Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2011, Article ID 620578, 12 pages
doi:10.1155/2011/620578

Research Article

A Combined Optimization Method for Tuning Two-Level Memory
Hierarchy Considering Energy Consumption

Abel Guilhermino Silva-Filho and Filipe Rolim Cordeiro

Informatics Center (CIn), Federal University of Pernambuco (UFPE), 50740-540 Recife, PE, Brazil

Correspondence should be addressed to Abel Guilhermino Silva-Filho, agsf@cin.ufpe.br

Received 25 May 2010; Revised 24 August 2010; Accepted 21 September 2010

Academic Editor: Xiaorui Wang

Copyright © 2011 A. G. Silva-Filho and E. R. Cordeiro. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Tuning cache hierarchies in platforms for embedded systems can significantly reduce energy consumption. In this paper we
combined two optimization methods for tuning both instruction and data cache configurations in a two-level memory hierarchy,
where both levels have separate instruction and data caches. This kind of hierarchy allows us to evaluate instruction and data caches
branches separately, although previous approaches have applied the same method for both branches of the hierarchy. This work
evaluates several methods intended for two-level hierarchies, and the results showed that when we combine different methods for
each branch of the hierarchy, results can be improved. Experiments based on simulations were performed for 12 applications from
the Mibench suite benchmark and the combined method achieved better efficiency in 60% of the evaluated cases compared with
existing heuristics. The proposed solution is only 11% less economic in terms of energy consumption than optimal values and
required, on average, 42 simulations to conclude optimization mechanism, representing only 9% of the design space.

1. Introduction

The memory subsystem has been demonstrated to be the
energy bottleneck: several researchers [1, 2] have demon-
strated that the memory subsystem now accounts for 50%—
70% of the total power budget of the system [3]. Thus, many
efforts have been made to develop optimization mechanisms
in order to reduce energy consumption without degrading
the performance.

Recent technologies have enabled the tuning of cache
memory parameters on the basis of core-based processors
for the needs of an application [4-7]. A suitable choice for
a given combination of cache configuration for a specific
application can lead to energy saving without compromising
time performance and can be configured during system reset
or even during runtime [8, 9].

However, an exhaustive approach can take a very long
time to reach convergence, due to the large number of
possible combinations in the design space. For instance,
in hierarchies with only one cache level, it is necessary to
explore the design space of dozens of configurations when

the total cache size, line size, and associativity parameters
variations are considered. In these cases, an exhaustive
approach is feasible, because cost and simulation time are
low. In hierarchies that include a second level of cache,
where both levels have separate instruction and data caches
(the focus of this work), some hundreds of configurations
would need to be explored when the same parameters
were considered. Moreover, for hierarchies that have a
unified second-level cache (instructions and data), this
number can total thousands of configurations, owing to the
interdependence between data and instructions at the second
level [10]. The exhaustive approach stops being a good
option when exploration space increases exponentially, due
to addition of new parameters, such as processor, transistor
technology, or when simulation time is too long. For those
cases, an intelligent mechanism is more appropriated to find
good solutions to the hierarchy. Even simulation time being
cheap in some cases, when exploration involves thousands
of simulations, other options such as heuristics can be more
interesting. Applying hybrid mechanisms may be indicated
when both levels have separated instruction and data caches

because the optimization can be applied independently for
distinct branches. In this case, the configuration of one cache
hierarchy does not greatly affect the other cache hierarchy.

In addition, in some cases, a given optimization mecha-
nism can be good for instruction cache exploration, but this
is not true for data cache exploration. In this sense, hybrid
efficient optimization mechanisms intended for each spe-
cialty, associated with an environment capable of analyzing
the behavior of the architecture, can enhance and speed up
the memory hierarchy design.

In this paper, we combine two optimization mechanisms
for a highly configurable two-level cache hierarchy, where
both levels have separate instruction and data caches. We
combine previous methods intended for instruction and data
caches separately in order to improve the results in terms of
energy consumption and performance.

In the next section, we discuss the background details
on architecture exploration based on some recent related
work. In Section 3 we introduce some considerations on
preliminary studies performed before proposing the hybrid
optimization mechanism. Section 4 presents the combined
optimization method specialized for instruction and data
caches. Section5 presents the results of the proposed
approach for 12 distinct applications from MiBench [11]
suite, and finally, in Section 6 we discuss the conclusions and
future directions.

2. Background

Typically, some design objectives such as area, performance,
and power compete with one another; that is, improving one
often leads to worsening another. For example, if we increase
an implementation’s performance, the implementation’s
energy consumption may suffer.

Thus, usually, parameterized SoC architectures should be
optimally tuned to meet multiple design objectives in a large
class or subset class of applications. Efficient design space
exploration mechanisms are therefore necessary to reduce
costs when searching for optimal configurations in the large
exploration space.

Typical parameterized system-on-chip architectures are
composed of a processor core, one or more cache memory
units, on-chip bus hierarchy, on-chip memory, and other
peripheral cores with application-specific functionality. Each
of these components can receive one or more parameters.
The collection of all possible configurations represents the
configuration space. For two-level caches in the memory
hierarchy, the amount of parameters may considerably
increase the configuration space.

Gordon-Ross et al. [9] have observed poor results when
applying the heuristic to two-level caches (with separated
instruction and data caches for both levels). Gordon-Ross
et al. [9] have extended Zhang’s heuristic [12] (intended
for one-level cache) and proposed the TCaT heuristic. The
heuristic interlaces the exploration of the two cache levels
and searches the various cache parameters in a specific
order, based on their impact on energy. Initially the cache
parameters are set to be minimal and are explored toward

EURASIP Journal on Embedded Systems

maximal values. The heuristic begins by exploring the cache
size of the first level and then that of the second level.
An exploration of the cache line size of the first and then
second levels is performed in sequence. Finally, the heuristic
explores both (first and then second) levels of associativity.
While the exploration of one parameter is good for hierarchy
in terms of energy, that parameter keeps varying and the
others remain fixed. Once the exploration of a parameter
stops providing good solutions or the maximum parameter
value is reached, another parameter is explored, fixing the
others, until all parameters have been tuned following the
sequence described previously. This procedure is done first
for instruction caches and afterwards repeated for data
caches. The use of the TCaT heuristic allows energy savings
of 53% when compared with Zhang’s heuristic.

Silva-Filho et al. [13] presented a heuristic for two-
level caches, known as TECH. Preliminary results have
demonstrated that the order in which cache parameters are
explored affects the number of states that should be visited
to find the best configuration for a given application. The
heuristic is focused on energy consumption. Basically, the
TECH heuristic is similar to TCaT, but it adopts a reverse
exploration order and a different exploration environment
based on the Architecture Description Language known
as ArchC. TECH explores the second level of the cache
hierarchy before the first level. In TECH heuristic, all
cache parameters are set initially to be minimal, with the
exception of second level cache size, that is set to be
maximal. The exploration of parameters follows the same
logic of TCaT heuristic, but the sequence of exploration
of parameters starts tuning cache size of second level,
followed by first level. After that, the exploration is done
for line size of second level and then first level. At last,
the heuristic is concluded exploring associativity of second
level, followed by the first level. Through simulations it
was observed that to define the cache size of the second
level, initially, we need to limit increases in the first cache
level. Preliminary experiments show an approximately 4-
fold reduction in energy consumption when compared with
TCaT heuristics.

Silva-Filho et al. [14] proposed improvements to both
TCaT and TECH approaches. They presented a method
for two-level caches known as TECH-CYCLES. Unlike
previous approaches, this heuristic considers two different
objectives: minimize energy consumption and improve
the time processing of the application. Basically, TECH-
CYCLES heuristic is similar to TECH heuristic, but besides
considering the impact of energy consumption to determine
if a solution is better than other, it also considers the
time processing of an application. In practical terms, the
exploration of a parameter in TECH-CYCLES continues
while values of energy consumption and cycles of an
application are better than last explorated parameters. The
results from this approach have shown an average reduction
of about 41% in energy consumption for instruction caches
and an improvement of about 25% in time processing when
compared with the TCaT heuristic. However, the method
applied for data caches did not achieve good results in terms
of time processing and energy consumption.

EURASIP Journal on Embedded Systems

Subsequently, Silva-Filho et al. [15] proposed the
TEMGA optimization mechanism, also focused for two-
level memory hierarchy (with separated instruction and data
caches for both levels). This approach is based on a simple
genetic algorithm (GA) and intended for two-level data
caches. The mapping of a solution, also called chromosome,
is done through the definition of cache parameters to each
solution. So, each solution is represented as a set of six
parameters (cache size, line size, and associativity for first
and second levels), which are associated with a value of
energy and cycles necessary to run an application. Through
GA execution, initially are created random solutions, which
represent cache configurations, with a value of energy
and cycles associated. These solutions are submitted to
crossover and mutation operators. In crossover mechanism
two solutions are combined to produce a new one, preserving
characteristics (cache parameters) of the initial ones. This
permits to create solutions combining good characteristic of
existing solutions, such as cache size or associativity. The
mutation operator is responsible for changing a random
parameter of a solution, in order to promote diversity of
solutions. In the end a selection mechanism is applied
in order to select the best solutions in terms of energy
consumption and cycles to run an application. The selected
solutions are preserved and then submitted to crossover and
mutation operators. This process is repeated until the new
solutions have no significant improvement compared to the
previous ones. The results of this approach show an average
reduction of about 15% in energy consumption for data
caches when compared with the TECH-CYCLES and TCaT
heuristics. In addition, a 5-fold reduction in the number
of cycles needed to execute applications from Mibench was
observed [11].

As can be seen, there are a number of mechanisms with
similar objectives that present better efficiency when applied
only for data caches (TEMGA), others when applied only for
instruction cache (TECH-CYLES), and also those that were
applied for both (TCaT, TECH, and Zhang heuristics).

This paper aims to combine state-of-the-art mechanisms
intended for instruction and data caches in a two-level hier-
archy (with separated instruction and data caches for both
levels) resulting in a combined optimization mechanism
that determines the most suitable relation between energy
consumption and performance applications. Comparisons
between previously reported optimization mechanisms were
analyzed in terms of their specialties for data and instruc-
tion caches and some results are shown in the next sec-
tion.

3. Preliminary Studies

A number of studies on optimization mechanisms intended
for two-level cache hierarchies considering separate instruc-
tion and data caches for both levels are described in this
section. In addition, the environment used to simulate all
benchmarks and some considerations on energy consump-
tion and performance intended for two-level hierarchies are
also discussed.

TasLE 1: Configuration space for the cache hierarchy.

Parameters . Cacl.le level 1 . Cacbe level 2
(instruction and data) (instruction and data)
Cache size 2 Kb, 4 Kb, 8 Kb 16 Kb, 32 Kb, 64 Kb
Line size 16B, 32 B, 64 B 16B,32B, 64B
Associativity 1,2,4 1,2,4

3.1. Experimental Setup Environment. The environment
used to simulate all applications is composed of a System-on-
Chip architecture with an MIPS core processor, a one-level
cache with independent instruction (IC1) and data (DM1)
caches, a two-level cache with independent instruction (IC2)
and data (DM2) caches, and main memory (MEM). An
input voltage of 1.7V is used, with a write-through scheme
and transistor technology 6-T of 0.08 ym. Such studies can
also be applied for smaller transistor technologies. However,
with the aim of making comparisons with previous research
studies, we adopted the same transistor technology.

Independent analyses in terms of performance and
energy consumption may be done for each branch of the
hierarchy (instruction cache branch or data cache branch).
A given branch may be defined by a pair of caches (level-
one and level-two caches). Twelve applications from the
MiBench benchmark suite [16] have been considered in the
experiments of the proposed approach.

Each cache configuration is compiled and simulated
by using the SimpleScalar [16] tool in order to determine
the numbers of misses, hits, and accesses to the memory
hierarchy. Furthermore, the energy consumption of the
hierarchy is determined using the eCACTI cache memory
model [17]. This model evaluates two energy components:
static and dynamic. In fact, considering an energy cache
model without the static energy component can cause
significant inaccuracies for recent transistor technologies.
In accordance with the ITRS predictions, the static energy
component, which was negligible in previous technologies,
represents up to 50% of the energy in CMOS circuits [18],
and it is rapidly increasing when compared with the dynamic
component. Despite the use of the eCACTI cache memory
model, other models such as CACTI (version 5.x above) [19]
also can be used.

Typical commercial cache configurations for embedded
applications were considered in the exploration space (see
Table 1). The parameters indicated for each cache level in
Table 1 limit the configuration space for instruction and data
caches. Considering only variations in the cache parameters
(total cache size, cache line size, and associativity) for
both cache levels, the total configuration space for a given
application has about 500 different configurations.

3.2. Comparisons between Memory Hierarchies. A number of
aspects mentioned in this subsection can be used to justify
the studies of exploration mechanisms for hierarchy with
two-level caches (with separated instruction and data caches

for both levels).

4
8
7 : ;'7
6 : 1
8 5) ~ One-level)
=] A AN
2 AA
; 4 /. A) F
& !]
2.0 /
g3 \\\ a -/ ' ' amn
20 T
 gam
1 L = - “ —
0
0 5 10 15 20
Cycles (10%)
W Two-level
A One-level

FiGure 1: Comparison between one- and two-level hierarchies
considering patricia_small and the instruction branch.

Some important aspects are disclosed when two-level
memory hierarchy and one-level cache hierarchy are com-
pared. The use of the two-level hierarchy approach (hun-
dreds of configurations) may be an unsatisfactory solution
in architecture exploration when an inadequate optimization
mechanism is applied or an exhaustive approach is used
to search for the best configuration [12, 20]. The small
exploration space of the one-level approach (dozens of
configurations) leads to an exhaustive approach or the use
of simple heuristics. However, the exploration space of each
approach may be located in different regions of the space
(Figure 1). In this connection, even the complete small space
of configurations of the one-level hierarchy approach is
sometimes available; there are many configurations in the
two-level hierarchy approach with energy and performance
values, for instance, that are better than the one-level
hierarchy approach. Clearly that could not happen for all
kinds of application, but it is an aspect that encourages
us to develop optimization mechanisms that speed up the
search in the design space by achieving suitable hierarchies
configurations.

The design space defined for single- and two-level hier-
archies was exhaustively simulated according to the experi-
mental environment defined in the previous subsection. The
exhaustive approach for the two-level cache considers exactly
458 different configurations, and for a single-level cache, it
considers 24 different configurations. By considering a single
application from the MiBench benchmark suite [16], namely,
patricia_small, we exhaustively compared both approaches.
Figure 1 depicts the configuration space exploration for such
an application.

Each point in Figure 1 represents the energy and the
number of cycles estimated for a given configuration. The
triangles in the dotted circle represent the complete design
space for a one-level cache hierarchy. The squares in the
rest of the figure represent the complete design space for

EURASIP Journal on Embedded Systems

two-level cache hierarchy. This shows that by using a one-
level cache hierarchy we can obtain several configurations
having a high performance (evaluated by the reduced
number of cycles). However such high-performance points
demand a high energy consumption. On the other hand, we
have two-level cache configuration points with low energy
consumption, but with several points with a reduced number
of cycles, resulting in a rapid execution of the application.

The results presented for this application revealed that
by using memory hierarchies with a two-level cache, we
can improve not only the performance but also the energy
consumption needed to run the application.

An additional study in order to analyze performance and
energy consumption for different applications, considering
two types of hierarchy with two levels, specifically with the
second level unified and separate, was performed.

Some considerations are important to mention about
memory hierarchy with unified second level. The advantage
of this architecture is more flexible use of cache storage.
However, since CPU accesses instructions and data in dif-
ferent pattern, caching these together may pollute the cache
and degrade cache performance for instructions and/or data.
Therefore, split caches for instructions and data are used, to
best utilize the accessing pattern.

Recently, some commercial approaches such as Mon-
tecito from Intel’s Itanium 2 Processor family [21, 22], with
90 nm process, allowed for dual core implementation, have
improved the memory hierarchy and allowed it to become
reasonably competitive. This approach, despite it includes an
L3 cache per core, has separate instruction and data for L1
and L2 caches. Another approach, also from Intel and Ita-
nium 9300 series [22] which is the Tukwila, with 65 nm pro-
cess, has separate instruction and data for L1 and L2 caches.

Additionally, depending on the nature of the application
it can result in different behaviors, impacting on perfor-
mance and energy consumption of the application. Four
examples are shown in the figures comparing architectures
with two levels in the memory hierarchy, considering the
unified and separated second level. Each point in the figure
represents the energy and the number of cycles estimated for
a given configuration. The diamonds represent the complete
design space for a unified cache hierarchy. The squares in
the rest of the figure represent the complete design space
for separate cache hierarchy. Figure 2 illustrates that by using
separate second-level approach we can obtain configurations
with high performance and energy consumption compat-
ible with unified approach. These solutions considering
susan_small application for 70 nm process may be shown in
dashed circle.

Figure 3 illustrates another case using djkistra_small
application also for 70 nm technology that shows compatible
results in terms of energy consumption and performance for
both approaches, being the separate approach slightly better
than the unified approach, as can be shown in the figure.

Figure 4 illustrates another case using sha_small applica-
tion also for 70 nm technology that shows better results in
terms of energy consumption and performance for separate
approach when compared with unified approach, as can be
shown in dashed circle.

EURASIP Journal on Embedded Systems

Unified X separate (susan_small, 70 nm)

000144
~ 0.0012

nergy (Joule
S L
=
S
&

Cycles x103

¢ Unified
B Separate

F1Gure 2: Comparison between two-level hierarchies with separate
and unified second level considering susan_small and 70 nm.

095 Unified X separate (dijkstra_small, 70 nm)

0.2 A
0.15 1

0.1 4

Energy (joules)

0.05 {

15
Cycles %107

B Separate
¢ Unified

Figure 3: Comparison between two-level hierarchies with separate
and unified second level considering djkistra_small and 70 nm.

Figure 5 illustrates results for gsort_small application
that is being used to compare both two-level hierarchies
approaches. Results for this case show that unified approach
had better results in terms of energy consumption when
compared with separate approach; however in terms of
performance separate approach presents better results than
unified approach as can be shown in the figure.

Furthermore, there are other aspects such as transistor
technology reduction that can directly influence the energy
and performance application. Unfortunately, we did not
have much time to simulate many applications considering
this aspect, but Figure 6 illustrates results for crc32_small
application considering 180 nm and 70 nm transistor tech-
nologies. Results show that separate approach presents better
Pareto optimal when compared with unified approach when
transistor technology is reduced.

As can be shown in previous analysis, the separate
approach that considers a two-level hierarchy with data and
instructions separate for both levels presents good results
when compared with unified approach in the most cases
presented. Although only four cases are shown, results show

Unified x separate (sha_small, 70 nm)

0.03
0.025 A
0.02 1
0.015 A
0.01 -
0.005 -

Energy (joules)

Cycles x10°

¢ Unified
B Separate

F1GURE 4: Comparison between two-level hierarchies with separate
and unified second level considering djkistra_small and 70 nm.

Unified x separate (gsort_small, 70 nm)
0.6 1 D

0.4 1

Energy (joules)
f=]
w

0.2 1
0.1 1
0 T T 1
6 16 26 36
Cycles x10°
B Separate
¢ Unified

FiGure 5: Comparison between two-level hierarchies with separate
and unified second level considering gsort_small and 70 nm.

that there are still viable studies considering hierarchies with
separate approach.

3.3. Comparison between Mechanisms. On the other hand,
different analyses for different branches of the hierarchy can
provide an improvement in the results in terms of perfor-
mance and energy consumption. Our studies succeeded in
showing that a given optimization mechanism may not be
particularly appropriated for both branches of the hierarchy.

The following optimization mechanisms were considered
in our analyses: TECH [13], TCaT [9], TECH-CYCLES [14],
and TEMGA [15]. We exhaustively simulated the design
space defined for two-level cache hierarchies according
to the experimental environment defined in the previous
subsection in order to better evaluate the results obtained.

Twelve applications from the Mibench benchmark suite
were considered. To evaluate the impact for different appli-
cations in terms of two objectives (energy and performance),
we adopted the cost function represented by F = Energy
X Cycles. Low energy consumption associated with a low
number of cycles is two objectives that one wishes to attain.
Thus, minimal values for the cost function (F) are considered
cache configurations that produce suitable solutions in the
design space.

Comparison (unified X separate)

0.003 7
2 0.0025 - . .
3 180 nm
= 0.002 A : :
>~
20
£ 0.0015 A
=
0.001 : : : : : :
270 275 280 285 290 295 300
Cycles X107
cre32_small
(a)
Comparison (unified X separate)
0.003 ~
— &
% 0.0025 A S
.g 170 nm
= 0.002 1 e
g
S 0.0015 +
0.001 T T T T T !
270 275 280 285 290 295 300
Cycles X107
cre32_small
¢ Separate
B Unified

(b)

FIGURE 6: 180 nm and 70 nm transistor technologies comparison
for separate and unified second level considering crc32_small.

Applications from the Mibench benchmark suite were
analyzed in terms of cost function for different heuristics
considering simulation in different branches. For each
branch in the hierarchy (instruction branch and data branch)
all the previously mentioned heuristics were applied in order
to obtain the best heuristic for a given branch.

By means of this study it was possible to choose a suitable
heuristic for the instruction and data branches. As shown
in Table 2, some mechanisms achieved the same results.
For instance, the susan_small application achieved the same
result (hierarchy configuration) for the instruction branch
by applying both the TECH and TEMGA mechanisms. The
susan_large application achieved the same result (hierarchy
configuration) for the data branch when TECH, TCAT, and
TEMGA mechanisms were applied. However, we consider
the largest percentile average value as the best mechanism for
each branch.

Table 3 summarizes this analysis, considering the num-
ber of best occurrences. The TECH-CYCLES was the best
mechanism achieving about 50%, on average, the best results
for all evaluated applications in the instruction branch.
A similar analysis was done for the data branch, and
TEMGA was shown to be the best mechanism achieving
the best results for approximately 83% of the applications
analyzed.

EURASIP Journal on Embedded Systems

TaBLE 2: Comparison between different heuristics for two-level
hierarchy with separated instruction and data caches for both levels.

?fi}))rlrllci/tlli(l))relnch Best m.echanism Best mechanism
suite) (Instruction branch) (Data branch)
basicmath_small TECH-CYCLES TEMGA
basicmath _large TECH-CYCLES TECH
bitcount_small TEMGA TECH/TEMGA
bitcount_large TEMGA TECH/TEMGA
dijkstra_small TEMGA TEMGA
dijkstra_large TECH-CYCLES TECH-CYCLES
patricia_small TECH-CYCLES TEMGA
patricia_large TECH-CYCLES TEMGA
gsort_small TEMGA TEMGA
qsort_large TECH-CYCLES TEMGA
susan_small TEMGA/TECH TCAT/TEMGA
susan_large TECH TE,%;\Q;;C:T/

TABLE 3: Percentile average value evaluation for data and instruc-
tion branches and different optimization mechanisms.

Mechanism Instruction branch Data branch
TECH 17% 42%
TCAT 0% 17%
TECH-CYCLES 50% 17%
TEMGA 42% 83%

4. Proposed Mechanism Evaluation

We hereby propose a combined optimization mechanism,
named TC-HyOM, intended for two-level caches with
separated instruction and data caches for both levels and
based on the analysis described in the previous section. The
proposed mechanism is a software-based solution, which is
intended to find the best configurations to an application
through combined simulation of different techniques.

The proposed method allows two-level-cache explo-
ration, both levels having separate instruction and data
caches; however, instruction and data caches are evaluated
separately, each one with a different optimization mecha-
nism intended for each hierarchy, that is, TECH-CYCLES
for the instruction branch and TEMGA for the data branch,
respectively.

4.1. Instruction Branch Analysis (TECH-CYCLES Heuristic).
Based on preliminary studies described in the previous sec-
tion, the TECH-CYCLES heuristic was chosen to determine
the configuration of the instruction cache for both first and
second levels of the hierarchy of the TC-HyOM-proposed
mechanism.

A number of optimization mechanisms (TECH-CYCLES
[14], TECH [13], TCaT [9], and TEMGA [15]) were
applied to the selected applications by using the previously
mentioned experimental environment, and the impact in

EURASIP Journal on Embedded Systems

terms of energy consumption was also evaluated. These
mechanisms use the same exploration environment for both
branches (data and instruction).

For comparison purposes, we chose a base cache
hierarchy configuration defined by the 8-kByte, 4-way set
associative level one cache with a 64-Byte line size, and a 64-
kByte, 4-way set associative level two cache with a 64-Byte
line size—a fairly common configuration.

Table 4 shows the instruction branch energy consump-
tion normalized to base cache and 12 applications from
Mibench using (1). The results for the instruction branch
indicated that, on average, the TECH-CYCLES heuristic
consumes less energy compared with the other heuristics
analyzed:

EnergYHeuristics
EnergYBase,Cache

(1)

EnergYNormalized =

For all analyzed applications (instruction branch), we
obtained a reduction in energy consumption compared with
the base cache. On average, an energy reduction of around
47% is achieved when TECH-CYCLES is compared with
base cache. In some cases it exceeded 80% (bitcount_small,
bitcount_large, susan_small, and susan_large).

We also evaluated the impact in terms of performance.
Thus, an analysis in terms of a cost function was done.
We adopted the cost function represented by F = Energy X
Cycles. We consider that minimal values for the cost function
produce cache configurations close to optimal-Pareto. The
optimal-Pareto region is defined by configurations that
produce the best tradeoff between energy and number of
cycles. Thus, the optimal-Pareto solution set represents the
best solutions of exploration space. The configuration with
the lowest cost (Energy X Cycles) is identified as the best
tradeoff relation between energy and number of cycles.
The results show, on average, a reduction in terms of cost
function of around 50% when TECH-CYCLES is compared
with the base cache.

In order to show the effectiveness of the instruction
branch tuning heuristics in reducing energy, we compared
the results of TECH, TCAT, TECH-CYCLES, and TEMGA
heuristics with optimal results. The optimal results were
found by exhaustive exploration and are obtained by select-
ing the solution with the lowest cost (Energy x Cycles) in
exploration space, for each application. Exhaustive explo-
ration is not necessary for running the analyzed heuristics.
It was done just as a way to measure the quality of solutions
found by each heuristic.

Each column in Figure 8 represents the best configura-
tion for the selected instruction branch in a given optimiza-
tion mechanism in terms of energy consumption. The last
column represents the lowest energy consumption value for
a given application (indicated as optimal in Figure 8). Energy
consumption for each configuration is normalized to energy
consumption of the base cache for that application.

In order to normalize the data for comparison pur-
poses, we chose the same base cache hierarchy configu-
ration defined previously. Five out of twelve applications
analyzed (basicmath_small, basicmath_large, bitcount_large,

TABLE 4: Energy consumption for instruction branch normalized to
base cache and compared with other heuristics.

Applicati‘on TECH-

ilflri(t)ér)l Mibench TECH TCAT CYCLES TEMGA
basicmath_small 13.7250 13.7250 0.8702 0.8702
basicmath_large 2.2498 4.1856 0.8523 1.1803
bitcount_small ~ 0.2018 0.2277 0.1881 0.1871
bitcount_large 0.1668 0.1929 0.1659 0.1658
dijkstra_small 0.5852 0.6850 0.5506 0.4790
dijkstra_large 0.4103 0.5233 0.3616 0.4371
patricia_small 7.6043 7.7764 0.8371 0.8829
patricia_large 7.4594 7.6728 0.8296 1.0779
gsort_small 0.9067 0.9149 0.7276 0.6084
qsort_large 1.1287 0.8627 0.5796 0.8514
susan_small 0.1774 0.2086 0.1949 0.1774
susan_large 0.1654 0.1920 0.1667 0.1666
Average 2.8984 3.0972 0.5270 0.5905

susan_large, and patricia_small) achieved the lowest energy
consumption results when the TECH-CYCLES heuristic was
applied for the instruction branch (Figure 8).

In addition, we evaluated the impact of the number of
simulations necessary to conclude the execution for each
heuristic in the instruction branch. We observed an average
of 9, 11, 10, and 54 simulations for TCaT, TECH, TECH-
CYCLES, and TEMGA heuristics, respectively, considering
twelve applications from the Mibench benchmark. Figure 7
shows these results, and we can see that TCaT, TECH,
and TECH-CYCLES heuristics have similar numbers and
represent approximately 0.3% of the search space, which
contains exactly 458 configurations. On the other hand, the
TEMGA heuristic, on average, concludes the optimization
mechanism for the instruction branch at 54 simulations and
represents approximately 12% of the same search space.

A total of about 25 hours was spent in simulating all
applications with the TEMGA heuristic and about 4.4 hours
in concluding the other heuristics (TCaT, TECH, and TECH-
CYCLES) for instruction branch, demonstrating that it is
an attractive solution when compared to the 210 hours that
would be necessary to simulate an exhaustive approach. We
applied all heuristics in a Pentium IV machine with 256 MB
RAM memory.

Similar analysis was done for data branch and will be
shown in the next section.

These results reveal TECH-CYCLES as a suitable
approach for the instruction branch that has, on average,
a low energy consumption, a good tradeoff relation when
performance is evaluated and included in the analysis, and,
finally, a low number of cycles needed to conclude the
optimization mechanism.

4.2. Data Branch Analysis (TEMGA Heuristic). The TEMGA
heuristic was chosen to be applied on the first and sec-
ond levels of the data branch of the TC-HyOM-proposed

140

120

100

80

60

40

Number of simulations

bitcount_large
dijkstra_small

=
3
s
3
=
IS
£
o
-3
3
N
<

B TCAT
B TECH

basicmath_large
bitcount_small

dijkstra_large

EURASIP Journal on Embedded Systems

gsort_small
gsort_large

susan_small
susan_large
patricia_small
patricia_large

[TECH-CYCLES
B TEMGA

FiGure 7: Number of simulations for instruction branch and for different optimization mechanisms.

13.7 13.8 2.24 4.18

7.67

patricia_small
patricia_large

1.2 o
L/Basehne
=14
on
—
L
5 0.8
o
2 0.6
=
E 0.4
S
Z 0.2_
0_
= N = o = ® =)
= IS = o = 53 = IS = o
s S s F 0§ s S : s
< = 2 % ¢ £ £ £ < =
g S g S 3 3 $ 2 3 3
- - -
3 2 RS 3 = =
S <
= TECH B TEMGA
B TCAT ® Optimal

m TECH-CYCLES

FIGURE 8: Energy consumption for instruction branch normalized to the base cache configuration for different optimization mechanisms

(TECH, TCAT, TECH-CYCLES, and TEMGA) and optimal values.

mechanism, based on comparative studies mentioned in
the previous section. TEMGA 1is based on Genetic Algo-
rithms (GAs), which is an adaptive approach based on
the evolution of a group of individuals undergoing genetic
changes and does not require a detailed knowledge of the
problem.

A similar analysis was done for the data branches,
also using the same optimization mechanisms (TECH-
CYCLES [14], TECH [13], TCaT [9], and TEMGA [15]) and
environment setup to evaluate the impact in terms of energy
consumption of these mechanisms in the data branch.

In addition, for comparison purposes, we chose the same
base cache hierarchy configuration defined previously for the
instruction branch analysis. Table 5 shows the data branch
energy consumption normalized to the base cache and 12

applications from Mibench, also according to (1). The results
for the data branch indicated that, on average, TEMGA
heuristic consumes less energy consumption compared with
the other heuristics analyzed.

When the data branch is evaluated in terms of cost
function (F = Energy X Cycles), the results show that, on
average, TEMGA achieves a reduction of around 44% when
compared with the base cache, considering all optimization
mechanisms and 12 applications from Mibench. As with the
data branch analysis, the configuration with the lowest cost
(Energy X Cycles) is identified as the best tradeoff relation
between energy and number of cycles. The TEMGA heuristic
achieves good results in terms of energy consumption for
the majority of applications except in three cases (basic-
math_large, djkistra_large, and gsort_large).

EURASIP Journal on Embedded Systems

TaBLE 5: Energy consumption for data branch normalized to base
cache and compared with other heuristics.

Applicati.on TECH-

ilflri(zgl Mibench TECH TCAT CYCLES TEMGA
basicmath_small ~ 0.5865 0.5473 0.5987 0.5460
basicmath_large 0.4666 0.5321 0.4725 0.5321
bitcount_small 0.1828 0.2109 0.1949 0.1828
bitcount_large 0.1656 0.1920 0.1665 0.1656
djkstra_small 2.9523 2.9866 0.7973 0.7912
djkstra_large 3.3156 3.2969 0.8042 1.0442
patricia_small 0.9077 0.8701 0.9266 0.6983
patricia_large 0.9554 0.8898 1.0592 0.8057
gsort_small 0.6738 0.6500 0.9488 0.5895
qsort_large 0.5983 0.6622 0.9319 0.6703
susan_small 0.4774 0.4122 0.5503 0.4122
susan_large 0.4427 0.4427 0.5038 0.4427
Average 0.9771 0.9744 0.6629 0.5734

The memory hierarchies that achieved the lowest energy
consumption values for the data branch, known as optimal
value, were compared in terms of energy consumption
with all the above mentioned heuristics (Figure 9). Energy
consumption for each configuration is normalized to energy
consumption of the base cache for that application. The base
cache is the same as that applied to the instruction branch.

We can see that the TEMGA heuristic achieves the best
results in terms of energy consumption for two applications
(susan_small and patricia_small). For some applications
(susan_large, gsort_small, bitcount_large, and bitcount_small),
despite not achieving optimal values, the energy consump-
tion values are very close to optimal ones.

As with the data branch, the impact of the number of
simulations necessary to conclude the execution for each
heuristic was evaluated. We observed an average of 9, 12,
10, and 33 simulations for TCaT, TECH, TECH-CYCLES,
and TEMGA heuristics, respectively, and twelve applications
from the Mibench benchmark. Figure 10 shows these results
and we can see that TCaT, TECH, and TECH-CYCLES
heuristics produce values similar to those of the instruction
branch in terms of the number of simulations and represent
approximately 0.3% of the search space.

However, for the TEMGA heuristic, this average for
data branch falls to 33 simulations when compared with
the same mechanism applied to the instruction branch (54
simulations) and represents approximately 7.2% for the same
search space.

On average, a total of about 14 hours was spent on
simulating all applications with the TEMGA heuristic and
about 3 hours on concluding the other heuristics (TCaT,
TECH, and TECH-CYCLES) for the data branch. As with
the data branch, we applied all heuristics in a Pentium IV
machine with 256 MB RAM memory.

Although the TECH-CYCLES, TECH, and TCaT heuris-
tics are faster in executing the heuristic, TEMGA found

individuals who spent, on average, 40%, 40%, and 13% less
energy when compared with the results obtained by the
TECH, TCaT, and TECH-CYCLES, respectively.

Based on these results, the TEMGA optimization mecha-
nism, when used for the data branch in a two-level memory
hierarchy with separated instruction and data caches for both
levels, has been shown to be an interesting approach that
finds individuals with low energy consumption and shows
a good tradeoff relation when performance is evaluated. In
addition, despite the large number of simulations needed to
conclude the optimization mechanism, this kind of approach
does not require a detailed knowledge of the problem, as it is
based on the natural selection proposed by Charles Darwin,
in which the fittest individuals in a given population have the
best chance of reproducing and surviving.

In the next section, we describe some results for the pro-
posed approach (TC-HyOM) that associate TECH-CYCLES
and TEMGA as optimization mechanisms for instruction
and data branches, respectively.

5. Results of the TC-HyOM

The proposed optimization mechanism Two-level Cache
Hybrid Optimization Mechanism (TC-HyOM) intended for
two-level cache hierarchies with separated instruction and
data caches for both levels was validated by applying twelve
applications from the Mibench suite in the experimental
environment mentioned in Section 3.1.

In this work, the instruction and data branches were
analyzed separately and the optimizations mechanisms were
observed by applying each mechanism for both branches
individually. For analysis of the TC-HyOM optimization
mechanism, the total energy consumption of the memory
hierarchy needs to be obtained. Table 6 shows the total
energy consumption normalized to the base cache for the
TC-HyOM, TECH, TCaT, TECH-CYCLES, and TEMGA
optimization mechanisms. The second to last and last lines
of the table include the average and summation of the total
energy consumption, respectively, also normalized to the
base cache.

In this case, each optimization mechanism (TECH,
TCaT, TECH-CYCLES, and TEMGA) was applied for both
branches (instruction and data) and added to obtain the total
energy consumption of the memory hierarchy. In addition,
the last column (the hybrid approach TC-HyOM) was evalu-
ated with the proposed mechanism, that is, TECH-CYCLES
being applied to the instruction branch and TEMGA to the
data branch.

We can see that, on average, the TC-HyOM approach
achieves the best results in terms of total energy consump-
tion considering twelve applications from Mibench. The
hybrid mechanism achieves energy consumption savings of
about 6%, 8%, 270%, and 252%, when compared with
the TEMGA, TECH-CYCLES, TCaT, and TECH heuristics,
respectively. More recently, approaches in the literature such
as TECH-CYCLES and TEMGA have achieved the highest
reductions when compared with TECH and TCaT mech-
anisms. The main difference between these two classes of

10

Normalised energy

= K —_— =)
3 g0 2) 3 20
A
"} |
T § ¢ § £ &
s 5§ 5 & & =
S X S X = =
3 2 = RS = =
£ £ 3
B TECH B TEMGA
B TCAT B Optimal

= TECH-CYCLES

EURASIP Journal on Embedded Systems

gsort_small
gsort_large

susan_small
susan_large
patricia_small
patricia_large

FIGURE 9: Energy consumption for data branch normalized to the base cache configuration for different optimization mechanisms (TECH,

TCAT, TECH-CYCLES, and TEMGA) and optimal values.

Number of simulations

= » — o =
= Bt B %
@ ~ g = @
= = J = <
= = b = S
IS S = £ =
S 5 g 2 2
S 2 S 2 =
2 2 = 3 =
£ £ 3
B TECH
B TCAT

dijkstra_large

gsort_small
gsort_large
susan_large

susan_small
patricia_small
patricia_large

TECH-CYCLES
TEMGA

Figure 10: Number of simulations for data branch and for different optimization mechanisms.

optimization mechanism is the inclusion of the performance
constraints in the objective functions. The use of these two
parameters, that is, energy consumption and performance,
can guide the heuristic mechanism to configurations with
a lower energy consumption and processing time of the
application.

The impact in terms of the number of simulations
necessary to conclude the execution for each optimization
mechanism was evaluated. Table 7 shows the number of
simulations for 12 applications from the Mibench suite, con-
sidering the complete analysis for both branches (instruction
and data) of the memory hierarchy. It was observed that
TC-HyOM, on average, required about 42 simulations to
conclude the simulation for both branches of the hierar-
chy.

We observe an average of about 17, 22, 19, and 86 sim-
ulations for the TCaT, TECH, TECH-CYCLES, and TEMGA
heuristics, respectively, considering twelve applications from
the Mibench benchmark and the analysis of both branches.
Although the TC-HyOM mechanism is based on a genetic
algorithm, specifically to a data branch, its hybrid approach
reduces the total number of simulations when compared
with a complete approach such as TEMGA, in which GA
is applied in both branches. Reductions in the number
of simulations for TC-HyOM can amount to 100%, when
compared with the TEMGA approach.

The total energy consumption of the memory hierarchy
was obtained for each optimization mechanism. Each col-
umn in Figure 11 represents the lowest energy consumption
values of the hierarchy obtained for a given mechanism.

EURASIP Journal on Embedded Systems 11
1431 1427 471 a5] 864 841 g56
S 4>‘ ~ \Z 3/1/
o0
—
2 351
T 5]
8 2.5 -
= 2
Q
215
<
E o
ZO 0.5 1
0 -
— © = o = Y =) =)
= 50 = & = 80 = 50 = 50 = 50
s 5§ 5 F § § § 5 & § & &5
>3 5 3 3 03¢ 332 a3 103
= = = S g £ 5 S S 3 -8 g
3 S & 3 5 3 S 2 3 2 8 2
£ § & § £ & & = § & & 3
- £ E < = & &
s S =
® TECH ®m TEMGA
m TCAT = TC-HyOM
= TECH-CYCLES ® Optimal

Figure 11: Total energy consumption for complete hierarchy normalized to the base cache configuration for different optimization
mechanisms (TECH, TCAT, TECH-CYCLES, TEMGA, and TC-HyOM) and optimal values.

TasLE 6: Total Energy consumption for memory hierarchy normal-
ized to base cache and compared with other heuristics.

Application

. TECH- TC-
ilflri(t);r)l Mibench TECH TCAT CYCLES TEMGA HyOM
basicmath_small 14.3115 14.2722 1.4690 1.4181 1.4162
basicmath_large 2.7164 4.7177 1.3248 1.7124 1.3844
bitcount_small 0.3846 0.4386 0.3830 0.3698 0.3709
bitcount_large 0.3324 0.3848 0.3324 0.3315 0.3315
djkstra_small 3.5374 3.6716 13279 1.2703 1.3419
djkstra_large 3.7258 3.8201 1.1658 1.4813 1.4059
patricia_small 8.5120 8.6464 1.7637 1.5812 1.5354
patricia_large 8.4149 8.5626 1.8888 1.8836 1.6353
gsort_small 1.5805 1.5649 1.6764 1.1980 1.3171
gsort_large 1.7271 1.5249 1.5115 1.5217 1.2499
susan_small 0.6548 0.6208 0.7452 0.5896 0.6070
susan_large 0.6080 0.6346 0.6704 0.6093 0.6093
Average 3.8755 4.0716 1.1899 1.1639 1.1004
Sum 46.5055 48.8594 14.2788 13.9668 13.2048

The TECH, TCaT, TECH-CYCLES, TEMGA, and TC-HyOM
mechanisms were normalized to the same base cache in
terms of energy consumption and evaluated for twelve
applications from the Mibench suite.

In order to show the effectiveness of the proposed
optimization mechanism (TC-HyOM) in energy consump-
tion, we compared the proposed approach with optimal
results. The results show that, on average, the proposed
mechanism has configurations close to the optimal values,
in some cases attaining the optimal values (patricia_small
and bitcount_large). On average, TC-HyOM is only 11% less
economic in terms of energy consumption than the optimal
values.

TaBLE 7: Number of simulations comparison for complete exe-
cution of different applications in both branches of the hierarchy
considering different optimization mechanisms.

Applicatilon TECH.- TC-
Slri(zér)l Mibench TECH TCAT CYCLES TEMGA FHyOM
basicmath_small 21 19 22 105 59
basicmath _large 24 20 22 73 39
bitcount_small 21 14 18 77 36
bitcount_large 20 14 17 37 24
djkstra_small 24 19 21 125 57
djkstra_large 23 18 20 96 78
patricia_small 22 17 20 165 36
patricia_large 22 18 20 74 52
qsort_small 21 17 19 50 35
qsort_large 21 17 19 74 29
susan_small 21 17 17 79 34
susan_large 21 16 17 81 29
Average 21.75 17.17 19.33 86.33 42.33

6. Conclusion and Future Work

A hybrid optimization mechanism for cache hierarchy
tuning considering energy consumption constraints was pre-
sented. This method (TC-HyOM) aggregates two different
approaches for each branch of the hierarchy, namely, the
instruction and data branches. The proposed mechanism
determines a memory hierarchy that is only 11% less
economic in terms of energy consumption than the optimal
values and required, on average, about 42 simulations to
conclude the optimization mechanism, representing about
9% of the design space.

Hybrid mechanisms may be indicated as a good alter-
native when both levels have separate instruction and data

12

caches because the optimization can be applied indepen-
dently for the distinct branches. This kind of approach can
optimize some design metrics in order to attain the best
configurations compatible with the constraints of the system
to be designed.

Some future work is being developed in a parallel study
that is intended for two-level memory hierarchies with a
unified second level. An alternative solution compared with
a state-of-the-art such as ACE-AWT and SERP from [10]
is being proposed. We have applied intelligent mechanisms,
based on genetic algorithms, hybrid and multiobjective
solutions to two-level hierarchies with a unified second level.
In addition, other benchmarks are being incorporated in the
next analysis and we plan to work with other platforms such
as the ARM-based one.

Acknowledgments

This work was supported in part by CNPq (Universal
476839/2008-4), by FINEP (ref. 4950/06), and FACEPE, all
Brazilian agencies.

References

[1] M. Kandemir and A. Choudhary, “Compiler-directed scratch
pad memory hierarchy design and management,” in Proceed-
ings of the 39th Design Automation Conference, pp. 628—633,
New Orleans, La, USA, June 2002.

[2] S. Wuytack, E Catthoor, L. Nachtergaele, and H. De Man,
“Power exploration for data dominated video applications,”
in Proceedings of the International Symposium of Low-Power
Electronics and Design (ISLPED ’00), pp. 359—364, Monterey,
Calif, USA, August 1996.

[3] C. Zhang and F. Vahid, “Cache configuration exploration on
prototyping platforms,” in Proceedings of IEEE International
Workshop on Rapid System Prototyping (RSP ’03), pp. 164-170,
June 2003.

[4] Altera, “NIOS Embedded Processor System,” San Jose, Calif,
USA, 2001, http://www.altera.com/products/ip/processors/
nios/nio-index.html.

[5] ARM Processors Datasheets, “Access the complete manuals of
all ARM processors,” Cambridge, UK, 2010, http://infocenter
.arm.com/help/index.jsp.

[6] MIPS Technologies Cores Processors, “MIPS Technologies
Core Microprocessors for 32 and 64 bits,” Mountain View,
Calif, USA, http://www.mips.com/products/cores/.

[7] Tensilica, “Xtensa processor generator,” Santa Clara, Calif,
USA, http://www.tensilica.com/.

[8] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache
architecture for embedded systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, no. 2, pp. 407—
425,2004.

[9] A. Gordon-Ross, E Vahid, and N. Dutt, “Automatic tuning

of two-level caches to embedded applications,” in Proceedings

of Design, Automation and Test in Europe Conference and

Exhibition (DATE °04), pp. 208-213, February 2004.

A. Gordon-Ross, E Vahid, and N. D. Dutt, “Fast configurable-

cache tuning with a unified second-level cache,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 17,

no. 1, Article ID 4689316, pp. 80-91, 2009.

(10

EURASIP Journal on Embedded Systems

[11] M. R. Guttaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “Mibench: a free, commercially
representative embedded benchmark suite,” in Proceedings of
IEEE International Workshop on Workload Characterization
(WWC 01), pp. 3—14, 2001.

[12] C. Zhang and E Vahid, “Cache configuration exploration
on prototyping platforms,” in Procceding of the 14th IEEE
International Workshop on Rapid System Prototyping (RSP 03),
p. 164, June 2003.

[13] A. G. Silva-Filho, M. E. Lima, P. S. B. Nascimento, and R.
Eskinazi, “An energy-aware exploration approach based on
open software enviroment,” in Proceedings of the International
Embedded System Symposium (IESS °05), pp. 97-102, July
2005.

[14] A. G. Silva-Filho, F. R. Cordeiro, R. E. Sant’Anna, and M.
E. Lima, “Heuristic for two-level cache hierarchy exploration
considering energy consumption and performance,” in Pro-
ceedings of the International Workshop on Integrated Circuit and
System Design, Power and Timing Modeling, Optimization and
Simulation (PATMOS °06), pp. 75-83, September 2006.

[15] A. G. Silva-Filho, C. J. A. Bastos-Filho, R. M. F. Lima,
D. M. A. Falcao, E R. Cordeiro, and M. P. Lima, “An
intelligent mechanism to explore a two-level cache hierarchy
considering energy consumption and time performance,” in
19th International Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD, pp. 177-184, bra,
October 2007.

[16] D.Burgerand T. M. Austin, “The SimpleScalar tool set, version
2.0, Computer Architecture News, vol. 25, no. 3, pp. 13-25,
1997.

[17] N. Dutt and M. Mamidipaka, “cCACTI: An Enhanced Power
Estimation Model for On-chip Caches,” TR 04-28, Set. 2004.

[18] (ITRS 2008), “International Technology Roadmap for Semi-
conductors 2008 (Update),” http://www.itrs.net/.

[19] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi, “HP
Technical Reports: CACTI 5.0,” May 2008, http://www.hpLhp
.com/techreports/2007/HPL-2007-167.html.

[20] T. Givargis and F. Vahid, “Platune: a tuning framework for
system-on-a-chip platforms,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 21, no. 11,
pp. 1317-1327, 2002.

[21] Intel Datasheet Processors, http://download.intel.com/design/
processor/datashts/318726.pdf.

[22] “Intel Datasheet Processors, Series 9300,” http://download
.intel.com/design/itanium/downloads/322821.pdf.

	1. Introduction
	2. Background
	3. Preliminary Studies
	3.1. Experimental Setup Environment
	3.2. Comparisons between Memory Hierarchies
	3.3. Comparison between Mechanisms

	4. Proposed Mechanism Evaluation
	4.1. Instruction Branch Analysis (TECH-CYCLES Heuristic)
	4.2. Data Branch Analysis (TEMGA Heuristic)

	5. Results of the TC-HyOM
	6. Conclusion and Future Work
	Acknowledgments
	References

