
RESEARCH Open Access

Implementation of a reconfigurable ASIP for high
throughput low power DFT/DCT/FIR engine
Hanan M Hassan*, Karim Mohammed and Ahmed F Shalash

Abstract

In this article we present an ASIP design for a discrete fourier transform (DFT)/discrete cosine transform (DCT)/finite
impulse response filters (FIR) engine. The engine is intended for use in an accelerator-chain implementation of
wireless communication systems. The engine offers a very high degree of flexibility, accepting and accelerating
performance approaches that of any-number DFT and inverse discrete fourier transform, one and two dimension
DCT, and even general implementations of FIR equations. Performance approaches that of dedicated
implementations of such algorithms. A customized yet flexible redundant memory map allows processor-like
access while maintaining the pipeline full in a dedicated architecture-like manner. The engine is supported by a
proprietary software tool that automatically sets the rounding pattern for the accelerator rounder to maintain a
required signal to quantization noise or output RMS for any given algorithm. Programming of the processor is
done through a mid-level language that combines register-specific instructions with DFT/DCT/FIR specific-
instructions. Overall the engine allows users to program a very wide range of applications with software-like ease,
while delivering performance very close to hardware. This puts the engine in an excellent spot in the current
wireless communications environment with its profusion of multi-mode and emerging standards.

Keywords: DFT, DCT, FIR, ASIP, reconfigurable hardware

1 Introduction
The rapid increase in the performance demand of wireless
communication systems combined with the proliferation
of standards both finalized and unfinalized has increased
the need for a paradigm shift in the design of communica-
tion system blocks. Recent trends favor Software Defined
Radio (SDR) systems due to their scalability and the ability
to support multiple standards on the same platform. How-
ever, keeping performance within acceptable levels while
doing this is a challenging research question.
Different approaches have been taken to address this

question. Authors of [1-3] used Digital Signal Processors
(DSPs) owing to their high configurability and adaptive
capabilities. Although DSP performance is improving, it
is still impractical due to its high power consumption
and low throughput. On the other hand [4,5] used con-
figurable HW systems due to the high performance
afforded by such platforms. However, these designs fail
to catch up with the rapid growth in communication

standards; they only support a limited class of algorithms
for which they are specifically designed. Application spe-
cific instruction processors (ASIPs) offer an interesting
position between the two approaches, allowing program-
ming-like flexibility for a certain class of applications
under speed and power constraints.
Different approaches to ASIPs offer different levels of

flexibility. For example: [6-8] proposed an ASIP design
which has the reconfigurability to support all/some
functions of the physical layer Orthogonal Frequency
Division (OFDM) receiver chain including OFDM Mod-
ulation/Demodulation, channel estimation, turbo deco-
der, etc. This reconfigurability between non-similar
functions has a severe effect on performance, lowering
throughput, raising power, or both. Realizing that these
blocks operate simultaneously in a pipeline in an OFDM
receiver, a different approach to partitioning the pro-
blem can be taken.
The work presented provides a limited class of MICRO-

CODED programmable solutions to support a large class
of OFDM wireless applications. The receiver chain is
divided to four main ASIP processors seen in Figure 1.

* Correspondence: sep_cameo@yahoo.com
Center for Wireless Studies, Faculty of Engineering, Cairo University, Giza,
Egypt

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

© 2012 Hassan et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:sep_cameo@yahoo.com
http://creativecommons.org/licenses/by/2.0

Each block has enough flexibility to support an extensive
set of applications and configurations within its class while
at the same time preserving hardwired-like performance.
This chapter proposes the OFDM Modulation/Demo-

dulation block which is basically based on Discrete
Fourier Transform (DFT) and extended to support simi-
lar transformations like Discrete Cosine Transform
(DCT) and finite impulse response filters (FIR). DFTs,
DCTs, and FIRs are used in innumerable communica-
tion and signal processing applications. For example: the
DFT is commonly used in high data rate Orthogonal
Frequency Division Multiplexing (OFDM) systems such
as Long Term Evolution (LTE), WiMax, WiLAN, DVB-
T, etc; one of the main reasons is to increase robustness
against frequency selective fading and narrow-band
interference. One and two dimensional DCT are often
used in audio and image processing systems such as
interactive multimedia, digital TV-NTSC, low bit rate
video conferencing, etc; owing to its compaction of
energy into the lower frequencies. Finally FIR, is com-
monly used in digital signal processing applications that
have a frequency spectrum with a wide range of fre-
quency to filter frequency components by isolation,
rejection or attenuation depending on system
implementation.

1.1 Paper overview
We build on previous studies in [9,10] where we pre-
sented a memory based architecture controlled by an
instruction set processor. In this study we combine all
elements of the design: performing further optimization
on the processing elements (PE) to increase their flexibil-
ity and performance; as well as presenting a complete
implementation including the full memory map and the
programming front-end.
The supported mathematical algorithms are discussed

in Section 2, This is followed by the system architecture
and embedded processor in Section 3. The hardware
(HW) accelerators in Section 4, and engine programing
with coding example in Section 5. Section 6 details ASIC

results and comparison among previously published
designs. Section 7 concludes the article.

2 Supported algorithms
The engine can support multiple algorithms some of
these algorithms are listed below.

2.1 DFT
N-point Discrete Fourier Transform is defined as:

DFT(xn) =
N−1∑
n=0

x(n)Wkn
N (1)

where:

{
k = 0, . . .N − 1
WN = e−2π i/N

The direct implementation of Equation (1) is O(N2)
which makes it difficult to meet typical throughput
requirements. Common DFT symbol length in differ-
ent communication and signal processing standard is
in form 2x except LTE down link which supports
length 1536 = 29 × 3. Thus optimizing the throughput
of a 2x × 3y-point DFT is our main concern.
Cooley-Tukey [11] proposed radix-r algorithms, which

reduce the N-point DFT computational complexity to O
(N logr N). The main principle of these algorithms is
decomposing the computation of the discrete fourier
transform of a sequence of length N into smaller dis-
crete fourier transforms see Figure 2.
For lower computation cycle counts, Higher radix

algorithm should be used. In practice, the radix-2 algo-
rithm throughput requires four times the number of
cycles than the radix-4 algorithm and radix-4 algorithm
requires four times the number of cycles of the radix-8
algorithm. On the other hand, higher radix implementa-
tions have big butterflies thus they consume higher
power and need more complex address generators to
handle data flow.
From this trade of between the radix-r algorithm

throughput and used butterfly size. We defined the

Our Work

Figure 1 Physical layer OFDM receiver model.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 2 of 18

parameter power efficiency which introduces how much
power is taken to have certain throughput. Table 1
shows a comparison between the three radix butterflies.
For fair comparison we toke the following assumptions:

- Fix the address generators complexity, by assuming
the data are read from memory 4 samples by 4
samples.
- Normalize butterfly power by number of complex
multipliers on it, which is the the dominant power
consumer in the butterfly.

Power efficiency =
Power

Throughput
≈ Noofmultipliers

1/Noof cycles to end
(2)

From Table 1 The Radix-4 algorithm have a lowest
power consumption in addition to its regularity, it more
interested specially in memory based architectures.
Radix-4 algorithm supports only 4z-point DFTs, So
radix-2 and radix-3 algorithms are required to support

all symbol lengths in the form of 2x × 3y. Radix-4, 2 and
3 butterflies are shown in Figures 3 and 4.

2.2 Inverse DFT
Swapping the real and imaginary parts of input and out-
put data of DFT, we can get the N-point Inverse Dis-
crete Fourier Transform (IDFT) (Equation 3) of a
sequence X(K) scaled by N (Equation 4).

IDFT(Xk) =
1
N

N−1∑
n=0

X(k)W−kn
N , k = 0, . . . ,N − 1 (3)

IDFT(Xk) ∗ N =
N−1∑
n=0

X(k)W−kn
N =

(
N−1∑
k=0

X∗T(k)Wkn
N

)∗T

IDFT(Xk)
∗T N︸︷︷︸

scale factor

=
N−1∑
k=0

X∗T(k)Wkn
N︸ ︷︷ ︸

DFTof x∗T

(4)

x(0)

x(n/4)

x(2n/4)

x(3n/4)

Stage 1
N-point DFT

Radix-4

N/4-point DFT

Stage 2
N/4 -point DFT

Radix-4

N/4-point DFT

N/4-point DFT

Figure 2 Flow graph of the decimation-in-frequency decomposition of an N-point DFT computation into four (N/4)-point DFT
computations (N = 16).

Table 1 Energy consumed for N-point FFT vs.

Algorithm Radix-2 Radix-4 Radix-8

Number of butterflies 2 1 1

Number of stages log2(N) log4(N) log8(N)

Number of butterflies
operations/stage

N
2

N
4

N
8

Number of clock
cycles/butterflies

1 1 2

Total number of clock
cycles for N -point FFT

N
4
log2(N)

(
N
4

)
(x)

N
4
log4(N)

(
N
4

)(x
2

) N
4
log8(N) × 2

(
N
4

)(x
3

)
Normalized power 2 3 7

Power efficiency 0.5 × N × x 0.375 × N × x 0.43 × N × x

As N = 2x

Radix-r algorithms

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 3 of 18

2.3 DCT
Several types of the DCT of a sequence x(n) are defined in
[12]. The most popular being type II which is defined as:

DCT(xn) = ω(k)
N−1∑
n=0

x(n) cos
(
(2n + 1)πk

2N

)
, ω(k) =

{√
1/N k �= 0√
2/N k = 0

(5)

Braganza and Leeser [13] proposed an implemention
to get a real DCT from the DFT by constructing a
sequence v(n) from real input data x(n) as follows:

v(n) =

{
x(n) n = 0 . . . N − 1

x(2N − n − 1) n = N . . . 2N − 1
(6)

Then the output of DFT(vn) is multiplied by

2ω(k)e

−i2πk
2N

.

2.4 Inverse DCT
The inverse DCT of type II is type III which is defined
as:

IDCT(xk) =
N−1∑
k=0

ω(k)Xk cos
(
(2n + 1)πk

2N

)
, ω(k) =

√
2/N (7)

For the IDCT, we reverse the above steps. First, X (k)
is rearranged to form a complex hermitian symmetric
sequence V(k):

V(k) =
1
2
e

jπk
2N [x(k) − jx(N − k)], k = 0, 1, 2 . . .N − 1 (8)

Then construct v(n) by getting the IDFT of V (k),
finally rearrange v(n) to get x(n).
2-Dimension modes
For 2D modes, the 1D mode is performed two times:
one time in all rows of input frame then another time
on the columns of the result Figure 5.

2.5 FIR
The FIR filter Equation (9) is handled using multiply
accumulate (MAC) operations and accelerated by using
Multiple computing units.

X(n+N/4)

+

+ x

X(k)

X(k+2N/4)

+
X(k+N/4)

X(n+2N/4)

+X(n+3N/4)
X(k+3N/4)

2n
NW

n
NW

3n
NW

x

x

X(n)

Figure 3 Radix-4 butterfly.

(a) Radix-2 butterfly (b) Radix-3 butterfly

X(n)

X(n+N/2)

X(n+2N/3)

+

+ x

X(k)

X(k+N/3)

+ x
X(k+2N/3)

n
NW

2n
NW

X(n)

X(n+N/2)

X(k)

X(k+N/2)
n
NW

+

- x

Figure 4 The other supported Radix-r butterflies (a) Radix-2 butterfly. (b) Radix-3 butterfly.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 4 of 18

yt =
N−1∑
k=0

x(k)at−k (9)

where a’s are the filter coefficients.

2.6 Other transformations
Other transformations like any-point DFT can also be
handled using basic operations like MAC, accumulator
and vector operations.

3 ASIP processor
Embedded architectures are divided to pipelined [14] and
memory based architectures (iterative designs) [5,15]. The
pipelined architectures are constructed from long chain
from butterflies connected to individual memories. For
example to support 4K-DFT by pipelined architecture like
Radix-4 Singlepath Delay Feedback (R4SDF) [16] (seen in
Figure 6). It needs six pipeline radix-4 butterflies (three
complex multipliers) connected to six dual port memories.
The memories have a read and write operation in each
clock cycle. While The memory based architectures
usually consist of one butterfly with only two dual port
memories. The memories in the based architectures have
also a read and write operation in each clock cycle which
is approximately similar to the memory transactions in the
pipelined architectures. From this discussion we prefer to
use memory-based architecture and we prove our selec-
tion in Section 6 by comparing our results versus anther
publish pipeline architecture.

The first step in the design of a flexible and efficient
ASIP is to identify the common set of operations in the
class of operations which must be supported. The compu-
tationally intensive operations are defined as coefficient-
generation, address-generation, and PE. These operations
are supported by HW acceleration.
To meet the high throughput demand, data operations

are handled through vector instructions. Synchronization
in the processing pipeline is handled through handshakes
between the system blocks. This greatly reduces the load
on decoders, allowing continuous flow in the pipeline
and providing dedicated design-like throughput.
The critical path in the PE is relatively short. This sim-

plicity combined with the high throughput of the pipeline
allows the user to greatly under clock the circuit, thus
allowing significant power scaling with application.
When a valid configuration radix-r stage is received,

the HW accelerators are configured to operate on a user
selected DFT/IDFT size. The read address generator is
responsible for generating data addresses with their
memory enables and giving its state to the coefficient
generator to maintain synchronization between data and
coefficients. The data and coefficients are handed to the
PE which is configured to apply radix-r calculations.
Upon finishing, the PE enables the write address genera-
tor and finally the processed data is saved in the 2nd
memory Figure 7.
To allow instantaneous reading and writing and to

keep the pipeline full, two N-word memories are used

X DFT/DCT
2D(X)

DFT/DCT-1D on
each row

DFT/DCT-1D on
each column

Figure 5 2D DFT/DCT from 1D DFT/DCT.

3*N/4
Memory

Radix-4
Butterfly

x

3*N/16
Memory

Radix-4
Butterfly

x

3*4
Memory

Radix-4
Butterfly

Figure 6 R4SDF pipeline architecture.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 5 of 18

one for reading data and another for writing results. The
source and destination memories are exchanged each
stage. Each memory contains four dual port banks and
has four input and output complex data buses to match
the configurable memory requirements. The memory bus
controller is responsible for applying the input and out-
put data to the corresponding memory banks depending
on its bank number and the memory state (read or
write). Memory architecture is shown in Figure 8.
In the embedded processor architecture seen in Figure

9, input/output signals handle the interface between the
decoder and the external environment. Depending on
the external environment state, the decoder enables data
transmission, importing, exporting or both. The I/O
data bus contains four complex word buses, two for
importing data and the other for exporting.
The boot-loading memory consists of a non-volatile

bank responsible for initializing the processor RAMs
with the required micro-code. The engine is controlled
by a non-pipelined decoder with 16 registers in the regis-
ter file and a 26-bit instruction set with 66 instructions.
(1) The register file is divided into even and odd sets,

the real parts of complex words are saved in the even
registers and the imaginary parts in following odd regis-
ters. Complex words are called by their real register
number while a real word may be saved in any register
and called by its index.
(2) The instruction set is divided into five classes:

- Radix instructions like: Radix-2/3/4, Inverse Radix-
2/3/4 used for DFT.
- MAC instructions for FIR: multiply two data vec-
tors and accumulate, multiply data vector by coeffi-
cient and accumulate.
- Vector Multiplications instructions For DCT/
IDCT: multiply by coefficient,
- Vector instructions like: accumulate, power,
energy, addition, subtraction, multiplication, multiply
by coefficient used to perform general vector
arithmetic.
- Word instructions like: shift, set, load, store, com-
plex or word addition, subtraction, multiplication
used mostly for control.
- Data transmission instructions like: data arrange-
ment, data importing and exporting.
- Control instructions like: compare, conditional/
unconditional branches, disable/enable dealing with
imaginary part.

All vector instructions are applicable on complex
words and have the ability to define the order in which
data is read or written. MAC instructions are used for
general implementations of FIR equations. MAC allows
multiplication of data by data or data by stored or gen-
erated coefficients. MAC and Vector multiplication
instructions allow multiplication by coefficients or their
inverse for general transformations purpose.

Read
Address

generator

Read data
form memory

Apply radix

Generate tw

write
Address

generator

write
data

Read
Address

generator

Read data
form memory

Apply radix

Generate tw

write
Address

generator

write
data

Read
Address

generator

Read data
form memory

Apply radix

Generate tw

write
Address

generator

write
data

......
Figure 7 Pipeline process.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 6 of 18

4 Hardware accelerators
4.1 Processing element
The PE is the primary computational unit of the engine
see Figure 10. The PE can be set to perform two radix-2
butterflies, one radix-3/4 butterfly For DFT implementa-
tions, multiply For DCT/IDCT multiplication stage, mul-
tiply accumulate for general FIR implementations in
addition to other operations like accumulate, addition
and subtraction. It is divided into four units: Constant
multiplier unit, Addition unit, Multiplication unit, and
finally Rounder unit. To increase utilization we time-
share the complex multiplier to perform constant multi-
plication functions, that is to say constant multiplier CM
and multiplier 1 M1 in Figure 10 use the same multi-
pliers. Data width naturally grows with processing, this is
a major question in fixed-point ASIP applications. A
rounder unit is placed at the final stage to re-fit data in a
constant number of bits (word length). Stage scale factors
can be set by the programmer and a proprietary software

tool automatically generates the necessary scale factors
for a given application. Complex multipliers are config-
ured to multiply input 1 by input 2 or input 2 conjugate.
Adder 3 is responsible for accumulate operations, so it is
provided by a scalable truncator to prevent overflow.
Multiplexers at the input and output data pins are used
to swap their real and imaginary parts for inverse opera-
tions. The additional multiplexers configure the butterfly
and bypass some stages like the multiplication stage.

4.2 Coefficient generator
The coefficient generator generates needed coefficients
in two modes.
Mode one: Generates twiddle factors needed for Radix-

r and DCT/IDCT Multiplication stage calculations. The
first N/4 coefficients are stored in RAM and the remain-
ing coefficients are generated by using the even and odd
symmetry properties in the phase and amplitude of
twiddle factor (Equations 10 and 11).

Bank 3
Real Part

Bank 3
Imag. Part

Bank 2
Real Part

Bank 2
Imag. Part

Bank 1
Real Part

Bank 1
Imag. Part

Bank 0
Real Part

Bank 0
Imag. Part

Address port 1
Data in port 1

W/R

Enable port1
Bank

Data out port 1

Address port 2
Data in port 2

Enable port 2
Data out port 2

Address

Data in

Enable
Output
Data

Write/Read

Figure 8 Memory architecture.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 7 of 18

/

.
2State

4

/

Processing Element

Init.
Data

.

slaves slaves

Figure 9 DFT/DCT/FIR processor.

Swap
R & Im

Swap
R & Im

Swap
R & Im

Swap
R & Im

Rounder

Rounder

Rounder

Rounder Swap
R & Im

Swap
R & Im

Swap
R & Im

Swap
R & Im

op0

op2

op3

op1

Ip0Ip1Ip2Ip3

(+,+,+,+)

(+,-,+,-)

(+,+,-,+)

(+,+,-,+)

Radix3:*(W1
3)

Radix4:*(-j)
Else: *(0)Radix3:*(W1

3)
Radix4:*(-j)
Else: *(0)

Radix3:*(W1
3)

Radix4:*(-j)
Else: *(0)

Radix3:*(W2
3)

Radix4:*(j)
Else: *(0)

coeff0

coeff1

coeff2

RoundersMultipiersAddersConst
Multipliers

M1

M2

M3

CM

C
on

tro
ls

ig
na

ls

Figure 10 Processing element.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 8 of 18

e
j2π

n
N = e

j2π
n′

N e
j2π

x × N/4
N

= e
j2π

n′

N × E(x), n′ = 0, . . . ,N/4

(10)

E(x) = e
j2π

x

4 , x = 0, 1, 2, 3

= 1, j,−1,−j
(11)

For
e
−j2π

n

N
we invert the imaginary part’s sign. For

radix-4 computations we need to generate three twiddle
factors at a time, so we use two memories, the first mem-

ory is a dual-port RAM and is used to generate
e
−j2π

n

N

and
e
−j2π

3n
N

. The second memory is a single-port RAM

which is used to generate
e
−j2π

2n
N

. For frame lengths with

x >2, the 2nd memory addresses are always even. So we
remove all odd entries. This reduction adds a negligible
noise in x = 2 case. For frame lengths with x = 1 we
replace N by N’(N’ = 4 × 3y). Consequently we save the
first N’/4 = 3y coefficients in RAM. To save power the 2nd
memory is enabled only in radix-4 stage.
This method reduces coefficient memory size to 18%

of a direct LUT implementation.
Mode two: Read stored coefficients from the first RAM

starting from selected address and going in ascending or
descending order depending on selected mode. This is
more suitable for FIR transformation and direct imple-
mentations of general filters.

4.3 Read and write address generators
Generate continuous write and read addresses depend-
ing on their modes. The address bus is divided into four
partitions: real part enable, imaginary part enable, bank
number and bank index see Figure 11.
Each generator is connected to a single port RAM to

get off-line generated addresses. Read and write address
memories hold two addresses in each entry. To enable
reading four sequential addresses in one clock cycle,
write address memory is divided into two single port
RAMs, one for odd entries and another for even entries.
The address generation modes are defined as:

Mode one: Generate addresses for different radix-r
stages. Radix-4, 2 and 3 need to read 4, 4 (tworadix-2
handled in parallel), 3 data samples respectively for their
computations.
This can be handled in several ways: Read data from

memory 2 samples by 2 samples with 2 clock latency for
each radix operation, double memory clock frequency
and read 2 samples by 2 samples with 1 clock latency for
each radix operation at the expense of double memory
power, or use 4-port memories. Each of the above techni-
ques have drawbacks to different degrees like lower
throughput, power or both. In [10] we proposed an
address scheme to solve the above problem with conflict-
free memory access. The scheme is contingent on parti-
tioning the memory to 4 dual-port memory banks as well
as the specific way data is distributed between the banks.
This guarantees that at any stage we have at most two
accesses to the same memory bank.
Initially data is saved and distributed between memory

banks to be ready for the first radix stage (radix-4 or 3).
As N = 2x × 3y, (x ≠ 1), if x is even (integer stages from
radix-4) the butterfly performs radix-4 computations till
the end then switches to perform radix-3 stages. Else (if

x odd) the butterfly performs (x−1
2) radix-4 stages fol-

lowed by radix-2 then switches to perform radix-3
stages. Switching to radix-3 stages consumes a one-time
additional stage to rearrange data in memory banks. At
last radix-r stage, radix output is saved in the same loca-
tions of radix inputs.
Samples at any stage are saved in memory depending

on the current radix stage (r), current DFT frame length
(N), DFT frame number (f), and sample index inside the
DFT frame (n) see Figure 12. The bank number results
from accessing the bank Look Up Table (LUT) (Table
1) by signal bankt, and the data index in the bank
(Equation 12).

bankt = floor
(

n
N/r

)
(12)

Bank index = n × modN/r + f × N
r

Mode two: Generate addresses for DCT/IDCT modes
to arrange data in vn and Vk order.

Imag

L-2L-1 L-3 L-5 0
Figure 11 Address structure.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 9 of 18

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

Figure 12 Signal flow graph of 32-point DFT.

N-1

3
2
1
0

4
.

.

.

.

sh
uf

fle

Input data Stored order

Bank 0

Bank 1

Bank 2

Bank 3

4
2
0

.

.

.

.

.

.

N/2+4
N/2+2

N/2

.

.

N/2+1
N/2+3
N/2+5

.

.

1

5
3

.

.

Figure 13 Re-ordering pattern for vn sequence.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 10 of 18

N-1

3
2
1
0

4

sh
uf

fle

Input data Stored order

.

.

.

.

Real
part

Imaginary
part

1
0

N-1
zeroes

.

.
.
.

N/4+1
N/4

3N/4-1
3N/4

.

.
.
.

N-2

3N/4

2

N/4
.

.

N/2+1
N/2

N/2-1
N/2

.

.
.
.

N-1 1

Bank 0

Bank 1

Bank 2

Bank 3
.

Figure 14 Re-ordering pattern for Vk sequence.

0 5 10 15 20 25
10-5

10-4

10-3

10-2

10-1

100

SNR

BE
R

9 Bit
10 Bit
11 Bit
12 Bit
13 Bit
14 Bit
Float

Figure 15 BER curve WIMAX system with 64QAM modulation, fading rate = 1/2, number of sub carriers = 240. Using quantized input to
quantized DFT module.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 11 of 18

For DCT inputs are saved in the shuffled order shown
in Figure 13. Data is distributed in the memory banks to
allow direct starting for the next radix stage.
In IDCT computation sequence data is ordered in Vk

order then multiplied by coefficients in the next stage.
In order to save data arrangement time, data is saved in
shuffle order shown in Figure 14 then at multiplication
stage the multiplier is configured to multiply the coeffi-
cients by data conjugate to construct true Vk sequence.
Each input sample is saved in two locations in memory

and the data is imported 2 samples by 2 samples in order
to reduce data transmission time. So, data is distributed
in memory banks to prevent memory conflict.
Mode three: Generate addresses for other vector

instructions like MAC. It generates two addresses for two
data vectors or one data vector (two samples at time) in-
order sequence or get them form memory. With start
addresses and data length as an input parameters.

5 Engine programming
The embedded processor programming passes through
three phases: Simulation, testing, and verification. We
will discuss 1024-point DFT, 8 × 8 DCT and 64 tap FIR
as case studies.

5.1 Simulation
The goal of these simulations is to find best values of
our design which are: the scale factor which we divide
on each radix-r stage, word length and coefficient fac-
tors length.
5.1.1 Scale factor
Due to the nature of DFT operation the output data
range is growth with the radix stages. So, the data must
be scaled after each radix-r stage to refit in fixed num-
ber of bits. If this scale is large the data will be lost, on
the other hand if it is small many overflows will occur,
so stage scale must be well chosen. We considerate this
point and designed an optimum scales generator tool to
select the best scale on each stage with two modes:
(1) Select the Highest SQNR.
(2) Guaranteed output RMS, to keep signal peaks

which are needed in same applications.
The tool are designed by Matlab software, it generate

all possible scale factors with corresponding signal to
quantization noise (SQNR) and the RMS of the output
then select the best scale vector Depending on the input
mode. Using the first mode for our example reveals
scale factors of (4 4 2 2 2) for 1024 point five stages,
giving the highest SQNR with a Gaussian input.

% reset all registers
set 0,r0
set 0,r1
set 0,r2
set 0,r3
set 0,r4
set 0,r5
set 0,r6
set 0,r7
set 0,r8
set 0,r9
set 0,r10
set 0,r11
set 0,r12
set 0,r13
set 0,r14
set 0,r15

% Data length = 1024
set 1024,r0

% load instructions to program memory
%start address of Instructions in flash = 0

bootload pm,0
% Load instructions to read address RAM

bootload r_mem,1024
bootload w_mem,2048
bootload ws_mem1,3072
bootload ws_mem2,4096
set 2 ,r0
bootload s_reg,5120
set 0,r0

% jumb to program memory
jumb pm

Figure 16 Boot loading initialization instructions.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 12 of 18

% Set parameters
% Input Data length = N/2 = 512

set 512,r0 % r0 = 512
set 256,r2
set 256,r3

% Import new symbol in radix 4 order
in (ordr_rdx4)

% Swap 2 memories
swap
l1:

% Radix parameters
set 256,r2 % N/4
set 256,r3 % n/4
set 64,r4 % n/16
set 1024,r5 % n
set 192,r0 % 3n/16
set 4,r1 % N’/N

set 0,r6 % Counter = 0
set 4,r7 % 4 iterations

l2:
% Radix 4, scale = 22

n_radx4 (2)
swap
shiftr r3,2,r3 % r3 = r3 >> 2

shiftr r4,2,r4
shiftr r5,2,r5
shiftr r0,2,r0
shiftl r1,2,r1 % r1 = r1 << 2
addimm r6,1,r6 % counter += 1

% Compare counter,End
comp r6,r7

% Branch if less than
bl l2
nop % no operation after loop

% Last stage radix-4, scale = 22

l_radx4 (Scape_multi,2)
swap
set 256,r3
set 1024,r4
set 0,r5
set 512,r0
set 0,r1

% I/O Data
% Get addresses from memory for exporting data
% Import new symbol in radix 4 order

io (mem0, ordr_rdx4)
swap

% Process new symbol
jumb l1

Figure 17 Implementation code example for 1024-point DFT.

set 32,r2
% insert data and distributed it in vn order

in vn
l1
set 0,r6
set 1,r7
l2
swap
set 648,r1
set 16,r2
set 2,r3
set 1,r4
set 8,r5

% radix 4 in all rows
n_radx4 (nlst,2) Radix 4 not last
swap
shiftr r3,2,r3 n
shiftr r4,2,r4 n
shiftr r5,2,r5 n
shiftl r1,2,r1 n

% radix 2 in all rows
radx2 (lst,2) Radix 4 not last
swap

% disable writing imaginary part
% write real part only

dis_img write
set 162,r1
set 16,r2
set 2,r3
set 64,r4
set 8,r5

% multiply data by coefficients
% read data in order and write result using addresses in memory

vmulti_coef0 (order, memory)
% enale writing imaginary part

en_img write
addimm r6,1,r6 % counter += 1
Compare counter,End
comp r6,r7
% Branch if less than
bl l2
nop % no operation after loop
set 6,r0
set 0,r1

% out processed data and enter new one
io (mem, vn)

% repeat again
jumb l1
nop

Figure 18 Implementation code example for 8 × 8 DCT.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 13 of 18

5.1.2 Word and coefficient lengths
Then, Fixed-point simulations of a 1024 point DFT in
WiMAX see Figure 15 reveal that a 26 bit (13 real and
13 imaginary) complex word length and 20 bit complex
twiddle factors are sufficient to keep quantization noise
power under system noise by 15 dB at 10-3 Bit Error
Rate (BER).

5.2 Testing
Code for the application is written using custom mne-
monics that combine HW-specific instructions with
application-specific instructions. This then passes
through a assembly compiler (designed by Matlab soft-
ware) which generates the boot-loading and program
object files.
When processing begins, the decoder accesses address

zero in the boot loading ROM and reads initialization
instructions. These instructions are mainly used for
loading data and instructions from flash memory to the
corresponding RAM memory in the system. Upon fin-
ishing, the decoder jumps to program memory and
starts processing.

Figure 16 shows boot loading ROM initialization
instructions. The initialization process may include pre-
loading some or all of: program memory instructions
(pm), coefficients memory (ws_mem1, ws_mem2), coeffi-
cients memory length (s_reg), read address memory
(r_mem) and write addresses ram (w_mem). Boot-loading
is necessary if the engine is to switch modes or standards
on-the-fly. Otherwise program RAMs can be replaced by
ROMs carrying the required instructions.
5.2.1 1024-point DFT
Figure 17 shows code example for 1024-point DFT. In/
Out operations read two words at a time, therefore for N
words it takes only N/2 clock cycles. To save on proces-
sing overhead special control signals like r2 = N/radix
(used by address generator) are inserted directly to
reduce computational load (by adding this instruction we
save the power and area of a full divider). After each
stage these parameters are modified, and loop for the

% 64 tap filter
set 64,r0
set 64, r4

% coefficient start address in memory = 0
set 0, r1

% data start address = 0
set 0,r3

% insert data in order
in order
l1:
set 0,r6 % t

l2:

% Mac,Get coef in descending order
% get coefficint from start address= t

mov r1, r6
mac_coef2 (ordr,ordr,2) r3,r6

% next output
addimm r6,1,r6
Compare counter,End
comp r6,r4

% branch if less than
bl l2
nop

% out processed data and inset new on in oder
io (ordr,ordr)
jumb l1
nop

Figure 19 Implementation code example for 64 tap FIR.

Table 2 Synthesis results (with memories)

Up to 8K point-DFT 1D symbol 26 complex word length

Technology IBM 130 nm CMOS technology (6 layers)

Volt 1.08 V

Libraries Gates libraries: Typical (55°c)

Fast library(125°c) used for worst case conditions

Memories library: (125°c)

Number of Cells 57,906 cell

Area 0.612 × 0.6 (0.36) mm2

Power 56 mw at 100 MHz

Max frequency 700 MHz

Table 3 Number of clock cycles and SQNR for 1D-DFT
including data transfer times between the embedded
engine and the host

N -point
DFT

Cycles
per

Latency
@
100
MHz

SQNR
Scale
factor

Scale factor

DFT DFT (dB) (μs) s1 s2 s3 s4 s5 s6 s7

64 146 1.46 83.67 4 2 2

128 278 2.78 86.16 4 2 2 2

256 470 4.7 96.839 4 4 2 2

512 1002 10.02 96.37 4 4 2 2 2

1024 1898 18.98 99.1 4 4 2 2 2

2048 4222 42.22 98.97 4 4 2 2 2 2

4096 8318 83.18 97.84 4 4 4 2 2 2

8192 18578 185.78 95.25 4 4 4 2 2 2 2

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 14 of 18

next radix stage. The twiddle factors in the last stage in
DFT calculations are ones so we add choice (Scape multi,
multi) to disable the twiddle factors generator and bypass
multiplication stage. Thus the last radix instruction is
separated from the loop. Then apply io instruction to
export the processed symbol and import a new one.
finally, jump to the first radix stage and so on.
8 × 8 DCT
Figure 18 shows code example for 8 × 8 DCT. Data is
read, row by row, saving each row in vn order discussed in
Section 2. Then radix stages are applied until DFT calcula-
tions on all rows are completed. The data is multiplied by
the twiddle factors, by getting addresses from read address
memory (to arrange data after DFT operation and
exchange row by column). Writing the result is in vn order
(construct vn for new DCT-1D operation). The imaginary
parts of result are set to zero by disabling writing of ima-
ginary results. Then, the radix and multiplication stages
are applied once more. Finally, the result is output in
order and the new data is simultaneously loaded.
5.2.2 FIR filter
Figure 19 shows code example for a 64 tap FIR. Data is
read in order. Multiply accumulate operation are applied
on the data to generate first output y(0). increment out-
put index and apply MAC for next output and so on. Till
the last output (N - 1) is generated. Finally, the result is
output in order and the new data is simultaneously
loaded.

5.3 Verification
Verification of these and other examples is through bit-
matching the results of random input patterns with
fixed-point results from fixed point golden files. The
golden files are verified and tested against a floating

point model to make sure they perform the needed tasks.
The golden files are used to verify the RTL design by
generating test cases, both directed and random.

6 Implementation results and performance
evaluation
6.1 Implementation
The engine is fully designed by the authors, using Veri-
log Hardware Description language and tested by apply-
ing various programming codes. Synthesis has been
carried out using Cadence first encounter using IBM
130 nm CMOS technology. The post layout synthesis
results report of the entire design with 26 bit complex
word length, 20 bit complex twiddle factors and support
for up to 8K-point DFT include system memories has
been summarized in Table 2. The table also maintain all
synthesis constraints. The engine parameters like the
number of bits, memories size and types are parame-
trized to meet different requirements.

6.2 Performance evaluation
Tables 3, 4, and 5 show a summary of features of our
proposed embedded processor.
Table 6 has a list of power consumption values for pre-

viously published articles. To eliminate the process factor
to make the comparisons as fair as possible, the power
consumption of each design has been normalized to 130
nm technology, 1.08 V and engine throughput by Equation
(13) [17]. We define the parameter power efficiency which
introduces how much power is taken to have certain
throughput to make fair comparisons between the engines
power in the case of they have same throughput. This
shows, at the very least, that the proposed engine has a
significant advantage in power consumption.

Normalized power = Power ×
(

130
Technology

)
×

(
1.08
Volt

)2

Power efficiency =
Normalized power

Throughput
=
Normalized power

1/Time to end

(13)

6.3 Discussion
Weidong and Wanhammar [14] proposed an pipeline
ASIC for pipeline FFT processor. Here we prove our
discussion in Section 3, the pipeline architecture have a
higher throughput but loss on power efficiency.
The authors of [5,18,19] proposed memory based

Application-Specific Integrated Circuit (ASIC) for scal-
able DFT engine. The proposed engine in [5] enables
runtime configuration of the DFT length, where the sup-
ported lengths vary only from 16-points to 4096. while
the proposed engine in [18] enables reconfigurable FFT
Processor, the FFT lengths vary only from 128-points to
8192. and [19] can perform 64 2048-point FFT. This
engines have high throughput rates. But, they only

Table 4 Number of clock cycles for 1D-DCT including
data transfer times between the embedded engine and
the host

N -point DCT Cyles per DCT Latency @ 100 MHz (μs)

64 177 1.77

256 592 5.92

512 1247 12.47

1024 2399 23.99

Table 5 Number of clock cycles for 2D-DCT including
data transfer times between the embedded engine and
the host

N × N-point DCT Cycles per DCT Latency @ 100 MHz (μs)

8 × 8 186 1.86

16 × 16 390 3.9

32 × 32 1724 17.24

64 × 64 6380 63.8

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 15 of 18

support certain kinds of algorithms for which they are
designed.
In contrast, [2] used digital signal processors owing to

their high reconfigurability and adaptive capabilities.
Although DSP performance is improving, it is still unsuita-
ble due to its high power consumption and low through-
put. Hsu and Lin [2] proposed an approach for DFT
implementation on DSP with low-memory reference and

high flexibility, however it is optimized for 2x-point DFT,
It needs 40,338 cycles to complete one 1024-point DFT.
The third solution, [20,21] is the ASIP which compro-

mises between the above solutions. Zhong et al. [20] pro-
posed an DFT/IDFT processor based on multi-processor
rings. This engine presents four processor rings (8, 16-
Point FFT) and supports DFT lengths from 16-points to
4096. Guan et al. [21] proposed an ASIP scalable

Table 6 Number of clock cycles and SQNR for 1D-DFT including data transfer times between the embedded engine
and the host

Parameters

Reference Implementation Technology
(nm)

volt
(V)

Frequency
(MHz)

Max-point
DFT

Time to end
(μs)

Power
(mW)

Normalized
power

Power
efficiency

SQNR
(dB)

[14] Pipeline HW 350 1.5 25 1K 40.96 200 35.6 1.4 N/A

[25] Configurable HW 180 1.8 86 8K 805 75.51 19.6 15.8 N/A

[18] Configurable HW 180 1.8 200 8K 395 117 84.2 33 N/A

[5] Configurable HW 65 1.3 866 4K 7.1 35 48.3 0.3 71.90

[26] Configurable HW 180 1.8 150 8K 138 350 91 12.5 N/A

[19] Configurable HW 180 1.8 70 2K 224 140 36.4 8.15 N/A

[2] DSP - - 100 1K 403.3 N/A N/A N/A N/A

[20] ASIP 250 2.5 100 4K 52.80 275 26.6 1.4 61.23

[21] ASIP 180 1.8 300 1K 13.8 N/A N/A N/A N/A

1K 18.98 19 19 0.3 99.1

Proposed ASIP 130 1.08 100 4K 42.2 25 25 1.05 97.84

8K 185.7 56 56 10.3 95.25

[21]: Present the power consumption of functional unit and data address generator only

103

104

1.5 3.5 4 4.5
0

HW designs

DSP

N
um

be
ro

fc
lo

ck
cy

cl
es

In
lo

g
sc

al
e

[14] [5] Our work [19] [18] [2]

Previously published designs

105

ASIP designs

Figure 20 Number of clock cycles per one 1024-point DFT vs. implementation techniques.

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 16 of 18

architecture of any-point DFT at the expense of a large
PE (contains an 8-point butterfly). the authors present
only the power consumption of functional unit and data
address generator so we did not include it in the table.
From our investigation, Figure 20 shows comparison

between implementation techniques throughput.
Shah et al. [22] presents a pipelined scalable any-point

DFT 1D/2D engine which requires 256 clock cycles for
(16 × 16)-DFT 2D, while [23] and this design require 512
cycles. Nevertheless, Sohil Shah’s proposal has higher area.
For DCT-1D, we use the mathematical algorithm in

[12] which implements ASIC DCT-1D bulting blocks
common with DFT. The engine has a throughput of one
512-point DCT per 1,771 cycles, and one 1024-point
DFT per 3435 cycles.
For DCT-2D existence designs, the engine in [24] has

been tailored to a particular application needing 80
cycle for (8 × 8)-DCT 2D, and programmable DSP [1]
supports scalable (N × N)-DCT 2D as N = 4-64. needs
2,538 cycles for (16 × 16)-DCT 2D,
The proposed engines are more power efficient than

most of other proposed architectures in the literature.
Engine features:

- More power efficient than most of other proposed
architectures in the literature.
- Could be support many OFDM Systems with rela-
tively low power.
- High reconfigurability which allows users to pro-
gram a very wide range of applications with soft-
warelike ease.
- Support peripheral operations beside the main pro-
cesses like CP remover which was need in the pro-
posed WiMAX demo.
- Simple interfaces (FIFO interface) which handle
data transfer between the engine and asynchronous
blocks with different clock domains.
- The engine parameters like the number of bits,
memories size and types are parameterized to meet
different requirements and higher symbol lengths

The features that helped to get a high throughput
which helped to get good power efficiency are:

- A new address generation scheme allows reading
and writing the butterfly data in one clock cycle
which allow performing 1 butterfly operation each
clock. This reduce processing time by 50% without
doubling the clock frequency no loss on power.

- The selection of radix-4 algorithm which have best
power efficiency.
- Using HW accelerators accelerate the processing
and reduce the complicity of the decoder.
- Using pipeline processing of the vector instructions
is also accelerate the processing.
- Using simultaneously input and output data trans-
formations with four data buses which reduce data
transformations time by 75%.
- Reduce time to market by supporting a compiler
tool for the engine with a simple instruction set
- The use of classified engines allows high degree of
optimization.

7 Conclusion
In this article, we propose an ASIP design for low-power
configurable embedded processor capable supporting
DFT, DCT, FIR among other things. The defining fea-
ture of our processor is its reconfigurability supporting
multiple transformations for many communication and
signal processing standards with simple SW instructions,
high SQNR, and relatively high throughput. The engine
overall performance allows users to program a very wide
range of applications with software-like ease, while deli-
vering performance very close to HW. This puts the
engine in an excellent spot in the current wireless com-
munications environment with its profusion of multi-
mode and emerging standards. The proposed embedded
processor is synthesized in IBM 130 nm CMOS technol-
ogy. The 8k-point DFT can 56 mW with a 1.08 V sup-
ply voltage to end in 13 μs with SQNR of 95.25 dB.
Table 7 shows some applications which can be
supported.

Acknowledgements
This study was part of a project supported by a grant from STDF, Egypt
(Science and Technology Development Fund).

Competing interests
The authors declare that they have no competing interests.

Received: 19 June 2011 Accepted: 5 April 2012 Published: 5 April 2012

References
1. Liu X, Wang Y: Memory Access Reduction Method for efficient

implementation of Vector-Radix 2D fast cosine transform pruning on
DSP. Proceedings of the IEEE SoutheastCon 2010, 68-72.

2. Hsu YP, Lin SY: Implementation of Low-Memory Reference FFT on Digital
Signal Processor. Journal of Computer Science 2008, 7:545-549.

3. Frigo M, Johnson SG: The Design and Implementation of FFTW3.
Proceedings of the IEEE 2005, 93:216-231.

Table 7 Applications that can be supported and the corresponding estimated clock frequency

DFT-1D applications 90 MHz LTE, WI-MAX, WLAN, DVB-T, DVB-T, DVB-H, DAB, ADSLs and VDSL

DCT-2D applications 60 MHz Low bit rate video conferencing, basic video telephony, interactive multimedia and digital TV-NTSC

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 17 of 18

4. Jo BG, Sunwoo MH: New continuous-flow mixed-radix (CFMR) FFT
processor using novel in-place strategy. IEEE Transactions on Circuits and
Systems 2005, 52(5):911-919.

5. Jacobson AT, Truong DN, Baas BM: The Design of a Reconfigurable
Continuous-Flow Mixed-Radix FFT Processor. IEEE International Symposium
on Circuits and Systems ISCAS 2009, 1133-1136.

6. Hangpei T, Deyuan G, Yian Z: Gaining Flexibility and Performance of
Computing Using Application-Specific Instructions and Reconfigurable
Architecture. International Journal of Hybrid Information Technology 2009,
2:324-329.

7. Poon ASY: An Energy-Efficient Reconfigurable Baseband Processor for
Wireless Communications. (IEEE) Trans VLSI 2007, 15(3):319-327.

8. Iacono DL, Zory J, Messina E, Piazzese N, Saia G, Bettinelli A: ASIP
Architecture for Multi-Standard Wireless Terminals. Design, Automation
and Test in Europe (DATE ‘06) 2006, 2:1-6.

9. Hassan HM, Shalash AF, Hamed HM: Design architecture of generic DFT/
DCT 1D and 2D engine controlled by SW instructions. Asia Pacific
Conference on Circuits and Systems APCCAS 2010 2010, 84-87.

10. Hassan HM, Shalash AF, Mohamed K: FPGA Implementation of an ASIP for
high throughput DFT/DCT 1D/2D engine. IEEE International Symposium on
Circuits and Systems (ISCAS) 2011 2011, 1255-1258.

11. Cooley JW, Tukey JW: An Algorithm for Machine Computation of
Complex Fourier Series. Mathematics of Computation 1965, 19:297-301.

12. Nguyen T, Koilpillai RD: The theory and Design of Aribitrary-length
cosine-modulated filter Banks and wavelets, satisfying perfect
reconstruction. IEEE Transaction on signal processing 1996, 44(3):473-483.

13. Braganza S, Leeser M: The 1D Discrete Cosine Transform for Large Point
Sizes Implemented on Reconfigurable Hardware. IEEE International
Conference on Application-specific Systems, Architectures and Processors ASAP
2007, 101-106.

14. Weidong Li, Wanhammar L: A PIPELINE FFT PROCESSOR. IEEE Workshop on
Signal Processing Systems, 1999. SiPS 99 1999, 19:654-662.

15. Chidambaram R, Leuken RV, Quax M, Held I, Huisken J: A multistandard
FFT processor for wireless system-on-chip implementations. Proc
International Symposium on Circuits and Systems 2006, 47.

16. He S, Torkelson M: Design and Implementation of a 1024-point Pipeline
FFT Processor. Proceedings of the IEEE 1998 Custom Integrated Circuits
Conference 1998, 131-134.

17. Lin JM, Yu HY, Wu YJ, Ma HP: A Power Efficient Baseband Engine for
Multiuser Mobile MIMOOFDMA Communications. IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMSI 2010, 57:1779-1792.

18. Sung TY, Hsin HC, Ko LT: Reconfigurable VLSI Architecture for FFT
Processor. WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 2009, 8.

19. Lee YH, Yu TH, Huang KK, Wu AY: Rapid IP Design of Variable-length
Cached-FFT Processor for OFDM-based Communication Systems. IEEE
Workshop on Signal Processing Systems Design and Implementation, 2006.
SIPS ‘06 2006, 62-65.

20. Zhong G, Xu F, Willson AN Jr: A power-scalable reconfigurable FFT/IFFT IC
based on a multi-processorring. IEEE Journal of Solid-State Circuits (JSSC)
2006, 41:483-495.

21. Guan X, Lin H, Fei Y: Design of an Application-specific Instruction Set
Processor for High-throughput and Scalable FFT. IEEE International
Symposium on Circuits and Systems ISCAS 2009, 2513-2516.

22. Shah S, Venkatesan P, Sundar D, Kannan M: Low Latency, High
Throughput, and Less Complex VLSI Architecture for 2D-DFT.
International Conference on Signal Processing, Communications and
Networking ICSCN 2008, 349-353.

23. Shah S, Venkatesan P, Sundar D, Kannan M: A Fingerprint Recognition
Algorithm Using Phase-BasedImage Matching for Low-Quality
Fingerprints. IEEE International Conference on the Image Processing 2005,
33-36.

24. Tumeo A, Monchiero M, Palermo G, Ferrandi F, Sciuto D: A Pipelined Fast
2D-DCT Accelerator for FPGA-based SoCs. IEEE Computer Society Annual
Symposium on VLSI 2007, 331-336.

25. Cho YJ, Yu CL, Yu TH, Zhan CZ, Wu AYA: Efficient Fast Fourier Transform
Processor Design for DVB-H System. proc VLSI/CAD symposium 2007.

26. sung TY: Memory-efficient and high-speed split-radix FFT/IFFT processor
based on pipeline CORDIC rotations. IEEE proceedings, Image Signal Process
2006, 153:405-410.

doi:10.1186/1687-3963-2012-3
Cite this article as: Hassan et al.: Implementation of a reconfigurable
ASIP for high throughput low power DFT/DCT/FIR engine. EURASIP
Journal on Embedded Systems 2012 2012:3.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Hassan et al. EURASIP Journal on Embedded Systems 2012, 2012:3
http://jes.eurasipjournals.com/content/2012/1/3

Page 18 of 18

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	1.1 Paper overview

	2 Supported algorithms
	2.1 DFT
	2.2 Inverse DFT
	2.3 DCT
	2.4 Inverse DCT
	2-Dimension modes

	2.5 FIR
	2.6 Other transformations

	3 ASIP processor
	4 Hardware accelerators
	4.1 Processing element
	4.2 Coefficient generator
	4.3 Read and write address generators

	5 Engine programming
	5.1 Simulation
	5.1.1 Scale factor
	5.1.2 Word and coefficient lengths

	5.2 Testing
	5.2.1 1024-point DFT
	8 × 8 DCT
	5.2.2 FIR filter

	5.3 Verification

	6 Implementation results and performance evaluation
	6.1 Implementation
	6.2 Performance evaluation
	6.3 Discussion

	7 Conclusion
	Acknowledgements
	Competing interests
	References

