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Abstract

Wireless sensor networks (WSNs), consisting of a large number of nodes to detect ambient environment, are widely
deployed in a predefined area to provide more sophisticated sensing, communication, and processing capabilities,
especially concerning the maintenance when hundreds or thousands of nodes are required to be deployed over wide
areas at the same time. Radio frequency identification (RFID) technology, by reading the low-cost passive tags
installed on objects or people, has been widely adopted in the tracing and tracking industry and can support an
accurate positioning within a limited distance. Joint utilization of WSN and RFID technologies is attracting increasing
attention within the Internet of Things (IoT) community, due to the potential of providing pervasive context-aware
applications with advantages from both fields. WSN-RFID convergence is considered especially promising in
context-aware systems with indoor positioning capabilities, where data from deployed WSN and RFID systems can be
opportunistically exploited to refine and enhance the collected data with position information. In this papera, we
design and evaluate a hybrid system which combines WSN and RFID technologies to provide an indoor positioning
service with the capability of feeding position information into a general-purpose IoT environment. Performance of
the proposed system is evaluated by means of simulations and a small-scale experimental set-up. The performed
analysis demonstrates that the joint use of heterogeneous technologies can increase the robustness and the accuracy
of the indoor positioning systems.

1 Introduction
Recent technological developments in the miniaturiza-
tion of electronics and wireless communication tech-
nology have motivated the development of small-sized,
low-power, and inexpensive sensing and radio-equipped
devices, and dramatically reduce the cost of deploying per-
vasive monitoring and tracking applications in large-scale
scenarios where various data are collected from hun-
dreds of different locations. Since it has been practical
in the last few years to collect, process, and exploit mas-
sive data from millions or even billions of devices, new
paradigms are emerging based on the global Internet of
Things (IoT) to extend the border of the current Internet
to the physical world. The IoTmakes every physical object
become a potential part of a distributed network in which
heterogeneous devices autonomously and spontaneously
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abstract and share context information from the real
world [1].
Unlike the traditional pervasive systems, which are

specifically designed to monitor a predefined set of inter-
ested physical phenomena, e.g., vibration for structural
health monitoring systems and temperature for energy
optimization systems, the IoT conceives a single perva-
sive network to support seamless, interoperable, cross-
application data collection from any kind of device for
any type of information. In addition to the data collec-
tion procedures, establishment of the relationship among
the collected samples is commonly recognized as another
significant issue in such a scenario, i.e., constructing the
‘context’ information [2]. In IoT environments, position
information covers a primal role because it provides useful
context knowledge to be associated with other monitored
parameters. For example, the meaning of a temperature
reading could vary significantly in case it is close to a
window, or on top of an heater, etc.
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Wireless sensor networks (WSNs) represent a key tech-
nology for IoT scenarios (such as environmental moni-
toring, e-health, surveillance, and manufacturing [3]). A
WSN is a community of objects, where those objects are
usually small-embedded devices with capability of sensing
physical phenomena in the environment and are equipped
with radio components to communicate with each other
wirelessly. Through their on-board radio interfaces, these
devices can collect or disseminate data and collaboratively
form a cooperative network either ad hoc or with a cluster-
based architecture to perform some specific actions in
large-scale static or mobile environments [4]. WSN nodes
leverage on a common set of protocols and algorithms to
set-up an ad hoc network to transport data in multi-hop
fashion to one or more central nodes namely ‘sink nodes’
or gateways, which in turn provide connectivity towards
the Internet. As an innovative and powerful solution for
various kinds of applications,WSN is especially suitable to
be adopted when the range of the monitored area exceeds
a single device’s radio range, when cost-effective moni-
toring is required and/or simple in-network processing of
physical parameter is needed.
By associating a unique digital identifier with each phys-

ical item, radio frequency identification (RFID) technol-
ogy becomes a fundamental technique in the IoT scenario
[5]. The confluence of the absence of batteries, the low
cost, and the rapid proliferation of passive RFID tags in
the past decade have made the RFID technology revolu-
tionize the tracing and tracking industry and become a de
facto reference technology [6].
Although WSN and RFID can be considered as substi-

tutive technologies in some use cases, they are historically
born to cover different needs. Recently, a number of
researchers are endeavoring to jointly utilize these tech-
nologies to exploit the advantages of both systems [7-9].
This work evaluates how the joint use of RFID andWSN

technologies can be effectively exploited within IoT posi-
tioning and tracking systems. The motivating goal of this
research is to provide a whole range of location-based ser-
vice with more precise and more reliable results according
to various needs. To achieve this goal, the diverse data
collected by WSN nodes are associated with a wider set
of position information which are allowed to be further
exploited by context-aware systems.
According to the work in [10], the locating systems can

be preliminarily grouped into twomajor categories: recep-
tive locating systems and transmissive locating systems. In
the receptive locating systems, the position information is
distributed ubiquitously, and the mobile device can derive
its own location from this information [the global posi-
tioning system (GPS) is the most representative example].
The mobile device can independently locate the derived
position in a map, so a local service (without revealing its
position to a third party) can be easily provided on top

of this locating information, or some value-added services
can be obtained by sharing this locating information with
others. Conversely, in the transmissive locating systems,
the position is derived by a fixed station which either sees
the mobile device or receives a beacon from it. The station
can transmit the derived locating result back to the device
or use it to generate other value-added services. Sub-
cell global system for mobile communications or GSM
positioning is a prime example employs this approach,
which leverages the mobile communication channel bea-
con. Also hybrid techniques combining these principles
are possible, and this paper will actually underline this
possibility.
Despite years of research and experimentation, very few

positioning technologies, apart the GPS, have nowadays a
significant economical impact. Only a few sets of technol-
ogy are available for indoor locating, usually designed for
niche or legacymarkets. The reasons of this poor diffusion
include high costs compared to the added value achieved,
technology constraints (regarding precision, reliability,
and performances), and, generally speaking, the lack of
killer applications.
Starting from previous works where the feasibility of the

joint use of WSN and RFID in indoor positioning applica-
tions was assessed through simulations [11,12], this paper
outlines the reference design of a hybrid indoor position-
ing system leveraging both WSN radio information and
RFID detection events. Parts of this paper was presented
in our previous work in [13], which provided the initial
glance of the hybridWSN-RFID localization system. First,
this paper goes into more details of the proposed hybrid
reference architecture. Second, it details the formulation
of the designed hybrid positioning algorithm and pro-
vides an analysis of the related computational complexity.
Third, it compares the performance of different variants of
the same hybrid approach. Forth, it calibrates the received
signal strength indicator (RSSI) model on the basis of
real experimental measurements. Finally, it improves the
performance of the localization algorithm by introduc-
ing some new robustness conditions based on the WSN
and RFID ranging models. In particular, the performance
is evaluated by means of both computer simulations and
through a small-scale experimental set-up.
The remainder of the paper is organized as follows:

Section 2 provides a brief overview of the state of the art of
indoor positioning systems. Then the reference architec-
ture and structural components (namely theWSN and the
RFID segment) of the proposed solution are elaborated
together with the field trial scenario in Section 3. The
positioning algorithm employed by the system is deeply
analyzed and illustrated in Section 4. Furthermore, the
system is validated in the controlled conditions, and the
simulation and experimental results are presented in the
Section 5. In Section 6 we draw the conclusions.
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2 Related work
Positioning systems generate a lot of interest and effort
both in academic and industrial research and nowadays,
a lot of technologies can be used and mixed (e.g., ultra-
sound, laser scanner, infrared, camera vision, radio fre-
quencies, and custom sensors). Each system has addressed
the aggregation of sensor data into location estimations
via most suitable methods.
Positioning and tracking are crucial features in many

ubiquitous computing and robotics applications where
knowledge about the location of the entities (i.e., people
and objects) is required [14,15].
Nowadays, most widely advanced positioning services

have been thought for outdoor scenarios. Indeed, radar
locating systems for ships and aircrafts are used for the
longest time for historical reasons. Global navigation
satellite systems (GNSS) - such as GPS and Galileo - are
mature technologies for vehicle navigation and are widely
adopted in everyday life. Unfortunately, both these tech-
nologies are not suitable for indoor environments, the first
because of the severity of multipath noise from which it
is afflicted and the difficulties of multi-object localization,
the second because of the buildings obstructiveness on
GNSS signals.
In order to achieve people and object localizations in

indoor environments by overcoming such disadvantages,
significant research has been conducted over the years in
different indoor positioning systems (IPSs) [16-18].
Dempsey [19] defines an IPS as a system which can infer

the position of a target inside the physical space where
the detection system is installed, within a maximum time
delay or in real time. In the second case, it is usual to speak
of real-time locating system (RTLS), which, standing to an
ISO definition [20], is the ability to locate the position of an
item anywhere in a defined space at a point in time that is,
or is close to, real time. Generally speaking, the RTLS def-
inition is used when discussing about asset locating and
about products or goods tracking and traceability.
IPSs are based on some prior knowledge about position

of special nodes, namely the anchor nodes, and aim at esti-
mating position of one or moremobile nodes, whose posi-
tions are unknown, by processing ranging data collected
and exchanged by both mobile and anchor nodes.
According to Liu [21], there are four different sys-

tem topologies for IPSs: (1) remote positioning system,
(2) self-positioning systems, (3) indirect remote position-
ing systems, and (4) indirect self-positioning systems. In
remote positioning system, a mobile node acts as main
signal transmitter and several anchor measuring units
receive and measure its broadcasted signal. The results
from all measuring units are collected, and the location
of the transmitter is computed in a central master sta-
tion. In self-positioning systems, the mobile acts instead
as measuring unit. This unit receives the signals of several

transmitters in known locations and computes its location
locally based on the measured signals. Two middle-way
approaches are also possible: in indirect remote position-
ing systems, measurements collected by the mobile node
are transmitted via a wireless data link for remote posi-
tion computation; in indirect self-positioning systems,
measurements collected locally by fixed stations are trans-
mitted to the mobile through a wireless data link.
IPSs can also be classified according to the employed

position estimation technique. Different positioning tech-
niques can be combined to compensate the limitations of
a single method.
Angle of arrival or AoA method is based on the receiver

antenna amplitude or phase response. The accuracy of
this method depends on the antenna directivity, multipath
reflection, and signal shadowing; overall they can achieve
2 to 4 m accuracy [22]. It presents two main problems:
nodes require a directional antenna with beam forming
and line of sight propagation path is needed between the
transmitter and the receiver.
Time of arrival (ToA) and time difference of arrival or

TDoA methods are both based on measurement of the
propagation time. These methods are hard to implement
in radio frequency IPSs because very accurate timers are
needed to reach an acceptable accuracy. Furthermore,
within environments affected by multipath, the detection
of time of arrival is accurate only for very large signal
bandwidths. For this reason, some systems use ultra-wide
band (UWB) technology for an accurate ToA estimation.
The proximity method, also known as cell of origin (CoO),
consists in detecting an entity presence inside a limited
area, or cell, in which coordinates are known.
RSSI method is instead based on the measurement of

radio power at the receiver. Despite the fact that RSSI
measurement is time varying and unstable under most
circumstances, RSSI-based solutions are widely used as
localization technique in WSN systems. RSSI measure-
ments are in fact adopted in many wireless sensor net-
work (WSN) communication standards and are thusmade
available at no cost by normal radio transceivers installed
on-board WSN nodes, without need for additional hard-
ware affecting power consumption and size or cost of
WSN nodes.
Two common techniques to exploit RSSI for localization

are based on fingerprinting signal strengths and conver-
sion of signal strength to distance. In fingerprinting tech-
niques, a map of the signal strength behavior in the cov-
erage area is constructed. In a first phase, a set of offline
measurements is performed to build a database; then, dur-
ing the real-time location phase, the algorithm searches
for the best matches between the RSSI samples and the
stored values. Precision of such methods is normally lim-
ited: MoteTrack [23] can achieve an 80% location-tracking
accuracy of 1.6 m and Ekahau positioning engine [24]
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achieves an accuracy of 1 to 2 m. The disadvantage of this
method is the tiresome calibration phase, during which
large amounts of measurements are collected to con-
struct the database. Furthermore, if prior measurements
are used when an environmental change occurs, a new
calibration phase is needed.
Another family of techniques involves conversion of

RSSI to distance using Friis equation [25]. This equation
establishes the strength of a signal sent by a radio trans-
mitter in free space at one particular distance, following
an exponential relation. In this kind of algorithms, trans-
mitting nodes (either anchors or mobiles) broadcast their
last known position along with any RSSI information pre-
viously collected from other nodes. Using the exponential
relation, the receiver can convert the RSSI measurements
into distances and, using triangulation, estimate its loca-
tion in relation to the anchors. Locating errors using these
methods are in average slightly higher than in fingerprint-
ing due to two main reasons: the way that the empirical
RSSI-distance relation differs from the theoretical model
assumed in the algorithm and the environmental changes
affecting RSSI stability. Although this kind of algorithms
provide lower accuracy than other techniques, their sim-
plicity makes them more suitable to be employed in
low-power systems.
Finally, IPSs can be classified on the different underly-

ing technologies adopted for ranging. In the field of those
working at radio frequency, each adopted technology
brings unique advantages and disadvantages in the indoor
position inference. Wireless local area network (WLAN)
technology [17,26] is widespread; and all types of mobile
device, from laptop to smartphone and tablet, are nowa-
days able to communicate with this standard. WLAN can
be used to estimate the location of a mobile device within
the local network without line-of-sight necessity. Most
positioningmethods inWLAN locating systems are based
on RSSI. The accuracy obtained using this technology
ranges from meters to tens of meters. Room-level accu-
racy can be reached using Bluetooth [27-30]. The major
issue using this technology is the unsuitability in RTLS
applications because of the delay caused by the inquiry
scan process that is performed by a device to detect other
devices. UWB is a short-range and high-bandwidth com-
munication technology, with strong multipath resistance
and building penetrability. UWB has recently gained a lot
of interest in indoor positioning researches thanks to its
theoretical accuracy that is in the order of few centimeters
[31-34]. An issue of UWB regards the expensive cost of
a single node which makes the technology unsuitable for
extensive deployments.
In the following subsections, two technologies will be

introduced which have been used for the implementation
of the hybrid positioning system explained in this paper:
WSN based on IEEE 802.15.4 standard and RFID.

2.1 IEEE 802.15.4-basedWSN positioning systems
IEEE 802.15.4 is a standard which specifies the physical
and media access control layers for a low-power and low-
rate wireless personal area networks (PANs). It is the basis
for a number of specifications, such as ZigBee, which fur-
ther extend the standard by developing the upper layers
which are not defined in IEEE 802.15.4.
ZigBee nodes can communicate each other within a

range of nearly 100 m outdoors, in free space, but indoors
it is usually 5 to 20 m. To determine the distance between
two nodes, RSSI technique is typically adopted. ZigBee
is particularly affected by service interruptions which is
also due to the band frequency in which it communicates,
and its band is also occupied by noisy communication
protocols such as WiFi and Bluetooth. ZigBee is partic-
ularly affected by service interruptions which are due to
the overlapping of its operating frequency band with noisy
communications protocols such as WiFi and Bluetooth.
Tadakamadla [35] deployed ZigBee network for mon-

itoring the presence and movements of vehicles and
humans into an indoor environment. It uses the RSSI to
determine the position of tagged entities; the randomness
of RSSI and the dependency on the user’s body and orien-
tation cause the main error contribution. In this work an
accuracy of 3 m and 35% precision were obtained.
Larranaga et al. [36] used ZigBee network to monitor

an area of 432 m2. The network consists of eight refer-
ence nodes, and RSSI is used to locate mobile nodes. In
this work an average localization accuracy of 3 m was
obtained.
My Bodyguard [37] is a commercial system that tracks

objects and people. It is based on the ZigBee for indoor
environments and on GNSS and cellular networks for
outdoor environments. With this device a room-level
accuracy is obtained.
Alternatively, IEEE 802.15.4 can also be used with

6LoWPAN and standard Internet protocols to build a
wireless embedded Internet. The WSN used for the IPS
developed for this work is based on 6LoWPAN.

2.2 RFID positioning systems
RFID is a technology that allows to identify an object,
called tag, and reading the unique code stored within tag
itself. A typical RFID system is made by at least three com-
ponents: the radio frequency transponder, the reader (a
transceiver controlled by amicroprocessor used to inquiry
a tag), a client software (communicate with a reader
through a reader protocol, collecting, storing, and/or pro-
cessing codes retrieved from the tags). In RFID-based
positioning systems, CoO positioning method is princi-
pally used. Using these positioning methods, the accuracy
is highly dependent on the number of tags involved and on
the maximal reading range. RSSI is used for applying mul-
tilateration positioning method. Povalac and Sandebesta
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[38], Nikitin et al. [39], and Arnitz et al. [40] analyzed both
phases of arrival positioning methods for RFID-based
locating systems.
Because of the characteristics of electromagnetic waves

to penetrate solids, RFID-based locating systems have
the ability to detect a tag even without direct line of
sight (without metal or water). Thanks to this character-
istics, it is possible to embed tags into the wall, ceiling,
or pavement of a building, providing almost completely
unobtrusive systems. Some scalability issues can rise when
a large number of tags and readers are used: a complex sys-
tem configuration and management is required. In active
RFID system, the readers communicate with active tags
equipped with internal batteries. Active tags are more
expensive than passive tags but allow a longer commu-
nication range (tens of meters). Passive RFID tags have
the advantage of the small size, high level of ruggedness,
relatively inexpensive installation, and low maintenance
needs; the theoretical detection range is within 10 m
but the reflections can cause false readings which heav-
ily affect the effectiveness of the localization. IPSs based
on RFID systems have been widely explored and discussed
in scientific literature [41-46]. While in WSN-based IPSs,
anchor and mobile nodes are normally realized using the
same hardware and exchange ranging information in a
peer-to-peer fashion; in RFID-based IPSs, two distinct
schemes are instead generally possible [44]: (1) in the
‘active’ scheme, the mobile node is implemented by a
portable RFID reader, while tags are used as anchors; (2)
in the ‘passive’ scheme, RFID tags are instead objects to be
located while RFID readers are in known position. While
the choice of the scheme to be applied depends on appli-
cation requirements (e.g., the number of objects to locate,
etc.), both schemes can be used with different types of tags
(e.g., HF/UHF tags, active/passive tags, etc.), providing
different performance in terms of maximum range (from
a few centimeters to 10 m), propagation model, and costs
[45]. Seco et al. [47] deployed a system that use nearly 70
active tags scattered into 55 rooms and covering 1,600 m2

area. Using RSSI method in this work. a 1.5-m accuracy
is obtained. Kimaldi [48] provides commercial systems for
hospitals in locating application deployment. Personnel
monitoring and access control have been obtained using
wristbands and keyring tags. Daly et al. [49] deployed a
passive RFID-based positioning system which has been
embedded with passive RFID tags in pavement for nav-
igation purpose. Kiers et al. [50] deployed a navigation
system using arrays of passive RFID tags which have been
installed under a carpet to provide path indication to
blind people. Peng et al. [51] deployed an hybrid system
composed by active RFID system and GNSS in order to
make a positioning system that works seamlessly outdoor
and indoor. By using Kalman filters in this work, a meter
accuracy is obtained.

Table 1 Typical accuracy and positioningmethods of radio
frequency positioning technologies

Technology Accuracy Positioning methods

WLAN Meters Fingerprinting and CoO

Bluetooth Decimeters to meters Fingerprinting and CoO

ZigBee Meters RSSI

RFID Decimeters to meters Fingerprinting and CoO

UWB Centimeters to decimeters ToA

Table 1 shows the typical values of accuracy and posi-
tioning methods used in radio frequency IPSs.
IPSs can use single location technology or the combina-

tion of multiple technologies together in hybrid systems
to increase both positioning accuracy and system robust-
ness.

3 Reference architecture and design
The proposed positioning system combines WSN and
RFID in order to compensate the limitations of each tech-
nology. On one hand, the WSN provides a good radio
coverage but with a low positioning accuracy due to the
high noise on RSSI measurements. On the other hand, the
RFID technology provides the following: (1) in the case
of high-frequency (HF), very precise positioning informa-
tion but limited coverage and temporal discontinuity; (2)
in the case of ultra-high frequency (UHF), good coverage
and reliability but high granularity of the location. The
appropriate combinations of the two technologies could
be a good strategy in building indoor positioning and
tracking system with increased positioning accuracy and
availability.
Figure 1 presents the hybrid architecture of the hybrid

positioning system, and the field data are collected by two
different systems, WSN segment and RFID segment.

Figure 1 The proposed hybrid architecture.
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3.1 WSN segment
The WSN segment is a self-configuring, IPv6-based sen-
sor network which have been implemented and tested on
Telos rev.B [52] and STM32W [53] nodes as shown in
Figure 2. On the software side, each node runs a Contiki
operating system [54]; on the hardware side, each node
is equipped with a radio transceiver, a microcontroller
(TI MSP430 for Telos rev.B and ARM Cortex-M3 for
STM32W; Moteiv Corporation, El Cerrito, CA, USA) and
some on-board sensors (e.g., button sensors, temperature
sensors and light sensors).
In the network level, out-of-band control messages are

exchanged among the nodes to help each node to build its
neighbor list and autonomously form the network. Each
node periodically updates its neighbor list and dynami-
cally builds an optimal route to every potential destina-
tion.
Within the WSN segment, the positioning data are

collected in the following process:

1. The distances between the mobile node (node to be
located) and other nodes (two anchor nodes and/or
any other possible mobile nodes) are measured in
terms of the RSSI.

2. The measured RSSI values by the mobile node (node
to be located) are directly sent to a fixed
infrastructure, or forwarded by the router nodes
(could be an anchor node or a mobile node), to a
fixed infrastructure when a multi-hop transmission is
required.

3. After being processed by the positioning algorithm
that is running on the fixed infrastructure, the
locating result is sent back to the requester (the
mobile to be located).

Figure 2Multi-technology node used for tests.

In terms of communication, a WSN segment is divided
into three levels:

• The main gateway, also called the concentrator
• The fixed gateway
• The network nodes

In order to obtain the RSSI information, each mobile
node periodically broadcasts a user datagram protocol or
UDP ranging request, which is used by neighbor nodes
to measure uplink RSSI. Anchor nodes reply in turn with
a ranging response, including the measured uplink RSSI.
Finally, the mobile node measures all downlink RSSI,
aggregates all ranging responses, and forwards all the
uplink-downlink tuples (one for each neighbor) to the
WSN gateway. The WSN gateway is a simple commer-
cial off-the-shelf (COTS) low-power PC running Linux
(Vancouver, Canada).

3.2 RFID segment
The RFID segment is composed of two systems, a UHF-
RFID system and an HF RFID system. They are indepen-
dent from each other and provide separate detection for
the RFID tags.
In the HF RFID system, some contactless badge read-

ers are placed at the room entrances, and they produce
positioning information while the user register (or request
access) his passage through a door. This information is
extremely accurate, but could instantly lose value even
over a short period of time - when the user enters or
exits a room - if not fused with other information. The
UHF system is composed of a set of RFID reader plus four
compliant antennas deployed on the ceiling. When a UHF
tag is under, Figure 3 depicts the test-bed scenario while
Figure 4 provides a snapshot of the actual deployment
(within ISMB labs). The typical 4-antennas/reader combi-
nation has been used, in order to simplify the field trial;
however, a more complex antennas multiplexing should
be used in an hypothetical wider deployment (at least

Figure 3 RFID-enhancedWSN positioning system schema.
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Figure 4 RFID antennas on the ceiling.

32 antennas/reader). The physical attributes, the relative
position, and the power irradiation level of each anten-
nas has been chosen to optimize the coverage area, trying
to avoid the overlap of each antenna coverage range. Of
course it is impossible to avoid reading the same tag by
different antennas: for this reason, it has been used as a
simple algorithm based on the number of readings of a
single antenna, in order to univocally associate a position
(as a ‘zone’).
The RFID segment is based on a set of HF COTS and

UHF-RFID readers which irradiate periodically and issue
an event when a new tag is detected.
Data collected by the two segments are preprocessed

by technology-specific gateways and then transferred
through local area network to a central entity named con-
text manager, which is a virtually distributed entity capa-
ble of handling generalized context information extracted
from different platform-specific components. Within the
context manager, a virtual delegate named gateway agent
is configured to filter all the data from the specific gate-
way and feed them into any subscribing entity, e.g., a
system which is interested in receiving these specific data.
Based on such data and configuration data hosted inside
the context manager, the location engine (described in
Section 3.3) is able to extract the physical location of
objects (RFID tags and WSN nodes) associated with the
sources of the physical-world events.
Since different types of technology are adopted, the

proposed system is classified as a hybrid scheme exploit-
ing both indirect remote positioning systems and indirect
self-positioning. Hence, the location engine is named as
hybrid location engine.

3.3 Hybrid location engine
The hybrid location engine is the core of the positioning
and tracking system. As it can be seen from Figure 1, it
is a centralized location engine where a hybrid position-
ing algorithm is implemented to periodically estimate the
positions of all the unknown mobile nodes. As shown in
Figure 2, a typical mobile node is equipped with three
radio frequency (RF) devices: a WSN node, a UHF-RFID

tag, and an HF badge. Moreover, the system allows the
existence of other combination of RF devices: two of the
three different elements (e.g., a WSN node and an HF
badge) or just with single device (e.g., a WSN node or a
UHF-RFID tag).
As indicated in Figure 1, three different observations

(RSSI measurements derived fromWSN nodes, detection
of events from UHF-RFID tags, and HF badges) are sent
to a context data base (DB). Since the UHF-RFID and HF-
RFID detection events are available at the corresponding
readers, these data are not forwarded to the correspond-
ing unknown mobile nodes, for instance, through the
WSN technologies, to implement a distributed position-
ing algorithm. On the contrary, in order to reduce com-
munication latency and network traffic, all data, including
also RSSI measurements fromWSN devices, are collected
in the DB, then the hybrid location engine estimates the
position of the mobile nodes in a centralized way.
The main task of the hybrid location engine is to esti-

mate the positions of mobiles. But some other tasks, for
instance, reading location information of anchors and
measurements for mobile nodes, are done to accomplish
this task. In every�Tp seconds, it completes the following
processes:

1. Location information reading. At the beginning of
each time step �Tp, the hybrid location engine
queries the DB about the location information for all
the devices. In more detail, the location information
includes the unique device ID and the corresponding
device category (e.g., WSN, UHF RFID, or HF RFID).
For simplicity, the device ID is a five-digit number
and is general for all the device. For each device there
is a flag which indicates if it is fixed or mobile. A fixed
device may be either a WSN anchor, a UHF-RFID
antenna, or an HF badge reader whose positions are
perfectly known and are stored in the DB; while a
mobile device is a movable node whose position is
not known. In addition, the device association
information is read. As mentioned above, a mobile
node may be equipped with different RF devices and
the association information specifies how different
RF devices are bound with together. The association
information is useful, since in the DB an observation
(a RSSI measurement and a detection of UHF tag or
HF badge) is only related to a single RF device.
Please note that this information reading step is
performed at each �Tp, because the network
topology may change with time, for example, node
changing (e.g., a new node joins the network, a node
leaves, or the known position changes), association
changing (e.g., new devices are bound together or the
old association changes), or role changing (e.g., a
mobile node becomes an anchor node or an anchor
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node becomes a mobile node). By doing this, the
location engine is able to follow the latest change of
network topology and to have the capability of good
position estimates.

2. Measurements reading. During this step, the hybrid
location engine reads all the available observations
from the DB. These observations could be RSSI,
UHF-RFID tag, and HF badge detection events, and
the time interval is chosen from some previous time
to current time tk , that is, [ tk − �TDB, tk], where
�TDB is the width of the temporal window. In
general, �TDB is set equal to position update time
step �Tp, so that all the observations are used only
once. It is worth mentioning that �TDB could be
larger or smaller than �Tp. Sometimes, there may be
not enough RSSI observations for an unknown node
in low dynamic scenario, and �TDB is set larger than
�Tp in order to use the previously collected
measurements. On the contrary, there may be too
many RSSI observations for a mobile node in high
dynamic scenario, and �TDB is set smaller than �Tp
in order to use the freshest measurements. In
principle, �TDB is chosen, depending on the prior
knowledge of mobility degree of the unknown nodes.
In practice, it may happen that more than one
measurement is available between twoWSN nodes at
certain times. In this case, a weighted average scheme
is applied, and the weight associated to a
measurement is calculated according to an
exponential function which takes as input the time
difference between the current time tk and the time
stamp attached to this measurement. In other words,
much lower weight is assigned to the old
measurement while much higher weight is assigned
to the new one. For the multiple detections of RFID
devices, however, weighted average is not necessary
because only the freshest one is used. It is supposed
that the RFID detection is exceedingly reliable and
the old detection event can be neglected.

3. Position estimation. In this step the hybrid location
engine estimates the positions of mobile nodes by
using location information and measurements which
are provided by the previous two steps. Moreover, a
cooperation scheme is applied where the location
engine, apart from RSSI measurements from anchors,
uses also RSSI measurements performed between
mobile nodes, since two mobile WSN nodes are able
to communicate with each other and to perform
corresponding RSSI observations. The adoption of
cooperation improves not only the positioning
accuracy but also system robustness (i.e., position
estimation availability), as more measurements are

available to localize the mobile nodes. Nevertheless,
the cooperation can be merely applicable to mobile
nodes equipped with WSN devices, because both
UHF-RFID tag and HF badge are passive devices and
cannot communicate with other passive devices for
range or range-related observations. Since the HF
badge can be detected by the reader in a very short
distance (e.g., a few centimeters), this badge detection
event can be seen as quite accurate localization
information. In principle, whenever an HF badge is
detected, the estimated position of the associated
mobile node is set to the HF reader’s position, and
other observations (e.g., RSSI or UHF-RFID
detections) are ignored. Since the HF badge readers
are only installed at the door, mainly for the purpose
of access control, they provide only sporadic
detection events. In most of the time, the hybrid
location engine relies on RSSI measurements from
WSN devices and UHF-RFID events for localization.
In order to have a good estimate of a mobile’s
position, the location engine adopts a hybrid
cooperative tracking algorithm, namely hybrid
cooperative extended Kalman filter (hcEKF), which
takes into account all the available observations, that
is, RSSI measurements performed between WSN
nodes (i.e., WSN mobiles to WSN anchors or WSN
mobiles to WSN mobiles) and UHF-RFID tag
detection events. More details of the adopted hcEKF
is presented in Section 4. At the end of the
estimation process, all the estimated positions are
displayed on the map and are uploaded to the DB
with a time stamp.
The periodic repetitions of these three steps form the
whole procedure of the hybrid location engine, which
can be summarized as pseudo code as Algorithm 1.

4 Hybrid cooperative positioning algorithm
The implemented hybrid cooperative positioning algo-
rithm is based on Kalman filter (KF), which is an efficient
and recursive estimator for discrete time linear filtering
problem [55]. There are many extensions and generations
of KF, and here the standard extended KF (EKF) is adopted
due to its simplicity. Here the formulation of EKF is sim-
ply introduced in order to have a better understanding of
the proposed positioning system.

4.1 EKF introduction
EKF is a simple extension of KF for nonlinear prob-
lems [55] and is widely applied in navigation and tracking
systems. In principle, EKF includes two phases: predic-
tion phase, during which the system state is estimated
based on system behaviors, and update phase, during
which the system state is corrected by using the available
observations.
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Algorithm 1 Hybrid location engine procedure
repeat{every �Tp}

Read location information from DB
Extract all the measurements from DB within the interval [ tk − �TDB, tk]
form = 1 toM do {mobile index}

if there are HF-badge events form then
Set estimated position ofm to the location of the HF badge reader according to the latest detection event

else
Select measurements related to mobilem
Select reference location information according to the selected measurements
if there are measurements form then

estimate the mobile’s position using hcEKF
else

position estimation is not available and do not do any estimate
end if

end if
Display the estimated position on the map
Upload the estimated position to the DB

end for
Pause if �Tp is not fully consumed

until stop

4.1.1 Prediction
In prediction phase, the current a priori estimates of state
x̂k|k−1 and of error covariance Pk|k−1 are drawn from the
previous a posteriori ones of state x̂k−1|k−1 and of error
covariance Pk−1|k−1 by using the following two equations:

x̂k|k−1 = f
(
x̂k−1|k−1,wk−1

)
, (1)

Pk|k−1 = AkPk−1|k−1AT
k + Qk−1. (2)

where f is the state transition function and Ak =
∂ f
∂x

∣∣∣
x̂k−1|k−1

is the corresponding Jacobian matrix calcu-

lated at the previous a posteriori state estimate x̂k−1|k−1.
wk−1 is the process noise and is assumed as Gaussian dis-
tributed with covarianceQk , that is, wk−1 ∼ N (0,Qk−1).

4.1.2 Update
In update phase, the a priori estimates (x̂k|k−1 and Pk|k−1)
are corrected the a posteriori estimates (x̂k|k and Pk|k)
by using the available measurements zk . In more detail,
innovation vector ỹk and optimal Kalman gain Kk are
computed as (3) and (4), respectively, as follows:

ỹk = zk − h
(
x̂k|k−1, vk

)
, (3)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk
)−1

, (4)

where h is the observation function and Hk = ∂h
∂x

∣∣∣
x̂k|k−1

is the corresponding Jacobian matrix evaluated around
the a priori state estimate x̂k|k−1. vk is the measurement
noise and is also assumed as Gaussian distributed with
covariance Rk , that is, vk ∼ N (0,Rk).

After that, the a posteriori estimates are obtained as
follows:

x̂k|k = x̂k|k−1 + Kk ỹk , (5)

Pk|k = (In − KkHk)Pk|k−1. (6)
The recursive computation of Equations 1 to 6makes up

the EKF solutions of a dynamic system.

4.2 Measurement modeling
The available measurements are related to the distance
between two RF devices using different models, which are
adopted in hcEKF.

4.2.1 WSNmeasurementmodel
The RSSI measurements performed among WSN nodes
are linked to the distance observation by adopting the
log-normal shadowing path loss model [56], where the
received power P̃ (expressed in dBm) is seen as a loga-
rithmic function of the distance (d in meters) between the
transmitter and the receiver:

P̃(d) = P0 − 10α log10 (d/d0) + Xσ , (7)

where P0 (expressed in dBm) is the mean power received
at the reference distance d0 (typically 1 m), α is the
path loss exponent, and Xσ is an additive measurement
noise. For simplicity, Xσ is assumed to be Gaussian dis-
tributed with zero mean and variance σ 2

dB, that is, Xσ ∼
N (0, σ 2

dB). This model only considers the path loss of RF
signal and does not takes into account multipath or any
other effects. It is worth reminding that these parame-
ters depend greatly on the environment and the operating
frequency. Calibrations are required before applying this
model.
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4.2.2 UHF-RFIDmeasurementmodel
Concerning the UHF-RFID measurements, as in [11],
each detection event is translated to a distance measure-
ment equal to half of the reader interrogation range, r. In
other words, the UHF-RFID detection is seen as constant
distance measurement,

d̃ = r/2 + n, (8)

where n is the measurement noise, and it is hard to know
the exact distribution of this noise. Here we assume it sat-
isfies Gaussian distribution with zero mean and a variance
depending on the radio coverage r. This assumption may
be not true but it is suitable for EKF to use the UHF-RFID
observations. It is worth reminding that the RFID detec-
tion is treated as distance measurement equal to r/2, and
this measurement is always positive.

4.3 Hybrid cooperative EKF
The adopted hybrid cooperative EKF (hcEKF) is first pro-
posed in [12], and it adds hybrid and cooperative features
onto the standard EKF. In principle, the hcEKF algorithm
is divided into three parts: state modeling, hybridization,
and cooperation, which are introduced in the following.

4.3.1 Statemodeling
The positioning complexity strongly depends on the mod-
eling of the system dynamics, and in this algorithm we
choose the system state which is the position of unknown
mobiles, that is, x̂k =[ x̂k , ŷk]. Here only 2D localization
is considered but the extension to 3D case is straightfor-
ward.
According to the this model, the state transition func-

tion f is a linear function of the state:

x̂k|k−1 = f
(
x̂k−1|k−1,wk−1

) = x̂k−1|k−1 + wk−1. (9)

In this case, the process noise wk−1 models the
unknown movements along x and y axes. We let �tk
denote the time difference between x̂k|k−1 and x̂k−1|k−1,
and the covariance matrixQk−1 can be expressed as:

Qk−1 = [�tkI2] diag
(
σ 2
ẋ , σ

2
ẏ

)
[�tkI2]T . (10)

where I2 is a 2×2 identity matrix and diag(σ 2
ẋ , σ

2
ẏ ) is a

2×2 diagonal matrix whose diagonal elements are corre-
sponding to the moving speed, which are the differentials
of system state.

4.3.2 Hybridization
The art of hybridization is to fuse heterogeneous mea-
surements together and to build the corresponding obser-
vation functions. Let A = {1, 2, ...A}, M = {1, 2, ...M},
in which R = {1, 2, ...R} denote the sets of fixed WSN
anchors, WSN mobiles, and fixed RFID readers, respec-
tively. For a generic mobile node m at time k, Ak ⊆ A,

Mk ⊆ M, and Rk ⊆ R denote the subsets of con-
nected devices (WSN anchors, WSN mobiles, and RFID
readers). Note that here m is abbreviated for simplicity of
denotation.
Therefore, the generic observation vector can be written

as

zk =
[
P̃Ak P̃Mk d̃Rk

]T
, (11)

where P̃Ak and P̃Mk denote the sets of RSSI measures
from WSNs, while d̃Rk denotes the set of RFID-based
distance measurements. Note that the RSSI is not trans-
formed into distance measurement and is directly used
to feed the positioning algorithm, because the assump-
tion of Gaussian measurement errors does not hold for
RSS-based distance measurements [57].
For the a priori estimate x̂k|k−1, the corresponding

observation function could be one of the three forms

h
(
x̂k|k−1

) ∈ [
hAk

(
x̂k|k−1

)
hMk

(
x̂k|k−1

)
hRk

(
x̂k|k−1

) ]
,

(12)

where hAk (x̂k|k−1), hMk (x̂k|k−1), and hRk (x̂k|k−1) are the
relative observation functions, referring to the subsets
of connected WSN anchors, WSN mobiles, and RFID
readers, respectively. More specifically, hAk (x̂k|k−1) is cal-
culated by using Equation 7,

hAk (x̂k|k−1) = P0 − 10α log10
(
dist

(
x̂k|k−1,pik

)
/d0

)
,

(13)

where pik (i ∈ Ak) is the position of ith WSN
anchor at time k and dist(·) is the operator of the
Euclidean distance computation, e.g., dist(x1, x2) =√

(x1 − x2)2 + (y1 − y2)2.
In Equation 13, hMk (x̂k|k−1) is calculated similarly, but

the positions of mobile are used instead of those of
anchors. Note that the uncertainty of mobile’s position is
considered on the measurement noise and it is found in
Section 4.3.3. In addition, hRk (x̂k|k−1) can be computed
by using (8)

hRk (x̂k|k−1) = dist
(
x̂k|k−1,plk

)
, (14)

where plk (l ∈ Rk) is the position of lth RFID reader
at time k. More details about how to set the observation
function can be found in [12].

4.3.3 Cooperation
Cooperations among mobile nodes increase the signal
of opportunities for more range or range-related mea-
surements. Uncertainty about mobile’s position, however,
should be taken into appropriate considerations. Other-
wise, cooperation might do harm to the position estima-
tion, that is, the estimated positions could even diverge
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further away from the real ones than the noncoopera-
tive case. Usually, the uncertainty of mobile’s position is
evaluated as the trace of its error covariance matrix.
In hcEKF this uncertainty is mapped on the RSSI mea-

surement and is modeled as additional additive noise on
the RSS measurements. In other words, the measurement
noise variance from mobile nodes is as the sum of the
intrinsic measurement variance plus a contribution from
the neighboring mobile position’s uncertainty, i.e.,

σ 2
Mj

k
= σ 2

dB + σ 2
X j
k
, (15)

where j ∈ Mk is the jth connected mobile nodes and σ 2
dB

is the intrinsic noise variance. Moreover, σ 2
X j
k
is the addi-

tional noise variance and is a function of the trace of error
covariance matrix (trace(Pj

k)), which is indicated in more
details in [12].
Supposing that all the available measurements are inde-

pendent with each other, the measurement error covari-
ance matrix Rk is a diagonal matrix given by:

Rk = diag(. . . σ 2
Ai

k
. . .

︸ ︷︷ ︸
i∈Ak

. . . σ 2
Mj

k
. . .

︸ ︷︷ ︸
j∈Mk

. . . σ 2
Rl

k
. . .

︸ ︷︷ ︸
l∈Rk

). (16)

In distributed localization systems, cooperations among
mobile nodes increase network traffic to transmit the
cooperation packets. In this case, however, cooperations
are done in the centralized location engine and no net-
work traffic is generated. The whole hcEKF procedure is
presented as pseudo code as Algorithm 2.

4.4 Complexity analysis
The computational complexity of EKF is mainly upon
the matrix inversion and matrix multiplication. For each
state estimate, in (4), matrix inversion is computed with
asymptotic complexityO(R3) [58], where R is the dimen-
sion of measurement noise covariance R or the number

of available measurements; in (6), matrix multiplication is
computed with asymptotic complexity O(P3) [58], where
P is the dimension of error covariance or the dimension of
the state vector. In the positioning applications, the num-
ber of measurements is usually larger than the dimension
of state in order to solve the ambiguity of position esti-
mate. Hence, the complexity of EKF is the computation of
inverting matrices in our application. Let |Ak|, |Mk|, and
|Rk| denote the cardinality of the corresponding sets Ak ,
Mk , andRk . The complexity of adopted hcEKF is asymp-
toticallyO((|Ak| + |Mk| + |Rk|)3). For the standard EKF
algorithm, the used measurements are only in setAk , and
the complexity is asymptotically O(|Ak|3). Therefore, the
complexity of hcEKF is increased (1 + |Mk |+|Rk ||Ak | )3 times
with respect to standard EKF. For example, suppose that at
a specific time, there are two RSSI measures from anchors
|Ak| = 2, one RSSI measure from mobile node |Mk| = 1,
and one RFID observation |Rk| = 1, the computational
complexity of hcEKF is increased about eight times. It
is worth reminding that the hcEKF can still localize the
mobile node in this case by using the observations from
RFID technology.

5 Simulation and experimental results
The performance of the proposed tracking system is first
evaluated through simulations and then by means of real
experiment deployment.
The selected validation scenario is based on the Perva-

sive Radio Technologies Laboratory at Istituto Superiore
Mario Boella (ISMB) and is composed of two adjacent
rooms, namely, room 1 and room 2, which are connected
by a corridor (see in Figure 5). This scenario is office
environment with building structure mainly composed of
metal and the size of it is about 25 × 12 m. In Figure 5,
the blue and the red rectangles inside room 1 and room
2 represent the tables and those at the edges represent
the walls, and their material properties are not considered

Algorithm 2 Hybrid cooperative EKF (hcEKF)

Input: hybrid measurements vector zk =
[
P̃Ak P̃Mk d̃Rk

]T
, the previous a posteriori estimates x̂k−1|k−1 and

covariance Pk−1|k−1, positioning information xjk and trace(Pj
k), ∀j ∈ Mk

Output: update the a posteriori estimates x̂k|k and covariance Pk|k
1: calculate noise covariance for mobile σ 2

Mj
k
as (15), ∀j ∈ Mk

2: update noise covariance Rk using (16)
3: predict state x̂k|k−1 as (1)
4: predict error covariance matrix Pk|k−1 as (2)
5: compute innovation ỹk as (3)
6: compute Kalman gain Kk as (4)
7: update state x̂k|k using (5)
8: update error covariance matrix Pk|k using (6)
9: broadcast x̂k|k and trace(Pk|k) to neighbors
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Figure 5 Simulation scenario and the trajectories.

yet, since it is not an easy task. Our work is concentrated
on the realization of the hybrid WSN-RFID localization
system. These tables and walls are plotted to provide
apparent references to the estimated positions.

5.1 Simulation results
In the simulation scenario, the following deployment of
RF devices is adopted. ElevenWSN anchor nodes (WSN 1
to 11 in Figure 5) are placed around the rooms to optimize
the geometry distribution for positioning; four UHF-RFID
antennas (RA 1 to 4 in Figure 5) are deployed only in room
2; five badge readers (BA 1 to 5 in Figure 5) are installed
at the doors to provide access control; three hybrid mobile
nodes are considered; and all of them are equipped with a
WSN device, a UHF-RFID tag, and an HF badge.
Three different trajectories are considered, and the

three mobile nodes move along them respectively.
Figure 5 shows the exact positions of three paths: the first
one is in room 1 and is represented by red pentagrams and
mobile; the second one is in room 2 and is represented by
green circles; the third one connects from room 1 to room
2 through the corridor and is represented by blue dots.
RSSI measurements are generated by using the log-

normal model reported in (7). The model parameters are
from an experiment carried out in 2009 [59]; in more
details, P0 = −49, α = 3.3, and σdB = 5.5. The sensitivity
of the WSN receiver is set to −90 dBm, which determines
the connectivity of twoWSN nodes. A badge event is gen-
erated by the badge reader when a badge passes through
the doors. A tag detection event is provided by the UHF-
RFID antenna when a passive UHF-RFID tag is within the
coverage area, which is modeled as a circle with radius
r = 2 m.
One hundred Monte Carlo (MC) simulations are per-

formed to provide steady statistics. The tracking perfor-
mance is evaluated as root mean square of positioning
errors (RMSE) given by:

RMSE =
√√√√ 1

N · K
N∑
i=1

K∑
k=1

∥∥p̂ik − pik
∥∥2, (17)

where N is the number of MC runs and K is the num-
ber of positions in each trajectory. In addition, p̂ik and pik
denote the corresponding estimated and exact positions
of mobile node at ith run and kth position. The distance of
two positions,

∥∥p̂ik − pik
∥∥, is also known as the positioning

error.
Moreover, four different tracking algorithms are tested

for comparison: the hcEKF which uses all the available
measurements, the hEKF which uses RSSI from WSN
anchors and detection events from RFID, the cEKF which
uses only RSSI measures from WSN nodes, and the EKF
(noncooperative and nonhybrid) which uses only RSSI
measurements fromWSN anchors.
Figure 5 shows the tracking result of one realization,

where only the estimated positions of hcEKF and EKF
related to mobile node M3 are plotted to avoid an over-
crowded figure. Thanks to the HF badge detection, the
hcEKF is accurately initialized, while the EKF has to be ini-
tialized to the coordinates of the scenario’s center because
it can only use RSSI measures. When M3 is in the corri-
dor, the EKF diverges due to the bad geometry of theWSN
anchor deployment while the hcEKF is able to follow the
real trajectory thanks to hybridization of RFID detection
and the cooperation with the other mobile nodes. When
M3 approaches room 2, the standard EKF diverges again
while the hcEKF is still able to track the mobile by fusing
measurements from HF badge reader and UHF-RFID tag
reader.
Figure 6 shows the simulated tracking performance

in terms of cumulative distribution function (CDF) and
RMSE of the positioning errors. It can be observed that
the hcEKF, which fuses hybrid measurements of RSSI

Figure 6 Simulated tracking performance.
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Figure 7 Experimental tracking results.

from WSN and detection events from RFID readers and
adopts cooperation among mobile nodes, shows the best
tracking performance, i.e., best CDF curve and small-
est RMSE. The hEKF outperforms cEKF, which indicates
that the integration of RFID technology can overcome
the inherent disadvantages ofWSN RSSI localization. The
cEKF and standard EKF provide similar performance,
because there are lots of anchors nodes that provide
enough RSSI observations and the gain of cooperation is
not obvious. The gain of the adoption RFID is showed by
the simulation, and it is difficult to define the numerical
gain on the positioning lower bound since heterogeneous
measurements are used.

5.2 Experimental results
Due to the lack of devices, the availability of WSN devices
was not sufficient to allow a full deployment as the simula-
tion. The experiment was carried out only in room 2, and
the RF devices were only deployed in room 2 as Figure 7.
In total, five WSN nodes (WSN 1 to 5), four UHF-RFID
antennas (RA 1 to 4), and three HF badge readers (BA 1 to
3) were deployed. A mobile equipped with the previously
mentioned RF devices did a pedestrian movement along a
zigzag trajectory in the experimental area.
Before tracking the mobile, some RSSI measurements

are used to calibrate the log-normal model in (7). The
relative results are shown in Figure 8. Based on these
measurements, the model parameters is chosen as P0 =
−50.8, α = 1.3, and σdB = 6.1. These parameters indicate
that the environment is harsh and the RSSI measurements
is quite noisy, posing a challenge for tracking.
The final experimental results are presented in Figure 7,

where the left part shows the tracking result of only WSN

measurements and the right part shows that of hybrid
tracking. Since the RSSI measurements contained large
noise, we adopt an optimization method that corrects the
bad position estimate to the position of RFID reader when
RFID detection is available. Moreover, the measurement
availability and RMSE are reported in the upper part.
Due to the large noise on the RSSI measurements, the

tracking trajectory has large errors and the performance
is worse than the simulation. By fusing the measurements
from RFID technology, the hybrid tracking algorithm is
able to track better themaneuvers of mobile, which is con-
sistent with the simulation result. Due to the high packet
loss rate, sometimes there is no RSSI measurement to

Figure 8 Channel model based on RSSI values.
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be used to track the mobile, and the observation from
RFID can improve system availability. The adoption of
hybridization provides improvement of 1.6 m in RMSE
and of 4% in availability.

6 Conclusions
This work presented a hybrid WSN-RFID system for
tracking people and objects in indoor scenarios. The joint
use of heterogeneous technologies can overcome the lim-
itations of each other: WSN system provides adequate
RSSI observations but with large errors, and RFID system
provides accurate detections but with sparse observa-
tions. Thanks to the hybridization of RFID measurements
and cooperation among mobile nodes, the proposed
positioning solution based on EKF is able to increase
the robustness and accuracy of indoor positioning sys-
tems in harsh propagation conditions. Simulation and
experimental results showed that the hybrid WSN-RFID
configuration outperformed the set-ups employing sin-
gle technology. Therefore, we can conclude that indoor
positioning systems can effectively benefit from hybrid
WSN and RFID technologies. Furthermore, the pro-
posed configuration is cost-effective in situations where
WSN and RFID devices are already deployed for other
purposes such as environment monitoring or access
control.

Endnote
aThis article is an extended version of a conference paper
[13] published at ‘The fourth International EURASIP
Workshop on RFID Technology.’
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