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versatility and allows the implementation of parallel image processing algorithms.
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1. INTRODUCTION

FPDs and in particular FPGAs have achieved rapid accep-
tance and growth over the past decade because they can
be applied to a very wide range of applications [1]. One
of the most interesting applications of FPGAs is the pro-
totyping of designs to be implemented as gate arrays. An-
other is the emulation of entire large hardware systems.
Apart from prototyping, an emerging topic for FPGA appli-
cations is their use in custom computing machines. This in-
volves using the programmable parts to “execute” software,
rather than compiling the software for execution on a reg-
ular CPU. For the latter, the notion of such soft-core CPU
or hardware overload of the instruction set becomes crucial.
Such approaches offer a good tradeoff between the perfor-
mance of fixed-functionality hardware and the flexibility of
software-programmable substrates. These different aspects
are a great advantage in the design of an embedded sensing
system, in particular when there are several data flows. Like
ASICs, the main benefit of these systems is their ability to
implement specialized circuitry directly in hardware. How-
ever, fast prototyping is easier for FPGAs. Consequently, in
the design of a versatile embedded system dedicated to im-
age processing, the FPGA solution proves to be the better
way.

In computer vision and especially in vision processing,
the impressive evolution of algorithms and the emergence of
new techniques drastically increase the complexity of algo-
rithms. This computational aspect is crucial for the majority
of real-time applications and in most cases programmable
devices are the best option. For example, FPGAs have already
been used to accelerate real-time point tracking [2], stereo-
vision computing [3], color-based object detection [4], and
video and image compression [5].

In this paper, an architecture dedicated to computer vi-
sion is proposed. Our approach towards a smart camera con-
sists in performing most of the early vision processing at the
sensor level, before transmitting the information to the main
processing unit. This behavior is inspired by the human vi-
sion system, where eyes are responsible for attention and fix-
ation tasks, sending to the brain only pertinent information
about the observed scene. As a matter of fact, the amount
of visual data to be transmitted and analyzed is strongly re-
duced and communication bottlenecks can be avoided. The
adaptation of perceptual aspects from biological vision to ar-
tificial systems, which is known as active vision and active
perception, is briefly explained in Section 2 as the principal
motivation of this work. Consequently, the main originality
of this work is to use the concepts developed in active vision
and more generally in bio-inspired computer vision in order
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to design suitable hardware. In Section 3, the hardware of the
smart camera is described. The technological choices are ar-
gued according to the objectives given in the previous sec-
tion. The different modules are fully described and the dif-
ferent data flows are explained. Section 4 presents the core of
the FPGA design, in particular the specific modules like the
address generation unit or the fixed pattern noise (FPN) cor-
rection unit. Finally, we present the results of two image pro-
cessing algorithms (motion detection and high-speed tem-
plate tracking implementation).

2. ACTIVE VISION SYSTEMS

One of the numerous objectives in artificial vision research is
to build computer systems that analyze images automatically,
determining what the computer “sees” or “recognizes” and
“understands” from the environment.

In what follows, the problem is to perform the process
of interpretation of sensorial data within an environmental
model. The first ways of treating the “vision problem” used
passive vision and dynamic vision approaches. Passive vision
comprises the classical analysis of images. The approach that
David Marr explicitly advocated [6], to which many others
subscribe, has led to a thriving research field that has been
dominant in visual science in recent years. From David Marr,
“Vision is a process that produces from images of the exter-
nal world a description that is useful to the viewer and not
cluttered with irrelevant information.” David Marr proposes
a model of visual processing that begins by identifying the
“zero-crossings” (edges) in the image, uses this edge infor-
mation to provide a crude segmentation of surfaces called
the 2D sketch, and finally extracts from this sketch the three-
dimensional spatial information. That spatial interpretation
is expressed in terms of geometrical primitives such as gener-
alized cylinders or cones, so that the only data which must be
explicitly stored are the x, y, z locations, alpha, beta, gamma
orientations, and aspect ratios of each of the cylinders and a
symbolic code of the relations between them. In this way, the
complex scene is reduced to a highly compressed set of mean-
ingful numbers. The problem with this model is that nobody
has ever been able to define how such spatial information
can be reliably extracted from the scene. Moreover, the vi-
sual world contains far too many ambiguities to be handled
successfully. Dynamic vision is a complementary approach
which corresponds to the study of visual information but in
an unbounded sequence of views. This approach introduces
time into the image processing, while movement (measured
by optical flow) is used in the perception process. Some clas-
sical approaches using these strategies revolve around recov-
ering structure from motion.

In contrast to these two approaches, [8-10] have pro-
posed the active vision approach. Active vision techniques
are derived from attempts to simulate the human visual sys-
tem. In human vision, head motion, saccadic eye movement,
and the eye’s adaptation to lighting variations are impor-
tant in the perception process. Active vision therefore aims
to simulate the power of this adaptation. In other words, ac-
tive vision is an alternative approach to dealing with artificial

vision problems. The central idea, also known as the task-
driven paradigm, is to take into account the perceptual aspect
of visual tasks. Therefore, instead of a full 3D representation
of the observed scene, the system is supposed to extract only
the information useful for solving a given problem through a
task-driven observation strategy (Figure 1).

An artificial active vision system uses observer-controlled
input sensors. Its main goal must be actively to extract the re-
quested information in order to solve a given task. A wide lit-
erature proposes many systems built around the active vision
paradigm. The majority of these systems have been driven by
the “robotic” approach and are based on a robotic head. A
large survey up to 1996 can be found in [11, 12].

Another trend considers algorithmic aspects and focuses
on gaze control using foveated sensors with a log-polar map-
ping. This method can be applied at the sensor level (imager),
at the image processing level or both. At the sensor level,
some dedicated imagers based on logarithmic-structured
space-variant pixel geometry have been implemented. The
main advantage of these methods is the ability to cover wide
work spaces with high acuity and a small number of pixels.
Several descriptions of the advantages of using space-variant,
or logmap, architectures for video sensors have been pro-
posed [13-15]. Another logmap device consists of an em-
ulated sensor based on a conventional CCD and an image
warp algorithm embedded on a microcontroller [16]. More
recently, a new trend towards smaller active vision systems
comparable in size to the human head is pushing the limit of
motor, gearbox, and camera design [17-19].

However, as mentioned above, most work dedicated to
active vision systems is concentrated in the robotic field. In
contrast, the main motivation for the work presented here
is to propose a system truly resulting from the human vi-
sual system. Consequently, our approach needs a dedicated
architecture for which the FPGA proves to be essential. This
architecture is presented and discussed in the next section.

3. ARCHITECTURAL FEATURES

The main purpose of our architecture is to allow the im-
plementation of early vision processes as in the human or
primate visual system. In these systems, it is well known
that the first neural layers (in the retina) prefilter the visual
data flow in order to select only the conspicuous informa-
tion. From this prefiltered information, an attentional pro-
cessing allows focusing on the selected target. In the litera-
ture, several computational models of visual attention can be
found. The first representative model was proposed by Koch
and Ullman in [20] and has been recently revised by Itti et
al. [21]. In these models, the purpose of the saliency map is
to combine the “salient” or “conspicuous” location informa-
tion from each of the lower feature maps into a global mea-
sure to determine how different a given location is from its
surroundings. This technique is used to guide selective atten-
tion. The design of our active vision system is based on this
kind of approach where we assume that the strategy of visual
processes can be divided into the following three successive
tasks.
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FIGURE 1: Saccadic eye movements and task-driven strategy: examples of eye-scanning records obtained by Yarbus [7]. Observers were given
different instructions while viewing the picture “They did not expect him” by Ilya Repin. Each of the traces shows a three-minute record of
eye scanning with the following instructions: (a) free examination, (b) following request to give the ages of the people, (c) remember the

position of the people and objects in the room.

Attention

This is the initializing step of the process. Whole images are
grabbed while waiting for the building of the saliency maps.
These maps are built in parallel and represent/code conspicu-
ity within the visual field along particular dimensions (e.g.,
color, orientation, or motion). The result of this step is a set
of ROIs (Regions Of Interest).

Focusing

This step allows the generation of the geometry of an ROI
(rectangular, tilted, foveal, circular, ...) and the optimiza-
tion of the signal/noise ratio: contrast optimization in an ROI
[22], tracking of an ROI in motion, and so forth.

High-level processing

This last step comprises different kinds of tasks such as iden-
tification and classification.

The attention stage needs strong parallelization, on the
one hand to respect real-time constraints, and on the other
hand because of the intrinsic characteristics of the algo-
rithms. As examples, some classical algorithms in an atten-
tion task used to build an efficient saliency map are mo-
tion detection, Gabor filters, and color segmentation. How-
ever, the characteristics of particular visual tasks may require
dedicated image processing and only an FPGA approach al-
lows such flexibility. For architectures such as these, a Stratix
EP1S60 from Altera has been chosen. This choice is detailed

below. The need for strong parallelization was what led us
to connect 5 X 2MB SRAM synchronous memory blocks.
Each 2MB memory has private data and address buses. Con-
sequently, in the FPGA, 5 attention processes (using 2 MB
each) can address all the memory at the same time and an
SDRAM module socket provides an extension of the mem-
ory to 64 MB (Figure 2).

The focusing stage must control the imaging devices in
order to address only the ROI and to optimize the analog
signal conversion. That is the reason why the sensing board
has been designed around a CMOS imager and a set of 4
digital/analog converters. A set of inertial sensors has been
added in order to estimate the movements of the camera and
improve the perception (stabilization and depth estimation
[23]).

In our approach, the high-level processing has to be per-
formed on a host computer rather than on the embedded sys-
tem. In order to send the data, the smart camera is connected
via a high speed communication (USB 2.0 or FireWire).

The embedded system is integrated into a modular archi-
tecture consisting of three boards: the sensing board, the pro-
cessing board, and the communication board. An overview
of the smart camera is shown in Figure 3 and a structural de-
scription presents the stacked structure with 3 boards.

3.1. System on programmable chip features

As described in the previous section, the sensor was de-
signed around a Stratix EP1560 manufactured by Altera. This
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component enables a high density of integration (57120 logic
elements). It also has three further main advantages which
guided our choice.

Firstly, the Stratix is optimized to maximize the perfor-
mance benefits of SOPC integration based on an NIOS em-
bedded processor. An NIOS processor is a user-configurable
soft core processor, allowing many implementation and op-
timization options. The NIOS CPU is a pipelined general-
purpose RISC microprocessor which supports both 32-bit
and 16-bit architectural variants. Both 16- and 32-bit vari-
ants use 16-bit instructions. For our sensor, the main advan-
tage of this soft core processor is its extensibility and adapt-
ability. Indeed, users can incorporate custom logic directly
into the NIOS arithmetic logic unit (ALU). Furthermore,
thanks to a dedicated bus (Avalon bus), users can also con-
nect into the SOPC on-chip processor and custom peripher-
als. They can thus define their own instructions and proces-
sor peripherals to optimize the system for a specific applica-
tion.

Secondly, the Stratix integrates DSP Blocks. These em-
bedded DSP Blocks have been optimized to implement sev-
eral DSP functions with maximum performance and mini-
mum logic resource utilization. Each DSP block offers mul-
tipliers, adders, subtractors accumulators, and a summation
unit functions that are frequently required in typical DSP
algorithms. Each DSP block can also support a variety of
multiplier bit sizes (9 X 9, 18 X 18, 36 X 36) and operation
modes (multiplication, complex multiplication, multiply-
accumulation and multiply-addition) and can offer a DSP
throughput of 2.8 GMACS per DSP block. The EP1S160 de-
vice has 18 DSP Blocks that can support up to 144 9 X 9
multipliers. These embedded DSP Blocks can also be used to
create DSP algorithms and complex math routines in high-
performance hardware. These can then be accessed as regu-
lar software routines or implemented as custom instructions
on the NIOS CPU. For example, a cumbersome algorithm
can be implemented in hardware and directly executed in
software using a custom instruction. This gives designers the
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global synoptic of the sensing boards.

flexibility and portability of high-level software design, while
maintaining the performance benefits of parallel hardware
operations in FPGAs.

Lastly, the Stratix device incorporates a configurable in-
ternal memory called TriMatrix memory. The TriMatrix
memory is composed of three sizes of embedded RAM
blocks. The Stratix EP1560 TriMatrix memory includes 574
M512 blocks (32 x 18 bits), 292 M4K blocks (128x36 bits),
and 6 M-RAM blocks (4K x 144 bits). Each of these blocks
can be configured to support a wide range of features and to
synthesize a wide variety of RAM (FIFO, double ports). With
up to 5 Mbits of fast RAM, the TriMatrix memory structure
is therefore appropriate for handling the bottlenecks arising
in sensor vision algorithms.

3.2. Sensing device

This module consists of a CMOS imager manufactured by
Neuricam, two 2D accelerometers from analog devices and
three 1D gyrometers from Murata. The imager allows full 2D
addressing with a column bus and a row bus. It has a res-
olution of 640 x 480 (VGA) and provides a broad dynamic

range (120 db) due to the logarithmic response of its pixel
structure. Four digital-to-analog converters allow modifica-
tion of the four analog voltages of the imager: analog signal
offset, digital conversion range, voltage reference, and a pixel
precharge voltage. These four converters are used to opti-
mize the conversion range. In effect, the CMOS imager has
a logarithmic curve that enables the broad dynamic range
(120dB).

The inertial set is composed of two 2D linear accelerom-
eters ADXL311 designed by analog devices and three gyrom-
eters ENCO3 - M designed by Murata. These sensors are sol-
dered onto the imager PCB and aligned with the imager axis.
A single 8-input analog-to-digital converter allows conver-
sion of the different axis measurements. It is important to
notice that a temperature sensor is included in this board to
regulate the inertial sensors’ deviations (see Figure 4).

4. ARCHITECTURAL DESIGN

The major difference between biological and artificial vi-
sion systems most probably lies in their flexibility. In or-
der to develop adaptive capacities, the hardware architecture



EURASIP Journal on Embedded Systems

previously described is designed to implement some specific
low-level processing dedicated to early vision. This low-
level processing attempts to establish an efficient interface
between sensitive elements and high-level perception sys-
tems. As explained in Section 3, our strategy for efficient vi-
sual perception is based on three layers: attention, focusing,
and high-level processing. This approach adopts a pyrami-
dal method which reduces the amount of data flow. Typi-
cally, we can consider a simple system built around an atten-
tional module based only on color segmentation and a fo-
cusing module based on template tracking (Figure 5). In the
following, a detailed description of the FPGA organization is
presented. All the “standard modules” (FPN correction, ad-
dressing module) are described and designs for focusing and
attentional modules are proposed.

4.1. Implementation approach

The implementation of such an approach requires the man-
agement, sequentially and concurrently, of the execution of
the routines previously described. Indeed, all task-oriented
execution (attention, focusing, and identification) is con-
trolled by supplied results and these three layers possibly have
to share areas of interest. Moreover, the information bottle-
neck located in the imager level should be continuously op-
timized to ensure high performance. In our hardware archi-
tecture, these functions are carried out by what we term a
“Sequencer” (Figure 6-M0) and are performed on the NIOS
soft-core processor. This solution has two main advantages.
Firstly, we benefit from software flexibility to define the rou-
tines’ interactions; and secondly, the soft-core processor al-
lows an efficient architectural matching with the other parts
of the supervision unit.

An internal RAM (Figure 6-R0) is used to store the in-
struction sequences which define the sequencer behavior
according to the task under consideration. The host com-
puter which uses our embedded system communicates with
it through a standard communication bus (USB 2.0 proto-
col) and sends requests in order to indicate to the sequencer
the relevant behavior to adopt. More precisely, according to
the controls (and potentially a set of parameters) passed in a
dedicated stack, the sequencer chooses preestablished inter-
actions between the modules (Figure 6-P4) which constitute
a dedicated processing chain. This architectural module im-
plements the previously described routines of environmen-
tal adaptation, attention, focusing, and low-level identifica-
tion (Figure 6-P6). A number of these modules, due to en-
vironmental adaptation (processing No. 1 to i), modify the
pixel flow which is going to be used by the attention, focus-
ing, and identification modules (processing No. j to j + 1).
The different data flows (corrected windows of interest and
inertial measurements) can be used by these modules to per-
form computing. The set of results that are provided by these
processing modules are collected in a buffer. This is how the
sequencer selects results to send to the host computer. The
sequencer is going to use a part of these results to perform
visual feedback on sensing devices (Figure 6-S0) using ded-
icated control modules (Figure 6-P0, P1 and P3). We note

Colourlsegmentation

Attentional step

WOI|generation

Template tracking

Focusing step

Template tracking

High-level processing

FIGURE 5: Example of perception strategy.

in Figure 6 the module P2 which works the external RAM
R1. This module performs the fixed pattern noise correc-
tion which is absolutely essential with the image sensor tech-
nology we use (described in Section 4.3). Lastly, the dedi-
cated communication module P5 is a multiplexer that syn-
chronizes the corrected pixels flows and the sequencer results
flows for sending to the host computer.

The sequencer constitutes an active interface between the
sensing device, processing chain, and the host computer. The
modular processing chain is synchronized with raw pixel
flow control provided by the CMOS imager. Finally, this con-
trol allows dynamic control of the global sensor state accord-
ing to global visual data coherence.

4.2. Addressing module (Figure 6-P0)

The goal of the address generator device is to compute line
and column addresses of the current window of interest. The
shape of the window is actually rectangular and is set by 5 pa-
rameters: position (X, Y), size (H, W), and orientation («).
The address generation is based on the well-known “Bre-
senham” graphical algorithm [24]. For the computation of
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the tilted rectangular window addresses, we have imple-
mented an architecture based on a recent method for draw-
ing straight lines suitable for raster-scan displays and plotters
developed by Bond [25].

The approach proposed by Bond is based on signal pro-
cessing concepts related to resampling, multirate processing,
and sample rate conversion. The x-coordinates of each pixel
can be viewed as a uniform sample set, and the y-coordinates
represent another sample set. Assuming the slope of the line
is within the first octant, the y-coordinate is generated by re-
sampling the set of x-coordinates. To control this resampling,
the fractional part of the y-coordinate is stored in a control
variable as an integer. The algorithm can be summarized by
these few lines of code (see Algorithm 1).

(X1,Y1)and (X2, Y2) are the coordinates of the segment
represented in Figure 7. n is the number of bits which are
used to store the fractional part of the y-coordinates. Cvar is
the fractional part of the y-coordinate. Incr is an integer vari-
able used to store slope value. Carry is an overflow indicator
for the operation Cvar+ = Incr;, and (X, Y) are the iterative
coordinates of the line represented in Figure 7.

The extension of the algorithm to other octants is per-
formed by interchanging the roles of x and y, and changing
the signs of the coordinates x and y. The internal architecture
of the address generator device is illustrated in Figure 8. The
range of window tilt is encoded in a natural binary-coded
variable named Angle. The first three MSB bits of this vari-
able define the octant (Figure 8). The other bits of Angle are

(1) Initialization step
Incr = ((Y2-Y1)/(X2-X1)) % 2"n
X =X1
Y=Y1
Cvar=1/2%2"n
(ii) Loop
repeat {
Cvar+ = Incr
Y+ = Carry
X++

until {X = X2}

ALGORITHM 1

used by two functions, based on the Bond algorithm, to gen-
erate the fixed-sample variable FixCoor and the resampled
variable ResCoord for each window of interest dimension. Ac-
cording to the quadrant, a decoder defines the sign of the
FixCoor and ResCoord variables. When the line is located in
octants 2, 3, 6, or 7, the decoder causes the use of the com-
plementary angle and the inversion of FixCoor and ResCoord.
Finally, the sum of the line coordinates, column coordinates,
and position vector of the window on the imager give the it-
erative X and Y address of each pixel. The implementation of
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TABLE 1
Total logic elements 150 <1%
Total memory bits 0 0%
DSP block 9-bit elements 0 0%
System clock frequency 190 MHz —
TABLE 2
Total logic elements 65 <1%
Total memory bits 85 <1%
DSP block 9-bit elements 0 0%
System clock frequency 241 MHz —

this module in the FPGA is characterized by the parameters
shown in Table 1.

4.3. Fixed pattern noise correction module (P4)

Due to the technological limits, a classical CMOS imager
(without an embedded CDS correction) provides a raw pixel
flow with a high FPN. Indeed, the nonuniformity of the
electrical characteristics of each pixel involves an additional
stage of correction. In order to even out the electrical re-
sponse of each pixel, the module called FPN correction mod-
ule (Figure 6) subtracts the reference values (of the FPN)
from the pixel flow. These referent values represent offset
differences between each pixel for the same illumination
(Figure 9). The set of these values constitutes a reference im-
age. In order to carry out this correction, the sensor inte-
grates a module in order to load it from an external RAM
(Figure 6-R1). The implementation of this module in the
FPGA is characterized by the parameters shown in Table 2.

5. EXAMPLE OF ATTENTION MODULE

IMPLEMENTATION: MOTION DETECTION

Based on an image difference method (Figure 10), this al-
gorithm looks for moving objects in a scene. In the image
plan, motion is transduced to temporal and spatial gray-level
changes. This module detects temporal changes and defines
a rectangular window around the moving object. In the first
step, a difference image is obtained through subtraction of
images i and i — 1. Then the difference image is thresholded,
and its vertical projection is calculated (line-by-line pixel
sum in each column). A peak detector is applied to the ver-
tical projection, giving the horizontal position of the moving
objects found in the scene. The horizontal projection inside
each vertical zone detected previously is then calculated, and
a second peak detection is applied to define the vertical posi-
tion of the moving objects. In this way, it is possible to define
the position of several moving objects in the image simul-
taneously. This information can be used as a parameter for
another algorithm, such as a tracker.
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(b)

FIGURE 9: Images (a) without and (b) with the subtraction of the
image reference.

6. EXAMPLE OF FOCUSING MODULE:
TEMPLATE TRACKING

As explained in Section 3, we assume that an active vision
process can be split into three layers: attention, focusing and
interpretation. The custom module proposed as an example
in this section is a solution to the focusing layer. A design
dedicated to an efficient template tracking implementation
is presented. The main idea of template tracking is to esti-
mate the displacement of a focusing window called W be-
tween time ¢ and f + ot.

This module (Figure 11) comprises two parts: a memory
to store the reference template denoted I* and a dedicated
architecture for the displacement estimation. The architec-
ture adopted is based on a derivation of the Kanade-Lucas-
Tomasi algorithm [26]. This algorithm is an iterative method
to estimate displacement between two frames (I* and I'). The
proposed method is based on the calculation of the dissimi-
larity between two images as follows:

I, oo d) e )

where x = [x y]7, the displacement d = [d, d,]” = ox/ot,
and the weighting function w(x) is usually set to the con-
stant 1. To find the displacement d, we set de/dd to zero. If we
consider the Taylor series expansion of I and I'*, respectively,

9
Image i(t)
Absolute
difference Binarization
Image i(t + 1) - - A O

s l

Vertical
projection

Vertical areas

. . of interest
Region of interest

= M
Horizontal
projection

FIGURE 10: Motion detection processes.
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about x — d/2 and x + d/2, we obtain

8781 - J Iw [I(X) ~I*(x) + %g%x)d] glx)w(x)dx =0, (2)

where

)

5 LHT7)

8= 1 5 . (3)
v *

3 (I+17%)

Finally, the displacement d can be estimated by solving
the equation:

Zd=e, (4)

where Z is the following 2 x 2 matrix:
2= || sog"omtxax (5)

and e is the following 2 X 1 vector:
e=2[[ 10 -I0lg0wmds (©

Due to the Taylor expansion, this algorithm is not ex-
act and needs iterations to find the correct displacement.
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The estimated displacement at each iteration i is denoted
si = (sx sy)" and is calculated by

s=2-Z'.e (7)
where
eZ(ZD-Gx ZD-Gy)t’
w w
> Gx-Gx > Gx-Gy (8)
_|w w
ZGx-Gy ZGy-Gy
w w

where G, =0(I +1*)/dx, G, =d(I +1*)/dy and D= (I* - I)
is the interframe difference.

The displacement d = (dx dy)T is the result of the iter-
ative process such that

e

d = Si, (9)

1

where N is the maximum number of iterations allowed by the
processing. In our case, because of NIOS control, the iterative
process is limited to 80 MHz and the pixel flow runs at 8 MHz
(corresponding to N = 80/8 = 10 iterations max).

The architecture developed to implement this algorithm
is presented in Figure 12. The first module called “storage

if (IAll > 1IAll/4
then
if sign(Ay) @ sign(A)
then CTy — —
else CTy + +
and

if |IAIl > (IAll/4
then
if sign(A,) @ sign(A)
then CT, — —
else CT) + +

ALGORITHM 2

device” allows the storage of the reference frame I* and
swapping of the current pixel flow between two double-port
memories. This module performs the two functions simulta-
neously in order to ensure the pixel flow rate. The displace-
ment between the reference template I* and current window
I of interest is simultaneously computed during the storage
of the next window of interest.

In the first step, the difference (sub) between the two im-
ages and the spatial derivatives of their sum (add) are com-
puted and synchronized. The computation of spatial deriva-
tives (Gx and Gy) is based on a set of FIFOs and multiplier-
accumulators which apply a (3 x 3) convolution mask to
the data flow. The convolution kernel mask is the Gaussian
derivative function.

In the second step, Gx, Gy, and Suby are applied to a
set of multipliers in order to compute the coefficients G, Gy,
GxGy, G,G,, G:D, and GD. The accumulation of each al-
lows computation of the elements of Z and e.

The solution is obtained by the evaluation of the follow-
ing three determinants:

2
A=ZGx-Gx-ZGy-Gy(ZGx-Gy>,
w w w
Ac=>D-Gx-> Gy-Gy—> D-Gy-> Gx- Gy,
w w

w

A, =

=M =

Gx-Gx> D-Gy—-> Gx-Gy- > D-Gx.
w w w
(10)

According to the signs and the comparison of A, A,
and A, the displacement counters CTy, CT), are updated as
shown in Algorithm 2.

The updating of the reference template position is carried
out according to the counter values. This process is iteratively
repeated and allows detection of the correct translation vec-
tor between the two frames. Lastly, the estimated translation
vector is used to update the position of the window of interest
in the CMOS imager in order to track the reference template.

The implementation of this architecture on a Stratix
EP1S60 leads to the parameters shown in Table 3.
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FIGURE 13: Results of the template tracking architecture. To evaluate the robustness of the approach, the image is artificially moved with a

given displacement indicated under each image.

TABLE 3
Total logic elements 4238 7%
Total memory bits 546 816 10%
DSP block 9-bit elements 94 65%
System clock frequency of the design | 140 MHz —

To illustrate the algorithm, several images and simulation
results are presented. This simulation was performed using
ModelSim software with the VHDL description of our sys-
tem.

7. CONCLUSION

The computation of low-level vision tasks in real time is the
first and fundamental step in building an interactive vision
system. This paper proposes an alternative to classical archi-
tectures with a highly versatile architecture dedicated to early
image processing. The proposed embedded system attempts
to define a global coordination between sensitive elements,
low-level processing, and visual tasks.

The approach, based on FPGA technology and a CMOS
imager, reduces the classical bottleneck between sensor and
processing. The FPGA component ensures a high interaction
rate between the CMOS imager and low-level processing.
This interaction is used to select useful information earlier
in the acquisition chain than for more traditional systems.
It then focuses processing resources. This capacity is used to
control the sensor state according to the visual task and the
environment evolution. Our implementation of the FPGA
and CMOS imager technologies results in high-speed vision,
real-environment vision, and the efficient design of embed-
ded systems. Among prospective algorithm candidates, we
can cite the works performed on dynamically reconfigurable
components such as the ARDOISE! project [27]. This evolu-
tion of FPGA technology seems to be attractive for perform-
ing dynamic control of the acquisition chain. Rather than

I ARDOISE: architecture reconfigurable dynamiquement orientée image et
signal embarquable.

having a control system state, the system itself can be physi-
cally changed and giving a higher level of suitability for many
algorithms. We have also developed a DSP board in order
to improve the computation capabilities of our system. With
this device, our embedded system will evolve into a heteroge-
neous architecture, and new research into codesign between
the FPGA and the DSP will be necessary.

Moreover, to test the validity of our approach, several vi-
sual tasks will be implemented. Our objective is to identify
elementary functions in order to define a library of architec-
tural modules. Of course, this library will provide efficient
solutions to attention resolution, focusing, and identification
of subtasks according to specific applications. Finally, we plan
to work on the development of software tools to facilitate the
implementation of complex vision tasks
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