
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 23496, 20 pages
doi:10.1155/2007/23496

Research Article
Communication-Oriented Design Space Exploration for
Reconfigurable Architectures

Lilian Bossuet,1 Guy Gogniat,2 and Jean-Luc Philippe2

1 Laboratoire de l’Intégration du Matériau au Système, Université de Bordeaux 1, CNRS UMR5218,
33405 Talence Cedex, France

2Laboratory of Electronic and Real Time Systems (LESTER), University of South Brittany, CNRS FRE2734,
56321 Lorient, Cedex, France

Received 27 June 2006; Revised 21 December 2006; Accepted 16 January 2007

Recommended by Juergen Teich

Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architec-
tures, field programmable gate arrays (FPGAs), are the most well-known structures of reconfigurable hardware. Dedicated tools
(generic or specific) allow for the exploration of their design space to choose the best architecture characteristics and/or to explore
the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get
the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain
architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack,
in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach
combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communica-
tion hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an
approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

Copyright © 2007 Lilian Bossuet et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

1.1. Context of design space exploration for
reconfigurable architectures

Future applications like pervasive computing will require in-
creasingly more flexibility. This major evolution will lead to
imagine new execution platforms where flexibility, and also
performances (speed, power consumption, throughput, etc.)
will have to be guaranteed. Reconfigurable architectures cor-
respond to an efficient solution to tackle this issue [1] as they
are flexible and powerful, and represent a very attractive so-
lution between software platform and dedicated hardware.

Many laboratories work on reconfigurable architec-
tures [2] and propose different reconfigurable solutions.
According to [3], the reconfigurable domain is a real jungle
and it becomes mandatory to help the designer in order to
increase the synergy between the application and the archi-
tecture. Applications will be efficiently implemented onto
reconfigurable architectures only if several points are solved.

(i) Dynamic reconfiguration for efficient run-time adapt-
ability: this point needs new techniques and tools like

static and/or dynamic application partitioning tools,
reconfiguration time estimation tools, control unit de-
velopment, and operating systems to manage the re-
configuration steps.

(ii) Codesign of reconfigurable system on-chip: reconfig-
urable architectures are increasingly considered as a
system on-chip, so they contain soft and dedicated
hardware. Such systems need specific software and
hardware design methodologies like codesign. These
methodologies perform application partitioning and
generally rely on performance estimation techniques
to evaluate software and hardware implementations
before covalidation and cosimulation of the design.

(iii) Design space exploration (DSE) for reconfigurable ar-
chitectures: this last point focuses on exploring both
the application and the architecture spaces. The aim is
to find the most appropriate architecture for a single
application or an applications family. In this case the
architecture characteristics have to be defined accord-
ing to reconfiguration issues. Such hardware architec-
tures are not application-specific (like ASIC) and they



2 EURASIP Journal on Embedded Systems

Application

Function 1

Set of C
functions

Architecture
designer

Reconfigurable
architecture

DSE tool

Architecture
definition

Performance
evaluation

Methodology and tool to define

an optimized reconfigurable
architecture from an application

Cluster A.1

+
/−

+
/−

Cluster A

C
lu
st
er

A
.1

C
lu
st
er

A
.2

C
lu
st
er

Cluster A.2

LU
T

LU
T

Cluster A Cluster A

Cluster A

Figure 1: DSE process between application specification and architecture characterization.

provide large parallel structures that can be efficiently
used within many applications. They embed coarse-
grain and/or fine-grain operators and memories. New
design techniques have to be developed in order to per-
form an efficient DSE for a better synergy between ar-
chitectures and applications.

These points will have to be solved in the next few years
in order to benefit from the huge potential provided by
reconfigurable architectures. The challenges are developing
operating systems to manage dynamic reconfiguration, de-
veloping codesign tools to build efficient reconfigurable SoC,
and developing DSE tools to merge application space and
architecture space. This paper focuses on the last challenge
and demonstrates how to define an efficient architecture for
an applications family.

1.2. Reconfigurable architecture DSE problematic

Although reconfigurable architectures correspond to hard-
ware targets, their design is not the same as application-
specific integrated circuit design (ASIC). Effectively, unlike
ASICs that are designed to perform only one application with
very tight performance constraints (area, latency, through-
put, power consumption, etc.), reconfigurable architectures
are designed to perform different applications relying on the
same hardware capabilities. To be generic, reconfigurable ar-
chitectures rely onmassive parallel structures and use a dense
reconfigurable routing network. They provide a set of low-
level embedded elements (operator, logical function, mem-
ory block, etc.) organized into clusters. The DSE aim is to
guide the designer to find some efficient clusters for an ap-
plications family. To address such an issue, it is essential to
clearly define the architectural model under exploration.

(i) The template of the architecture for the exploration
process is based on three hierarchical routing struc-

tures to propose the best communications scheduling
inside the circuit and to take advantage of the appli-
cation execution. Three levels of routing are gener-
ally admitted to represent an efficient solution. The
low level of routing supports local communications
between operators or logical elements and local vari-
ables storage, and the two high levels of routing sup-
port global communications.

(ii) The low level of the architecture relies on clusters, it is
possible to use different clusters organized in a paral-
lel structure. These clusters embed a range of coarse-
grain arithmetic operators, coarse- and fine-grain log-
ical operators, and memory blocks.

(iii) To be efficient, the architecture should take advantage
of the application locality for treatment and storage.
This last point is important to reach performance con-
straints.

As shown in Figure 1, DSE links the application specification
(high-level specification) and the hierarchical clustered ar-
chitecture. The DSE challenge is to take advantage of appli-
cation execution graph to choose the best architecture pa-
rameters. Considering Figure 1, the exploration process will
lead to the definition of the following:

(i) the type of resources within the low-level clusters
(clusters A.2 and A.1),

(ii) the number of resources within the low-level clusters,
(iii) the number of low-level clusters within middle-level

clusters (Cluster A),
(iv) the number of middle-level clusters within the whole

reconfigurable architecture.

The exploration will thus enable designers to build their own
architectures in order to be able to efficiently implement an
application or an applications family. DSE gives designer in-
formation about application and architecture synergy, like



Lilian Bossuet et al. 3

inside-communications cost during application execution
and the total use rate of the architecture to perform the ap-
plication.

1.3. Contribution

The contribution of this work is to provide a new DSE
method based on communications distribution inside the re-
configurable architecture in order to define a power-efficient
architecture under a time constraint in synergy with an ap-
plication (or an applications domain). This work permits the
consideration of fine-grain, coarse-grain, and heterogeneous
architectures for the same application. The designer can ex-
plore a large domain in the reconfigurable design space. An
important characteristic of the exploration method is to con-
sider a high level of description for both applications and
architectures. In spite of estimation accuracy, it is possible
to quickly find a hierarchical clustering for the architecture.
Following the exploration process, the designer describes the
application and the architecture with low-level specifications
in order to use more specific tools and to design the final sys-
tem.

1.4. Paper organization

This paper is organized as follows. Section 2 presents several
works dealing with reconfigurable architecture DSE, and it
gives a comparison table of these works. Section 3 presents
the contribution and position of our work. Section 4 de-
scribes the application and architecture specifications used
within the exploration process. In Section 5, the algorithms
to estimate the communication distribution are proposed.
Section 6 gives several results of exploration in the case of
image computing and cryptography. Finally, Section 7 con-
cludes this paper.

2. RELATEDWORK

2.1. Introduction to design space exploration for
reconfigurable architecture

It is possible to perform DSE at different levels of abstraction
in order to progressively reduce the number of solutions. The
more the abstraction level is refined, the more accurate the
results are since a lower number of solutions need to be con-
sidered [4]. In the case of hardware DSE, two main methods
are generally considered [5].

Synthesize and compare

This method uses a full synthesis flow to synthesize the ap-
plication for each type of architecture under exploration be-
fore comparing the overall performance results. Using this
method, it is possible to obtain very accurate performance
measures. Nevertheless, it is necessary to have a specific syn-
thesis tool for each type of architecture (which is not al-
ways available in the case of coarse-grain architecture explo-
ration) or to use generic synthesis tools. However, synthe-
sis steps compute very complex algorithms, which lead to a

limited and slow exploration process. Furthermore, when us-
ing generic synthesis tools, it is necessary to have very good
knowledge of the target architectures since it is necessary to
develop a model for them. Hence, this method is not really
adapted for a large and rapid architecture exploration and is
more relevant for architecture refinement steps.

Estimate and compare

The second method relies on performance estimations in-
stead of synthesis. In that case, it is necessary to consider a
generic architecture model to describe the different target ar-
chitectures. The goal is to perform relative performance esti-
mations (speed, power consumption, and area) in order to
compare different architectures very quickly. Although the
estimations do not give necessarily real and accurate perfor-
mance results, it is enough to compare the architectures since
the relevant point in that case is that estimations are faithful
and an absolute error is not the major concern.

These two methods are complementary and can be used
within the same design process (same application) but at dif-
ferent abstraction levels. At a high level of abstraction, there
are few synthesis tools and the architectural design space is
huge. Therefore, it is more efficient to use an estimate and
compare method in order to reduce the design space. At a
low level of abstraction, the architectural design space is re-
duced. In this case, the exploration must converge towards a
reliable architectural solution. Therefore, the synthesize and
compare method is more relevant for this case. Obviously,
a design space exploration flow should use several methods
according to the level of abstraction. Interested readers can
findmore information about DSE in [6]. The following para-
graph gives some examples of DSE tools andmethods for FP-
GAs and coarse-grain reconfigurable architectures.

2.2. FPGA place and route generic tools used for DSE

Generic place and route tools for FPGAs are generally used
within the synthesize and compare method. When the archi-
tecture model allows for the physical description of the rout-
ing structure, the tools can provide accurate performance es-
timates (particularly for speed and area). Such techniques
provide interesting results concerning the use of the routing
resources and the ability to route the device.

The versatile place and route (VPR) tool, developed at
the University of Toronto in Canada, is a very interesting ap-
proach that works on a physical model (P-Spice model) [7].
VPR is a place and route tool that works at the logic level
and is oriented for island style fine-grain architecture (like
Xilinx FPGA). The physical model forwards the description
of the architecture physical parameters (technology, routing
type and size, routing switch resources, clusters size, etc.).
VPR has an automatic mode which tries to route a circuit
for different numbers of routing wires. Using VPR, it is pos-
sible to explore several aspects of the architecture like LUT
and cluster size [8] or embedded memory size [9].

Madeot-Bet, a generic place and route tool developed by
the University of Brest in France, uses a functional de-
scription of the architecture [10]. As VPR, Madeot-Bet is



4 EURASIP Journal on Embedded Systems

oriented for fine-grain reconfigurable architectures even
if some extensions are currently under development to
address coarse-grain architectures. The functional spec-
ification used to model the reconfigurable architecture
enables the description of a large panel of architectures
and is technological-independent. In fact, each element
of the architecture is described by the functions it can
execute. Although VPR and Madeot-Bet are generic place
and route tools, they can be used for fine-grain architectural
exploration, particularly for routing exploration.

2.3. FPGA exploration and estimation tools

According to the estimate and compare method, it is possi-
ble to perform DSE using estimation tools. The estimations
can focus on one or several parameters (power consumption,
speed, area, etc.) depending on the designer’s expectations.

People of the University of Southern California in the
USA present in [11] a power consumption estimation tool
based on a parametric view. It provides a domain-specific
modeling technique that exploits the knowledge of both the
algorithm and the target architecture family for a given prob-
lem to develop a high-level model. This model captures ar-
chitecture and algorithm features, parameters affecting the
power performance, and several power estimation functions
based on these parameters. However, the designer needs to
have a great deal of knowledge in the domain (application
and architecture) to be able to determine the parameters and
the functions.

Enzler et al. [12] propose a high-level estimation meth-
odology for area and speed developed within the Swiss Fed-
eral Institute of Technology. This methodology relies on the
inputs and outputs, the control signals, the operators, the
registers, the degree of parallelism, and the number of it-
erations within the application to characterize the applica-
tion. With these characteristics, several parameters are com-
puted to provide the delay and area performances. The target
FPGA is characterized through the mapping of the opera-
tions. Therefore, a mapping model is specified for each type
of operation from which the area and timing parameters are
derived. The application and the target architecture are used
to estimate the delay and area performances. After this esti-
mation, several application parameters can be explored like
the number of registers into the data path, the number of
replications of a given block (parallelism), and the number
of block decomposition into a sequence of identical subtasks
(pipeline). This methodmainly allows for the application ex-
ploration since the architecture exploration is rather limited.

2.4. Coarse-grain reconfigurable
architectures DSE tools

Previous efforts focus on fine-grain reconfigurable architec-
tures (FPGAs) even if it is possible to extend several tech-
niques for coarse-grain architectures. Other works focus di-
rectly on coarse-grain architectures.

MIT researchers have developed a DSE framework for
the raw microprocessor [13]. This reconfigurable architec-

ture is reminiscent of coarse-grain FPGA and it comprises
a replicated set of tiles coupled by a set of compiler or-
chestrated pipelined switches. Each tile contains an RISC
processing core and SRAM memory for instructions and
data. Several parameters, like the number of tiles, the mem-
ory size, or the communication bandwidth, characterize the
architecture. The application is split into several subprob-
lems, each of them is characterized by the number of ar-
chitecture resources it consumes. Finally, some cost func-
tions are used to estimate the performance (delay, area).
This method is architecture-dedicated since the cost func-
tions are only defined for one architecture. The result accu-
racy depends on the relevance of the architecture parame-
ters.

In [14], the DSE flow targets a mesh architecture called
KressArray [15], a fast reconfigurable ALU. The exploration
tool Xplorer works at the algorithmic level and aims at assist-
ing the designer to find a suitable architecture for a given set
of applications. This tool is architecture-dependent, but the
use of fuzzy logic to analyze the results of the exploration is a
very attractive approach.

2.5. Comparative study

Table 1 gives a comparison between the related work pre-
sented above. The last line details our work characteris-
tics in order to give the reader a comparison with previ-
ous efforts. The first two studies focus on simple FPGA
(island style FPGA without embedded features like mem-
ory blocks or multipliers). Then, VPR and Madeot-Bet are
really close since they use the same place and route algo-
rithm and they mainly focus on the routing aspect. They
can be used for exploration but it is necessary to first per-
form a high-level exploration to reduce the design space.
The last studies are architecture-dependent and they are de-
veloped for coarse-grain reconfigurable architectures. Except
for the second study, all of the studies explore the archi-
tecture according to one or several objectives. The second
study explores the application algorithm and implementa-
tion. The two last studies have some automatic exploration
steps since they are more specialized for a specific archi-
tecture. We can see on the last row that the different tools
provide different results, depending on the starting design
space (set of architectures or given architecture with a set
of parameters). Therefore, they provide the best architec-
ture in a set or the best configuration for a given architec-
ture. Most of them give design information to help the de-
signer to improve the application and the architecture defi-
nition.

VPR and MADEO can explore the largest design space
since they are the most generic tools. The first two stud-
ies in Table 1 are specialized for an FPGA family, so the de-
sign space is limited. The last two studies are architecture-
specific, so they can only explore a small design space. How-
ever, they provide very accurate estimations thanks to more
accurate models. Therefore, the development of a DSE tool
is a tradeoff between the design space size and the estimation
accuracy.



Lilian Bossuet et al. 5

Table 1: Characteristic comparison of the related work.

Tool
Architecture
target

Applications
specification

Architectures
specification

Exploration Results

Univ. Southern
California [11]

Simple FPGA Parameterization Parameterization
Architectural objective:
power manual and
exhaustive

One architecture
in a set (domain)

ETH [12] Simple FPGA Data flow graph
Characterization
of simple
operator

Algorithmic objectives:
delay and area manual
and exhaustive

Application design
information (parallelism
degree and level of
pipeline)

VPR Univ.
Toronto [7–9]

Complex FPGA
Netlist BLIF
(or EDIF)

Structural model
Architectural objective:
routing manual and
exhaustive

FPGA architecture design
information (clusters size,
configurable element size,
routing)

MADEO Univ.
Brest [10]

Complex FPGA
(multigrains)

Data flow graph Structural model

Architectural objectives:
routing, area and critical
data-path manual and
exhaustive

FPGA architecture design
information (clusters size,
configurable element size,
routing)

Raw MIT [13]
Coarse-grain
raw architecture

Parameterization Parameterization
Architectural objective:
execution time automatic
and heuristic

Optimal architecture raw
configuration

Xplorer Univ.
Kaiserslautern
[14, 15]

Coarse-grain
KressArray
architecture

ALE-X
Parameterization
and structural
model

Architectural objectives:
power and routing
automatic and heuristic

Optimal architecture
KressArray
configuration

Authors Univ.
Bretagne Sud
[16]

Heterogeneous
architecture

HCDFG
Hierarchical
functional
model

Algorithmic and
architectural objective:
power automatic and
heuristic

Architectural design
information (cluster size,
configurable element type,
memory size, communication
distribution, resource
use rate)

This comparison helps us to define the characteristics of
a newDSEmethod for reconfigurable architecture. It appears
that all these methods are too specialized, technological-
dependent, or architecture-dependent to explore a large de-
sign space with targets like fine-grain, coarse-grain or het-
erogeneous architectures. It is important to overcome this
limitation to be able to compare fine-grain and coarse-grain
architectures and to combine both in a single device (hetero-
geneous architecture). Furthermore, previous efforts require
profound knowledge of the reconfigurable architecture and
technology which can be difficult to handle for the designer.
It would be helpful to provide a methodology where the de-
signer can have an early estimation of his architecture perfor-
mance without going through all the details of the architec-
ture. All the above-presented tools do not take into account
(static or dynamic) architecture reconfiguration during the
performance estimation process. This aspect is becoming in-
creasingly relevant and should be addressed within the ex-
ploration process.

Finally, the presentation of previous efforts relies on gen-
eral benchmarks (which can also be used for ASIC imple-
mentation) to demonstrate their design flow and to validate
the different concepts. In this paper, we use the same ap-
proach to validate our work as will be presented in Section 6.

3. A NEWVISION OF DSE BASEDON
AN AUTOMATIC ESTIMATION TOOL FOR
SOC DESIGN CALLEDDESIGN TROTTER

3.1. The Design Trotter tool

The work presented in this paper is part of the Design Trotter
project [17]. The Design Trotter framework is a computer-
aided design (CAD) environment for reconfigurable system
on a chip (RSoC). This environment is composed of sev-
eral tools that work at different levels of abstraction and ex-
plore the design space in different ways. Figure 2 presents
the interaction between the main tools of the Design Trot-
ter framework. First, the application is specified using a sub-
set of the C language, then the specification is translated into
a hierarchical control data flow graph (HCDFG) [18]. For
the present work, two tools of the Design Trotter framework
are considered.

System estimation [19]

This tool aims at scheduling the application for several
time constraints. The results are defined through “cost pro-
files,” that is, scheduling for all the resources used by the



6 EURASIP Journal on Embedded Systems

High-level language Parser C to HCDFG HCDFG
[18]

System
estimation
[19, 20]

Cost profiles

Use rate of architectural
processing resources

100% 100% 93.80%

Add/sub Mul/div Comp Logic

68.80%

+

Communication hierarchical distribution

Level 3
21%

Level 2
10%

Level 1
69%

Architectural
projection

[16, 21]

Modeling architecture

H1

H2

H2

H2

H1

H2

H2

H2

H0 H2
H1

H2

H2

H2
Local

memory

Local
memory UAL

UAL

Mul Mul

UAL

Number of
RTL resources

5

4

3

2

1

4 5 6 7 8 9 10
Number of
clock cycles

RTL architecture characterization

Parallel
architecture

Sequential
architecture

MUL

SUB

ADD

RAM (read)

RAM (write)

ROM

Figure 2: Design Trotter framework.

application. There is one cost profile for each time constraint.
The processing and memory resources considered to com-
pute a scheduling enable the definition of a logical architec-
ture at the RTL level [20].

Architectural projection [16, 21]

This tool is used by the architectural exploration method
presented in this paper. It computes performance estima-
tions and enables the comparison between several architec-
tures characterized by their power efficiency to implement
an application. It provides design information that helps the
designer to progressively improve the architecture definition
through several iterations.

The system estimation tool performs an algorithmic ex-
ploration and the architectural projection tool drives the
physical architecture exploration of the reconfigurable tar-
gets. So, the synergy between the application and the ar-
chitecture is explored to reach the best couple applica-
tion/architecture.

As shown in Figure 2, the cost profiles are the results of
the system estimation tool and correspond to the inputs of
the architectural projection tool. To launch the architectural
projection tool, it is first necessary to select an RTL logical
architecture to implement the application. The designer can
consider a sequential RTL logical architecture with a high
time constraint and a low number of resources (computing
and memory resources) or the designer can consider a par-
allel RTL logical architecture with a low time constraint, so
the number of resources is larger than for the sequential ar-
chitecture. This last solution is adapted for hardware imple-
mentation (FPGA, coarse-grain reconfigurable architecture,
or ASIC) as these technologies provide massive parallelism.

The cost profile of the selected RTL logical architecture pro-
vides the number of computing and memory resources for
a given time constraint. To perform the system estimation,
several scheduling algorithms have been developed in order
to explore various tradeoffs depending on the characteristics
of the application. The system estimation method (applica-
tion metrics and scheduling techniques) is presented in [20].

The architectural projection tool provides the designer
with use rate estimates of the architecture computing re-
sources and the communication distribution for the different
hierarchical levels of the architecture. For that purpose, the
designer describes the target architecture with a hierarchi-
cal functional model. He can also refine the architecture de-
scription during the exploration process in order to tune the
architecture parameters depending on the architectural pro-
jection results. The designer aims at finding a power-efficient
architecture for his application under a time constraint.

In the next section, we detail the definition of efficiency
since this notion drives the exploration process in our case.
We also present the hierarchical functional model and the
algorithms used within the architectural projection tool. The
methodology developed to explore the design space is also
presented.

3.2. Strategy of coarse-grain DSE

In order to develop a DSE methodology, it is necessary to
emphasize some criteria to compare the architectures for the
same application (and so the same RTL logical architecture).
Our approach is under a time constraint since we consider
an RTL logical architecture for a given number of cycles to
perform the application as shown in the upper right part of
Figure 2. According to [22], power consumption is a major



Lilian Bossuet et al. 7

(1) HCDFG

IF

30% 70%

DFG-1 DFG-2

(2) DFG-2
a

b b

c

d a

c

HCDFG
transformation

process

(3) ACG-2

(1)
a

2.1

b (2)

0.7c

(1)

0.7
0.7

(1) d
0.7

Figure 3: HCDFG transformation into ACG.

metric to compare the architecture efficiency under a time
constraint. Power consumption reduction often becomes in-
creasingly the main objective of a design flow, particularly
for embedded systems. Power consumption is linked to the
hardware time-life, the battery size, and the heat misbehav-
ior.

In order to compare the power efficiency of different re-
configurable architectures, it is necessary to study the impact
of the architectural resources on power consumption. We
have studied this impact for fine-grain architecture (FPGA).
According to our studies [23, 24] and according to other aca-
demic studies [25–29], several conclusions about power con-
sumption of architectural resources for fine-grain architec-
ture can be drawn.

(i) Routing resources are always the most consuming re-
sources taking up from 50% to 80% of the total power
consumption. However, the exact rate depends on de-
sign size, frequency, toggle rate of logical inputs, num-
ber of inputs/outputs, utilization rate of architecture
resources, and synthesis option.

(ii) It is more power-efficient to use dedicated memory
blocks instead of using distributed memories (e.g.,
with lookup tables).

(iii) A high use-rate for the architectural resources is better
for power consumption since the free-resource static
power leaks are lower.

(iv) It is very important to use local routing resources
for intensive communicating resources (computing
or memory). So the most communicating resources
(which depend on the application specification) must
be placed in a near neighborhood in order to decrease
the routing power impact.

According to all these studies, computer-aided design tools
must rely on a strategy of clustering for the most communi-
cating resources within the architecture (for a given applica-
tion or an applications family). So for a given application, a
reconfigurable architecture has to be defined in order to pro-
mote an efficient clustering of the application resources. We
extrapolate the previous conclusions of the fine-grain stud-
ies for coarse-grain and heterogeneous architectures since the
internal routing structures are very similar, and the routing
issues are still the same [27, 29].

The application and the architecture specifications have
to emphasize the communications between the resources re-
quired by the application (according to the system estimation
results) and the locality (from the routing point of view) of
the architecture computing and memory resources. The next
section presents these specifications and shows how they al-
low for the taking into account of communications and lo-
cality of the application and architecture resources.

4. APPLICATION AND ARCHITECTURE
SPECIFICATIONS

4.1. Application specification

The application is first described using a subset of the C lan-
guage [18]. This specification is then translated into a hierar-
chical control data flow graph (HCDFG) as an internal repre-
sentation. This graph corresponds to a precise description of
the application (computing, memory, and control) [18]. The
system estimation tool provides information about the RTL
logical architecture like the number of computing resources
and memory resources needed for the application. As pre-
sented in the previous section, it is essential to obtain infor-
mation about the communications between the application’s
resources since the most communicating resources have to
be placed close within the architecture. To show this infor-
mation, a new graph called average communication graph
(ACG) has been developed. This particular graph highlights
how each type of processing and memory resource commu-
nicates with each other. The edges in it represent the com-
munications between two nodes and each node represents a
type of processing resource or a memory resource (Figure 3).

Several differences exist between the HCDFG and the
ACG graphs. The HCDFG describes the real control and
data flow of the application independently of any implemen-
tation while the ACG corresponds to an approximation of
the communications between operators and memories. The
HCDFG is transformed into the ACG after having performed
the scheduling of the operators and memories for a given
time constraint. This scheduling as previously mentioned is
performed during the system estimation step [20]. There are
fewer nodes in the ACG than in the HCDFG since the ACG
graph has only one node for one type of processing resources.



8 EURASIP Journal on Embedded Systems

The ACG edges are not oriented and the communications
are taken into account in all directions. Several attributes
are added in the ACG to describe the internode communi-
cations.

Figure 3 shows an example of an HCDFG graph transfor-
mation into an ACG. In this example, the type of processing
resource corresponds to a letter (a, b, c, or d). The number
in brackets beside a node corresponds to the number of op-
erators required for a given time constraint (result of the sys-
tem estimation tool). The boldface number beside an edge is
the total number of communications between two processing
nodes. In order to define which pair of nodes communicates
the most in the ACG, the relative number of communica-
tions between two processing types is computed. This value
is obtained using the following equation:

RelativeCommOp1−Op2

= N(Loop)× P(Branch)× TotalCommOp1−Op2
NumberOp1 + NumberOp2

,

(1)

where RelativeCommOp1−Op2 is the relative number of com-
munications, TotalCommOp1−Op2 is the total number of
communications, NumberOp1 and NumberOp2 are the
numbers of allocated operators of each type. If the DFG is
part of a hierarchical node with control nodes, N(Loop) is
the loop number for a loop control node and P(Branch) is
the branch probability for a conditional node as in Figure 3.
For each control node, N(Loop) and P(Branch) are pre-
computed through a code profiling. For example, the ACG
on the right-hand side in Figure 3 has two nodes, a and b,
linked by one edge with a value equal to three. The node a
describes one operator of a type and the node b describes
two operators of b type. Therefore, the relative number on
the edge, between these two nodes, is given by

RelativeComma−b = 0.7× 3
1 + 2

= 0.7. (2)

4.2. Reconfigurable architectures specification

The reconfigurable architecture model is an important part
of this contribution since it is a complex task tomanage accu-
racy and high level of abstraction. According to Sections 1.2
and 3.2, the main characteristics of a model can be listed as
follows.

(i) The model has to enable a large design space covering
fine-grain, coarse-grain, and heterogeneous architec-
tures.

(ii) The model has to describe the physical locality of com-
puting and memory resources.

(iii) The model has to remain technologically-independent
to be valid in spite of technological evolutions.

(iv) The model needs to be easily extended to take into ac-
count new architectural characteristics and possibili-
ties.

To promote the architectural exploration, it is essential to
mitigate the task of changing some architectural character-

H0
H1

H2

H2

H2

H1

H2

H2

H2

H1

H2

H2

H2

Local
memory

Local
memory

Treatment unit

Treatment unit

Treatment unit

Mul Mul

H2

Hierarchical element

Functional element

(i) 3 hierarchical elements

• H0 = H1×3
• H1 = H2×3
• H2 = F0×2 + F2×3 + F3×2

(ii) 3 functional elements
• F0 =⇒ local memory
• F1 =⇒ treatment unit
• F2 =⇒multiplier

Figure 4: Example of coarse-grain reconfigurable architecture
modeling with three hierarchical levels.

istics. The designer must be able to rapidly perform some
manual evolutions of the architecture description.

There are two possibilities to describe a reconfigurable
architecture, using a physical description or a functional de-
scription. Using a physical description, as in [7], forwards
the development of accurate estimations, but the model is
technologically-dependent and cannot evolve easily. More-
over, themodel can be complex (if themodel describes all the
details of the architecture) and it can be very tedious for the
designer to manually change some architecture characteris-
tics. Using the functional model, as in [10], leads to describe
the architectural resources through the functions that they
can realize (several functions if the resource is configurable).
This type of model can easily evolve and the designer can
quickly modify the architecture in order to explore the design
space. Therefore, this kind of model is suitable for architec-
tural specification.

According to Figure 1, in order to describe the archi-
tectural resources locality, we use a hierarchical view. For
that, the proposed hierarchical functional model for recon-
figurable architectures relies on two types of elements.

(i) The hierarchical elements are used to model the archi-
tectural hierarchy. They are containers; they embed
other hierarchical elements or functional elements,
and are described by their contents.

(ii) The functional elements describe the computing and
memory resources. They are described by the list of
functions that they can realize for a selected configu-
ration.

Figure 4 shows an example of coarse-grain reconfigurable ar-
chitecture modeling. In this figure it can be seen that accord-
ing to the reconfigurable specification (see Section 1.2 and
Figure 1), there are three hierarchical elements; H0 contains
three H1, each H1 contains three H2. The high level of hi-
erarchy is composed of one H0, the low level corresponds to
the internal structure of H2. This last hierarchical element
is composed of several functional elements. The architecture
has three levels of hierarchy; the low level inside the H2 hi-
erarchical elements contains only functional elements, the



Lilian Bossuet et al. 9

middle level inside H1 elements contains H2 elements, and
the high level of the hierarchy is represented by H0.

This model uses two important hypotheses concerning
the communication costs in the hierarchical elements. They
enable the routing resources to be taken into account without
using an accurate physical description. These hypotheses are
as follows.

(i) The communication costs inside a hierarchical ele-
ment are homogeneous. If the designer wants to de-
scribe large hierarchical elements, he must guarantee
that this hypothesis will be verified with the use of ded-
icated routing resources in the corresponding hierar-
chical level of the architecture.

(ii) The second hypothesis is that the communications are
less power consuming in the low level of hierarchy
than in the high level of hierarchy. That is to say, for
the architecture example in Figure 4, the communica-
tions inside the hierarchical element H2 (the commu-
nications between the embedded functional elements)
consume less power than the communications inside
the hierarchical element H1 (the communications be-
tween the elements H2). These latter communications
consume less power than the communications inside
the hierarchical element H0 and so between H1 hier-
archical elements.

5. COMMUNICATION ESTIMATION AND
EXPLORATIONMETHODOLOGY

5.1. Introduction

Our exploration method is based on an estimation of the
communications hierarchical distribution within the archi-
tecture and an estimation of the architectural resources use
rate. The goal of the exploration is to define an architec-
ture promoting the clustering of the most communicating
resources. The exploration method is interactive and is based
on the architectural projection tool.

The architectural projection tool proposes an algorithm
to merge the application ACG nodes according to their com-
munications and to allocate the application resources within
the low level. Since our approach works at the algorithmic
level, it does not target a specific synthesis tool and does not
consider any accurate physical architecture model. Instead of
giving designers a single communication cost value that may
present a significant absolute error due to backend synthe-
sis algorithms and architecture refinement steps, we compute
two bounds and an intermediate value. This approach gives
the designer the ability to define the architecture at the algo-
rithmic level with the guarantee that the final performance
will belong to the estimated performance interval (Figure 5).

It also provides designers with metrics on allocation al-
gorithm impact. Figure 5 illustrates this point, the architec-
ture C has a narrow performance interval, so allocation algo-
rithms will have a small effect on the final performance and
a low complexity algorithm can be considered. The architec-
ture B has a large performance interval, so allocation heuris-

Archi. C

Archi. B

Archi. A

Performances

Result of estimation

Result of synthesis tool

Figure 5: Bound performance results, example for three architec-
tures.

tic will have a strong impact on final performance and it
might be important to consider better allocation algorithms.

To define such an approach, we have developed three al-
gorithms that give three values of the communications hi-
erarchical distribution estimation. The first algorithm, the
INTER algorithm, gives distribution estimation with a maxi-
mum number of communications within the low hierarchi-
cal level H2, so the communication power cost for the appli-
cation is minimal. The second algorithm, the MIN algorithm,
gives distribution estimation with a minimum number of
communications within the low hierarchical level H2. The
last algorithm, the INTER algorithm, gives an intermediate
value between the values given by the two other algorithms.
Each algorithm is less complex and faster than an optimal
algorithm.

The next sections present the different algorithms to per-
form the architectural projection and to obtain the commu-
nications hierarchical estimation. The tool deals with recon-
figurable architectures composed of three levels of hierarchy
since these levels are adequate in describing most current ar-
chitectures.

5.2. The architectural projection

The architectural projection step makes the link between
the required (application) and the available (architecture)
resources with the challenge that the most communicating
resources will be assigned in the same hierarchical element
within the low hierarchical level.

The first step of the projection process is to search for
the most communicating pair of nodes in the ACG as shown
in Figure 6. Subsequently, the most communicating pair of
nodes is merged if the two nodes are hierarchically compat-
ible. To be compatible, nodes must be potentially embedded
in the same hierarchical element. It means that the hierarchi-
cal elementmust have enough available resources (functional
elements) to implement the processing or memory opera-
tion described by the two corresponding nodes. If nodes are
compatible, a new node called “composite node” is created
to describe the merging of the nodes. Since the ACG has a



10 EURASIP Journal on Embedded Systems

ACG Start

Search main edge

Architecture model

No Compatible
nodes ?

Yes

Merge nodesOther edge
in AGC ?

Yes

Communication
costs model

Compute
communication costs

Compute all new
edge values

No

End

(i) MIN algorithm
(ii) INTER algorithm
(iii) MAX algorithm

Figure 6: Architectural projection flow based on three algorithms: MIN, INTER, MAX.

new node, it is not the same graph, thus it is necessary to
recompute all edge values and make several transformations
due to the new composite node. The architectural projection
stops when node merging is no longer possible and when all
application resources are virtually associated to architecture
functional elements. The complexity of the architectural pro-
jection algorithm is polynomial in O(n2), where n represents
the number of edges within the ACG graph. This complexity
does not represent a major issue as the number of edges is
generally small. As explained previously, an edge represents
the communications between two types of operations within
the application.

Figure 7 shows the architectural projection process using
the INTER-algorithm. For this example, the ACG and the ar-
chitecture model are simple. The ACG has three processing
nodes since the result of the system estimation tool allocated
twomultipliers, two subtracters, and one adder to respect the
time constraint selected by the designer. The values on the
ACG edges correspond to the number of required commu-
nications between the processing resources (corresponding
to the processing nodes). For example, in Figure 7, twenty
communications are required between the multipliers and
the subtracters. The modeled architecture has two levels of
hierarchy. In the hierarchical high level, one hierarchical ele-
ment, H1, contains two elements H2. In the hierarchical low
level, one hierarchical element, H2, contains three functional
elements; two adders/subtracters and one multiplier.

In Figure 7, the process starts by merging the most com-
municating pair of nodes. The nodes multiplier and sub-
tracter are the most communicating pair. As these two nodes
are hierarchically compatible, in the second step a new com-

posite node is created to describe that one subtracter and
one multiplier are allocated in the same hierarchical element
H2 in the architecture. The composite node has a number
of internal communications; this number (ten in the case
of Figure 7) depends on the algorithm (MIN, INTER, and
MAX). In Figure 7, the process needs four steps to allocate
all the required application resources in the modeled archi-
tecture. At the end, the ACG has two composite nodes; the
number of communications in the low hierarchical level is
computed. This number corresponds to the sum of the num-
ber of communications of the internal-composite nodes. For
this example, there are 34.66 communications in the low hi-
erarchical level (inside the hierarchical elements H2 between
the functional elements) which corresponds to 82.5% of the
total application communications. The next section will give
the differences between the three algorithms.

5.3. Differences between the three architectural
projection algorithms (MIN algorithm,
INTER-algorithm, andMAX algorithm)

Three algorithms have been defined to merge the ACG nodes
into composite nodes and to compute the ACG edge values
for each architectural projection step. Figure 8 presents the
first step of the hierarchical projection using the same exam-
ple as Figure 7. The composite node is obtained from one
subtracter and one multiplier merging.

The difference between the three algorithms is illus-
trated in Figure 8. The strategy of the MIN algorithm (top
of Figure 8) is to consider that if two application resources
(operator or memory) are assigned in the same hierarchical



Lilian Bossuet et al. 11

ACG modifications

(1)

+
8

− (2)

20

×(2)Step 1:
start

14

(1)

+
5.33

− (1)

7.33
10×(1)

Step 2:

9.33

× −
10

(1)

+

7.33
× −
10

14.66 × −
10Step 3:

× − +

24.66

7.33

× −
10

Step 4:
end

Not-used functional element

Used functional element

Architecture modifications

+/− +/−

×
H2

H1

+/− +/−

×
H2

− +/−

×
H2

H1

+/− +/−

×
H2

− +/−

×
H2

H1

− +/−

×
H2

− +/−
×

H2
H1

− +

×
H2

Figure 7: The architectural projection process, using inter algorithm with a simple three-node application ACG and two hierarchical-levels
coarse-grain architectures.

element, all the communications between the two consid-
ered ACG nodes are allocated to the new composite node.
Hence, when the composite node is created, the edge between
the two initial nodes is deleted. Unlike MIN algorithm, the
MAX algorithm does not take into account the creation of
a new composite node, the communications between all the
nodes and the composite node are distributed uniformly. In
fact, the max algorithm corresponds to a greedy process to
allocate the architectural resources. The idea of the INTER-
algorithm is to consider that two operators in the same hi-
erarchical element must communicate more than two oper-
ators in two different hierarchical elements; it is a tradeoff
between min and max algorithms.

In order to have a better understanding of this approach,
Figure 9 presents the three algorithms that estimate the com-
munication costs. To understand the different algorithms,
some notations are necessary:

(i) Ni shows node i of ACG,

(ii) ti shows type of processing for the node Ni (processing
such as adder, multiplier, etc.),

(iii) nti shows number of processings in the node Ni,

(iv) Cij shows composite node with two processings ti and
t j ,

(v) ICCij shows number of internal communications in the
composite node Cij ,

(vi) Ei, j shows edge between nodes Ni and Nj ,
(vii) Pi, j number of communications between nodesNi and

Nj (i.e., value associated with edge Ei, j),
(viii) Ek,i j shows edge between the nodeNk and the compos-

ite node Cij ,
(ix) Pk,i j shows number of communications between the

node Nk and the composite node Cij (i.e., value asso-
ciated with edge Ek,i j).



12 EURASIP Journal on Embedded Systems

Initial ACG

(1)

+
8

− (2)

20

×(2)

14

(1)

+
5.33

− (1)×(1)

9.33

× −
20

7.33

(1)

+
5.33

− (1)×(1)

9.33

× −
10

7.3310

(1)

+
4

− (1)×(1)

7

× −
5

11
5

5 5

Mi
n

Inter

Max

Figure 8: First step of the architectural projection for the three al-
gorithms.

Some general functions are also used to describe the algo-
rithms:

(i) CREATE NEW COMPOSITE(ti, t j) is the function
that creates in the ACG a composite node with two
processing types;

(ii) CREATE EDGE(Ni, Nj) is the function that creates in
the ACG an edge between nodes Ni and Nj ;

(iii) DELETE EDGE(Ei, j) is the function that deletes in the
ACG the edge Ei, j between nodes Ni and Nj ;

(iv) MIN(float1, float2) is the function that returns the
smaller float between float1 and float2.

At the end of the architectural projection process, the de-
signer obtains three communications hierarchical distribu-
tion estimations and the estimation of the architecture re-
sources use rate. Based on these results, the designer can
modify the architecture model according to the DSE method
in order to reach his performance constraints. The designer
goal is to define a power-efficient reconfigurable architecture
for an application under a given time constraint. The next
section presents the DSE method.

5.4. DSEmethod

Before explaining the exploration process, it is important
to depict how an application is described since our method
works at a high level of abstraction. The application is split
into several functions and the execution of these functions
can be either sequential or pipeline depending on the per-
formances to achieve. The reconfigurable architecture must
be efficient for all the functions of the application. Finding
an optimal architecture for all the functions can be very te-
dious and even intractable. Moreover, searching for an opti-

mal efficient architecture for all the functions independently
is not the best way to quickly obtain the most efficient archi-
tecture for the total application. Several experiments [5] have
shown that it is more efficient to identify the application crit-
ical functions and to perform the exploration for these func-
tions since they have the strongest impact on the application
performances. If the architecture is efficient for these func-
tions, the application performances will be higher. To find
these critical functions (often one or two functions within an
application), we have developed threemetrics that emphasize
the realization characteristics of each function. These metrics
are computed for each function.

(i) The execution parallelism degree of a function is ob-
tained from the system estimation tool [19]. This met-
ric highlights if the selected scheduling is suited for
the function. As we target hardware reconfigurable de-
vices, the parallelism degree must be high in order to
benefit from the large amount of available resources.
If the parallelism degree is low and if there is no other
scheduling possibility, the function can be considered
as critical since the designer has limited freedom to im-
plement the function.

(ii) The potential of communications spatial locality of a
function corresponds to the ratio between the number
of resources (processing and memory) and the num-
ber of communications to be performed during the
execution of the function. If there are many commu-
nications for a small number of resources, it is impor-
tant to consider the spatial locality of communications
since it will have a large impact on power efficiency. A
function with such a feature can be considered as crit-
ical.

(iii) The potential of architecture routing resources tempo-
ral congestion during the execution of a function. This
metric corresponds to the ratio between the number of
function execution cycles (or time constraint) and the
number of communications to be performed during
the execution of the function. If there are many com-
munications for a small execution time, it certainly
will be challenging to temporally distribute the com-
munications onto the routing resources. Therefore, the
function can be considered as critical.

The critical functions are critical for all the metrics or for two
among three. Usually there are one or two critical functions
per application, but this number depends on the applica-
tion complexity. The architectural exploration process is only
performed for the application critical functions and leads
to the definition of a power-efficient architecture that sup-
ports these functions under a given time constraint (schedul-
ing choice, see Figure 2). If the application has several crit-
ical functions, then the final architecture corresponds to a
tradeoff between the dedicated architecture for each function
[16].

The definition of an efficient architecture for an appli-
cation critical function begins with the analysis of its ACG
(Figure 10). This analysis provides information about com-
munications like the communications repartition between



Lilian Bossuet et al. 13

Algorithm 1: Algorithm MIN

Cij = CREATE NEW COMPOSITE(ti, t j)
ICci j = pi, j
for each Nk ∈ ACG
/∗ compute edge value
between node k, node i, and composite node i j ∗/
if (Nk /= Ni, Nk /= Nj , Nk /= Cij)

if (Ek,i exist)
if (Ek,i j exist)

pk,i j = pk,i j +
pk,i

ntk + nti
else

Ek,i j = CREATE EDGE(Nk ,Cij)

pk,i j = pk,i
ntk + nti

end if
end if

pk,i = pk,i × (ntk + nti − 1)
ntk + nti

end if
/∗ compute edge value
between node k, node j, and composite node i j ∗/
/∗ idem that for node i but with node j ∗/
· · ·
end for
nti = nti − 1
ntj = ntj − 1
DELETE EDGE(Ei, j)
end

Algorithm 2: Algorithm INTER

Cij = CREATE NEW COMPOSITE(ti, t j)

ICci j =MIN
(
pi, j
nti

,
pi, j
ntj

)

if (nti > nt j)
Ei,i j = CREATE EDGE(Ni,Cij)

pi,i j =
pi, j
nti

+
pi, j
ntj

else if (nti < nt j)
Ej,i j = CREATE EDGE(Nj ,Cij)

pj,i j =
pi, j
ntj

+
pi, j
nti

end if
for each Nk ∈ ACG
/∗ compute edge value
between node k, node i, and composite node i j ∗/
if (Nk /= Ni, Nk /= Nj , Nk /= Cij)

if (Ek,i exist)
if (Ek,i j exist)

pk,i j = pk,i j +
pk,i

ntk + nti
else

Ek,i j = CREATE EDGE(Nk ,Cij)

pk,i j = pk,i
ntk + nti

end if

pk,i = pk,i × (ntk + nti − 1)
ntk + nti

end if
end if
/∗ compute edge value
between node k, node j, and composite node i j ∗/
/∗ idem that for node i but with node j ∗/
· · ·
end for
pi, j = pi, j − ICci j − pi,i j − pj,i j

nti = nti − 1
ntj = ntj − 1
end

Algorithm 3: Algorithm MAX

Cij =CREATE NEW COMPOSITE(ti, t j)

ICci j =
pi, j

nti × ntj
Ei,i j = CREATE EDGE(Ni,Cij)

pi,i j =
pi, j × (nti − 1)

nti × ntj
Ej,i j = CREATE EDGE(Nj ,Cij)

pj,i j =
pi, j × (ntj − 1)

nti × ntj
for each Nk ∈ ACG

/∗ compute edge value

between node k, node i, and composite node i j ∗/
if (Nk /= Ni, Nk /= Nj , Nk /= Cij)

if (Ek,i exist)

if (Ek,i j exist)

pk,i j = pk,i j +
pk,i
nti

else
Ek,i j = CREATE EDGE(Nk ,Cij)

pk,i j = pk,i
nti

end if

pk,i = pk,i × (nti − 1)
nti

end if
end if
/∗compute edge value
between node k, node j, and composite node i j ∗/
/∗ idem that for node i but with node j ∗/
· · ·
end for

pi, j =
pi, j × (nti − 1)(ntj − 1)

nti × ntj
nti = nti − 1
ntj = ntj − 1
end

Figure 9: Description of the three algorithms.



14 EURASIP Journal on Embedded Systems

Application

ACG analysis

• Critical functions
• Communications characterization

Definition of the functional elements

• Granularity (fine, coarse)
• Type (operator, memory)

Characteristics of low-level hierarchical
elements

• Operators (number of operators, memories)

• Clusters H2 (number of clusters)

Architectural projection tool

• Use rates
• Communications distribution

Higher-levels hierarchical exploration

•Middle-level H1 (number of clusters)

• High-level H0 (number of clusters)

Architectural projection tool

• Final use rates
• Final communications distribution

Architecture definition

Architecture
designer

Iterative process
based on

estimation results

Iterative process
based on

estimation results

Lo
w
-l
ev
el
h
ie
ra
rc
h
ic
al

cl
u
st
er

ex
pl
or
at
io
n

For the critical
functions of the
application

For all the functions
of the application

Figure 10: Exploration flow for each critical function and then for the whole application to converge towards a power-efficient architecture.

the different computing and memory resources. The de-
signer uses this information to build the architectural low-
level hierarchical elements. At that level, the main issue cor-
responds to the definition of the granularity and the type of
resources of the different functional elements (processing or
memory) within the low hierarchical elements.

Then, the designer needs to determine the size of each
low-level hierarchical element. For that purpose, the archi-
tectural projection tool is used to find the memory size and
the number of each functional element embedded within the
low-level hierarchical elements. To explore the architecture
low level (memory size, number of functional elements), the
designer manually changes the architecture model character-
istics and launches the architectural projection tool. Designer
modifications are based on the results provided by the pre-
vious architectural projection runs (architecture processing
resources use rate and communications hierarchical distri-
bution). It is an interactive and iterative process between the
architectural projection tool results and the designer model
modifications. As mentioned previously, we have developed
an architectural model that enables a fast modification of
the architecture characteristics. Furthermore, the architec-
tural projection algorithm even if in O(n2) is very fast to
compute a performance estimation as the number of edges
is small. These two points are essential to mitigate the cost of
the exploration process and to enable the designer to rapidly
evaluate several architectures. Once a good size is found for

each low-level hierarchical element, an exploration of the ar-
chitecture higher hierarchical levels can be performed in or-
der to complete the exploration process. When an efficient
architecture is obtained for each critical function, a trade-
off between all the architectures is define-based on the de-
signer analysis of the solutions. These successive architec-
tural exploration steps are highlighted in the next section,
which gives the architectural exploration results for several
applications for the image computing domain and the cryp-
tographic domain.

6. APPLICATIONS

Four applications from the image processing and cryptogra-
phy domains are considered to illustrate our exploration pro-
cess. For each application, a power-efficient architecture has
been targeted. The exploration process has mainly focused
on the granularity of the processing and memory architec-
tural resources. Each application has been specified in C lan-
guage before being automatically translated into an HCDFG
description.

This section is organized as follows: first, main character-
istics of the considered image processing and cryptographic
applications are given. The results of the system estimation
tool for each application are presented before defining a
power-efficient architecture for the two application domains.



Lilian Bossuet et al. 15

Table 2: System estimation results.

Application Comm. Cycles ADD/SUB MUL/DIV Comp. Logic Memory

ICAM 29.086.835 373.872.291 512 125 516 328 3.1Mbytes

MPEG-2 encoder 40.745.280 45.476.864 398 279 153 33 60Kbytes

Matching pursuit 3.751.397 239.215 232 162 69 0 6.3Mbytes

AES core 1120 471 11 16 16 15 1Kbytes

For each application and architecture, the architectural com-
munications distribution estimates are given. The architec-
tural resource use rate estimates are also provided in order
to perform a whole analysis of the results.

6.1. Image processing applications

Three image processing applications have been used within
our framework.

(i) ICAM (intelligent camera) is a motion estimation by
intensity difference and reference background update
[30]. This camera is used for subway supervision and
crowd motion management in an urban environment.

(ii) Matching pursuit is an image compression application
[31]. matching pursuit encoder is based on a genetic
algorithm and can be implemented onto different plat-
forms. Therefore, we work only on the decoder.

(iii) MPEG-2 is a compression standard [32], which al-
lows for the coding of studio quality video for digi-
tal TV, high-density CD-ROMs, and TV-broadcasting.
We study only the encoder part of theMPEG-2 system.

6.2. Cryptography application

In order to not only confront our method to image process-
ing applications, we have tested the method with a cryptog-
raphy algorithm. We have chosen the last international ad-
vanced encryption standard AES.

AES algorithm has been developed to replace the DSE
standard with a 128-bit key [33]. We have chosen the AES
specification with 10 rounds and have not taken into account
the key generator. We have focused on finding an efficient ar-
chitecture for the cryptographic core.

6.3. System estimation tool results

The system estimation tool is used to perform the first step of
the exploration process. Table 2 provides the selected results
for each benchmark among the solutions provided by the
tool. Table 2 design characteristics are the estimated num-
ber of communications within the application and the num-
ber of cycles to perform the application using the allocated
number of processing and memory resources. The designer
uses Table 2 to define an RTL logical architecture able to sup-
port the application. For that point, two ways are possible
depending on the execution model: a sequential execution
model which requires dynamic reconfiguration of the archi-
tecture or a pipeline execution model [5]. In the first case,
the designer considers that the architecture is reconfigured
with the adequate function at each step of the application ex-

ecution. Hence, the reconfigurable architecture supports just
one function at a time, in which case, each function can be
implemented with a high degree of parallelism since a single
function is running at a time. However, the dynamic recon-
figuration consumes some time and power. We do not con-
sider the dynamic reconfiguration process in our exploration
(like previous efforts presented in Section 2). We consider
the second execution model; pipeline execution. In that case,
all the functions are implemented onto the architecture and
during the whole execution time (any dynamic or partial re-
configuration). The function realization must be less parallel
than in the first execution model due to area limitation. With
this assumption, Table 2 shows that image computing appli-
cations are more resource consuming than cryptographic ap-
plication. ICAM is the most complex application concerning
the number of processing resources.

6.4. Architectural exploration results

Table 3 provides the results of the ACG study for the critical
functions only. This study provides the average percentage of
communications in the ACG between the following:

(i) the processing coarse-grain resources (intercoarse
grain, Table 3-column3),

(ii) the processing coarse-grain resources and the pro-
cessing fine-grain resources (coarse grain/fine grain,
Table 3-column4),

(iii) the processing coarse-grain resources and the memory
resources (coarse grain/memory, Table 3-column5),

(iv) the processing fine-grain resources (interfine grain,
Table 3-column6),

(v) the processing fine-grain resources and the memory
resources (fine grain/memory, Table 3-column7),

(vi) the memory resources (intermemory, Table 3-col-
umn8).

According to the flow presented in Figure 10, these results
guide the designer to define a low-level cluster and particu-
larly to identify if it is necessary or not to mix fine-grain and
coarse-grain processing resources within the low-level clus-
ters. These results show that it is efficient to build an architec-
ture with separate fine-grain and coarse-grain clusters for the
three first applications in order to have the maximum of fine
grain processing resources in the same low-level hierarchical
element (and the same thing for the coarse-grain processing
resources). However, it is not the case for the last application,
the AES core, since there is a large part of communications
between coarse-grain and fine-grain resources and no inter-
communications.



16 EURASIP Journal on Embedded Systems

Table 3: Critical function ACG communication characterization.

Application
Number of critical
functions

Intercoarse
grain

Coarse-grain
Fine grain

Coarse-grain
memory

Interfine grain
Fine grain
memory

Inter-
memory

ICAM 2 2, 9% 0, 2% 15, 0% 19, 9% 36, 9% 25, 1%

MPEG-2 encoder 2 66, 9% 0, 7% 31, 1% 1, 1% 0, 2% —

Matching pursuit 1 92, 3% 0, 1% 7.6% — — —

AES core 1 — 15, 7% 28, 9% — 25, 0% 30, 4%

According to these results, the designer can define four
clusters that correspond to the atomic clusters of the fi-
nal architecture for each application. Figure 11 provides a
schematic representation of the four clusters. In this figure,
the number of each functional element (processing or mem-
ory) is not relevant since this number is defined later in the
exploration process.

(i) Cluster 1 has two coarse-grain processing functional
element types, adder/subtracter and multiplier, and
one memory functional element. It is a coarse-grain
cluster (Figure 11(a)).

(ii) Cluster 2 has two fine-grain processing functional el-
ement types, comparator and lookup table, and one
memory functional element. It is a fine-grain cluster
(Figure 11(b)).

(iii) Cluster 3 only has one large memory functional ele-
ment, often used to store a complete picture in the case
of image computing application. It is a memory cluster
(Figure 11(c)).

(iv) Cluster 4 has four processing functional element types,
adder/subtracter, multiplier, comparator and lookup
table, and one memory functional element. It is a het-
erogeneous cluster (Figure 11(d)).

The architectural exploration leads to define the following:

(i) the number of processing functional elements for each
type of functional element embedded in the low-level
hierarchical cluster,

(ii) the size of the memory functional elements embedded
in the low-level hierarchical cluster,

(iii) the number of low-level hierarchical clusters in the
middle level hierarchical cluster,

(iv) and the number of middle-level hierarchical clusters in
the high-level hierarchical cluster.

To perform the architectural exploration, the exploration
rules based on the model hypothesis have to be satisfied; the
communication costs inside a hierarchical element are ho-
mogeneous and the communications have less impact on the
power consumption for low level of hierarchy than for high
level of hierarchy.

Table 4 provides the number of processing functional el-
ements embedded in each cluster (cluster 1, cluster 2, cluster
3, and cluster 4) for each application. According to the ACG
study, cluster 4 is only used for the cryptography application.
The image computing applications use the three other clus-
ters. Concerning the ICAM application, two lines of Table 5
give the exploration results for two architectures (archi1 and

+/− +/− +/−

× ×
RAM

(a) Cluster 1: coarse-grain cluster

LUT
LUT

LUT

Comp.

Comp.

RAM

(b) Cluster 2: fine-grain cluster

RAM

(c) Cluster 3: memory cluster

LUT
Comp.

LUT

+/−

×
RAM

(d) Cluster 4: heterogeneous cluster

Figure 11: The four potential low-level clusters for the applications.
Cluster 1, Cluster 2, and Cluster 3 are used for the three image pro-
cessing applications. Cluster 4 is only used for the cryptographic
core.

archi2). The main difference between the two architectures
is the cluster size. We use two different architectures in order
to demonstrate that it is possible to obtain very good results
with a nonrealistic architecture (archi2). This point will be
discussed in the following section. Table 4 has to be jointly
considered with Table 5 that gives the number of low-level
hierarchical clusters. ICAM andMPEG-2 applications are the
most complex applications, so they needmore low-level clus-
ters and larger clusters than the other two applications. AES
application is less complex, so the cluster used for this appli-
cation is smaller.

Once the designer has defined the low-level hierarchi-
cal clusters’ size and number, he explores the middle level,
and the high level of the hierarchy. The middle level embeds
hierarchical elements like cluster 1, cluster 2, cluster 3, and
cluster 4 (only for the AES application). The number of each
cluster type in the middle-level for each application is given
from row 2 to row 5 in Table 6. Row 6 provides the number
of middle-level hierarchical elements embedded only in the
high-level element.

Tables 4, 5, and 6 define the architectural exploration re-
sults for each application (with two possible architectures for
ICAM application). These results provide the designer with
an estimation of processing functional elements use rate and
an estimation of the communications hierarchical distribu-
tion. The following section details these estimations.



Lilian Bossuet et al. 17

Table 4: Processing functional element number embedded in the low hierarchical level cluster.

Application
Number of
ADD/SUD
in cluster 1

Number of
MUL in
cluster 1

Number of
COMP in
cluster 2

Number of
LUT in
cluster 2

Number of
ADD/SUD
in cluster 3

Number of
MUL in
cluster 3

Number of
COMP in
cluster 3

Number of
LUT in
cluster 3

ICAM archi1 4 1 5 2 — — — —

ICAM archi2 20 10 21 13 — — — —

MPEG-2 encoder 4 4 2 1 — — — —

Matching pursuit 8 6 3 0 — — — —

AES core — — — — 1 1 1 1

Table 5: Number of low hierarchical level clusters.

Application
Number of
cluster 1

Number of
cluster 2

Number of
cluster 3

Number of
cluster 4

ICAM archi1 130 234 26 0

ICAM archi2 26 26 26 0

MPEG-2
encoder

105 105 0 0

Matching
pursuit

30 25 5 0

AES core 0 0 0 16

6.5. Estimation results

Table 7 provides the use rate estimations of each type of pro-
cessing functional element for each application. The designer
targets the highest use rate because unused resources reduce
the power efficiency, particularly for coarse-grain processing
resources. However, the problem is more complex because
often the designer must choose a tradeoff between use rate
and communications distribution (highest number of com-
munications in the architecture hierarchical low level). For
example, we have defined an architecture with a very high
use rate for the matching pursuit application (Table 7 line 4)
and an architecture with a lower use rate for MPEG-2 de-
coder application (Table 7 line 5). The issue is now to analyze
the communications hierarchical distribution, since it also
has a significant impact on the final performances. Table 8
provides the communications hierarchical distribution esti-
mation. The number of communications estimated in the
low level is higher for the MPEG-2 decoder application than
for the matching pursuit application. Moreover, the number
of communications estimated in the high level of hierarchy
is lower for the MPEG-2 decoder application than for the
matching pursuit application. The communications hierar-
chical distribution is better for the MPEG-2 decoder than for
the matching pursuit application, but as we have seen, this is
not the case for the use rate. Hence, the designer must choose
the best solution in terms of tradeoff between use rate and
communications hierarchical distribution according to the
technological process used for his architecture.

To provide a schematic representation of the architec-
ture dedicated for the MPEG-2 decoder, Figure 12 gives a
representation of the three hierarchical levels: high level

(Figure 12(a)), middle level (Figure 12(b)), and low level
(Figure 12(c)).

Concerning the ICAM application, Table 8 shows that the
estimation results obtained with the archi2 are better than
with the archi1. Nevertheless, as seen in Table 5, the low-level
clusters are five times larger on the average. With such an
archi2 large cluster, it is difficult for the designer to find a
solution that guarantees that the communication cost is ho-
mogeneous within the cluster. Therefore, the archi2 is not
a realistic architecture except if a communication technol-
ogy enables providing homogeneous cost within the cluster
in terms of delay and power.

Concerning the AES application, it uses another type of
architecture than the image computing applications. The ar-
chitecture for the AES application has only one low-level
cluster type with fine-grain and coarse processing functional
element (heterogeneous cluster). As for the MPEG-2 dedi-
cated architecture, Figure 13 presents a schematic represen-
tation of the three hierarchical levels of the architecture:
high level (Figure 13(a)), middle level (Figure 13(b)), and
low level (Figure 13(c)). Table 8 shows that the estimation
results of the communication distribution are very good for
this application with 69% of the communications in the ar-
chitectural low level and only 21% in the high level. However,
before concluding that this method leads to define an effi-
cient architecture for several application domains, it is im-
portant to estimate the communications distribution with
the architecture highlighted for image computing where the
coarse-grain and fine-grain processing functional elements
are separated. The last line in Table 8 provides the estimation
results in this case (AES core ic-archi). The number of com-
munications in the architectural low level is reduced by 19%
and the number of communications in the architectural high
level is increased by 15%. Therefore, the architecture defined
for the image computing applications in not adapted for the
cryptography application. It shows that according to the dis-
cussion in Section 1.2, this method enables the definition of
dedicated reconfigurable architectures for different applica-
tion domains.

7. CONCLUSION

Design space exploration for reconfigurable architectures
combined with algorithmic exploration of applications is an
important issue which has been insufficiently addressed till
now. We propose in this paper an original approach based



18 EURASIP Journal on Embedded Systems

Table 6: Exploration results of middle and high hierarchical levels.

Application
Middle-level hierarchical element

High-level hierarchical elementNumber of
cluster 1

Number of
cluster 2

Number of
cluster 3

Number of
cluster 4

ICAM archi1 5 9 1 0 26

ICAM archi2 2 2 2 0 13

MPEG-2 encoder 7 7 0 0 15

Matching pursuit 6 5 1 0 5

AES core 0 0 0 4 4

(a) Hierarchical high-level view

High-level hierarchical element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

(b) Hierarchical middle-level view

Middle-level hierarchical element

Cluster 1 Cluster 1 Cluster 1 Cluster 1

Cluster 1 Cluster 1 Cluster 1

Cluster 2 Cluster 2 Cluster 2 Cluster 2

Cluster 2 Cluster 2 Cluster 2

(c) Hierarchical low-level view

+/−
+/−
+/−
+/−

×
×
×
×

RAM

LUT

LUT
Comp. RAM

Figure 12: Schematic representation of special reconfigurable architecture for the MPEG-2 application.

Table 7: Use rate estimation of each processing functional element
type.

Application ADD/SUB MUL COMP LUT

ICAM archi1 98, 5% 96, 1% 36, 7% 70, 1%

ICAM archi1 98, 5% 48, 0% 94, 5% 97, 0%

MPEG-2 encoder 67, 0% 70, 0% 13, 0% 2, 0%

Matching pursuit 97, 0% 90, 0% 92, 0% —

AES core 63, 8% 100% 100% 93, 8%

on a high-level representation of the application and on
a hierarchical functional model for the architecture. Our
approach targets fine-grain, coarse-grain, and heterogeneous
architectures.

To perform the exploration of the architecture space,
two metrics have been defined, the architectural processing
use rate and the communications hierarchical distribution
since we have shown (particularly with fine-grain architec-
ture studies) that these metrics are significant in reducing
the power consumption of an application under a given time

Table 8: Hierarchical distribution communication estimation.

Application High level Middle level Low level

ICAM archi1 28% 35% 37%

ICAM archi2 13% 30% 57%

MPEG-2 encoder 29% 8% 63%

Matching pursuit 31% 32% 37%

AES core 21% 10% 69%

AES core ic archi 36% 14% 50%

constraint. The exploration process leads to the definition of
a power-efficient hierarchical reconfigurable architecture for
an application or an applications family. We have demon-
strated the efficiency of our approach for image processing
and cryptography applications. In order to provide the de-
signers with estimates of the achievable performances, we
have defined an estimation technique that computes an in-
terval of performance. This point is important and more rel-
evant than an optimal estimation technique considering the
level of abstraction of our approach. The goal is to greatly



Lilian Bossuet et al. 19

(a) Hierarchical high-level view

High-level hierarchical element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

Middle-level
hierarchical
element

(b) Hierarchical middle-level view

Middle-level
hierarchical element

Cluster 4

Cluster 4

Cluster 4

Cluster 4

+/− ×
LUT Comp.

RAM

(c) Hierarchical low-level view

Figure 13: Schematic representation of dedicated reconfigurable architecture for the AES application.

prune the design space in order to shorten the design cycle
and to rapidly converge towards the definition of a power-
efficient reconfigurable architecture. The estimation results
demonstrate that our approach rapidly leads to defining a
power-efficient architecture for an applications domain. This
point is essential since it is a current trend to specialize the
reconfigurable architectures for a specific domain.

REFERENCES

[1] N. Tredennick and B. Shimamoto, “The rise of reconfigurable
systems,” in Proceedings of the International Conference on En-
gineering of Reconfigurable Systems and Algorithms (ERSA ’03),
pp. 3–12, Las Vegas, Nev, USA, June 2003.

[2] R. Hartenstein, “A decade of reconfigurable computing: a vi-
sionary retrospective,” in Proceedings of Conference and Exhi-
bition on Design, Automation and Test in Europe (DATE ’01),
pp. 642–649, Munich, Germany, March 2001.

[3] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sar-
rafzadeh, “A quick safari through the reconfiguration jungle,”
in Proceedings of the 38th Design Automation Conference (DAC
’01), pp. 172–177, Las Vegas, Nev, USA, June 2001.

[4] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf,
and Ed. F. Deprettere, “Exploring embedded-systems architec-
tures with artemis,” Computer, vol. 34, no. 11, pp. 57–63, 2001.

[5] L. Bossuet, Exploration de l’espace de conception des architec-
tures reconfigurables, Ph.D. thesis, Université de Bretagne Sud,
Vannes, France, September 2004.

[6] M. Gries, “Methods for evaluating covering the design space
during early design development,” Technical Memorandum
MO3/32, Electronics Research Laboratory, University of Cali-
fornia, Berkeley, Calif, USA, August 2003.

[7] V. Betz and J. Rose, “VPR: a new packing, placement and rout-
ing tool for FPGA research,” in Proceedings of the 7th Interna-
tional Workshop on Field Programmable Logic (FPL ’97), pp.
213–222, Oxford, UK, September 1997.

[8] E. Ahmed and J. Rose, “The effect of LUT and cluster size
on deep-submicron FPGA performance and density,” in Pro-
ceedings of ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’00), pp. 3–12, Moterey, Calif,
USA, February 2000.

[9] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, “The memory/logic
interface in FPGA’s with large embedded memory arrays,”
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 7, no. 1, pp. 80–91, 1999.

[10] L. Lagadec, Abstraction, modélisation et outils de CAO pour
les circuits intégrés reconfigurables, Ph.D. thesis, Université de
Rennes1, Rennes, France, 2000.

[11] S. Choi, J. W. Jang, S. Mohanty, and V. K. Prasanna, “Domain-
specific modeling for rapid system-level energy estimation of
reconfigurable architectures,” in Proceedings of International
Conference of Engineering of Reconfigurable Systems and Algo-
rithms (ERSA ’02), Las Vegas, Nev, USA, June 2002.

[12] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, “High-level
area and performance estimation of hardware building blocks
on FPGAs,” in Proceedings of the the Roadmap to Recon-
figurable Computing, 10th International Workshop on Field-
Programmable Logic and Applications (FPL ’00), pp. 525–534,
Villach, Austria, August 2000.

[13] C. A. Moritz, D. Yeung, and A. Agarwal, “Exploring optimal
cost-performance designs for Raw microprocessors,” in Pro-
ceedings of IEEE Symposium on FPGAs for Custom Comput-
ing Machines (FCCM ’98), pp. 12–27, Napa Valley, Calif, USA,
April 1998.

[14] U. Nadelginder, Coarse-grain reconfigurable architecture de-
sign space architecture exploration, Ph.D. thesis, University of
Kaiserslautern, Kaiserslautern, Germany, June 2001.

[15] R. Kress, A fast reconfigurable ALU for xputers, Ph.D. thesis,
University of Kaiserslautern, Kaiserslautern, Germany, 1996.

[16] L. Bossuet, G. Gogniat, and J.-L. Philippe, “Generic design
space exploration for reconfigurable architectures,” in Proceed-
ings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’05), p. 163, Denver, Colo, USA,
April 2005.

[17] Design Trotter Project: http://web.univ-ubs.fr/lester/∼diguet/
Design-TrotterPage.html.

[18] J. P. Diguet, G. Gogniat, P. Danielo, M. Auguin, and J.-L.
Philippe, “The SPF model,” in Proceedings of Forum on Design
Language (FDL ’00), Tübingen, Germany, September 2000.

[19] Y. Le Moullec, P. Koch, J. P. Diguet, and J.-L. Philippe, “De-
sign trotter: building and selecting architectures for embedded
multimedia applications,” in Proceedings of IEEE International
Symposium on Consumer Electronics (ISCE ’03), Sydney, Aus-
tralia, December 2003.

[20] Y. Le Moullec, J. P. Diguet, T. Gourdeaux, and J.-L. Philippe,
“Design trotter: system-level dynamic estimation task a 1st
step towards platform architecture selection,” Journal of Em-
bedded Computing, vol. 1, no. 4, pp. 565–586, 2005.

[21] L. Bossuet, G. Gogniat, and J.-L. Philippe, “Fast design
space exploration method for reconfigurable architectures,” in

http://web.univ-ubs.fr/lester/~diguet/Design-TrotterPage.html
http://web.univ-ubs.fr/lester/~diguet/Design-TrotterPage.html


20 EURASIP Journal on Embedded Systems

Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA ’03), pp. 65–71,
Las Vegas, Nev, USA, June 2003.

[22] T.Mudge, “Power: a first-class architectural design constraint,”
Computer, vol. 34, no. 4, pp. 52–58, 2001.

[23] S. Rouxel, “Caractérisation de l’impact du routage sur les
performances (vitesse et consommation de puissance) d’un
FPGA,” M.S. thesis, Université de Bretagne Sud, Lorient,
France, September 2003.

[24] D. Elleouet, “Caractérisation et modélisation de la consomma-
tion de puissance des mémoires sur FPGA,” M.S. thesis, Uni-
versité de Bretagne Sud, Lorient, France, September 2003.

[25] A. Garcia, W. Burleson, and J.-L. Danger, “Power modelling
in field programmable gate arrays (FPGA),” in Proceeding of
the 9th International Workshop on Field Programmable Logic
and Applications (FPL ’99), pp. 396–404, Glasgow, Scotland,
August-September 1999.

[26] V. George, H. Zhang, and J. Rabaey, “The design of a low en-
ergy FPGA,” in Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED ’99), pp. 188–193,
San Diego, Calif, USA, August 1999.

[27] E. Kusse and J. M. Rabaey, “Low-energy embedded FPGA
structures,” in Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED ’98), pp. 155–160,
Monterey, Calif, USA, August 1998.

[28] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power
consumption in virtexTM-II FPGA family,” in Proceedings
of the 10th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’02), pp. 157–164, Mon-
terey, Calif, USA, February 2002.

[29] K. K. W. Poon, A. Yan, and S. J. E. Wilton, “A flexible
power model for FPGAs,” in Proceeding of the 12th Interna-
tional Conference on Field-Programmable Logic and Applica-
tions (FPL ’02), pp. 312–321, Montpellier, France, September
2002.

[30] H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect
architecture exploration for low-energy reconfigurable single-
chip DSPs,” in Proceedings of the IEEE Computer Society Work-
shop on VLSI (WVLSI ’99), p. 2, Orlando, Fla, USA, April 1999.

[31] CEA. Intelligent Camera—3D Methodology. http://www-list.
cea.fr/fr/programmes/systemes embarques/docs/ICAM
internet list v0.pdf.

[32] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 12, pp. 3397–3415, 1993.

[33] MPEG2, http://www.mpeg2.de.

http://www-list.cea.fr/fr/programmes/systemes_embarques/docs/ICAM_internet_list_v0.pdf
http://www-list.cea.fr/fr/programmes/systemes_embarques/docs/ICAM_internet_list_v0.pdf
http://www-list.cea.fr/fr/programmes/systemes_embarques/docs/ICAM_internet_list_v0.pdf
http://www.mpeg2.de

	1. INTRODUCTION
	1.1. Context of design space exploration for reconfigurable architectures
	1.2. Reconfigurable architecture DSE problematic
	1.3. Contribution
	1.4. Paper organization

	2. RELATEDWORK
	2.1. Introduction to design space exploration for reconfigurable architecture
	Synthesize and compare
	Estimate and compare

	2.2. FPGA place and route generic tools used for DSE
	2.3. FPGA exploration and estimation tools
	2.4. Coarse-grain reconfigurable architectures DSE tools
	2.5. Comparative study

	3. A NEWVISION OF DSE BASED ON AN AUTOMATIC ESTIMATION TOOL FOR SOC DESIGN CALLED DESIGN TROTER
	3.1. The Design Trotter tool
	System estimation [19]
	Architectural projection [16, 21]

	3.2. Strategy of coarse-grain DSE

	4. APPLICATION AND ARCHITECTURE SPECIFICATIONS
	4.1. Application specification
	4.2. Reconfigurable architectures specification

	5. COMMUNICATION ESTIMATION AND EXPLORATIONMETHODOLOGY
	5.1. Introduction
	5.2. The architectural projection
	5.3. Differences between the three architectural projection algorithms (MIN algorithm, INTER-algorithm, and MAX algorithm)
	5.4. DSEmethod

	6. APPLICATIONS
	6.1. Image processing applications
	6.2. Cryptography application
	6.3. System estimation tool results
	6.4. Architectural exploration results
	6.5. Estimation results

	7. CONCLUSION
	REFERENCES

