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This paper examines the design of an FPGA-based system-on-a-chip capable of performing continuous speech recognition on
medium-sized vocabularies in real time. Through the creation of three dedicated pipelines, one for each of the major operations
in the system, we were able to maximize the throughput of the system while simultaneously minimizing the number of pipeline
stalls in the system. Further, by implementing a token-passing scheme between the later stages of the system, the complexity of the
control was greatly reduced and the amount of active data present in the system at any time was minimized. Additionally, through
in-depth analysis of the SPHINX 3 large vocabulary continuous speech recognition engine, we were able to design models that
could be efficiently benchmarked against a known software platform. These results, combined with the ability to reprogram the
system for different recognition tasks, serve to create a system capable of performing real-time speech recognition in a vast array
of environments.
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1. INTRODUCTION

Many of today’s state-of-the-art software systems rely on the
use of hidden Markov model (HMM) evaluations to calcu-
late the probability that a particular audio sample is represen-
tative of a particular sound within a particular word [1, 2].
Such systems have been observed to achieve accuracy rates
upwards of 95% on dictionaries greater than 1000 words;
however, this accuracy comes at the expense of needing to
evaluate hundreds of thousands of Gaussian probabilities re-
sulting in execution times of up to ten times the real-time
requirement [3]. While these systems are able to provide a
great deal of assistance in data transcription and other of-
fline collection tasks, they do not prove themselves as ef-
fective in tasks requiring real-time recognition of conversa-
tional speech. These issues combined with the desire to im-
plement speech recognition on small, portable devices have
created a strong market for hardware-based solutions to this
problem. Figure 1 gives a conceptual overview of the speech
recognition process using HMMs. Words are broken down
into their phonetic components called phonemes. Each of
the grey ovals represents one phoneme, which is calculated
through the evaluation of a single three state HMM. The
HMM represents the likelihood that a given sequence of in-
puts, senones, is being traversed at any point in time. Each

senone in an HMM represents a subphonetic sound unit,
defined by the particular speech corpus of interest. These
senones are generally composed of a collection of multi-
variant Gaussian distributions found through extensive of-
fline training on a known test set. In essence, each HMM
operates as a three-state finite-state machine that has fixed
probabilities associated with the arcs and a dynamic “current
state” probability associated with each of the states, while
each word in the dictionary represents a particular branch
of a large, predefined tree style search space.

The set of senones used during the recognition process is
commonly referred to as the acoustic model and is calculated
using a set of “features” derived from the audio input. For
our research we chose to use the RM1 speech corpus which
contains 1000 words, and uses an acoustic model comprised
of 2000 senones [4]. The RM1 corpus represents the most
common words used in “command-and-control” type tasks
and can be applied to a large number of tasks from naviga-
tion assistance to inventory ordering systems. This particular
dictionary also represents a medium-sized task (100–10 000
words) and presents a reasonable memory requirement for
a system looking to be implemented as a single-chip solu-
tion. This corpus requires that every 10milliseconds, 300 000
operations must be performed to determine the probability
that a particular feature set belongs to a given multivariant
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Figure 1: Conceptual overview of speech recognition using hidden Markov models.

Gaussian distribution, resulting in over 60 million calcula-
tions per second, just to calculate the senones.

1.1. Background

Although several years of research has gone into the devel-
opment of speech recognition, the progress has been rather
slow. This is a result of several limiting factors, amongst
which recognition accuracy is the most important. The abil-
ity of machines to mimic the human auditory perceptory or-
gans and the decoding process taking place in the brain has
been a challenge, especially when it comes to the recognition
of natural, irregular speech [5].

To date, however, state-of-the-art recognition systems
overcome some of these issues for systems with regular
speech structures, such as command- and control-based ap-
plications. These systems provide accuracies in excess of 90%
for speaker independent systems with medium sized dictio-
naries [6]. Despite the satisfactory accuracy rate achieved for
such applications, speech recognition has yet to penetrate
our day-to-day lives in a meaningful way.

The majority of this problem stems from the computa-
tionally intensive nature of the speech recognition process,
which generally requires several million floating-point op-
erations per second. Unfortunately using general purpose
processors (GPPs) with traditional architectures is inefficient
due to limited numbers of arithmetic logic units (ALUs) and
insufficient caching resources. Cache sizes in most processors
available today, especially those catering towards embedded
applications, are very limited: only on the order of tens of
kBs [7]. Therefore, accessing tens of MBs of speech data us-
ing tens of kBs of on-chip cache results in a high cache miss
rate thereby leading to pipeline stalls and significant reduc-
tion in performance.

Further, since several peripherals and applications run-
ning on a device need access to a common processor, bus-
based communication is required. Thus, all elements con-
nected to the bus are synchronized by making use of bus
transaction protocols thereby incurring several cycles of ad-
ditional overhead. Because of these inefficiencies, speech
recognition systems execute less than one instruction per cy-
cle (IPC) [1, 2] on GPPs. As a result, the process of rec-
ognizing speech by such machines is slower than real time
[3].

To counter these effects, implementers have two options.
They could either use processors with higher clock-rates to
account for processor idle time caused by pipeline stalls and
bus arbitration overheads, or they could redesign the proces-
sor that caters to the specific requirements of the application.
Since software-based systems are dependent on the under-
lying processor architecture, they tend to take the first ap-
proach. This results in the need for devices with multi-GHz
processors [1, 2] or the need to reduce the model complex-
ity. However, machines with multi-GHz processors are not
always practical, especially in embedded applications. The al-
ternative is to reduce bit-precision or use amore coarse-grain
speech model to decrease the data size. While this helps in
making the system practically deployable, the loss in com-
putational precision in most cases, leads to degraded perfor-
mance (in terms of accuracy) and decreases the robustness
of the system. For example, a speaker-independent system
becomes a speaker-dependent system or continuous speech
recognition moves to discrete speech recognition.

The second option involves designing a dedicated archi-
tecture that optimizes the available resources required for
processing speech and allows for the creation of dedicated
data-paths that eliminate significant bus transaction over-
head.
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Projects at the University of California at Berkeley,
Carnegie Mellon University, and the University of Birming-
ham in the United Kingdom have made some progress with
hardware-based speech recognition devices in recent years
[8, 9]. These previous attempts either had to sacrifice model
complexity for the sake of memory requirements or simply
encountered the limit of the amount of logic able to be placed
on a single chip. For example, the solution in [8] is to cre-
ate a hardware coprocessor to accelerate a portion of speech
recognition, beam search. The solution in [9] requires de-
vice training. In contrast, our work presents a novel architec-
ture capable of solving the entire speech recognition prob-
lem in a single device with a model that does not require
training through the use of task specific pipelines connected
via shared, multiport memories. Thus, our implementation
is capable of processing a 1000 word command and control-
based application in real time with a clock speed of approxi-
mately 100MHz.

The remainder of this paper describes the speech sili-
con project, providing an in-depth analysis of each of the
pipelines derived for the system-on-a-chip (SoC). Specifi-
cally, we introduce a novel architecture that enables real-time
speech recognition on an FPGA utilizing the 90 nm ASIC
multiply-accumulate and block RAM features of the Xilinx
Virtex 4 series devices. Final conclusions as well as a sum-
mary of synthesis and post place-and-route results will be
given at the end of the paper.

2. THE SPEECH SILICON PROJECT

The hardware speech processing architecture is based on the
SPHINX 3 speech recognition engine from Carnegie Mellon
University [10]. Through analysis of this algorithm, a model
of the system was created in MATLAB. As a result, complex
statistical analysis could be performed to find which portions
of the code could be optimized. Further, the data was able to
be rearranged into large vectors and matrices leading to the
ability to parallelize calculations observed to be independent
of one another. Preliminary work on this topic has been dis-
cussed in [11, 12].

The majority of automatic speech recognition engines on
the market today consist of four major components: the fea-
ture extractor (FE), the acousticmodeler (AM), the phoneme
evaluator (PE), and the word modeler (WM), each present-
ing its own unique challenge. Figure 2 shows a block diagram
for the interaction between the components in a traditional
software system, with inputs from a DSP being shown on the
left of the diagram.

The FE transforms the incoming speech into its fre-
quency components via the fast fourier transform, and sub-
sequently generates mel-scaled Cepstral coefficients through
mel-frequency warping and the discrete cosine transform.
These operations can be performed on most currently avail-
able DSP devices with very high precision and speed and
will therefore not be considered for optimization within the
scope of this paper.

The AM is responsible for evaluating the inputs received
from the DSP unit with respect to a database of known

Main program
controller

Acoustic
modeler

Phoneme
evaluator

Word
modeler

Feature
extractor Central data cache

Figure 2: Block diagram of software-based automatic speech recog-
nition system.

Gaussian probabilities. It produces a normalized set of scores,
or senones, that represent the individual sound units in the
database. These sound units represent subphonetic compo-
nents of speech and are traditionally used to model the be-
ginning, middle, and end of a particular phonetic unit. Each
of the senones in a database is comprised of amixture ofmul-
tivariant Gaussian probability distribution functions (PDFs)
each requiring a large number of complex operations. It has
been shown that this phase of the speech recognition process
is themost computationally intensive, requiring up to 95% of
the execution time [2, 13], and therefore requires a pipeline
with very high bandwidth to accommodate the calculations.

The PE associates groups of senones into HMMs repre-
senting the phonetic units, phonemes, allowable in the sys-
tems dictionary. The basic calculations necessary to process
a single HMM are not extremely complex and can be bro-
ken down into a simple ADD-COMPARE-ADD pipeline, de-
scribed in detail in Section 4. The difficulty in this phase is
in managing the data effectively so as to minimize unneces-
sary calculations. When the system is operational not all of
the phonemes in the dictionary are active all the time, and it
is the PE that is responsible for the management of the ac-
tive/inactive lists for each frame. By creating a pipeline ded-
icated to calculating HMMs and combining it with a second
piece of logic that acts as a pruner for the active list, a two step
approach was conceived for implementing the PE, allowing
for maximal efficiency.

The WM uses a tree-based structure to string phonemes
together into words based on the sequences defined in the
system dictionary. This block serves as the linker between the
phonemes in a word as well as the words in a phrase. When
the transition from one word to another is detected, a vari-
able penalty is applied to the exiting word’s score depending
on what word it attempts to enter next. In this way, basic syn-
tax rules can be implemented in addition to pruning based
on a predefined threshold for all words. WM is also respon-
sible for resetting tokens found inactive by the PE. The prun-
ing stage of the PE passes two lists to the WM, one for active
tokens and the other for newly inactive tokens. Much like the
PE, the WM takes a two stage approach, first resetting the in-
active tokens and then processing the active tokens. By doing
the operations in this order we ensure that while processing
the active tokens, all possible successor tokens are available if
and when they are needed.
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Figure 3: Block diagram of the speech silicon hardware-based ASR system.
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Figure 4: Conceptual diagram of high-level architecture.

When considering such systems for implementation on
embedded platforms the specific constraints imposed by
each of the components must be considered. Additionally,
the data-dependencies between all components must be con-
sidered to ensure that each component has the data it re-
quires as soon as it needs it. To complicate matters, the over-
all size of the design and its power consumption must also
be factored into the design if the resultant technology is to
be applicable to small, hand-held devices. The most effec-
tive manner for accommodating these constraints was de-
termined to be the derivation of three separate cells, one for
each of themajor components considered, with sharedmem-
ories creating interface between cells. To minimize the con-
trol logic and communication between cells, a token-passing
scheme was implemented using FIFOs to buffer the active to-
kens across cell boundaries. A block diagram of the compo-
nent interaction within the system is shown in Figure 3.

By constructing the system in this fashion and keeping
the databases necessary for the recognition separate from the
core components, this system is not bound to a single dic-
tionary with a specific set of senones and phonemes. These
databases can in fact be reprogrammed with multiple dictio-
naries in multiple languages, and then given to the system for

use with no required changes to the architecture. This flexi-
bility also allows for the use of different model complexity in
any of the components, allowing for a wide range of input
models to be used, and further aiding in the customizabil-
ity of the system. Figure 4 shows a detailed diagram of the
high-level architecture of the speech recognition engine.

2.1. Preliminary analysis

During the conceptual phase of the project, one major re-
quirement was set: the system must be able to process all
data in real time. It was observed that speech recognition
for a 64 000 word task was 1.8 times slower than real time
on a 1.7GHz AMD Athalon processor [14]. Additionally, the
models for such a task are 3 times larger than the models
used for the 1000-word command and control task on which
our project is focused. Therefore, extending this linearly in
terms of the number of compute cycles required, it can be
said that a 1000-word task would take 1.6 times real time, or
160% longer than real time, to process at 1.7GHz. Thus, a
multi-GHz processor cannot handle a 1000-word task in real
time, and custom hardware must be considered to help ex-
pedite the process. This certainly eliminates real-time speech
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Table 1: Number of compute cycles for three different speech cor-
puses.

Speech
corpus

No. of
words

No. of
gaussians

No. of evaluations
per frame

TI digits 12 4816 192 600

RM1 1000 15 480 619 200

HUB-4 64 000 49 152 1 966 080

Table 2: Timing requirements for frame evaluation.

AM PE WM Total

No. of cyles
603 720 8192 102 400 714 312

[per 10ms frame]

Memory bandwidth
495 — 5 —

[MB/sec]

processing from mobile phones and PDAs due to the far
more limited capabilities of embedded processors.

In modern speech processing, incoming speech is sam-
pled every 10milliseconds. By assuming a frame latency of
one for DSP processing, it can be said that a real-time hard-
ware implementation must execute all operations within
10milliseconds. To find our total budget a series of exper-
iments were conducted on open-source SPHINX models
[15, 16] to observe the cycle counts for different recognition
tasks. Table 1 summarizes the results of these tests for three
different sized tasks: digit recognition [TI Digits], command
and control [RM1], and continuous speech [HUB-4].

The table shows the number of “compute cycles” re-
quired for the computation of all Gaussians for different tasks
assuming a fully pipelined design. It can be seen that as-
suming one-cycle latency for memory accesses, the RM1 task
would require 620 000 compute cycles, while HUB4 would
require 2 million cycles. Knowing that we need to process all
of the data within a 10-milliseconds window we observe that
the minimum operating speeds for systems performing these
tasks would be 62MHz and 200MHz, respectively.

Since the computation of Gaussian probabilities in AM
constitutes the majority of the processing time, keeping some
cushion for computations in the PHN and WRD blocks, it
was determined that 1 million cycles would be sufficient to
process data for every frame for RM1 task. Therefore a min-
imum operating speed of 100MHz was set for our design.
Having set the target frequency, a detailed analysis of the
number of compute cycles was performed and is summarized
in Table 2.

The number of cycles presented in this table is based
on the assumption that all computations are completely
pipelined. While a completely pipelined design is possible in
the case of AM and PHN, computations in the WRD block
do not share such luxury. This is a direct result of the variable
branching characteristic of the word tree structure. Hence, to
account for the loss in parallelism, the computation latency

(estimated at a worst case of 10 cycles) has been accounted
into the projected cycles required by the WRD block.

Further, the number of cycles required by the PE and
WM blocks is completely dependent on the number of
phones/words active at any given instant. Therefore, an anal-
ysis of the software was performed to obtain the maximum
number of phones active at any given time instant. It was
observed from SPHINX 3.3 for an RM1 dictionary, a max-
imum of 4000 phones were simultaneously active. Based on
this analysis a worst case estimate of the number of cycles re-
quired for the computation is presented in the table.

3. ACOUSTICMODELER

Acoustic modeling is the process of relating the data re-
ceived from the FE, traditionally Cepstral coefficients and
their derivatives, to statistical models found in the system
database, which can account for 70% to 95% of the compu-
tational effort in modern HMM-based ASR systems [2, 13].
Each of the i senones, in the database are made up of c com-
ponents, each one representing a d-dimensional multivari-
ant Gaussian probability distribution. The components of a
senone are log-added [17] to one another to obtain the prob-
ability of having observed the given senone. The equations
necessary to derive a single senone score are shown in (1)–
(6).

P(X) = 1√
(2π)D

∣∣V∗∣∣e
−∑D

d=1 ((Xd−μd)2/2∗σ2d ) (1)

ln
(
P(X)

) = −0.5 ln [(2π)D∣∣V∗∣∣]−
D∑

d=1

(
Xd − μd

)2

2∗ σ2d
. (2)

Consider the first term on the left-hand side of (2). If the
variance matrix V is constant, then the V∗ term will also
be constant, making the entire term a predefined constant
K . Additionally, the denominator of the second term can be
factored out and replaced with a new variable Ωd that can
be used to create a simplified version of the term Dist(X).
Dist(X) becomes solely dependent on the d-dimensional in-
put vector X . These simplifications are summarized in the
three axioms below with a simplified version of (2) given as
(3)

let: K = −0.5 ln ⌊(2π)D∣∣V∗∣∣⌋,

let: Dist(X) =
D∑

d=1

(
Xd − μd

)2

2∗ σ2d
=

D∑

d=1

(
Xd − μd

)2 ∗Ωd,

let: Ωd =
(
0.5
σ2d

)
,

ln
(
P(X)

) = K −Dist(X).

(3)

Equation (3) serves to represent the calculations necessary
to find a single multidimensional Gaussian distribution, or
component. From here we must combine multiple compo-
nents with an associated weighting factor to create senones
as summarized in (4):

Si(X) =
C∑

c=1

[
Wi,c ∗ Pi,c(X)

]
. (4)
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Figure 5: Block diagram of acoustic modeling pipeline.

At this point in our models it is necessary to define a log-base
conversion factor, ψ, in order to stay in line with the SPHINX
models used as our baseline. The use of a conversion factor
in these equations is useful in transforming the Pi,c(X) term
of (4) into the required ln(Pi,c(X)) term required for inser-
tion of (3), but the use of the specific value is unique to the
SPHINX system. By moving into the log-domain, the mul-
tiplication of (4) can also be transformed into an addition
helping to further simplify the equations. The following ax-
ioms define the conversion factor with the result of its inser-
tion shown in (5)–(6):

let: ψ = 1.0003,

let: f = 1
ln(ψ)

,

f ∗ ln
[
Si(X)

] = logψ
[
Si(X)

]
,

logψ
[
Si(X)

] = log
C∑

c=1

[
logψ

(
Wi,c

)
+ logψ

(
Pi,c(X)

)]
,

let:W ′
i,c = logψ

(
Wi,c

)
,

(5)

logψ
[
Si(X)

] = log
C∑

c=1

[
W ′

i,c + logψ
(
Pi,c(X)

)]
. (6)

The values μ, σ , V , K , and W relate to specific speech cor-
pus being used and represent the mean, standard deviation,
covariance matrix, scaling constant, and mixture weight, re-
spectively. These values are stored in ROMs that are other-
wise unassociated with the system and can be replaced or re-
programmed if a new speech corpus is desired. The f & Ψ
values are log-base conversion factors ported directly out of
the SPHINX 3 algorithm and the X vector contains the Cep-
stral coefficient input values provided by the FE block.

For our system we chose to use the 1000-word RM1
dictionary provided by the Linguistic Data Consortium
[16], which utilizes 1935 senones, requiring over 2.5 mil-
lion floating-point operations to calculate scores for every

senone. For any practical system these calculations become
the critical path and need to be done as efficiently as possi-
ble. By performing an in-depth analysis of these calculations,
it was found that the computationally intensive floating-
point Gaussian probability calculations could be replaced
with fixed-point calculations while only introducing errors
on the order of 10−4. The ability to use fixed-point instead
of floating-piont calculations allowed for the implementa-
tion of a pipelined acoustic modeling core running at over
100MHz post place-and-route on a Virtex-4 SX35-10. Fig-
ure 5 illustrates the main components of the AM pipe.

Each of the stages in the pipeline sends a “go” signal to the
following stage along with any data to be processed, allow-
ing for the system to be stalled anywhere in the pipe without
breaking. The first three stages also receive data from a status
bus regarding the particular nature of the calculation being
performed (i.e., is this the first, middle, or last element of a
summation), which removes the need for any local FSM to
control the pipeline.

3.1. Gaussian distance pipe

The Gaussian distance pipe is the heart of AM block and
is responsible for calculating (1)–(3) for each senone in the
database. This pipe must execute (1) over 620 000 times for
each new frame of data and therefore must have the high-
est throughput of any component in the system. To accom-
modate this requirement while still trying to minimize the
resources consumed by pipeline, the inputs to crucial arith-
metic operations are multiplexed, allowing the inputs to the
operation to be selected based on the bits of the status bus.
The bits of the status bus, the calc-bits, provide information
as to which element of the summation is being processed so
that the output of the given stage can be routed properly to
the next stage. Figure 6 shows a data-flow graph (DFG) for
the order of operations inside the Gaussian distance pipe.

In order to help with low-power applications, the Gaus-
sian distance pipe has a “pipe freeze” feature included, which
is not shown in the DFG. If the last bit of the calculation
is seen at the end of the pipe before a new first bit to be
calculated has arrived, the pipe will completely shut down
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Figure 6: Data-flow graph for Gaussian distance pipe.

and wait for the presence of a new data. Internal to the pipe,
each stage passes a valid bit to the successive stage that serves
as a local stall, which will freeze the pipe until the values of
the predecessor stage have become valid again.

Examining (2)–(4) reveals that to calculate a single com-
ponent based on a d-dimensional Gaussian PDF actually re-
quires d + 1 cycles, since the result of the summation across
the d-dimensions must be subtracted from a constant and

then scaled. As shown in Figure 6, the data necessary for the
subtraction and scaling (K &W) can be interleaved into the
data for the means and variances (M & V), leading to the
need to read d+1 values from the ROM for each component
in the system. This creates a constraint for feeding data into
the pipe such that once the d+1 values have been read in, the
system must wait for 1 clock cycle before feeding the data for
the next component of the pipe. This necessity comes from
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the need to wait for the output of the final addition shown at
the bottom of Figure 6. At the beginning of clock cycle d + 1,
the K & W values are input into the pipe, but these values
cannot be used until the summation of DIST (X) is com-
plete. This does not occur until clock cycle d + 2, resulting
in the need to hold the input values to the pipe for one extra
cycle.

Figure 6 further indicates that it takes seven clock cycles
to traverse from one end of the pipe to the next. However,
the next stage of the design, the log-add lookup table (LUT),
described in Section 3.2, takes ten cycles to traverse. There-
fore we must add three extra cycles to the Gaussian distance
pipe to keep both stages in sync. To ensure that the additional
cycles are not detrimental to the system, a series of exper-
iments were conducted examining the effects of additional
pipeline stages on the achieved fmax of the system. The results
of these experiments, as well as the synthesis and post place-
and-route results for this block are summarized in Section 4.

3.2. Log-add lookup

After completing the scoring for one component, that com-
ponent is sent to the log-add LUT for evaluation of (4)–(6).
This block is responsible for accumulating the partial senone
scores and outputting them when the summation is com-
plete. Equations (7)–(10) show the calculations necessary to
perform the log-add of two components P1,1 and P1,2,

D = ∣∣P1,1 − P1,2
∣∣, (7)

R = P1,1 −→ if : P1,1 > P1,2, (8)

else: R = P1,2,

let: Ψ = 1.0003,

let: f = 1
log(ψ)

,

(9)

RES = R + 0.5 + f ∗
(
log
(
1 + ψ−D

))
. (10)

Due to the complexity of (10), it has been replaced by a LUT,
where D serves as the address into the table. By using this
table, (10) can be simplified to the result seen in (11),

RES = R + LUT(D). (11)

While the use of a lookup to perform the bulk of the com-
putation is a more efficient means of obtaining the desired
result, it creates the need for a table with greater than 20 000
entries. In an effort to maximize the speed of the LUT, it was
divided into smaller blocks and the process was pipelined
over 2 clock cycles. The address is demultiplexed in the first
cycle and the data is fetched andmultiplexed onto the output
bus during the second.

Equations (7)-(8) illustrate the operations necessary to
find the address to this LUT. We chose to implement these
operations as a three stage pipeline. The first stage of opera-
tion performs a subtraction of the two raw inputs and strips
the sign bit from the output. In the second cycle the sign bit
is used as a select signal to a series of multiplexers that assign
the larger of the two inputs to the first input of the subtrac-
tion and the smaller to the second input of the summation.

The third cycle of the pipe registers the larger value for use
after the lookup and simultaneously subtracts the two values
to obtain the address for the table. Similarly to the Gaussian
distance pipe, the log-add LUT also has a pipe-freeze func-
tion built in. Figure 7 shows a detailed data-flow graph of the
operations being performed inside the log-add lookup.

As mentioned in Section 3.1, the entire log-add calcula-
tion takes a minimum of 10 clock cycles to process a single
input and return the partial summation for use by the next
input. When this block is combined with the Gaussian dis-
tance pipe to form the main pipeline structure for the AM
block the result is a 20 stage pipeline capable of operating at
over 140MHz, and requiring no local FSM for managing the
traffic through the pipe, or possible stalls within the pipe.

3.3. FindMax/normalizer

Once a senone has been calculated, it must first pass through
the find Max block before being written to the senone RAM.
This block is a 2-cycle pipeline that compares the incom-
ing data to the current best score and overwrites the current
best when the incoming data is larger. Once the larger of the
two values has been determined, the raw senone is output to
the senone RAM. This is accompanied by a registered write
signal ordinarily supplied by the log-add LUT. A data-flow
graph for the find Max block is shown in Figure 8.

As mentioned in Section 3.2, the find Max unit only
needs to operate once every 10 cycles, or whenever a new
senone is available, therefore the values being fed to the com-
pare are only updated when the senone valid bit is high. Aside
from this local stall, the find Max unit has a similar pipe
freeze function to conserve power.

When the last raw senone is put into the senone RAM,
the “MAX done” signal in Figure 8 will be set high, signaling
to the normalizer block that it can begin. During the process
of normalization the raw senones are read sequentially out of
the senone RAM and subtracted from the value seen at the
“Best Score” output of the find Max block. The normalizer
block consists of a simple 4-stage pipeline that first registers
the input, then reads from the RAM, performs the normal-
ization, and finally writes the value back to the RAM. The
normalizer block also has pipe-freeze and local stall capabil-
ities.

3.4. Composite senone calculation

In the RM1 speech corpus there are two different types of
senones. The first type is “normal” or “base” senones, which
are calculated via the processes described in Sections 3–3.3.
The second type is a subset of the normal senones called
composite senones. Composite senones are used to represent
more difficult or easily confusable sounds, as well as nonver-
bal anomalies such as silence or coughing. Each composite
senone is pointer to a group of normal senones, and for a
given frame the composite senone takes the value of the best
scoring normal senone in its group.

In terms of computation this equates to the evaluation
of a series of short linked lists, where the elements of the list
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Figure 7: Data-flow graph for log-add LUT.

must be compared to find the greatest value. Once this great-
est value is found it is written to a unique location in the
senone RAM at some address above the address of the last
normal senone. By writing this entry into its own location
in the senone RAM instead of creating a pointer to its origi-
nal location, the phoneme evaluation block is able to treat all
senones equally, thus simplifying the control for that portion
of the design.

The composite calculation works through the use of two
separate internal ROMs to store the information needed for

processing the linked-lists. The first ROM (COUNT ROM)
contains the same number of entries as the number of com-
posite senones in the system, and holds information about
the number of elements in each composite’s linked list. When
a count is obtained from this ROM, it is added to a base ad-
dress and used to address a second ROM (ADDR ROM) that
contains the specific address in the senone RAM, where the
normal senone resides.

Once the normal senone has been obtained from the
senone RAM, it is passed through a short pipeline similar to
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the find MAX block except that only the best score is written
back to the senone RAM. The count is then decremented and
the process repeated until the count equals zero. At this point
the next element of the count ROM is read and the process is
repeated for the next composite senone. Once all elements of
the count ROM have been read and processed, the block will
assert a done signal indicating that all the senone scores for a
given frame have been calculated. A DFG for the composite
senone calculation is shown in Figure 9.

Like the other blocks of the AM calculation, the com-
posite senone calculation has the built-in ability for locally
stalling during execution and freezing completely when no
new data is present at the input. This feature is more signifi-
cant because composite senone calculations can only be per-
formed after all of the normal senones have been completely
processed. This results in a significant portion of the run-
time where this block can be completely shut down leading
to notable power savings. Specifically, it takes approximately
650 000 clock cycles to calculate all of the normal senones,
during which the composite senone calculation block is ac-
tive for only 2200 cycles.

In order tominimize the data access latency of later stages
in the design, the senone RAM is replicated three times.
When processing AM, the address and data lines of each of
the RAMs are tied together so that one write command from
the pipeline will place the output value in each of the RAMs
during the same clock cycle. When the control of these RAMs
is traded off to the phoneme evaluator (PE), the address lines
are decoupled and driven independently by the three senone
ID outputs from the PE. While this design choice does cre-
ate a nominal area increase, the 3x improvement in latency is
critical for achieving real-time performance.

4. PHONEME EVALUATOR

During phoneme evaluation, the senone scores calculated
in the AM are used as state probabilities within a set of
HMMs. Each HMM in the database represents one context-
dependent phone or phoneme. In most English speech cor-
puses, a set of 40–50 base phones is used to represent the
phonetic units of speech. These base phones are then used to
create context-dependent phones called mono-, bi-, or tri-
phones based on the number of neighbors that have influ-
ence on the original base phone. In order to stay close to the
SPHINX 3 system, we chose to use a triphone set from the
RM1 speech corpus represented by 3-state Bakis-topology
HMMs. Figure 10 shows an example Bakis HMM with all
states and transitions labeled for later discussion.

The state shown at the end of the HMM represents a null
state called the exit state. While this exit state has no proba-
bility associated with it, it does have a probability for entering
it. It is this probability that defines the cost of transitioning
from one HMM to another. One of the main advantages of
HMMs for speech recognition is the ability to model time-
varying phenomena. Since each state has a self transition as
well as a forward transition, it is possible to remain inside an
HMM for a very large amount of time or conversely, to exit
an HMM in as little as four cycles, visiting each state only
once. To illustrate this principle, Figure 11 maps a hypothet-
ical path through an HMM on a two-dimensional trellis.

By orienting the HMM along the Y-axis and placing time
on the X-axis, Figure 11 shows all possible paths through an
HMM with the hypothetical best path shown as the dark-
ened line through the trellis. In our HMM decoder we chose
to use the Viterbi algorithm to help minimize the amount of
data needed to be recorded during calculation. The Viterbi
algorithm states that if, at any point in the trellis, two paths
converge, only the best path need be kept and the other dis-
carded. This optimization also is widely used in speech recog-
nition systems, including SPHINX 3 [18].

For each new set of senones, all possible states of an active
HMMmust be evaluated to determine the actual probability
of the HMM for the given inputs. The operations necessary
to calculate these values are described in (12)–(15),

H3(t � 1) + T22

H2(t � 1)T12
> + S2(t) = H3(t),

H2(t � 1) + T11

H1(t � 1) + T01
> + S1(t) = H2(t),

(12)

H1(t � 1) + T00

H0
> + S0(t) = H1(t),

(13)

HBEST(t) =MAX
{
H1(t),H2(t),H3(t)

}
(14)

HEXIT(t) = H2 + T2e. (15)

Equations (12)-(13) show that the probability of an HMM
being in a given state at a particular time is dependent not
only on that state’s previous score and associated transi-
tion penalties, but also on the current score of its associ-
ated senone. This relationship helps to enhance the accuracy
of the model when detecting time-varying input patterns.
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Looking specifically at (13) it can be seen that the H0 input
is not time-dependent. While H0 is not completely constant,
it does not change with every new time tick, and therefore is
not considered strictly time-dependent. The specific reasons
for this functionality relate to the way HMMs are activated
and deactivated in the system and are described in more de-
tail in Section 5. However, it should be noted that this value

only changes on the transition from inactive to active. Equa-
tions (12)-(13) show the insertion of the Viterbi algorithm
in that only the best of the possible transitions will be held in
the value use in the next time.

It is also relevant to note that, while we may have a very
large number of bi- or tri-phones in the database, we only
have as many unique sets of transition matrices as we have
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base phones. When a new HMM is to be processed, its ID
is put into a decoder that outputs the ID of the transition
matrix to be used for the evaluation. This transition score ID,
or TMAT ID, is then used to address the ROMs that contain
the actual scores associated with the arcs of Figure 10. For
each evaluation of an HMM the best of all state scores as well
as the HMM exit score must be calculated to facilitate the
pruning of the HMM in the next stage of the PE.

Once the HBEST and HEXIT values have been found for all
the active HMMs, a beam pruning algorithm is applied to the
set to help mitigate the amount of active data in the system.
During this process a constant offset or beam is added to the
best HBEST and HEXIT values. Only values with scores above
this beam remain active for the next stage. As the HMMs are
being pruned, a token with the HMMs unique ID is written
to a status FIFO based on the result of pruning. During the
word modeling portion of the SR process, these FIFOs will
be read and the data in the shared RAM will be processed
accordingly.

When implementing the PE in hardware, the majority of
the logic necessary resides in the large amount of constant
data that must be stored and retrieved in order to process
an HMM. Figure 12 illustrates the data structure that must
be traversed to acquire all of the necessary data to process a
single HMM.

In the structure shown in Figure 12 the HMM ID in-
put is used to address 4 separate LUTs, one for the transition
score ROMs, and one for each of the senones needed for the
HMM. As mentioned previously, the TMAT ID ROM serves
as a decoder to map one of a large set of HMM IDs to one
of the relatively small set of TMAT IDs. This single TMAT
ID is then used to address six TMAT score ROMs in parallel
in order to decrease the latency of the data access. The other
three LUTs receive the sameHMM ID, but are used to decode
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Figure 12: Data hierarchy for HMM calculation.

the appropriate senone IDs needed for the HMM. Again in
an effort to increase parallelism and decrease latency, these
senone IDs are found in parallel and output from the block
back to the shared senone RAM described in Section 3. Once
the TMAT scores, current senone scores, and previous state
scores have been retrieved, the actual processing of the HMM
begins. As previously stated, the remainder of the calculation
can be implemented as a high throughput pipeline and is de-
scribed in detail in the following sections.

4.1. HMM control logic

While developing our architecture, it was necessary to con-
sider the fact that unlike AM, the amount of work that needs
to be done at any one time is variable and therefore some
control must be included to monitor the amount of active
data in the system. As illustrated in Figures 3 and 4 the data
to be processed by the PE is most efficiently managed by a se-
ries of FIFOs containing lists of active HMM IDs. Specifically,
data entering PE is provided via either the new phoneme ac-
tive list (nPAL) FIFO, and data exiting PE is written to ei-
ther the exit (VALID) FIFO, the inactive (DEAD) FIFO, or
the phoneme active list (PAL) FIFO. Figure 13 illustrates the
relationships between these FIFOs.

The first observation made when looking at Figure 13 is
that the PAL FIFO is actually completely internal to the PE
block and can be loaded by either the HMM pipeline or the
pruner. In order for this to work properly a special end of
phase (EOP) token was created to serve as a place marker
in the FIFO. To create the EOP token the PAL FIFO was de-
signed to be 1 bit wider than the other FIFOs so that the extra
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bit could be used to hold information about the EOP token.
All standard tokens in the queue are appended with a “0” for
this extra bit, while the EOP token is appended with a “1,”
making it very easy to detect the presence of the EOP token.
At the beginning of each new frame PE will start pulling to-
kens from the nPAL FIFO until the FIFO is completely empty.
When the FIFO is emptied, or in the case there was nothing
there to start, the PAL FIFO is then read until and EOP to-
ken is detected by the STATUS block. When the EOP token
is seen it is then known that all HMMs requiring processing
have been completed and pruning may commence.

At the beginning of pruning the EOP token is written
back to the PAL FIFO. Pruning continues until the EOP token
is popped back out of the FIFO. Upon this second observa-
tion, all data has been processed for that frame and the word
modeler may begin processing the tokens in the DEAD and
EXIT FIFOs.

4.2. HMMpipeline

The execution of (12)–(15) constitutes the majority of the
calculations necessary to perform phoneme evaluation and

therefore a significant amount of time was put into examin-
ing the optimal way to perform these operations. After estab-
lishing the control for this pipeline the calculations were ex-
amined and it was found that to find all H values for a given
HMMa simple ADD-COMPARE-ADD-COMPARE pipeline
can be constructed as shown in the DFG in Figure 14.

The DFG in Figure 14 highlights the regularity of the
structure for the pipeline and leads directly to a high-
throughput low-latency design for calculation of the HMM
scores in the system. Further, the complexity of the pipeline is
actually quite small and requires a noticeably smaller amount
of logic than even the ROMs required to drive it. As each
of the active HMMs are evaluated, the five output values are
written to a shared RAM called the phone-pointer RAM (PH
RAM) and the HMM ID token is written into the pruner
queue. Results on synthesis for this block are summarized in
Section 6 of this document.

4.3. HMMpruner

After having calculated all HMM scores for a given frame the
scores are then read back out of the RAM and compared to
the beams. In our systemwe use two different beams to prune
the HMMs based on both their exiting score and their best
score. If an HMM has a valid exit score it will be passed to
the word modeler as well as remain in the active queue. If
the HMM score is not above the exit beam, it will be checked
against a second beam to see if the HMM should remain in
the active queue. This two-step approach helps to minimize
the number of HMMs mistakenly pruned from the system
and significantly increases the recognition accuracy of the
system. It also helps to maintain a time-varying system, in
that an HMM can exit and remain active so that in successive
frames the HMM could exit again, but with a higher proba-
bility.

A third beam is also calculated by the pruner and is
passed forward to the word modeler for later use. This beam
is calculated based off of the exit score for any active HMM
in the cue that represents the end of a word in a dictio-
nary. Just as transitioning from one HMM to another incurs
a penalty so does transitioning from one word to another,
and the word beam helps to prune out unlikely sequences of
words. While the HMM pruner does not actually process the
data in the PH RAM based on the result of pruning, it does
establish the work order for the word modeler and helps to
greatly simplify that stage of processing.

5. WORDMODELER

Word modeling can be broken down into two major steps:
resetting of newly inactive tokens and updating of currently
active tokens. Given that the functionality of these two com-
ponents is distinctly different, two separate components were
designed, one for each task. The token deactivator reads data
from the DEAD FIFO and resets the scores in the PH RAM.
Simultaneously, the token activator reads from the EXIT
FIFO and processes the word tree to determine which new
tokens need to be placed in the nPAL FIFO. The creation of
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two separate blocks also minimizes the amount of logic ac-
tive at any one point in time leading to power savings crucial
to ensuring sustainability on a mobile platform. The opera-
tions of these blocks are described in detail in Sections 5.1
and 5.2, respectively.

5.1. Token deactivator

After the PE block has pruned the active HMMs and placed
the appropriate tokens in the DEAD FIFO the word mod-
eler can begin the task of resetting the PH RAM entries cor-
responding to these tokens. This process is simplified by the
fact that all PH RAM values need to be reset to the exact same
value. This means that to deactivate a token the token must
be popped from the DEAD FIFO and used to address the PH
RAM.When this address is applied to the RAM the reset con-
stant is then written to the RAM and the process is repeated
until the FIFO is empty. This process can be performed in
a simple-two stage, POP-WRITE pipeline, and is capable of
running at close to the fMAX of the target device.

5.2. Token activator

The token activator portion of the word modeler is notice-
ably more complicated than deactivator portion. When an
HMM is found to have a valid exit score, the word modeler
must determine the location of that HMM in the word tree

and which HMMs are tied to its exit state. As shown in Fig-
ure 1, a word tree can have a large number of branches stem-
ming from one root. Mapping these types of structures into
hardware is not obvious. Another unique problem in token
activation is that while a given HMM may be used multi-
ple times in multiple different word trees such as the “CH”
sound at the end of pouch and couch, these two sounds must
be represented by completely unique events. This means that
while a given dictionary may not need all possible phonemes
in a language, it will most likely need multiple instances of
some of the phones.

Thus, it was necessary to determine a way of indexing
specific nodes in the search space such that their informa-
tion could remain in a unique location in the PH RAM. To
do this, the entire word search space was mapped and each of
the nodes was given a unique ID. An example of this process
is shown in Figure 15.

Based on this mapping scheme, even though nodes 12–
14 in Figure 15 all relate to the AE phoneme, they all have
unique IDs and will be treated separately in search algorithm.
Themappings determined in the process relate directly to the
HMM IDs stored in the tokens passed between the PE and
WM blocks, and define the core of the token passing algo-
rithm as implemented in our system.

Having established our mapping scheme it was necessary
to implement a tree structure in hardware. Unlike the previ-
ous section of the design, this portion is less arithmetically
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intensive and involves searching instead of computational
overheads. One of our immediate observations when looking
at the data structures was that each node in the search space
can be thought of as a short linked list. Evaluating linked lists
in hardware is a well-defined process, so to create our tree we
created a linked list of linked lists.

During each evaluation a token must be read from the
EXIT FIFO and its linked list retrieved. Further the HEXIT

score from the exiting HMM must be added to a word
penalty and propagated to the H0 score of the HMMs in the

linked list. Since the word penalty will be different for each
HMM in the linked list, it becomes necessary to process the
HMMs one at a time until the end of the list is reached. To
efficiently keep track of the linked list, two ROMs were des-
ignated: the START ROM and the NEXT ROM. The START
ROM is directly addressed by the token in the EXIT FIFO
and contains both a starting address in the NEXT ROM for
the linked list and a count of how many values are in the list.
The NEXT ROM holds all of the HMM IDs necessary to pro-
cess the linked lists. Figure 16 shows the DFG for the token
activator.

When a token is read from the EXIT FIFO a multiplex
control bit is reset to determine which token is in control of
the PH RAM address. While the count for the linked list is
nonzero, the bit will remain set but once the final decrement
has been completed the bit control bit will switch to allow a
new exiting HMM to be read from the PHRAM. This process
is repeated for each element in the EXIT FIFO until the FIFO
is emptied at which time the system goes idle and awaits the
next frame of input data.

6. SYNTHESIS AND PLACE-AND-ROUTE

While performing the synthesis and place-and-route opera-
tions on our hardware architecture implemented in VHDL,
two distinctly different approaches were taken in an effort to
observe the effect of design tools on overall system design.
The extremely computationally heavy AM block was written
using VDHL syntax specific to the Synplify synthesis engine
in an effort to focus the bulk of the work load on the tools
as opposed to the designers. This approach allows for the
generation greatly simplified VHDL which in turn makes the
processes of debugging and optimization significantly easier.
Additionally, the Synplify synthesis tool provides built-in fea-
tures to perform pipelining and retiming of the target VHDL.

As a second design strategy we implemented the PE and
the WM blocks in traditional VHDL and synthesized using
precision synthesis fromMentor Graphics. Precision synthe-
sis tends to leave more optimizations up to the designers, and
knowing that the implementation of the PE and the WM are
significantly more intuitive than the implementation for AM,
we chose to leave the bulk of the design optimization to our-
selves. To compare the overall quality of the design as well as
the time for development, limited portions of PE were also
written for Synplify so a one to one comparison of results
could be obtained.

6.1. Acoustic modeling results

To examine the effects of pipelining and retiming in Syn-
plify, a series of experiments was conducted on the Gaus-
sian distance pipe to find the optimal number of pipeline
stages. To do this, extra registers were put into the design and
the pipelining and retiming options were enabled in the syn-
thesis tool. When the synthesis was executed, the tool was
able to move these registers to what it determined were the
optimal locations in the design, minimizing the amount of
analysis done by the designer. Our primary target in these
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experiments was the Xilinx Virtex-4 SX35 FPGA due to
its high performance and large number of embedded DSP
(DSP48) and RAM (BRAM) cells. For sake of comparison we
also targeted a smaller device, the Xilinx Spartan-3, a 90 nm
FPGA with embedded 18× 18 multipliers. The graph in Fig-
ure 17 shows the results of these experiments for a pipeline
between 7 and 19 stages deep, with the dotted lines repre-
senting the projected fmax of the system from the synthesis
engine and the solid lines representing the post place-and-
route fmax.

While the fmax obtained for the Virtex-4 device is notice-
ably higher than the fmax of the Spartan-3 devices, it is also
observed that increasing the number of pipeline stages im-
proves the speed of the Spartan-3 device more significantly
than the speed of the Virtex-4 device. It is also observed that
for both devices there are an optimum number of stages be-
yond which the performance of the device actually degrades
due to the increased amount of area consumed by the design.

Another interesting result of these experiments was that
regardless of the number of pipeline stages the projected syn-
thesis speed for the Virtex-4 did not change. This implies
that even when the pipeline is configured with the minimum
number of allowable stages, the results of the pipelining and
retiming processes are the same. The post place-and-route
timing results for the Virtex-4, however, do change with the
number of pipeline stages implemented. Since we know we
are utilizing the embedded DSP slices on the chip and we can
trace the critical path of the circuit we can conclude that the
physical distance between two individual DSP cells is great
enough that adding extra registers along the path will in fact
increase the speed of the design. Figure 16 further shows that
when targeting the Virtex-4, a 10-stage pipe will provide an
acceptable operating frequency for the system with only mi-
nor improvements being gained with each additional pipe
stage beyond 10. This is a promising result because we know

Table 3: Summary of synthesis and place-and-route results for
Virtex-4 SX35.

Component
Synthesis PAR

Area
(MHz) (MHz)

Gaussian
dist. pipe

157 145
6 DSP48s

423 slices

Log-add LUT 164 150
13 BRAMs

307 slices

Find max 181 160 90 slices

Normalizer 197 172 155 slices

Composite
senone calc.

197 140
2 BRAMs

147 slices

AM block
(total)

164 125
6 DSP48s, 30 BRAMs

1527 slices

FPGA logic
slices

FIFOs &
RAM blocks

DSP tiles

Senone RAM

Log-add LUT

Composite calc.

Normalizer

Gaussian distance pipe

Find Max

Control & I/O

Figure 18: Floor plan for AM pipeline.

that the depth of the Log-Add LUT is 10 cycles as well, al-
lowing us to match the depths of the two pipelines without
having to sacrifice a considerable amount of speed.

In addition to the experiment described above all indi-
vidual components of the AM block were synthesized and
routed on the chip to fully characterize their performance.
Table 3 summarizes the results of these tests and makes note
of any special cells used by each stage of the design. Figure 18
shows the FPGA layout for the AM block.
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Table 4: Power analysis for multiple target FPGA devices.

Power (mW)
Virtex II Pro Virtex 4 Spartan 3

XC2VP100 XCE4VSX35 XC3S1500

Dynamic 163.46 35.46 41.75

Static 571.88 395.50 178.00

Total 735.34 430.97 219.76

Table 5: Summary of post-place-and-route results for the phoneme
evaluator.

Component
fMAX Slices Flip-flops LUTs MISC

(MHz)

HMM
189 1475 2393 593 24 BRAMs

pipeline

Pruner 115 48 24 77 —

PE core 115 1713 2645 861 24 BRAMs

PE control 213 8 14 13 —

PE block
117 1941 2983 1050 25 BRAMs

(total)

Further, since AM consumes over 90% of the run-time, it
was relevant to analyze the power consumption of this block
to get a feel for the overall consumption of the device. To
do this, post-place-and-route simulations were performed in
ModelSim using data generated in Xilinx Xpower and the re-
sults of our experiments are shown in Table 4 for Virtex-4,
Virtex-2pro, and Spartan-3 devices all running at fmax for the
specific device. The stimulus for these experiments was based
on randomly generated inputs to the system.

6.2. Phoneme evaluator results

Given that the design for the PE was noticeably less complex
than the design for the AM, we chose to implement all op-
timizations by hand and derive our own custom models for
all necessary components as opposed to allowing the tools to
do this. We used FPGAdvantage GUI to derive the code and
precision synthesis to do our placement analysis. Our post-
place-and-route results are summarized in Table 5.

6.3. Wordmodeler results

Observing that wordmodeling took less than 5% of the over-
all execution effort, little time was spent analyzing the syn-
thesis results for this block. As with the PE block we opted
for custom derivation of VHDL and synthesis via precision
synthesis. The results of the place-and-route operations are
summarized in Table 6.

Table 6: Summary of the word modeler synthesis results.

Component
fMAX Slices Flip- flops LUTs MISC

(MHz)

Token
319 51 48 88 —

deactivate

Token
145 174 66 320 2 BRAMs

activate

WM block
142 357 131 638 2 BRAMs

(total)

6.4. Hardware development summary

The hardware development presented in this work presents
a novel processing architecture capable of executing the
CSR algorithm at over 100MHz. As discussed in Section 3,
100MHz has been determined to be the minimum operat-
ing speed for a device to process speech in real time. This
requirement comes from the known input frame rate of
10milliseconds and the proposed maximum cycle count of
one million. Preliminary results on the entire operational
system have shown a device running at 105MHz on a Virtex-
4 SX35 ff668-10 and requiring less than 800 000 cycles to
complete all necessary operations. These results clearly show
a system able to run at sufficient speeds for real-time speech
recognition as well as maintain an average of 20% down-time
during which the engine is inactive.

Aside from being able to recognize human speech in real
time, special attention was paid to ensure that the through-
put of the design was maximized via the creation of custom
pipelines for each stage of the algorithm. The first major por-
tion of the algorithm, acoustic modeling, has been shown to
be the most computational intensive part of the problem and
significant effort was taken to design this block as efficiently
as possible. The result is a custom hardware pipeline capable
of operating at 125MHz post-place-and-route on a Virtex-
4 SX35. This pipeline is completely data-driven and involves
no internal state machines to guide the process. By giving the
design this flexibility the complexity of the inputs can be var-
ied without needing to reconfigure the design.

During the design of the phoneme evaluation stage the
large data access problem encountered was effectively re-
duced through the use of multiple small parallel ROMs and
pointer arrays. When processing an HMM a large amount
of data must first be retrieved to perform the calculations.
While the need for moving such large quantities of data
within the design adversely effects the performance of the
pipeline, speeds of 111MHz after post-place-and-route are
still possible, with the core of the processing unit able to op-
erate as fast as 140MHz post-place-and-route.

During the final portion of the design, word modeling, a
tree-search algorithm was designed in hardware. The hard-
ware was designed as a large linked list evaluation unit ca-
pable of propagating information throughout the tree while
also deactivating nodes in the tree and connecting multiple
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Table 7: Summary of hardware performance results.

Component fMAX synthesis/PAR (MHz) Area Cycle count

Gaussian distance pipeline 157/145
6 DSP tiles,

10 cycle/Gauss
411 slices

Log-add lookup 164/150
13 BRAMs,

10 cycle/comp
307 slices

AM block total 164/125
6 DSP tiles, 162 cycle/senone

30 BRAMS, 1328 slices 640K cycle total

Hidden Markov model pipeline 261/140 775 slices 8 cycle/load 5 cycle/calc

Pruner 277/177 112 slices 4 cycle/HMM

PE block total 115/111
84 BRAMs,

22 cycle/HMM
1866 slices

Token deactivator 377/170 54 Slices 2 cycle/dead HMM

Token activator 184/120
3 BRAMs, 10∗branch

160 slices cycle/active HMM

WM block total 166/129
3 BRAMs,

22 cycle/dead

414 slices
HMM + 10∗branch

cycle/active HMM

trees for the creation of word strings. The deactivation por-
tion of the hardware is capable of running at 170MHz post-
place-and-route but the activation logic can only operate at
120MHz, limiting the overall performance of the wordmod-
eler but not impacting the overall performance of the system.

The majority of the verification for the design was done
through post-place-and-route simulations models and com-
paring their results to the results obtained in the MATLAB
environment for the SPHINX 3 models. Knowing that our
MATLABmodel provided a one-to-one representation of the
SPHINX system, we were confident that if the MATLAB re-
sults were identical to the hardware results, we had correctly
implemented the algorithms. Table 7 summarizes the perfor-
mance results for the major portions of the hardware devel-
opment.

7. CONCLUSIONS

In this work we have shown the ability to implement high-
performance acoustic modeling pipeline on an FPGA device.
Further we designed a unique architecture for a design ca-
pable of performing critical operations in the speech recog-
nition process in real time with minimized power consump-
tion and maximum processing bandwidth. Our system also
highlights an architecture built to be driven completely by the
data leading to a system that can be reprogrammed for mul-
tiple applications and dictionaries by altering the input to the
system. This research has proven the effectiveness of the pro-
posed design methodology and helped further the develop-
ment of portable low-power speech recognition systems.
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