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High computational requirements combined with rapidly evolving video coding algorithms and standards are a great challenge
for contemporary encoder implementations. Rapid specification changes prefer full programmability and configurability both for
software and hardware. This paper presents a novel scalable MPEG-4 video encoder on an FPGA-based multiprocessor system-
on-chip (MPSOC). The MPSOC architecture is truly scalable and is based on a vendor-independent intellectual property (IP)
block interconnection network. The scalability in video encoding is achieved by spatial parallelization where images are divided
to horizontal slices. A case design is presented with up to four synthesized processors on an Altera Stratix 1540 device. A truly
portable ANSI-C implementation that supports an arbitrary number of processors gives 11 QCIF frames/s at 50 MHz without
processor specific optimizations. The parallelization efficiency is 97% for two processors and 93% with three. The FPGA utilization
is 70%, requiring 28 797 logic elements. The implementation effort is significantly lower compared to traditional multiprocessor
implementations.
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Video is becoming an essential part of embedded multime-
dia terminals. There are, however, many contradicting con-
straints in video codec implementations. One challenge is
the rapid evolution of compression standards with several
different algorithms. This requires programmability that is
easy to achieve with processor-based platforms. However,
achieving the best power, energy, and silicon area efficiency
requires custom hardware implementations. On the other
hand, hardware (HW) design is more demanding than soft-
ware (SW) development, and modifications are very expen-
sive and time consuming. For example, nonrecurring engi-
neering (NRE) costs, especially photo mask fabrication costs,
increase rapidly with each technology generation making fre-
quent HW upgrades less favorable. Software only implemen-
tation solves the flexibility and upgradeability problem but
is not an optimal solution from a performance versus silicon
area point of view.

The work in this paper solves the HW video codec de-
sign flexibility and upgradeability problem with a fully pro-
grammable, scalable MPSOC approach [1, 2]. The key idea
is to use synthesizable soft-core processors and a synthesiz-
able system-on-chip (SOC) interconnection network, which
allows prototyping and implementation on any FPGA plat-
form, or in an ASIC technology with a rapid design cycle. In
addition, our implementation framework enables a seamless

trade-off between performance and area without creating an
extra burden in system design by scaling the number of iden-
tical processors. Furthermore, the architecture is designed to
be easily reusable for any kind of application.

A data parallel MPEG-4 simple profile (SP) software en-
coder is implemented on the MPSOC to demonstrate the
effectiveness and scalability of the presented solution. The
video images are divided into independent horizontal slices
which are mapped to different processors for encoding. A
master-slave configuration is used where the master proces-
sor is responsible for overall control and the slaves perform
the video encoding.

In this paper, we use an Altera Stratix FPGA as the target
platform [3], Altera Nios processors, and our heterogeneous
IP block interconnection v.2 (HIBI) [4] as the communica-
tion network. No MPEG-4 specific HW accelerators, for ex-
ample, for motion estimation, are currently used, but HIBI
provides a very convenient plug-and-play method to add in-
tellectual property (IP) blocks independent of the vendor.

Topics of interest in this paper include practical im-
plementation issues, such as utilized FPGA resources and
achieved performance, design cycle improvement, scalabil-
ity, and encoder specific issues like memory optimization due
to scarce on-chip memories. The implementation works in
practice with an FPGA board attached to a PC that sends
source video streams and receives compressed data.



EURASIP Journal on Embedded Systems

This paper is organized as follows. Related work is re-
viewed in Section 2. The MPSOC architecture is described
in Section 3. The video encoding software and our encoder
parallelization approach are presented in Section 4. Section 5
explains the integration of the HW architecture and software.
In Section 6 the results are presented. Finally, Section 7 sum-
marizes the paper and discusses future work.

2. RELATED WORK

In this section we consider the related work in two categories,
parallel video encoding and FPGA-based MPSOC architec-
tures.

2.1. Parallel encoder implementations

Due to high computational complexity of video encoding
[5], several parallel solutions have been developed in con-
trast to traditional sequential program flow [6]. There are at
least four general parallelization methods used: functional,
temporal, data, and video-object parallelism. For functional
parallelism [7] different functions, such as DCT and motion
estimation, are connected in a functional pipeline to be exe-
cuted in parallel by different processing units. However, scal-
ing a functional parallel application requires a lot of work
(high scaling effort). When each processor executes a specific
function, adding or removing processors requires a whole
system redesign to balance the computational load in the
pipeline. For temporal parallelism (i.e., parallel in time) a full
frame is assigned to every CPU. The scalability of this style is
high. However, as the number of parallel encoders increase, it
introduces a significant latency in encoding, since one frame
is buffered for each encoding CPU. Works in this category
include [8-10]. In data parallelism, the image is divided into
slices that are assigned to different CPUs. The slices are en-
coded in parallel frame-by-frame. This approach is used in
[11-13]. For video-object parallelism, which is specific to
MPEG-4, arbitrary sized shapes referred to as video-objects
in the image are assigned to different CPUs. The objects can
be considerably unequal in size, which may lead to unbal-
anced execution time between different CPUs if care is not
taken. Such work is presented, for example, in [14].

We are mainly interested in real-time encoding. Func-
tional, data, and video-object parallelism are all eligible for
real-time, low-latency video encoding, because they do not
require frames to be buffered. We chose data parallelism be-
cause functional parallelism has a high scaling effort and
video-object parallelism is strictly MPEG-4 specific. Scala-
bility is the most feasible criterion used to compare different
architectures and parallel implementations, because reported
results typically vary in accuracy. The scalability of different
parallelization methods is compared in Section 6.

Contemporary FPGA designs tend to use single encoder
cores with HW accelerators arranged in a functional pipeline.
Our implementation is one of the first utilizing multiple par-
allel encoders on an FPGA in a data parallel configuration.
In [15], an FPGA-based H.263 encoder is demonstrated re-

quiring 400 kgates for HW accelerators while providing 30
QCIF frames/s at 12 MHz. Reference [16] presents FPGA im-
plementations of hardware accelerators for an H.264 video
codec. In [17], an H.264 coder is designed and verified with
an FPGA emulator platform. An interface between a host PC
and an FPGA-based MPEG-4 encoder is built in [18] en-
abling fast prototyping and debugging.

2.2. FPGA multiprocessor architectures

Although multiprocessor systems have been researched for
a while, most of the work has concentrated on ASIC imple-
mentations. FPGAs have only recently grown large enough
to hold such implementations, which is one reason for a low
number of reported FPGA-based MPSOCs. However, two
trends of research can be identified.

First, FPGA multiprocessor systems are used to develop
parallel applications. In these works, the main emphasis
is usually on the application and its parallelization. The
hardware architectures are briefly summarized. Typical im-
plementations rely on vendor-dependant solutions, because
they are usually easy to use. The hardware restrictions to scal-
ability or flexibility and the ease of adding or removing com-
ponents are often not addressed.

In [19], Martina et al. have developed a shared mem-
ory FPGA multiprocessor system of digital signal processor
(DSP) cores of their own design that run basic signal pro-
cessing algorithms. The implemented bus-interconnection is
not described. There are no synthesis results for the whole
system, but the system runs at 89 MHz on a Xilinx XCV1000
FPGA. Wang and Ziavras presented a system of six soft-
core Nios processors [20]. Processors are interconnected
with a multimaster Avalon bus [21]. No figures of the area
required for the whole system are presented. However,
the maximum clock frequency is 40 MHz using an Altera
EP20K200EFC484-2x FPGA board.

Second, a hardware-oriented point of view for future
multiprocessor requirements is presented. Reconfigurability
is often emphasized [22]. Also, IP-block-based systems are
stressed and a need for a scalable, standard interface inter-
connection network is anticipated. Kalte et al. [22] have pre-
sented a multilayer advanced microcontroller bus architec-
ture (AMBA) interconnection architecture used in an FPGA.
In AMBA, access to slaves is multiplexed between masters
and different masters can use different peripherals simulta-
neously. A conceptual view of a system is depicted although
not implemented. The interconnection architecture is syn-
thesized separately, as is the processor. No application is de-
scribed.

This work combines both of the above categories, since
an application and a working prototype is implemented on
the proposed architecture. The architecture itself is con-
structed of IP blocks and a general purpose interconnec-
tion architecture with support for an OCP-IP interface [23],
which is a standard interconnection interface. A standard-
ized IP block interface along with high scalability ensures the
future use of the architecture.
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FiGure 1: High-level view of the architecture on an FPGA develop-
ment board.

3. MPSOCARCHITECTURE

In this section we present our novel architecture for multi-
processor systems. The key elements of the architecture are
processor programmability and scalability and flexibility that
are obtained with the HIBI on-chip network [4]. A high-level
view of the architecture is depicted in Figure 1. It contains
a parameterizable number of soft-core processors, an HIBI
network, direct memory access (DMA) blocks (N2H2), and
two external memories located on the development board.
In this case, external SRAM memory is used for instructions
for all processors. HIBI is used to access the external SDRAM
memory, which is used for shared data, and to let processors
to send messages directly to each other.

3.1. Heterogeneous IP block interconnection v.2

HIBI is a hierarchical interconnection for SOCs, which was
originally developed for ASICs. The objective of HIBI is to
provide a topology-independent, scalable, yet high-perform-
ance on-chip network. It is highly configurable and supports
multiple clock domains. To provide maximum efficiency,
there are no empty cycles during bus transfers under a high
load. Split transactions are used in read operations. Bus ca-
pacity is fully exercised by starting new transfers right after
the preceding one has finished. The HIBI network can be
reconfigured at run-time, using a configuration RAM. This
should not be confused with FPGA reconfiguration.

The basic building block of the HIBI network is an HIBI
wrapper. As HIBI utilizes distributed arbitration, each HIBI
wrapper is responsible for seizing the bus at right time. The
main characteristics of HIBI are presented in Table 1 [1]. In
Figure 1, three processors and an SDRAM controller form
one segment, Clock domain 1, and the rest of the processors
form another segment, Clock domain 2. There is no mas-
ter/slave configuration in the interconnection and, thus, ev-
ery IP block can freely access any other IP block. An HIBI
bridge is used to connect the segments together to allow

TasLE 1: Summary of HIBI characteristics.

Property HIBI implementation
Topology Hlerar.chlcal bus with wrappers
and bridges between bus segments
Interface FIFO, OCP
Clocking Multiple clock domains
Arbitration Distributed, pipelined
Arbitration Priority, round-robin, time division
algorithm multiple access (TDMA), or combination

Svnthesis.i FIFO sizes, data width, addresses,
ynthesis-time - ial configuration, number of

configurable ) ’
parameters configuration pages and their type

(RAM or ROM), included properties
Run-time All arbitration parameters and algorithm,
configurable

cycle counters, power mode
parameters
Quality-of- TDMA, send limit + priority/round-robin,

service (QoS) multiple priorities for data, fast reconfiguration

Bus resolution ~ OR-network

Addressing Multiple addresses per IP, multiplexed

in the bus with data, allows multicast

transfers between segments. Every wrapper is assigned an ad-
dress space, which can vary depending on the number of
wrappers and the need for different addresses per wrapper.
When data is sent via HIBI, only the destination address is
delivered. In order to distinguish between different sources,
each source must use a separate destination address within
the recipients address space.

There are several different HIBI wrapper interfaces for IP
blocks. It is left to the designer to decide which interface is
the most appropriate, but there may be a mix of different
kinds of interfaces. For example, FIFO and OCP interfaces
can be utilized in the same architecture. Also, HIBI supports
multiple priorities for data. Optionally, there can be differ-
ent FIFOs for every priority. In that case, the highest priority
FIFOs are always treated first. Thus, they can interrupt lower
priority data transfers to get service immediately.

3.2. Soft-core processors

Currently, we have used soft-core processors Nios [24] and
Nios IT [25, 26] in our architecture. The master processor is
Nios with a configuration shown in Figure 2. The peripherals
are timers, LEDs button parallel I/Os (PIOs), and an UART.
Nios can be used as a 16-bit or 32-bit processor, which af-
fects the data bus width. Nios always uses 16-bit instruction
words, which restricts the immediate values to five bits. With
prefix-instructions this is increased to 16 bits. A large num-
ber of prefix instructions reduces code efficiency.

Nios II is a 32-bit CPU with 32-bit instructions. Nios II
has more limited configurability. We use the fastest version,
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FIGURE 3: Slave processor configuration.

Nios II/f (fast) that provides 1.16 DMIPS/MHz and an area
consumption of around 2000 LEs. Nios II is used for video
encoding slaves with the configuration depicted in Figure 3.
Unlike Nios, Nios IT uses tightly-coupled memory between the
processor and data RAM. Data does use the Avalon [21] bus
that significantly reduces the memory access time.

Nios natively use the Avalon bus to connect to memories
and peripherals. Avalon bus masters can command slaves,
but slaves can only get the attention of a master by raising
an interrupt. A typical master is a processor. A drawback is
that masters cannot communicate directly with each other.

Both Nios processors have separate instruction and data
buses. In Figures 2 and 3 only the data bus is drawn for
simplicity. The instruction bus connects to the boot ROM,
instruction memory (ext. SRAM), and vector table. With
the Avalon bus, there are 20 bus master address lines, 32
data lines, and waitrequest and read signals. Data bus mas-
ter has 20 address lines, two 32-bit data buses for read and
write, and signals waitrequest, read, write, irq and irq num-
ber. This makes 92-signal lines in total. There are possibly
other signal lines as well, but even with this practical mini-
mum, there are 146-signal lines in the buses. As a compari-
son, 32-bit HIBI bus consists of only 38-signal lines (32-bit
data, 3-bit command, address_valid, lock, and full). In addi-
tion, HIBI supports interprocessor communication without
restrictions. The features of Avalon are not sufficient for data
intensive multiprocessor communication, motivating the use
of HIBI.

3.3. Nios-to-HIBIv.2 DMA

Nios processors do not have a native support for the HIBI
on-chip network. Therefore, a DMA block, Nios-to-HIBI v.2
(N2H2), was implemented to attach the processors to HIBIL.
DMA minimizes CPU intervention in transfers. This allows
the CPU to execute the application while DMA transfers data
on the background.

N2H2 includes three Avalon interfaces. The slave inter-
face is used by a CPU to control and query N2H2. These con-
figuration and status registers include the state of the DMA
block, DMA transfer instructions, and DMA receiving in-
structions. Two master interfaces are used separately for re-
ceiving and transmitting. In order to increase the reusability,
these interfaces have been isolated from the other as much as
possible. Thus, with minimal modifications, the same block
can be applied to different processors.

The transmitter side is fairly straightforward. First, the
CPU writes the memory address (e.g., a pointer), the amount
of data, priority, and destination address to the configuration
register. Following this, the transmitter sends the address to
the HIBI. The transmitter then reads the data from memory
and instantly transfers the data.

Receiving is more complicated. Data sent through HIBI
may get fragmented. To circumvent this, we have imple-
mented multiple receiving channels that wait for a given
amount of data before interrupting the CPU. Each channel
can be configured to receive data from any source and save
it to memory locations defined by the CPU. There can be
several data transfers going on simultaneously, so N2H2 uses
the HIBI address to distinguish between them. For example,
if two sources are sending data simultaneously, two channels
are used. When the expected number of data has arrived on
a channel, the CPU is notified by an interrupt or via a poll
register.

Figure 4 depicts a data transfer over HIBI. CPU1 sends
four words to CPU2. On cycle 0, CPU1 gives a start com-
mand to the N2H2 DMA. IRQ is acknowledged in clock cy-
cle 1 and the transfer is started immediately. The address is
sent first and then the data. Clock cycles 3-8 are consumed
by the HIBI wrapper and arbitration latency. During this de-
lay, another transmission can be proceeding in HIBI, so the
latency is hidden. When the access to the HIBI is gained, the
address and the data are sent forward in clock cycles 9-13.
The data propagates through the receiving unit and buffers
until at clock cycle 15 N2H2 sees the address and determines
the right channel. Clock cycles 16-19 are used to store the
data in the memory of the CPU2. After all the data expected
has been received, an IRQ is given to the CPU2 at clock cycle
21.

4. MPEG-4 SOFTWARE IMPLEMENTATION

One of the key advantages of data parallel encoding methods
is that they enable scalability by using macroblock row, mac-
roblock, or block-level image subdivision. Moreover, spatial
data parallelization can be performed with vertical, horizon-
tal, rectangular, or arbitrary shaped slices. The problem of
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FIGURE 5: (a) Motion vector dependency problem in vertical parallelization and (b) horizontal parallelization for distributed memory ma-

chines.

vertical parallelization, shown on the left side of Figure 5, is
that predictive coding is not considered, leading to motion
vector (MV) and DQUANT (denoting changes in quantiza-
tion parameter (QP)) dependency problems [27]. For exam-
ple, H.263/MPEG-4 vector prediction is performed by com-
puting the median of three neighboring vectors referred to
as MV1, MV2, and MV3 in Figure 5. Due to data-dependent
computations and the different shape of slices, computations
do not proceed in a synchronized manner in different slices.
For this reason, a data dependency problem arises in the slice
boundaries where one of the predictor vectors may not be
available.

Horizontal spatial partitioning, however, is natural to
raster scan macroblock (MB) coding. The right side of Figure
5 depicts our previous implementation on a distributed
memory DSP using MB row granularity [27]. The recon-
structed images are made slightly overlap to allow motion
vectors to point over slice boundaries. The overlapping areas
are also exchanged between processors after local image re-
construction. Prediction dependencies are eliminated by in-

serting slice headers such as H.263 group-of-block (GOB) or
MPEG-4 video packet headers (VPH) in the beginning of a
slice. Clearly, this results in some overhead in the bit stream
but prediction dependencies are avoided. In addition, inter-
processor communication and extra memory is needed to
implement the overlapping.

However, a drawback of [27] is a somewhat coarse gran-
ularity leading to unbalanced computational loads due to the
unequal size of slices. For this reason, the original approach is
improved by subdividing images using macroblock granular-
ity as in Figure 6. Interprocessor communication and over-
lapping are further avoided by exploiting a shared memory
in an MPSOC type of platform. The new method is highly
scalable since the whole image is assignable to a single proces-
sor while the largest configuration dedicates a processor for
each MB. No interprocessor communication is needed since
data can be read directly from the global memory buffer.
The shared memories, however, are potential bottlenecks,
and thus efficient techniques for hiding transfer latencies are
needed.
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The data parallelization in Figure 6 was implemented
with a master control program and slave MPEG-4 encoders.
In addition, a host PC program has been implemented as
a user interface. It should be noted that the master and
the slave refer to the encoding processors, not, for exam-
ple, to the Avalon bus master or slave used for Avalon com-
munication. The flow graphs and the synchronization of
SW are depicted in Figure 7 while the implementation and
the integration details of the master and the slave proces-
sor are discussed in Section 5. The master processor con-
trols and synchronizes the encoding. The tasks of the host
PC, the master, and the slaves are presented in the follow-
ing.

4.1. Software implementation

The host PC implements a user interface for inputting en-
coding parameters to the master. The user interface enables
the selection of a video format (resolution and frame rate),
bit rate control mode (constant or variable), quantization
parameter (QP), as well as the number of slaves used in
the encoding. The host PC and the master can communi-
cate via a custom UDP/IP-based messaging protocol, which
supports its own flow control, retransmissions, packet struc-
tures, fragmentation, and assembly. Our messaging protocol
allows real-time modification of the frame rate, QP and bit
rate parameters during the encoding.

The tasks of the host PC also include capturing and load-
ing a raw video image, sending the raw data to the master
and decoding the output. Received bits are stored to the local
disk for debugging. In addition, the host PC measures statis-
tics such as the average encoding frame rate and bit rate. At
any time, the host PC can issue a reinitialization command
to stop the encoding, release dynamically allocated SW re-
sources, for example, memory, and return to the initial state.
For example, this feature enables changes in the video reso-
lution and the number of slaves without rebooting the plat-
form. Also, prototyping and testability are improved since
several video formats can be successively tested by changing
the parameters.

The tasks of the master are illustrated in the middle of
Figure 7. To encode a frame, the master first waits for the
parameters from the host PC. Next, the PC sends the raw
image (one frame at a time). The master slices the received
image, configures the slaves, and signals them to start the en-
coding. As the slaves complete, each informs the master that
it has finished. After all the slaves have completed encoding,
the master finds out the sizes of the bit streams of the slaves,
merges the bit streams, and sends the merged bit stream (en-
coded image) to the PC.

Slave tasks are illustrated on the right of Figure 7. First,
the slave waits for the parameters from the master. Then,
the slave downloads a local motion estimation (ME) window
and pixels of the corresponding image macroblock. Then, it
encodes the macroblock. This continues as long as there are
macroblocks in the slice left to encode. If the local bit buffer
goes full, the bits are uploaded to the external image mem-
ory. After all the macroblocks have been encoded, the slave
uploads the bit buffer to the external memory and begins to
wait for the next slice.

The video encoder can run in two different modes: first,
it can run in real-time, so one frame at a time is transferred
forth and back. Second, it can run in buffered mode, where
the PC downloads a video sequence to the master. It is en-
coded as a whole and sent back to the PC. The video sequence
length is parameterizable. Buffered mode mimics a situation
where, for example, a video camera is attached to the system
and feeding the encoder.

5. INTEGRATION

We have now presented a highly scalable hardware platform
and a data parallel video encoder. Their integration is pre-
sented in the following. The main properties of the Stratix
FPGA chip [28] used for this project are given in Table 2. A
logic element (LE) contains a four input look-up table and
a flip-flop. A digital signal processing (DSP) block contains
multiply-and-accumulate (MAC) blocks. These blocks can
also be used as fast embedded multipliers, which are uti-
lized by the processors. Phase-locked loops (PLL) are used
to generate different clock frequencies. Embedded memory
provides on-chip storage.

Apart from the Stratix 1540 FPGA, the development
board offers two UARTSs and an Ethernet connection. It has
8 MB of external Flash memory, 1 MB of external SRAM
memory, and 16 MB of external SDRAM memory. Down-
loading and debugging is done via a JTAG connection.

5.1. Initial constraints for the architecture

The application requires 64 KB local data memories. As this
memory is used for stack and local variables, it needs to be
fast on-chip memory. Also, some memory is used for in-
struction caches. Thus, the limited amount of on-chip RAM
in the FPGA bounds the maximum number of processors
to four. Optionally, external memories could be used, but
the development board does not contain any free, suitable
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TaBLE 2: Stratix 1540 FPGA properties.

Feature Stratix 1540 contains
Logic elements (LEs) 41250
Embedded memory, RAM (bits) 3423744

DSP blocks 14

PLLs 12

memories as the external SRAM and external SDRAM are
already utilized. Therefore, at maximum one master pro-
cessor and three slaves are used. The amount of the LEs
in the FPGA is more than sufficient to allow for scalabil-
ity.

Three different memories are used for the video encod-
ing: the on-chip embedded memory, the external SRAM, and
the external SDRAM. The flash memory is only used to con-
figure the FPGA upon power-up. The same encoding soft-
ware can be used for all slaves, which provides an oppor-
tunity to use the same instruction memory for all of them.
As the application fits to 512 KB, the 1 MB SRAM memory
was divided evenly between the master and the slave proces-
sors. To reduce the shared memory contention, instruction
memory caches were used. Each cache utilizes 8 KB of on-
chip memory.

The video encoder was configured in such a way that a
64 KB of local data memory is sufficient for each proces-
sor. Small buffers and memories like 2 KB boot program
ROMs were also assigned to the on-chip memory. The ex-
ternal 16 MB SDRAM was allocated as the frame memory.
A custom SDRAM controller was implemented with special
DMA functions. General block transfer commands are im-
plemented with an option to support application-specific
commands. For example, we have currently implemented
a command for an automatic square block retrieval, for
instance an 8 X 8 block, for the video encoder application.
In this way we need to commit only a single transfer instead
of eight separate transfers. However, the SDRAM controller
is fully reusable and can also be used without the application-
specific features. The control interface also supports sequen-
tial block writes and reads, increasing the efficiency com-
paring to single write/read operations. The SDRAM DMA
is configured with the highest priority messages. However, in
practice, using higher priority does not have a notable effect
on performance in this application.

5.2. Configurations of the components

The exact configurations of the processors are shown in Fig-
ures 2 and 3. The bus to the external SRAM goes through the
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master processor in practice, as opposed to the architecture
shown in Figure 1. Slaves have no access to the address space
of the master. Master, however, can access the slave portion
of the memory. That gives an opportunity to reconfigure the
slaves at run-time, changing the program on the fly. This fea-
ture is not utilized in the presented encoder. The data RAM in
all CPUs is dual-port, the alternate port is used by the N2H2.
Slave UARTS are multiplexed so that the PC can monitor any
of the slaves. Timers are used for benchmarking and profil-
ing the program. The master needs an extra timer to be used
with the Ethernet.

HIBI is configured as a 32-bit wide single bus and used
with the single-FIFO interface. HIBI uses priority-based ar-
bitration, in which the master processor has the highest pri-
ority. Each of the HIBI wrappers has a five words deep low
priority data FIFO and a three words deep high priority
data FIFO. The HIBI bus single burst transfer length is lim-
ited to 25 words. Each N2H2 has eight Rx channels, sup-
ports 256 separate addresses for channels and has a maxi-
mum packet size of 65536 32-bit words. HIBI bridges are not
used, because there is no need for multiple clock domains.
The MPEG-4 encoding SW exploits the MPSOC features as
explained in the following sections.

5.3. Implementation of master’s tasks

The tasks of the master are discussed in Section 4 and il-
lustrated in the middle of Figure 7. All parameterization is
performed via the external shared SDRAM. However, since
N2H2 DMA is used to access the shared data memory,
SDRAM, one cannot refer to SDRAM via pointers. For exam-
ple, the C language statement sdramVariable = pSdramAddr
[0] is not possible. Instead, data between external and local
memories is moved with help of dedicated software library
calls, for example, sdramRead () and sdramWrite ().

The current 64 KB limitation of the local data memory,
however, presents a more demanding challenge considering
that a raw QCIF image takes 37.1 KB. Our solution is to al-
locate large memory buffers, such as the currently encoded
image, the reconstructed images, and the output bit buffers,
on the external SDRAM. Two additional 1KB buffers are al-
located on the on-chip RAM, which are used for processing
data from the large buffers a small segment at a time.

For example, bit stream merging is implemented as a
three-step process, illustrated in Figure 8, which is repeated
in a loop. As long as there are slave bits remaining, the master
first reads a small portion of the slave’s bit stream into the in-
put buffer A. Second, the master concatenates and shifts the
data after the tail of the master’s global bit buffer in buffer B.
Third, the master writes the result to the SDRAM and resyn-
chronizes the buffer B with the updated tail of the global bit
buffer. The tail contains the bits that did not form a full 32-
bit word. The tail is stored to the SDRAM to keep the buffers
synchronized, but the master uses the local copy to avoid un-
necessary memory traffic. This allows merging of large, ar-
bitrary sized bit streams, and realizes a general merging pro-
cedure for variable length coded (VLC) streams that are not
aligned to byte boundaries. A similar buffering scheme is also

Read segment of slave bits

Slave’s bit buffer

Global bit buffer

FIGURE 8: Master’s bit stream merge task.

used in the “send bits” phase of the master, except no bit
shifting is needed since the bit stream is ensured to be byte
aligned by the implementation.

5.4. Implementation of slaves’ tasks

Our MPEG-4 encoder software is identical to [29] except
that all DSP specific optimizations have been omitted. A
platform-independent portable ANSI-C implementation has
been used for Nios II. A single program multiple data
(SPMD)-approach has been used, so the slave programs are
identical. The program execution is, however, greatly depen-
dant on the data, so the execution flows differ from one CPU
to another. Slave tasks are discussed in Section 4 and illus-
trated in the right side of Figure 7.

The slaves have to operate under low memory conditions.
To circumvent this issue, the ME process is carried out in a
48 x 48 sliding window under the programmers control as
illustrated in Figure 9(a). The ME window moves in a raster
scan pattern centered on the current MB position. An ex-
ception is an image boundary, where the window is clipped
inside the image. The ME window loading is optimized by
packing four consecutive pixels into a 32-bit word. Further-
more, the overlapping of subsequent ME window positions
could be used to minimize accesses to the external memory.

Figure 9(b) shows two approaches for updating the ME
window. First, one can load a whole window from SDRAM
every time the MB position changes, for example, with DMA.
In the second approach, only the rightmost column is loaded
from SDRAM while the remaining pixels are copied inside
the on-chip memory. The data transmissions are executed
beforehand in the background in order to minimize the time
consumed by waiting for data to be processed.

The drawback of the first approach is high SDRAM band-
width requirement. For example, the ME of a 4CIF video
(704 x 576) at 30 frames/s demands 104 MB/s. In compari-
son, the second approach requires 34 MB/s but the drawback
is that 136 million operations per second (MOPS) are con-
sumed by load/store operations needed for copying. Con-
sidering that current SDRAM is fast, for example, 133 MHz
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FIGURE 9: (a) 48 X 48 sliding window, (b) ME window updating.

32-bit SDRAM yields maximum of 4bytes * 133M =
507 MB/s, the first approach is still a viable option due to
DMA [27]. Hence, the second approach is well suited for sys-
tems with slow SDRAM, while fast SDRAM and DMA can be
used to reduce CPU utilization. In this work, we support the
first approach because we have an efficient DMA that can be
used to minimize the CPU load. When ME is carried out, the
rest of the encoding is performed similar to a nonparallel en-
coder except that each slave works on a different slice. The
slave bit output uses a local/global buffering scheme compa-
rable to Figure 8.

6. RESULTS

The performance of our system is evaluated by measuring the
FPGA utilization, the encoding frame rate as a function of the
number of slaves, and the complexities of encoding tasks. All
timing and profiling procedures for measurements are im-
plemented with HW timers running at the CPU clock fre-
quency, 50 MHz. The system was benchmarked in buffered
mode, since the main concern is the pure video encoding
speed with no Ethernet activity.

The measurements were carried out with two standard
QCIF sequences carphone and news. The encoder was con-
figured to use IPPP... frame structure, where only the first
frame is Intra (I) coded while the rest are motion compen-
sated Inter (P) frames. All tests were done in variable bit rate
(VBR) mode where different bit rates are realized by chang-
ing QP. Video sequence relative input/output frame rates
were fixed to 30 frames/s in all test cases.

During a benchmarking run, 120 frames of the selected
test sequence were encoded. The average encoding frame rate
(FPSayg) is computed as

Jepu

FPSan(n) B Cframe(n)’

(1

where fc,, is the CPU frequency and Cgame(n) denotes aver-
age encoding cycles per QCIF frame with n encoding slaves.

Due to the presence of data/instruction caches, IRQ process-
ing, and the underlying on-chip network causing deviations
in the results, three benchmarking runs were made and their
average is reported as the result. Scalability is evaluated by
computing the speed-up (S(n)) as

FPS,g(1)

Stn) = FPSve(1)’

(2)
where FPS,y,(n) is the average frame rate of a multislave con-
figuration and FPS,4(1) is the average frame rate with a sin-
gle slave. In addition, parallelization efficiency (E(n)) is com-
puted as

FPSayg(n)

E(n) = ((n*FPSavg(l))) * 100%. (3)

6.1. FPGA utilization

Table 3 shows the FPGA utilization of the MPSOC HW mod-
ules. The area consumption is reported in terms of Logic El-
ements (LE) and mem usage is the utilization of the on-chip
RAM. The statistics have been obtained by synthesizing MP-
SOC with Quartus IT 5.0 into a Stratix 1540. Currently, the
maximum frequency (50 MHz) is dictated by the connection
to external SRAM. Total memory and area refer to the max-
imum capacity of the FPGA chip. Memory figures are deter-
mined from the theoretical maximum number of the avail-
able memory bits. However, if we also count the bits that can-
not be used due to the memory block architecture, the mem-
ory usage rises to 87% of the available memory resources.
Therefore, the memory utilization restricts the system and
not the logic utilization. The FIFO buffers in the system have
been implemented with on-chip RAM. We have also imple-
mented an FIFO using LE flip-flops as data storage. Thus, we
can optionally save the on-chip RAM and use the spare LEs
instead.

LE resources are abundant and have been exploited in the
architecture. For example, in the SDRAM controller, there
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TaBLE 3: FPGA utilization statistics.
HW module Module count Total mem [KB] % of total mem Module area [LE] Total area [LE] % of LE
Master Nios I 1 80.8 19.3 2720 2720 6.6
Slave Nios IT 3 225.1 53.9 2324 6972 16.9
N2H2 DMA 4 0 0 1894 7576 18.4
HIBI network 1 0.4 0.1 8506 8506 20.6
SDRAM DMA 1 0.3 0.1 3205 3205 7.8
Utilization 306.6 73.3 28979 70.2
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FIGURE 10: Frame rates for sequence carphone.qcif (176 x 144).

are four read and four write ports, ensuring that no CPU has
to unnecessarily wait. N2H2 has eight channels to provide
flexibility for the software programmer. There are spare LEs
on the FPGA, since only 70% have been utilized.

6.2. Encoding speed and software scalability

Figures 10 and 11 present average encoding frame rates as a
function of QP and the number of slaves for the carphone and
news QCIF sequences. The bit rates are reported relative to
the fixed 30 frames/s sequence output rate. The straight lines
depict an ideal speed-up, which is obtained by multiplying
the frame rate of a single slave with the number of slaves. The
frame rates are measured from the master’s main encoding
loop.

As scalability was one of our main objectives, the results
indicate very good success. The parallelization efficiency of
carphone using two slaves is within 97% of the ideal result. If
we further increase the number of slaves to three, the paral-
lelization efficiency is 93%. As the current FPGA restricts the
number of processors to four (one master and three slaves),
we estimate the performance of larger configurations in the
following.

6.2.1. Performance estimation for larger configurations

The complexity of image encoding task depends on slice en-
coding times as well as the overhead of the master. This

1 2 3

Number of encoding slaves

—— Ideal

—A— QP = 25 (21 kbps @ 30 fps)
—0— QP = 12 (52 kbps @ 30 fps)
—— QP =4 (199 kbps @ 30 fps)

FIGURE 11: Frame rates for sequence news.qcif (176 x 144).

information yields
Cimg (x) y.n, Cmb) = Cilice (x> y,n, Cmb) + Cmaster(”)> (4)

where Cipg is the clock cycles required to encode a frame, x
and y are the width and height of the luma image in pixels,
n is the number of encoding processors, and Cyy, is the aver-
age clock cycles required to encode a macroblock. The term
Cmaster denotes the master’s overhead resulting from the se-
quentially computed parts. Cgice represents parallelized com-
putations and is the number of clock cycles required to en-
code the largest slice in the system. Mathematically Cgjice is
computed as

[x/16] % [ y/16]

Cslice = ’V n

|+ o (5)
where the rounding for x and y takes care that the image is
always divisible to macroblocks, for example, x and y do not
need to be divisible by 16. The overall rounding finds the size
of the largest slice in case the number of macroblocks is not
evenly divisible by the number of processors.

The master’s overhead results from four subfunctions
which can be combined as

Cmaster ( }’l) = Cconﬁg ( I’l) + CgetBitStreamSize ( ﬂ)
+ Cmerge(”) + Coth(”):

(6)

where Ceonfig is due to the configuration of encoding param-
eters for the slaves, Ceitstreamsize results from reading the
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TaBLE 4: Measured clock cycles for Master’s subfunctions.

f (subfunction) 1slave CPU  2slave CPUs 3 slave CPUs
Merge 32876.4150 38009.8750 43160.7267
Config 2821.6367 5313.8333 7878.8450
GetBitStreamSize 1264.2967 2517.6617 3772.6450
Oth 117016.7367 117465.5550 117982.0483
3.5
£ 3
5 1
g 25 —
3 -
) -
= 1.5 =
R - “e
sl / """"" 2 A
£
ZO 0.5
O T T
1 2 3

Number of encoding slaves

—— Bits desc. read
-0~ Slave cnfg loop
--¢- Bits merge
—A— Others

FIGURE 12: Growth rate of complexity of master’s subtasks.

sizes of slave bit streams from SDRAM, Crerge is the num-
ber of clock cycles due to merging of slave bits streams, and
others are related to the IRQs of the master and an internal
state management. It is pointed out that for an optimized
system, all Ethernet related tasks are omitted. The measured
average clock cycles for the aforementioned subfunctions are
presented in Table 4 as a function of the number of encoding
processors. In Table 4, f identifies the subfunction.

For the mathematical model, it is necessary to model the
growth of the master task complexity as a function of n. The
complexity change is illustrated in Figure 12, which is plotted
using the values in Table 4. For each subfunction, a curve was
obtained by plotting the clock cycles with n encoding proces-
sors divided by the clock cycles required for one encoding
CPU.

The results in Figure 12 show a linear increase in com-
plexity for all subfunctions of the master. Therefore, the
complexities of each subfunction as a function of n are
approximated with

Cfe {merge, config, getBitStreamSize, oth} (71)

= (a(f) * n+b(f)) * c(f),

(7)

where a is the slope of the line (the gradient) and b is the
intercept on the vertical axis in Figure 12, and ¢ is the number
of clock cycles of a subfunction with one encoding processor.
In practice, the clock cycles of one encoding processor are
scaled with the linear model to obtain a prediction for an n
CPU system. The subfunction specific parameters for (7) are
presented in Table 5.

TaBLE 5: Parameterization of linear equations for complexity mod-
eling.

f (subfunction) a(f) b(f)

c(f) (CPU cycles)

Merge 0.1564 0.8436 32876.4150
Config 0.8961 0.1039 2821.6367
GetBitStreamSize 0.9920 0.0080 1264.2967
Oth 0.0041 0.9959 117016.7367
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FIGURE 13: Estimated frame rate for n-processor MPSOC system.

Due to the simultaneous access to the shared data mem-
ory at the beginning of each frame encoding, the slave’s start-
up latency, that is, the time to get enough data to start pro-
cessing, also increases as the number of slaves increase. This
time is not included in the estimate. Each slave requires one
motion estimation window, 2560 bytes (640 words), to start
processing. It can be assumed that this amount can be trans-
ferred from SDRAM to CPU in around 1000 cycles. Thus,
since the frame encoding time is millions of clock cycles, the
impact is quite insignificant.

Finally, the encoding frame rate estimation on the
MPEG-4 MPSOC system is computed with

Jepu
Cimge (x) y,n, C1'nb) ’

FPSMPSOC (X, y>n, Cmb’ fcpu) = (8)
where feu is the clock frequency of 50 MHz. With bench-
marking it was found that Cy,}, is on the average of 133394.8
clock cycles per macroblock for carphone if a QP value of 12
is used.

Figure 13 presents the predicted encoding frame rate for
the optimized MPSOC as a function of n for the QCIF video
format. The values are obtained with (8) using the param-
eters in Table 5. The system scales nearly linearly when # is
smaller than 12. After 12 encoding processors, the complex-
ity of the master’s sequential overhead starts to increase faster
than is the benefit of data parallelization and the frame rate
saturates after 24 slaves. The small variation at large » is due
to the unbalanced sizes of slices.

One solution to smooth out the variations would be to
use a finer subdivision granularly, for example, 8 X 8 or
4 x 4 blocks, but this is impractical from an implementation
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Ficure 14: Ideal, measured, and estimated frame rates for car-
phone.qcif (176 x 144).

point of view since a macroblock would span two processors.
In practice, advanced horizontal parallelization scales better
than the row-wise approach used in [27] due to finer granu-
larity.

Figure 14 shows that the model applies well to real, mea-
sured performance. It is slightly lower than the measured
frame rates with the maximum error being about 4%. The
model is applicable to QCIF video streams and also for larger
formats by changing the measured execution times appro-
priately. It takes into account the number of macroblocks
and as the number of processors increases, the sizes of slices
may not be equal in terms of number of macroblocks result-
ing in computational unbalance. However, if we use a larger
video size, for example CIF, the number of macroblocks also
increases. Therefore, with larger video sizes, we can benefit
from having more processors than is currently practical for
QCIE

6.3. Relative complexity of encoding tasks

The complexities of different CPU tasks show how comput-
ing power is shared within one processor. For the master pro-
cessor, up to 96% of the time is spent waiting the slaves to
complete. In buffered mode, frame transmissions over the
Ethernet are not executed until the whole video sequence is
encoded and thus, this time is not included in the utilization
figures. In this case, the master operates as a state machine.
However, the master processor is designed to handle all the
external tasks that are not directly related to the video en-
coding. This can include I/O handling (e.g., Ethernet proto-
col stack), audio coding, and user interfaces, like changing
quantization parameters at run-time. The greatest require-
ment is fast response time for the user interface processor.
Double buffering could also be used.

Figure 15 illustrates how the execution time is divided for
one slave processor to encode one macroblock. Motion esti-
mation (ME) is by far the most computationally challenging
task. Other time consuming tasks are interpolation, quanti-
zation (Q), inverse quantization (1Q), DCT, and IDCT. The

time for MasterWait + Poll is consumed by waiting for the
master to collect and merge the bit stream, deliver a new raw
slice, and provide the MPEG-4 coding parameters for next
frame.

6.4. Hardware scalability

HIBI offers good scalability. For this architecture, adding or
removing processors is simple—it only takes minutes to pa-
rameterize and prepare for synthesis. HIBI also offers a con-
venient way to add new IP components, for example new
processors or hardware accelerators. It is possible to add new
features to the system without altering the video encoding.
A simple example is the addition of a hardware utilization
monitor. The addition does not require any changes to the
encoding and it is easy to plug into the system by just adding
one HIBI wrapper to the interconnection. Encouraging pre-
liminary results have been obtained from attaching a hard-
ware accelerator (DCT, IDCT, quantizer, and inverse quan-
tizer) to the system (around a couple of FPS increase).

The utilization of the HIBI bus is measured to be only
3%. Therefore, the interconnection is not likely to become
a bottleneck even with larger configurations. From a perfor-
mance point of view, the interconnection architecture should
be as invisible as possible in hiding data transmission time
from the CPU.

The speed-up gained by adding processors (e.g., Figure
10) shows that the interconnection architecture performs
well. Figure 15 shows that only 4% (SDRAM config + comm
wait) of the CPU encoding time is spent on data transmis-
sions and waiting for data.

As the HIBI utilization is low, it is expected that the
shared data memory (SDRAM) will not become the bottle-
neck in the future. We have determined that the intercon-
nection is capable of transmitting the required data for a
CIF image, which is four times larger at 25 frames/s using
a clock frequency of 28 MHz without forming a significant
performance bottleneck. The application can perform data
fetches from memory in parallel with computation. There-
fore, memory latencies can be tolerated.

Shared instruction memory utilization, via the Avalon
bus, is at most 20% of available bandwidth. We have inves-
tigated the effect of shared instruction memory on perfor-
mance and preliminary results indicate that it is currently
negligible with respect to total frame encoding time. How-
ever, four processors could share one instruction memory
port. The absolute maximum for sufficient performance [30]
is ten processors per port.

6.5. Comparison of scalability to related work

In Figure 16, the scalability of different video encoders is pre-
sented. The optimal situation would be a gain of 100% par-
allel efficiency, that is, a speed-up of 2.0 for 2 CPUs and 3.0
for 3 CPUs. Of the four general categories of parallelization,
results from three are presented. No publications were found
that describe a functional parallel encoder that scales with a
varying number of processors.



Ari Kulmala et al.

13

Comm. wait
0.88%

SDRAM config.
3.39%

MasterWait + Poll
6.88%

Interpolation
10.26%

Intra/inter ?
3.42%

Block sub/add
3.47%

Copy 16 X 16
0.59%

Others

Intra LD/ST
0.06%
Q+1Q
9.02%

DCT + IDCT
6.76%

dcPred
2.97%

viceMB
1.6%

ME (SAD)
47.23%

FIGURE 15: Relative complexities of encoding tasks on one slave CPU.

Overall speed-up

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Number of encoding processors

- ®- Nang: temporal parallel MPEG-1

—o— This work: data parallel MPEG-4 (hor)
-A- Agi: temporal parallel MPEG-1

—o— Peng: data parallel H.264 (hor)

—&— He: VO parallel MPEG-4

—=— Akramullah: data parallel MPEG-2 (rect)
-0- Barbosa: temporal parallel MPEG-1

—=— Yung: data parallel H.261 (S2/ver)

FIGURE 16: Speed-ups of different video encoder implementations.

Nang and Kim [8], Agi and Jagannathan [9], and Barbosa
etal. [10] use temporal parallelism. Nang et al. have received
great parallelization efficiency. However, as temporal paral-
lelism needs frames to be buffered (increasing the latency) it
is not considered to be low-latency real-time video encoding.
In our work we present a data parallel application. Similar
works are Peng and Zhao [11], Akramullah et al. [12], and

Yung and Leung [13]. One work based on video-object par-
allelism, which is closely related to data parallelism, is pre-
sented in He et al. [14].

The results from related research are frequently presented
as speed-up or frame rate curves, so the exact numerical val-
ues cannot be obtained. We have reproduced the curves in
Figure 16 to be as accurate as possible. Results from Nang and
Kim, Agi and Jagannathan, He et al., and Yung and Leung are
plotted. Barbosa et al. have given results for three cases. The
result for 16 CPUs is estimated from the sketched figure. Our
results are from the model described earlier. Results for Peng
and Zhao and Akramullah et al. are plotted from the given
numerical figures.

Figure 16 shows that the scalability of our implementa-
tion is the highest of all data parallel implementations. That
implies both good parallelization efficiency achieved with
software and an efficient hardware architecture.

7. CONCLUSIONS

A highly scalable MPSOC architecture with an MPEG-4 en-
coder has been presented. The parallelization efficiency of the
application, when the number of encoding processors is in-
creased from one to two, is 97% and to three, 93%. No real-
time video encoder was found that has such a high scalability
for real-time video encoding. Our benefit is due to both a
well-designed architecture and application. The architecture
efficiently hides the data transmissions from the processors.
The software takes full advantage of the parallelism by ele-
gantly sharing the encoding load. The software does not need
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any changes when the number of processors is altered, thus
the scaling effort is very low.

The scalability and flexibility of the MPSOC architec-
ture is gained by using an HIBI on-chip network and soft-
core processors in a plug-and-play fashion. The performance
and area usage can be flexibly compromised by changing the
number of processors. It takes only minutes to change the
number of processors and then the new system is ready to
be synthesized. Since the architecture is implemented in an
FPGA, the amount of on-chip memory becomes a limiting
factor.

In the future, platform flexibility will be demonstrated
with the use of different soft-core processors and hardware
accelerators. The connection to external instruction mem-
ory will be replaced with an HIBI interface to achieve bet-
ter clock frequencies. Furthermore, scalability will be further
evaluated with larger FPGA chips and by connecting several
ones together to form a larger system.

REFERENCES

[1] E. Salminen, A. Kulmala, and T. D. Himaildinen, “HIBI-based
multiprocessor SoC on FPGA,” in IEEE International Sym-
posium on Circuits and Systems (ISCAS °05), pp. 3351-3354,
Kobe, Japan, May 2005.

[2] O. Lehtoranta, E. Salminen, A. Kulmala, M. Hinnikdinen, and
T. D. Himaldinen, “A parallel MPEG-4 encoder for FPGA
based multiprocessor SoC,” in 15th International Conference
on Field Programmable Logic and Applications (FPL °05), pp.
380-385, Tampere, Finland, August 2005.

[3] Altera Corporation, Nios Development Board: Reference Man-
ual, Stratix Professional Edition, Ver. 1.1, July 2003.

[4] E. Salminen, T. Kangas, J. Rithimiki, V. Lahtinen, K. Ku-
usilinna, and T. D. Himildinen, “HIBI v.2 communication
network for system-on-chip,” in Computer Systems: Architec-
tures, Modeling, and Simulation, A. D. Pimentel and S. Vassil-
iadis, Eds., vol. 3133 of Lecture Notes in Computer Science, pp.
412-422, Springer, Berlin, Germany, July 2004.

[5] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architec-
tures for MPEG-4 Motion Estimation, Kluwer Academic, Dor-
drecht, The Netherlands, 1999.

[6] 1. Ahmad, Y. He, and M. L. Liou, “Video compression with
parallel processing,” Parallel Computing, vol. 28, no. 7-8, pp.
1039-1078, 2002.

[7] O. Cantineau and J.-D. Legat, “Efficient parallelisation of an
MPEG-2 codec on a TMS320C80 video processor,” in IEEE
International Conference on Image Processing (ICIP 98), vol. 3,
pp- 977-980, Chicago, Ill, USA, October 1998.

[8] J. Nang and J. Kim, “An Effective parallelizing scheme of
MPEG-1 video encoding on ethernet-connected worksta-
tions,” in Proceedings of the Conference on Advances in Parallel
and Distributed Computing (APDC ’97), pp. 4-11, Shanghai,
China, March 1997.

[9] L. Agi and R. Jagannathan, “A portable fault-tolerant paral-
lel software MPEG-1 encoder,” Multimedia Tools and Applica-
tions, vol. 2, no. 3, pp. 183197, 1996.

[10] D. M. Barbosa, J. P. Kitajima, and W. Weira Jr., “Parallelizing
MPEG video encoding using multiprocessors,” in Proceedings
of the XII Brazilian Symposium on Computer Graphics and Im-
age Processing (SIBGRAPI °99), pp. 215-222, Sao Paulo, Brazil,
October 1999.

[11] Q. Peng and Y. Zhao, “Study on parallel approach in H.26L
video encoder,” in 4th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT
’03), pp. 834-837, Chengdu, China, August 2003.

[12] S. M. Akramullah, I. Ahmad, and M. L. Liou, “Performance
of software-based MPEG-2 video encoder on parallel and dis-
tributed systems,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 7, no. 4, pp. 687-695, 1997, Transac-
tion Briefs.

[13] N. H. C. Yung and K.-K. Leung, “Spatial and temporal data
parallelization of the H.261 video coding algorithm,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 1, pp. 91-104, 2001.

[14] Y. He, I. Ahmad, and M. L. Liou, “MPEG-4 based interactive
video using parallel processing,” in International Conference
on Parallel Processing (ICPP ’98), pp. 329-336, Minneapolis,
Minn, USA, August 1998.

[15] M. J. Garrido, C. Sanz, M. Jiménez, and J. M. Menasses, “An
FPGA implementation of a flexible architecture for H.263
video coding,” IEEE Transactions on Consumer Electronics,
vol. 48, no. 4, pp. 1056-1066, 2002.

[16] R.Kordasiewicz and S. Shirani, “Hardware implementation of
the optimized transform and quantization blocks of H.264,”
in Canadian Conference on Electrical and Computer Engineer-
ing (CCECE ’04), vol. 2, pp. 943-946, Niagara Falls, Ontario,
Canada, May 2004.

[17] Q. Peng and J. Jing, “H.264 codec system-on-chip design and
verification,” in 5th International Conference on ASIC (ASI-
CON ’03), vol. 2, pp. 922-925, Beijing, China, October 2003.

[18] Y.-L. Lin, C.-P. Young, Y.-J. Chang, Y.-H. Chung, and A. W.
Y. Su, “Versatile PC/FPGA based verification/fast prototyping
platform with multimedia applications,” in Proceedings of the
21st IEEE Instrumentation and Measurement Technology Con-
ference (IMTC ’04), vol. 2, pp. 1490-1495, Como, Italy, May
2004.

[19] M. Martina, A. Molino, and E. Vacca, “FPGA system-on-chip
soft IP design: a reconfigurable DSP,” in Proceedings of the 45th
Midwest Symposium on Circuits and Systems (MWSCAS ’02),
vol. 3, pp. 196-199, Tulsa, Okla, USA, August 2002.

[20] X. Wang and S. G. Ziavras, “Parallel direct solution of lin-
ear equations of FPGA-based machines,” in IEEE International
Parallel & Distributed Processing Symposium (IPDPS °03), pp.
113-120, Nice, France, April 2003.

[21] Altera Corporation, “Avalon Interface Specification,” Ver. 2.4,
January 2004.

[22] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and
U. Riickert, “Dynamically reconfigurable system-on-pro-
grammable-chip,” in 10th Euromicro Workshop on Parallel,
Distributed and Network-based Processing (PDP °02), pp. 235—
242, Canary Islands, Spain, January 2002.

[23] OCP-IP Alliance, “Open Core Protocol specification,” Release
2.0, 2003.

[24] Altera Corporation, “Nios 3.0 CPU datasheet,” October 2004.

[25] Altera Corporation, “Nios II Processor Reference Handbook,”
May 2005.

[26] Altera Corporation, Nios II, Site visited 28.11.2005, http://
www.altera.com/products/ip/processors/nios2/ni2-index.
html.

[27] O. Lehtoranta, T. D. Hiamaldinen, V. Lappalainen, and J. Mu-
stonen, “Parallel implementation of video encoder on quad
DSP system,” Microprocessors and Microsystems, vol. 26, no. 1,
pp. 1-15, 2002.

[28] Altera Corporation, “Stratix Device Handbook,” January
2005.


http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html

Ari Kulmala et al. 15

[29] O. Lehtoranta and T. D. Himéldinen, “Feasibility study of a
real-time operating system for a multichannel MPEG-4 en-
coder,” in Multimedia on Mobile Devices, vol. 5684 of Proceed-
ings of SPIE, pp. 292-299, San Jose, Calif, USA, January 2005.

[30] A. Kulmala, E. Salminen, O. Lehtoranta, T. D. Himaéldinen,
and M. Hinnikdinen, “Impact of shared instruction memory
on performance of FPGA-based MP-SoC video encoder,” in
The 9th IEEE workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS "06), pp. 59-64, Prague, Czech
Republic, April 2006.

Ari Kulmala received the M.S. degree in
computer science from the Tampere Uni-
versity of Technology (TUT), Finland, in
August 2005. He is currently pursuing Ph.D.
degree and working as a research scientist in
the DACI Research Group in the Institute
of Digital and Computer Systems at TUT.
His research interests include system-on-
chip architectures, interconnections, and
low power design.

Olli Lehtoranta was born in Vantaa, Fin-
land, on 2nd of June 1976. He received
his M.S. degree “with distinction” in com-
puter science from Tampere University of
Technology, in November 2001. In 1999, he
joined the Institute of Digital and Com-
puter Systems Laboratory where he cur-
rently works towards his Ph.D. degree. He
has authored two journals and nine confer-
ence papers for refereed scientific publica-
tions. His current research interests include parallel processing for
video encoding, error resilient video encoding methods, computa-
tional complexity analysis of video encoding algorithms, and low-
level assembly optimization of video codecs for media instruction
set architectures (ISA) as well as DSP.

Timo D. Himailédinen received the M.S. de-
gree in 1993 and the Ph.D. degree in 1997,
both from Tampere University of Technol-
ogy (TUT). He acted as a Senior Research
Scientist and Project Manager at TUT dur-
ing 1997-2001. He was nominated to be
Full Professor at TUT, Institute of Digi-
tal and Computer Systems, in 2001. He
heads the DACI Research Group that fo-
cuses on three main lines: wireless local
area networking and wireless sensor networks, high-performance
DSP/HW-based video encoding, and interconnection networks
with design flow tools for heterogeneous SoC platforms.

Marko Hiannikdinen received the M.S. de-
gree in 1998 and the Ph.D. degree in 2002,
both from Tampere University of Technol-
ogy (TUT). Currently he acts as a Senior
Research Scientist in the Institute of Dig-
ital and Computer Systems at TUT, and
a Project Manager in the DACI Research
Group. His research interests include wire-
less local and personal area networking,
wireless sensor and ad hoc networks, and
novel web services.




	1. INTRODUCTION
	2. RELATEDWORK
	2.1. Parallel encoder implementations
	2.2. FPGA multiprocessor architectures

	3. MPSOC ARCHITECTURE
	3.1. Heterogeneous IP block interconnection v.2
	3.2. Soft-core processors
	3.3. Nios-to-HIBI v.2 DMA

	4. MPEG-4 SOFTWARE IMPLEMENTATION
	4.1. Software implementation

	5. INTEGRATION
	5.1. Initial constraints for the architecture
	5.2. Configurations of the components
	5.3. Implementation of master’s tasks
	5.4. Implementation of slaves’ tasks

	6. RESULTS
	6.1. FPGA utilization
	6.2. Encoding speed and software scalability
	6.2.1. Performance estimation for larger configurations

	6.3. Relative complexity of encoding tasks
	6.4. Hardware scalability
	6.5. Comparison of scalability to related work

	7. CONCLUSIONS
	REFERENCES

