorithm.

Algorithm BC. Pre-calculate 8 := MS,,(b/m), 2n-digits. The
MS n-digits of the fractional part {ab/m} isa ® f3, so

a-bmodm = (a®) x m. (11)

For Barrett multiplications with constants, this equation
gives speed ratios over My(n): | (04 + Ya)Mea(n) |. It is close

to the squaring time, in the Karatsuba case even faster repre-
senting a significant improvement over previously used gen-
eral multiplication algorithms (see Table 7).

Note 1. Barrett’s modular multiplication calculates the quo-
tient g = | ab/m] as well (line 2 in Figure 2). If it is needed

EURASIP Journal on Embedded Systems

fori=0---n—-1
t=x; - m modd
x=x+t-m-d

x =x/d"

if (x = m)

X=X—m

FIGURE 3: Montgomery reduction.

outside of the function, the final correction step (while-loop)
has to increment its value, too.

Note 2. As originally published in [12], Barrett’s modular
multiplication was the first example of the use of truncated
products in cryptographic algorithms, but no subquadratic
version was presented there.

9. MONTGOMERY MULTIPLICATION

As originally formulated in [13] the Montgomery multiplica-
tion is of quadratic time, doing interleaved modular reduc-
tions, and so it could not take advantage of truncated prod-
ucts. It is simple and fast, performing a right-to-left division
(also called exact division or odd division [14]). In this di-
rection, there are no problems with carries (which propagate
away from the processed digits) or with estimating the quo-
tient digit wrong, so no correction steps are necessary. These
give it some 6% speed advantage over the original Barrett’s
multiplication and 20% speed advantage over the straight-
forward implementation of the direct division based reduc-
tion, using school multiplications [11]. More sophisticated
implementations of the direct division based method actu-
ally outperform Montgomery’s original multiplication algo-
rithm [15].

Montgomery’s multiplication calculates the product in
“row order,” so a little tweaking is necessary for speeding it up
at squaring [15]. The price for the simplicity of the modular
reduction is that the multiplicands have to be converted to a
special form before the calculations and back at the end, that
is, pre- and post-processing is necessary, each taking time
comparable to one modular multiplication.

In Figure 3, the Montgomery reduction is described. The
digits of x are denoted by x,,_1,...,x1, Xo. The digits on the
left of the currently processed one are constantly updated.
The single digit m’ = —mg' modd is a pre-calculated con-
stant, which exists if 1 (the least significant digit of m) and
d are relative primes. In cryptography, my is odd, because m
is a large prime or a product of large primes; and d is a power
of two, being the base of the number system using computer
words as digits.

The rationale behind the algorithm is representing a long
integer 4,0 < a < m, as a - R modm with R = d". The
modular product of two numbers in this representation
is (aR)(bR) mod m, which is converted to the right form
by multiplying with R7!, since (aR)(bR)R"!modm =
(ab)Rmod m. This correction step, x — x - R™' modm is

X9 =0

for i=0---n-1
t=(xo+ai-by) - m modd
x=(x+a;-b+t-m)/d

if (x > m)

X=X—m

FIGURE 4: Montgomery multiplication (a;, b; = ith digit of a, b).

TABLE 8
School Karatsuba Toom-Cook-3 Toom-Cook-4
2 2.6155 2.7762 2.8464
TABLE 9
School Karatsuba Toom-Cook-3 Toom-Cook-4
1.5 2.4233 2.6644 2.7696

called the Montgomery reduction. The product ab can be cal-
culated prior to the reduction (n digits of extra memory
needed), or interleaved with the reduction. The later is called
the Montgomery multiplication (Figure 4).

9.1. Montgomery multiplications
with truncated products

Montgomery’s reduction implicitly finds u (the f values con-
stitute its digits) for the 2n-digit x, such that x + u - m =
z - d", with an n-digit z, which is the result of the reduc-
tion. Taking this equation modd" : —x = u - mmodd", or
u=x-(-mYHmodd" = x x (—m~1). Here —m~! mod d"
can be pre-calculated with any modular inverse algorithm (m
is odd, d = 2%). Again, using only those digits, which influ-
ence the result leads to the following Montgomery reduction.

Algorithm M.

x-d "modm = MS(x) — (LS(x) x (—=m™1)) x m.
(12)

With two half products and one full multiplication (to get
x = a - b) the above algorithm takes exactly as much time as

the Barrett multiplication | (1 + 2y,)Mu(n) | (with the same

squaring speedup possibility as at Barrett multiplication)
(see Table 8).

Algorithm MC. Montgomery multiplication with constants

is calculated in | 3y, - My(n) |time with

Bi=bx(-m),

abd"modm =axb—(axp)xm (13)

(see Table 9).

Laszlo Hars

Note

These are new, faster algorithms for the Montgomery mul-
tiplication using Karatsuba or Toom-Cook multiplications.
Employing the squaring and precomputed constant vari-
ants even of the quadratic time algorithms, long exponenti-
ations can be performed faster than with the original Mont-
gomery multiplications. However, the advantage of the sim-
plicity of the right-to-left division is gone, but the costs
of pre- and post processing remain. Therefore, there is no
speed advantage of using Montgomery multiplications un-
til further significant accelerations are found (but the orig-
inal code or hardware can be simpler). Currently, Barrett’s
method is faster. If storage space is a concern, direct division-
based modular reductions work better, not needing pre-
computation or extra memory [9, 10, 15].

In [16] there is a hint (but no reference) that a com-
mercial application might use Montgomery multiplication of
Karatsuba complexity. It appeared more than two years after
our results above were first made public, and their algorithm
is not described.

10. QUADRUPLE-LENGTH MODULAR
MULTIPLICATION

Below two algorithms are presented for modular multiplica-
tion of 2n-bit numbers using truncated n-bit arithmetic (ac-
tually 3 bits more for guard digits and handling overflows).
The reasons behind their designs are also given, helping easy
adaptation to arithmetic processors with different capabili-
ties. They are useful, for example, if a 512/1024-bit black-box
secure coprocessor is used for RSA-2048 calculations. The
presented algorithms are similar to the modular multiplica-
tion algorithm in [17] modified in [10], but our computa-
tional model is different. The main advantage of our algo-
rithms is speed (very few calls to the coprocessor) and that
the coprocessor can be very simple (only half and full multi-
plications and additions are used).

The coprocessor has to perform n/2-by-n/2-digit full
multiplications or n-by-n-digit half multiplications return-
ing n-digit results. The caller dis/assembles numbers from
their parts reads and writes at most n-digit numbers to/from
the coprocessor’s registers and requests (truncated) multi-
plications or additions of n-digit numbers. We saw earlier
that with these instructions integer reciprocals can be cal-
culated, and using them with the Barrett multiplication we
computed the quotient | ab/m] and the remainder ab mod m.
Of course, other modular multiplication and reduction algo-
rithms work too.

10.1. Algorithm Q1

Denote the 2n-digit operands and their halves by

a = (ai,ap) = a;d" + ag,
b = (by,by) = byd" + by,
(b1, bo) 1 0 (14)
m = (my,mg) = md" + my,

0 < a1, a0, by, by, my,my < d".

We assume that m is normalized, that is, d*"/2 < m < d*". If
not, replace it with the normalized 2¥m and perform a mod-
ular reduction of the final result.

Let us split the middle partial products, allowing the
caller to cut the full product into exact halves:

L = LS (aghy) + LS (aiby),

M = MS (aobl) + MS (albo). (15)

The product a - b can be expressed with them as

d"(d"(a1by + M) + L) + apby. The modular reduction is per-

formed by subtracting multiples of m from ab, until the re-

sult gets close to m. A few more times adding/subtracting m
then finishes the job.

(i) The largest term a;b;d*" is reduced by n-digits
with modular multiplication (gq;,71) — ModMult
(a1, b1, my). Taking d"qym from ab cancels the MS n
digits.

(ii) d"(d"(r1 +M)+L—qimg) +apby is left. Cancel the MS
digit as before with modular reduction:

(q2,72) — ModRed (d"(r; + M) + L — qymo,my). (16)

Note that the first argument of ModRed is 2n-digit long, but
we can process the MS and LS halves separately, like Barrett’s
algorithm does (see in Figure 2).

The modular reduction is actually subtracting g,m. It
leaves

R = d"(T2+L) —q2m0+a0b0. (17)

Each product is at most 2 digits long, so adding the modulus
m to R or subtracting it from R at most 4 times reduces the
resultto 0 < R < m.

Proposition 1. Algorithm QI computes the 2n-digit (ab
mod m) with at most 16 half multiplications of n-digits and
one (precomputed) n-digit reciprocal.

Proof. R = ab — k - m for some integer k, and 0 < R < m
R = abmod m.

In Figure 5, there are 10 half products. If Barrett’s modu-
lar multiplication is applied, it computes 4 half products, his
reduction does 2, making it 16. Both moduli were the n-digit
my. O

Note

When school multiplications are used to calculate the half
products, Algorithm Q1 takes the time of roughly 8 nor-
mal multiplications, or 4 modular multiplications of n-digit
numbers.

10.2. Algorithm Q2

The parameters are processed in halves, so it seems natural
to use Karatsuba’s trick to trade a couple of half products for
additions. The middle terms are calculated with multiplying
the differences of the MS and LS halves of the multiplicands,

EURASIP Journal on Embedded Systems

(q1,m) = ModMult (ay, by, m)

M =agx by +a; x by

x1 = (q1 X mo,q1 ¥ my)

(q2-m2) = ModRed (d" (r; + M) — x1,m,)
L=ayxb +a; xb,

X = (q2 X mg, g2 ¥ my)

co = (ag X bo,ag x b)

R=d"(rn+L) —x;+c

while (R > m)

R=R-m
while (R < 0)
R=R+m

FIGURrk 5: Q1 quad-length modular multiplication.

e =a; X by; Clp = a; X by

co1 = ag X bp; oo = dg X by

M = co1 + e+ (a1 —ao) X (by — by)

L = coo+cro+ (a1 — ag) x (by — by)
(q1,71) = ModRed (d"cy1 + c19, m1)

X1 = (Q1 X Mo, g1 X mo)

(q2-72) = ModRed (d" (r; + M) — x1,m;)
Xy = (lh X Mo, g2 X mo)

R=d"(rn+L) —x;+c

while (R > m)

R=R-m
while (R < 0)
R=R+m

FIGURE 6: Q2 quad-length modular multiplication.

and combining the result with the LS and MS half products.
They are also split, allowing the caller to build the full prod-
uct from the halves

L=1S (aobo) +1LS (albl) - LS ((a1 - ao)(b1 — bo)),

M = MS ((Ilobo) + MS (albl) — MS (((Ill - tlo) (bl — bo))
(18)

The product a - b can still be expressed with them as
d"(d"(a1by + M) + L) + apby. The modular reduction is per-
formed by subtracting multiples of m, until the result gets
close to m, exactly as before at Algorithm QI, except the
modular multiplication can be replaced with modular reduc-
tion, since the product ¢; = a;b; has already been calculated.

Proposition 2. Algorithm Q2 computes the 2n-digit (ab
mod m) with at most 14 half multiplications of n-digits and
one (precomputed) n-digit reciprocal.

Proof. R = ab — k - m for some integer k, and 0 < R < m
R = abmod m. In Figure 6, there are 10 half products. If Bar-
rett’s reductions are applied, they calculate 2 half products,

making it 14. These reductions were performed with modu-
lus my, the MS half of the 2n-digit modulus. (It helps reduc-
ing the pre-computation work, because the hidden constant
w1 is also only n-digits long.) O

Note

When school multiplications are used to calculate the half
products, Algorithm Q2 takes the time of roughly 7 regu-
lar multiplications, or 3.5 modular multiplications of n-digit
numbers.

11. SUMMARY

General optimizations and the use of fast truncated multipli-
cation algorithms allowed us to improve the performance of
several cryptographic algorithms based on long integer arith-
metic. The most important results presented in the paper are
as follows.

(i) Fast 32-bit initialization of the Newton reciprocal al-
gorithm.

(ii) Fast Newton’s reciprocal algorithm with only trun-
cated product arithmetic (without any external addi-
tions or subtractions).

(iii) New long integer division algorithms based on Toom-
Cook multiplications.

(iv) Accelerated Barrett multiplication with Karatsuba
complexity and faster.

(v) Speedup of Barrett’s squaring and multiplication when
one multiplicand is constant.

(vi) New algorithms for Montgomery multiplication with
Karatsuba complexity and faster.

(vii) Speedup of Montgomery squaring and multiplication
when one multiplicand is constant, with sub-quadratic
and also with quadratic complexity.

(viii) Fast and adaptable quad-length modular multiplica-
tions on short arithmetic coprocessors.

In practice, a combinations of different algorithms is em-
ployed for multiplication. For example, Karatsuba multi-
plication is used until the recursion reduces the operand
size below a certain threshold, like 8 digits. At that point,
School multiplication becomes faster, so it is used for shorter
operands. The analysis of such hybrid methods depends on
factors reflecting hardware or software features constraints.
(Our implementation and simulation results are being col-
lected in a separate paper [8].) The results are very much de-
pendent on the characteristics of the hardware (word length;
special instructions; parallel instructions; instruction tim-
ings; instruction pipeline; cache; memory size and layout;
virtual/paging memory...) and the used software (operating
system; compiler; concurrent tasks; active processes. . .). This
is why it is important that the speed of the presented algo-
rithms is roughly proportional to the speed of the underly-
ing multiplication algorithms, that is, knowing the fastest full
multiplication algorithm for a specific computing platform
tells, which version of the presented algorithms is the fastest
(within a small margin).

Laszlo Hars

Notations

(1) Long integers are denoted by A = (a,-; - - - a1a9) =
an-1...0 = Zd'a; in a d-ary number system, where a;,
0 < a; < d—1 are the digits (usually 16 or 32 bits: d =

216 or 232)
(2) |A| denotes the number of digits, the length of a d-ary
number |(a,_1 - - - aiag)| = n.

(3) AlIB is the number of the joined digit-sequence
(apn-1- -+ aobm-1---bo); |Al =n, |Bl = m.

(4) [x] denotes the integer part (floor) of x,and 0 < {x} <
1 is the fractional part, such that x = [x] + {x}.

(5) logn = log, n = logn/log?2.

(6) LS stands for least significant, the low-order bit/s or
digit/s of a number.

(7) MS stands for most significant, the high-order bit/s or
digit/s of a number.

(8) (grammar) School multiplication denotes division: the
digit-by-digit multiplication and division algorithms,
as taught in elementary schools.

(9) A x B, A x B denote the MS or LS half of the digit-
sequence of the product A - B, respectively.

(10) A ® B denotes the middle third of the digit sequence of
A-B.

(11) My(n) is the time complexity of a Toom-Cook-type
full multiplication algorithm, My(n) = O(n*), with
l<a<?2.

(12) yq = the speedup factor of the half multiplication, rel-
ative to My(n).

(13) 8, = the speedup factor of the middle-third product,
relative to My (n).

REFERENCES

[1] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, Boca Raton, Fla, USA, 1996.

[2] GNU multiple precision arithmetic library manual, http://www.
swox.com/gmp/.

[3] A. H. Karp and P. Markstein, “High-precision division and
square root,” ACM Transactions on Mathematical Software,
vol. 23, no. 4, pp. 561-589, 1997.

[4] D. J. Bernstein, “Fast Multiplication and its Applications,”
http://cr.yp.to/papers.html#multapps.

[5] L. Hors, “Fast truncated multiplication for cryptographic ap-
plications,” in Proceedings of the 7th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES °05),
vol. 3659 of Lecture Notes in Computer Science, pp. 211-225,
Edinburgh, UK, August 2005.

[6] N. Koblitz, Introduction to Elliptic Curves and Modular Forms,
Springer, New York, NY, USA, 1984.

[7] D. E. Knuth, The Art of Computer Programming. Volume 2:
Seminumerical Algorithms, Addison-Wesley, Reading, Mass,
USA, 1981.

[8] L.Hars, “Multiplications for Cryptographic Operand Lengths:
Analytic and Experimental Comparisons,” manuscript.

[9] G. Hanrot, M. Quercia, and P. Zimmermann, “The middle
product algorithm, I,” Rapport de Recherche 4664, I'Institut
National de Recherche en Informatique et en Automatique,
Lorraine, France, 2002, http://www.inria.fr/rrrt/rr-4664.html.

[10] C. Burnikel and J. Ziegler, “Fast recursive division,” MPI
Research Report [-98-1-022, Max-Planck-Institut fiir Infor-
matik, Saarbriicken, Germany, 1998.

[11] A. Bosselaers, R. Govaerts, and J. Vandewalle, “Comparison
of three modular reduction functions,” in Proceedings of the
13th Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO ’93), vol. 773 of Lecture Notes in Com-
puter Science, pp. 175186, Santa Barbara, Calif, USA, August
1994.

P. Barrett, “Implementing the Rivest Shamir and Adleman
public key encryption algorithm on a standard digital signal
processor,” in Proceedings of International Cryptology Confer-
ence on Advances in Cryptology (CRYPTO ’86), pp. 311-323,
Santa Barbara, Calif, USA, 1987.

[13] P.L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519—
521, 1985.

[14] K. Hensel, Theorie der Algebraischen Zahlen, Teubner, Leipzig,
Germany, 1908.

[15] L. Hars, “Long modular multiplication for cryptographic ap-
plications,” in Proceedings of the 6th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES "04),
pp. 45-61, Cambridge, Mass, USA, August 2004.

[16] Shamus Software Ltd, MIRACL users manual, version 5.0, De-
cember 2005, ftp://ftp.computing.dcu.ie/pub/crypto/manual.
zip.

[17] W. Fischer and J.-P. Seifert, “Increasing the bitlength of a
crypto-coprocessor via smart hardware/software co-design,”
in Proceedings of 4th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES °02), vol. 2523 of Lec-
ture Notes in Computer Science, pp. 71-81, Redwood Shores,
Calif, USA, August 2002.

[12

http://www.swox.com/gmp/
http://www.swox.com/gmp/
http://cr.yp.to/papers.html#multapps
http://www.inria.fr/rrrt/rr-4664.html
ftp://ftp.computing.dcu.ie/pub/crypto/manual.zip
ftp://ftp.computing.dcu.ie/pub/crypto/manual.zip

	Research Article
	1. INTRODUCTION
	2. TRUNCATED PRODUCTS
	3. MODULAR ARITHMETIC IN CRYPTOGRAPHY
	4. CRYPTOGRAPHIC APPLICATIONS
	4.1. RSA cryptosystem
	4.2. ElGamal cryptosystem
	4.3. Elliptic curve cryptography

	5. TIME COMPLEXITY
	6. RECIPROCAL
	7. LONG DIVISION
	Historical note

	8. BARRETT MULTIPLICATION
	Modular squaring
	Constant operand

	9. MONTGOMERY MULTIPLICATION
	9.1. Montgomery multiplications with truncated products
	Note

	10. QUADRUPLE-LENGTH MODULAR MULTIPLICATION
	10.1. Algorithm Q1
	Note

	10.2. Algorithm Q2
	Note

	11. SUMMARY
	Notations

	REFERENCES

