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Abstract

In the work presented in this paper, we use data collected from mobile users over several weeks to develop a
neural network-based prediction model for the power consumed by a smartphone. Battery life is critical to the
designers of smartphones, and being able to assess scenarios of power consumption, and hence energy usage is
of great value. The models developed attempt to correlate power consumption to users’ behavior by using power-
related data collected from smartphones with the help of specially designed logging tool or application.
Experiences gained while developing the model regarding the selection of input parameters to the model, the
identification of the most suitable NN (neural network) structure, and the training methodology applied are all
described in this paper. To the best of our knowledge, this is the first attempt where NN is used as a vehicle to
model smartphones’ power, and the results obtained demonstrate that NNs models can provide reasonably
accurate estimates, and therefore, further investigation of their use in this modeling problem is justified.
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1 Introduction
Recent advents in battery technology have not paralleled
the rapid advances in chip design and wireless telecom-
munication, and it is often the case that the computing
power is limited by the battery capacity. This has
brought the problems of power consumption, low power
design, energy-efficiency, and optimal power manage-
ment to the forefront of research issues pertaining to
portable electronics. This problem is further aggravated
for smartphones by the fact that today’s consumers are
expecting lighter devices that can run for long hours,
and hence, designers have to rely on smaller and lighter
batteries that typically have reduced energy storage
capabilities.
Thus, designers and manufacturers are keen on un-

derstanding the power consumption characteristics of
today’s smartphones where the primary objective is to
be capable of designing better future generations. De-
veloping power models for these devices is critical since
it provides designers with assessment capabilities early
in the design cycle, which in turn would lead to devel-
oping sound energy management policies, and assists

software developers in writing applications that are
energy-efficient.
The need to try and understand the role of users’ be-

havior and how it contributes to energy consumption
with the hope of designing better systems, and making
efficient use of the available energy is emphasized in two
recent papers [1, 2].
The authors of these two papers studied the smart-

phone usage activity of a large number of users. They
showed that the usage activity is quite diverse among
users. This extent of usage diversity implies that mecha-
nisms that work for the average case may be ineffective
for a large proportion of the users. In the case of power
modeling, usage diversity means average-case power
models that may be insufficient to accurately predict
power consumption for different users, and hence, a
usage activity-based power model is essential to accur-
ately predict power consumption.
The power modeling problem was addressed in [3]

using pattern analysis by first segmenting users’ logged
data into a number of small time windows called
“chunks.” A chunk is a set of power-related data col-
lected and computed during 1% of used battery capacity.
Chunk data includes components such as average power,
CPU utilization, frequency, and display activity. The* Correspondence: asagahyroon@aus.edu
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researchers grouped the chunks based on the hardware
components accessed. Chunks with standard small devi-
ations were kept, and others were discarded. Regression
analysis was then performed to generate a model. In the
reported work, only power models related to the CPU
and display unit were developed. Similarly, regression-
based techniques to model power were reported in [4].
Using a logger application, data was collected from
different users and effective predictors were selected
to develop power models. A model for energy level
prediction is presented in [5]. Researchers collected
data from a set of Blackberry smartphone users and
then exploited energy traces within the collected data-
set to build an energy emulation toolkit. Users here
were divided into three groups depending on their en-
ergy consumption characteristics, that is, their daily
battery charge and discharge pattern or behavior. A
prediction algorithm was then used to predict energy
level. Using results from the energy emulation kit, de-
velopers could then modify their designs or fine-tune
certain parameters to optimize energy consumption. A
battery-based power model is discussed in [6]. Based
on measurement-oriented experiments, researchers
excluded the hardware components with negligible
power consumptions, such as the SD card, from being
used in the model. The modeled components were
CPU, display, GPS, Wi-Fi, cellular, and audio inter-
faces. A set of training programs was next used to de-
termine the relationship between a state variable and
the power consumption for each hardware component
selected for the model. The authors next proposed the
use of battery discharge behavior and the built-in bat-
tery voltage sensors in some smartphones to deter-
mine the average power consumption that resulted
from the varying power states of the different compo-
nents. The smartphone components were held in a
particular state for long periods of time while the state
of discharge of the battery was monitored using the
built-in voltage sensors, therefore providing an esti-
mate of the power consumption for the particular ac-
tivity state. The total consumed energy within that test
period or interval was then computed. This was re-
peated for different states, and regression techniques
were used to derive models based on battery behavior.
Additional work that sheds more light onto the prob-
lem at hand and discusses possible solutions or alter-
natives is reported in [7–10].
In this work, and in an attempt to contribute to better

designs of smartphones, we will approach the power
modeling problem from a user-behavior point of view.
We developed a logger application (running in the back-
ground) that tracks the users’ interaction with their
smartphones over a period of time. It creates and logs
power-related records by making use of the smart

battery interface built in the device. The datasets logged
over time are then used to develop power models using
neural network modeling approaches. To the best of our
knowledge, this is the first work that attempts to esti-
mate smartphone power using neural network tech-
niques. Furthermore, the large body of published work
on power modeling uses a utilization-based approach
where the focus is on estimating the power consumption
of individual hardware components that make up the
phone, using for example, performance counters, and
then estimating the power of the phone when these
components switch between different operating modes.
Instead, in our work, we use user activity as the basis for
developing the model. The only reported work that we
came across where users’ profiles are used as part of the
modeling process is reported in [5]. However, they used
regression-based techniques and selected a smaller and
different set of parameters when compared to the set
used in the work discussed here. Preliminary results re-
lated to this work are reported in [19].
In general, neural networks have some advantages

when compared to regression techniques such as [20]:

� Modeling using neural networks requires less formal
statistical training

� Neural network models have the ability to detect all
possible interactions between predictor variables

� Neural networks can be developed using multiple
and different training algorithms

� Neural networks are capable of identifying complex
non-linear relationships between dependent and
independent variables. Conventional regression
techniques typically assume a linear relationship.

The rest of the paper is organized as follows: in
Section 2 we introduce the logger application devel-
oped for this work and explain its usage; out of
many logged input parameters, we also discuss the
selection of the most influential parameters used to
develop the NN models. In Section 3, we present
the model development steps including training
phase and NN configuration selection; we also assess
the performance of the model. The paper is con-
cluded in Section 4.

2 Data logging and parameters identification
Most of the power consumed is typically broken down
between components that include the CPU, memory
banks and controller, GSM, GPS, Bluetooth, LCD panel
and touch screen, LCD backlight, Wi-Fi, audio (codec
and amplifier), internal NAND flash, SD card, and cam-
era. The system load or application heavily influences
the power needs of these components. For example, if
the load is a video game, more power will be drawn by
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these components than, when for example, the load is
simply an editing session of a text file. Hence, usage pat-
terns and user behavior directly influence battery life.
We selected a sample of ten campus students (American

University of Sharjah, www.aus.edu) and monitored their
activity with the assistance of a data logger application
program installed in their Android-based smartphones.
The logger application continuously ran in the back-
ground without compromising the users’ privacy. It runs
continuously and starts when the mobile is turned on. We
collected the maximum amount of usage-related data for
synthesis and analysis as described in later sections.
The logger application logs power-related records

using the smart battery interface inside the device. The
datasets logged overtime are then used to develop power
models using neural network techniques.
The smartphone model (Sony Acro S—an Android-

based device) selected for this work contains modern
lithium-ion batteries with a smart battery interface that
monitors the charging and discharging process to pro-
tect it; additional information about battery capacity,
current, voltage, and temperature is also provided to the
power management program that is part of the operat-
ing system. It provides drivers to these interfaces as
Linux virtual files to read different parameters of the
battery status. Most of the recent Sony-Ericsson family
of smartphones is provided with this sensor interface
unit that is one of the main reasons for choosing the
Sony Acro S model as a testing platform for the work
discussed here. This model uses the Qualcomm
MSM8260 Snapdragon processor, which is an asyn-
chronous symmetric dual-core processor.
The logger application makes valuable use of a built-

in Android mechanism called broadcast/receiver. The
operating system broadcasts messages about events that
are taking place, such as a battery status change, the
Wi-Fi connection being turned on, or the screens being
switched off. However, some relevant and power-
impacting usage parameters have no broadcast actions
or messages associated with them, and in this case, we
use polling as a means of sampling changes in these
parameters (examples, include “current” and “audio
utilization”).
Some of the parameters have Operating System coun-

ters associated with them, like CPU and memory usage,
reading the difference between these counters at prede-
fined time intervals will give us the values of them dur-
ing those intervals. Other parameters like electrical
current drawn from the battery and audio subsystem
utilization don not have any OS counters associated with
them; therefore, we need to sample their values at a rela-
tively high rate.
The power value at any time instant is defined by

P = V × I, where V and I are the voltage and current

at any instant in time, respectively. In an Android-
based smartphone, we can obtain the voltage value
at any time using an Android API; however, finding
the current value is not trivial.
The smartphone used here is equipped with a TI

BQ27520 Battery Fuel Gauge IC [11]. This gauge resides
on the system main board and uses a 400-kHz I2C™
interface for connection to the microcontroller port. It is
capable of measuring battery charge level, voltage,
current, and temperature. According to the datasheet,
we can read the instantaneous current and the average
current through the I2C interface. The value of the aver-
age current is updated every second, so sampling the
current at 1 Hz is enough to capture the overall average
current passing through the device.
The Linux kernel used by Android phones that sup-

port the BQ27520 such as the Acro model provides a
virtual file system driver for the phone through the:
“/sys/class/power_supply/bq27520/” folder. For example,
reading the file “current_now” will give us the instantan-
eous current, while reading “current_avg” will provide us
with the average current.
In the logger application, we define a timer (applica-

tion timer) to invoke a function every 1 s; using this
function, we sample the current measurements and
audio utilization since these variables do not have OS
counters.
Collected usage samples are saved on the file system

of the smartphone and then uploaded to a database ser-
ver for further analysis rather than being processed lo-
cally on the smartphone.
After parsing the log file, we next run an application de-

veloped to extract power usage samples from the stored
data. Some of the sample parameters are trivial, for ex-
ample, “screen brightness,” so no extra processing is
needed for this parameter. On the other hand, other pa-
rameters such as “Data Activity” require normalizing with
respect to the unit of time. We receive the information
per sample time but we normalize this value to a 1-s inter-
val. The processing required to extract power sample pa-
rameters can be divided into the following categories:

� No processing:
In this case, we use the parameter values exactly as
in the log file, for example, the “screen brightness”
parameter.

� Normalization per 1 s:
In this case, we have the parameter value per sample
window time, but since the sample window time is
not constant, we need to normalize the parameter
value per 1 s.

� Weighted averaging:
In this case, the parameter values may change
several times during the sample window; hence,
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we calculate the weighted average of it, an example
is the RSSI (received signal strength indication)
parameter.

Using the logged data, we are able to extract power
data related to more than 30 parameters of a smart-
phone including brightness level, data activity, phone-
ringing, Wi-Fi connectivity, and SMS activity. For a
complete listing of the identified parameters, readers are
referred to Table 5 of [12].
In developing the neural network model, a critical step

is to determine if all possible input parameters are re-
quired or whether a subset would suffice to develop a
reliable model. The elimination of unnecessary inputs
that have negligible contribution to the prediction will
lead to a simplification in the data-gathering phase and
an enhancement to the model; it also eases the interpret-
ation of results. For example, nowadays, most students
are using Internet-based services, such as “Whatsapp”
and “Google Talk” for text messaging; hence, SMS activ-
ity is very low. We logged only 64 SMS activities in our
dataset. This number of samples is not sufficient for
modeling this activity therefore we did not include SMS
activity as an input to our model. Similarly, Bluetooth is
rarely used in our dataset so we did not include any
Bluetooth predictors in our model. We next grouped pa-
rameters together using functionality as a criterion, and
then corresponding heat maps are used to eliminate
some of input parameters that strongly correlate to one
another within the group. For example, the heat map of
Fig. 1 is used to reduce parameters that relate to data ac-
tivity functionality of the device.
For modeling mobile data communications, we have

Data Activity, Data Activity On, DataConOn, and
GSMRSSI predictors. Figure 1 shows the heat map for
the previously mentioned predictors. It is clear that
Data Activity On and DataConOn are correlated. Logic-
ally, Data Activity, and Data Activity On are also corre-
lated, since there will be no Data Activity unless Data
Activity On is greater than 0. We prefer to remove Data
Activity On since it is correlated with the two other
predictors.

After excluding unnecessary input parameters to the
model, the subset selected and used for power model
generation is given in Table 1. It consists of 17 inputs or
predictors. The first column of the table includes the
parameter or predictor name, followed by a brief de-
scription of it in column 2; the “Generation Method”
describes the technique used to obtain the value of the
input parameter, either using Android broadcast
Actions/Receivers or polling OS counters at a low rate
or polling device information at a high rate. The range
of values is specified in column 4.
The logger application is implemented in Java using

more than 2300 lines of code. Figure 2 shows the cumu-
lative distribution function (CDF) of the logger CPU
time. In terms of CPU time, the average logger overhead
(logger CPU time/total CPU time) is 0.62%. We also
conclude that 78.14% of the samples have logger over-
head less than or equal to 0.6667%, and 99.5% of the
samples have logger overhead less than or equal to 5%.

3 A neural network for power estimation
The origin of the modern neural networks (NN) science
was the work published by Warren McCulloch and
Walter Pitts [13], who showed that neural networks
could, in principle, compute an arithmetic or logical func-
tion. The elementary element of the NN is the artificial
neuron. Figure 3 is a depiction of an artificial neuron.
The individual inputs p1, p2, …, pR are each weighted

by corresponding elements w1,1, w1,2, …,w1,R of the
weight matrix W. The net input n can be computed
using Eq. (1) below:

n ¼ w1;1p1 þ w1;2p2 þ…þ w1;RpR þ b ð1Þ

where b is the bias of the neuron. Equation (1) can be
written in a matrix form as:

n ¼ Wpþ b ð2Þ
Now, the neuron output can be written as a = f(Wp + b)

where f is the transfer function.
The transfer function f may be a linear or non-linear

function of the net input n. Our power model generation

Fig. 1 Heat map relating to data activity parameters
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is considered to be a fitting problem. Usually, three types
of transfer functions are used for these kinds of prob-
lems; others are usually used for classification problems.
Table 2 lists the three transfer functions investigated in
the work discussed here.

The selection of the transfer function and the number
of inputs will define the structure of the neuron; the
process of choosing weights and bias to generate the
right output is called the training of the neuron. A single
neuron has very limited modeling capabilities. Usually,

Table 1 Input parameters to the model

Predictor name Description Generation method Range

MF utilization CPU utilization while operating at the median frequency rang Variable polling with OS counters 0–1

HF utilization CPU utilization while operating at the high frequency range Variable polling with OS counters 0–1

Screen on Fraction of time screen was on Broadcast receivers 0–1

Screen brightness Average screen brightness Variable polling 20–255

Call ringing Fraction of time smartphone was ringing Broadcast receivers 0–1

Call off-hook Fraction of time smartphone was in call Broadcast receivers 0–1

Data on Fraction of time smartphone was connected to some mobile network Broadcast receivers 0–1

Data traffic Average number of bytes sent/received through mobile network
per second

Variable polling with OS counters ≥0

WIFI on Fraction of time phone is connected to some WIFI network Broadcast receivers 0–1

WIFI traffic Average number of bytes sent/received through WIFI interface
per second

Variable polling with OS counters ≥0

SD traffic Average number of sectors read/written per second Variable polling with OS counters ≥0

Audio on Fraction of time audio device was active Broadcast receivers 0–1

GSMRSSI Average mobile received signal strength indication Broadcast receivers (−113)–(−48) dBm

NET HSDPA Fraction of time mobile connected to HSDPA network (3G) Broadcast receivers 0–1

NET EDGE Fraction of time mobile connected to EDGE network (2.5G) Broadcast receivers 0–1

NETGPRS Fraction of time mobile connected to GPRS network (2G) Broadcast receivers 0–1

GPS on Fraction of time GPS adapter is on Broadcast receivers 0–1

Fig. 2 CDF for the logger CPU time
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multiple layers of many neurons are used for modeling.
The number of layers and neurons per layer and the
type of connections between them defines the neural
network architecture. In recent years, neural networks
have been applied to model and solve various problems
in the engineering field [15–18].

A. Neural network architecture and training
In this work, we will use MATLAB Neural Network
Toolbox (included in the MATLAB Environment)
which supports different neural network
architectures. In an effort to identify the most
suitable architecture, we experimented with different
types of neural network architectures using various
training algorithms while computing the RMSE
(root mean squared error). These architectures
included feed-forward back-propagation (FFBP),
cascade feed-forward back-propagation (CSFFBP),
and feed-forward time delay (FFBPTD). The results
of the comparison are listed in Table 3. The Neural

Network Toolbox has a number of training functions
to train a network. For a description of these training
functions, readers are referred to Table 11 of [12]. All
neural network power models developed and tested in
this study have 17 inputs (identified in Table 1) with
one or more hidden layers with different transfer
functions and one output layer. For any dataset, 70%
of it is randomly selected as a training dataset, 15% is
selected as validation dataset, while the rest (15%) is
used as the testing dataset.
Table 3 contains the RMSE values computed using
various architectures and training methods. In the
table, the first column specifies the training
algorithm used to train the neural network, columns
2 and 3 are for the FFBP network structure with
10 and 20 neurons in the hidden layer, respectively,
and columns 4 and 5 are for the CFFBP network
structures with 10 and 20 neurons in the hidden
layers, respectively. The same order is applied for
the FFBPTD.
It is clear that trainbr and trainlm training
algorithms have the best performance over all other
algorithms. The FFBPTD network architecture did
not perform well with any training algorithm
(high and not-improving RMSE); hence, we will
not include it in any further analysis.
Table 4 contains the training time required to train
each network. The organization of this table is the
same as Table 3 except that the entries in this table
are the training time in seconds, not the RMSE
values. Table 3 shows that trainbr has better
performance over trainlm; however, results in
Table 4 show that trainbr requires two times the
training time of trainlm with an RMSE maximum
improvement of only 3.5%. Finally, traingdm not
only requires the least time to train the network but
also has the worst performance.
Thus, FFBP and CSFFBP networks trained with
either trainlm or trainbr produce the best

Fig. 3 Artificial neuron [14]

Table 2 Transfer functions

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems  (2017) 2017:22 Page 6 of 11



performance. Next, we study all the combinations of
these network structures and training algorithms
using different transfer functions. The main goal
here is to select the neural network that yields the
most accurate power model.
We keep the transfer function of the output layer
(purelin) while changing the transfer function of the
hidden layer to either logsig or tansig and changing
the number of neurons in the hidden layer for both
FFBP and CFFBP networks. We plot the RMSE of
the final model and its training time in Figs. 4 and 5,

respectively. In these figures, LS denotes the logsig
transfer function, TS denotes the tansig transfer
function, BR denotes trainbr training algorithms,
and LM denotes the trainlm training algorithm.
It is clear from the figure that trainlm has some
random nature; the RMSE did not improve with
increasing number of neurons. Furthermore, trainbr
is more stable than trainlm; the RMSE improves
with increasing number of neurons. We also note
that FFBP has a slightly better performance than
CSFFBP. We therefore select as the best NN the
FFBP networks trained using trainbr with a hidden
layer consisting of 85 neurons each, and using
logsig as the transfer function.
Figure 5 shows the time required to train different
network configurations. We observe that training
time when using trainlm is lower than when using

Table 3 RMSE comparison of different architectures and
training algorithms

Training
function FFBP CFFBP FFBPTD

n = 10 n = 20 n = 10 n = 20 n = 10 n = 20

trainbfg 0.209797 0.206758 0.216204 0.199763 0.632268 0.632285

trainbr 0.193328 0.175663 0.184413 0.174294 0.632267 0.632267

traincgb 0.218694 0.217632 0.21954 0.217823 0.632268 0.632271

traincgf 0.229647 0.226134 0.227723 0.213663 0.632267 0.632267

traincgp 0.225715 0.219247 0.227335 0.217196 0.632269 0.632268

traingd 0.353894 1.192112 0.336454 5.590423 0.632267 0.63227

traingdm 0.966383 0.845086 3.510545 5.550865 0.883342 0.654927

traingda 0.332997 0.39005 0.454985 0.482595 0.632267 0.632568

traingdx 0.286482 0.284275 0.306612 0.317421 0.632344 0.632833

trainlm 0.188031 0.176105 0.190761 0.180157 0.632267 0.632283

trainoss 0.233728 0.236423 0.223991 0.234473 0.632361 0.632269

trainrp 0.231186 0.239729 0.242783 0.247439 0.632274 0.806998

trainscg 0.22851 0.229321 0.232129 0.218688 0.632267 0.632268

Table 4 Training time comparison

Training
function FFBP CFFBP

n = 10 n = 20 n = 10 n = 20

trainbfg 560.1874 577.9164 488.3009 885.5299

trainbr 529.1933 661.35 709.0895 944.2664

traincgb 685.6228 715.9561 686.6167 762.2569

traincgf 728.115 640.3829 1034.791 1118.346

traincgp 683.7995 674.8491 507.0572 1003.557

traingd 252.4434 9.03335 397.8197 9.829319

traingdm 10.21414 19.31096 8.943479 23.59974

traingda 73.37219 124.8304 168.5904 186.7978

traingdx 149.7136 160.7029 137.9587 162.3984

trainlm 268.3789 380.7035 576.4763 929.8259

trainoss 375.6005 345.4326 854.437 658.3433

trainrp 253.1726 268.0829 407.9637 418.6255

trainscg 393.1616 483.8855 295.2382 835.7505

Fig. 4 RMSE of the neural network power model for various
network configurations

Fig. 5 Training time of neural networks power models for
various configurations
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trainbr, but it exhibits some randomness. For our
selected configuration, the time required to train
the network is about 3000 s (50 min); this is an
affordable time when we want to build the model
once using a typical computer. If we want to build
the model for each user using his/her own mobile
as computation platforms, it is better to use simpler
and lower-training-time configurations even at
the cost of expected accuracy.

B. Neural network performance
Drawing from the experimental exercises described
above, the selected structure for our final neural
network power model is depicted in Fig. 6. The
training algorithm for this network is trainbr.
The hidden layer consists of 85 neurons each
using the logsig transfer function, while the output
layer contains only one neuron that uses the
purelin transfer function.
Figure 7 shows the performance of our neural
network power model when compared to the
measured. It is clear that the accuracy achieved is
acceptable, with an R value of 0.96747 which is
very close to the ideal value of unity.
In the selected architecture of Fig. 6, we used a
neural network with one hidden layer to model the
smartphone power consumption. Next, and to
examine the effect of adding another hidden layer
to the neural network, we added another layer and
experimented by varying the number of neurons in
each layer and the used transfer functions as well,
while computing the RMSE for the different
configurations. Results in Table 14 of [12] show
that we achieve the best estimates using the
network configuration where the first transfer
function is tansig and second is logsig. We choose
the number of neurons in the hidden layers to
be 45 and 25 in the first and second hidden layers,
respectively. The time required to train this
networks was 3776 s (63 min).
Figure 8 depicts a performance comparison
between the two-hidden-layer neural network
and one-hidden-layer neural network. We note
that the performance of the two-hidden-layer
networks is slightly better than that of the
one-hidden-layer network.

These neural network configurations are next tested
by comparing estimates obtained using the model
against measured power for different users.
For brevity, in Fig. 9, we show results for the first
three users. Readers are referred to Appendix A
of [12] for the rest of graphs.
Figure 9 shows that the two-hidden-layer performance
is better than the one-hidden-layer for the three
users. This is true for all the users as depicted in
Appendix A of [12].
Additionally, we developed user-level power models
for each user using his/her power samples only.
The samples are divided randomly into a training
dataset (70%), validation dataset (15%), and testing
dataset (15%). We build the power models using
previously identified one-hidden-layer NN architecture
and two-hidden-layer architecture. Figure 10
shows the plots of the estimated power
(estimated) vs. measured power (measured)
for the first three users using a one-hidden-layer
NN and a two-hidden-layer NN.
From Fig. 10, the two-hidden-layer NN’s perform-
ance is slightly better than the one-hidden-layer

Fig. 6 Selected network structure

Fig. 7 Performance plot of single-hidden-layer neural network
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Fig. 8 Performance comparison between one-hidden-layer (a) and two-hidden-layer (b) neural networks. FFBP neural network structure is used
in both a and b, the used training function is trainbr. In a, logsig function is used as transfer function to train the 85 neurons. In b, we have two
layers of neurons; the first layer consists of 45 neuron with tansig transfer function, while the second layer consists of 25 neurons with logsig
transfer function

Fig. 9 Device-level performance plots for the first three users. a–c are one-hidden-layer NN performance for users 1, 2, and 3, respectively.
d–f are two-hidden-layer performance for users 1,2, and 3, respectively
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NN for users 1 and 3 (the R value we got when
using the two-hidden-layer models is a little higher
than when using the one-hidden-layer model). For
user 2, the one-hidden-layer NN model performance
is better than the two-hidden-layer NN model.
Hidden layers help the neural network to recognize
more patterns. Choosing the size of the hidden
layers can be difficult and most of the time is based
on empirical observations. In this work and from
the results shown in Figs. 9 and 10, we can conclude
that the two-hidden-layer NN power models are
more accurate but require more training time. On
the other hand, one-hidden-layer NN models have
accuracy that is comparable to the two-hidden-layer
NN models but with less training time.
Comparing the plots in Figs. 9 and 10, we can say
that user-level power models have higher accuracy
than device-level power models. This is expected
since in user-level power models, we used only
the user data in order to construct separate model
for each individual user of the device, while in
device-level power models, we construct the model

using data from all users and test it on each user
individually. Device-level power model is a general
model that can be used to model power consumption
behavior of all users included in the dataset and can
be generalized to model power consumption behavior
of any user of the device.

4 Conclusions
The power consumed by a smartphone is highly influ-
enced by end-user usage patterns and interest. Battery
energy life is very dependent on the nature of applica-
tions running on the device and other activities invoked
by the user. In this work, we described an attempt to
model smartphone power using input parameters that
are derived from power-related data that is in turn col-
lected in real time when the devices were on use. We
were able to study the feasibility of using neural network
techniques in generating reliable power models.
From the results, we can conclude that the two-

hidden-layer NN power models are the most accurate
models, but they require more training time. It also ob-
served that one-hidden-layer NN models have accuracy

Fig. 10 User-level performance plots for the first three users. a–c are one-hidden-layer NN performance for users 1, 2, and 3, respectively. d–f are
two-hidden-layer performance for users 1, 2, and 3, respectively
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that is comparable to the two-hidden-layer NN models
with less training time. User-level power models are
built based on the usage patterns for each user while
device-level power models are built based on the usage
patterns of all users of a smartphone model. User-level
power models perform better than device-level models.
This is expected, since only the user data is used to con-
struct and test the model, this data is more representa-
tive of the user’s behavior than the general data.
However, device-level power models are still useful in
providing an insight into the consumption characteris-
tics of the device.
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