
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2011, Article ID 391215, 18 pages
doi:10.1155/2011/391215

Research Article

Reclaiming Spare Capacity and Improving Aperiodic Response
Times in Real-Time Environments

Sathish Gopalakrishnan1 and Xue Liu2

1Department of Electrical and Computer Engineering, the University of British Columbia, 2332 Main Mall,
Vancouver, BC, Canada V6T 1Z4

2Department of Computer Science and Engineering, University of Nebraska-Lincoln, 104 Schorr Center, Lincoln, NE 68588, USA

Correspondence should be addressed to Sathish Gopalakrishnan, sathish@ece.ubc.ca

Received 30 August 2010; Accepted 28 January 2011

Academic Editor: S. Ramesh

Copyright © 2011 S. Gopalakrishnan and X. Liu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Scheduling recurring task sets that allow some instances of the tasks to be skipped produces holes in the schedule which are
nonuniformly distributed. Similarly, when the recurring tasks are not strictly periodic but are sporadic, there is extra processor
bandwidth arising because of irregular job arrivals. The additional computation capacity that results from skips or sporadic tasks
can be reclaimed to service aperiodic task requests efficiently and quickly. We present techniques for improving the response times
of aperiodic tasks by identifying nonuniformly distributed spare capacity—because of skips or sporadic tasks—in the schedule and
adding such extra capacity to the capacity queue of a BASH server. These gaps can account for a significant portion of aperiodic
capacity, and their reclamation results in considerable improvement to aperiodic response times. We present two schemes: NCLB-
CBS, which performs well in periodic real-time environments with firm tasks, and NCLB-CUS, which can be deployed when the
basic task set to schedule is sporadic. Evaluation via simulations and implementation suggests that performance improvements for
aperiodic tasks can be obtained with limited additional overhead.

1. Introduction

Real-time systems execute periodic and aperiodic tasks, and
typically each of these tasks has a deadline. Periodic tasks are
recurring, and each instance of such a task is called a job.
A periodic task τi is typically characterized by computation
time ci and period pi; the relative deadline of an instance of
a periodic task is equal to the period of the task. Aperiodic
tasks are executed only occasionally but often require short
response times. The terms aperiodic task and aperiodic job
are used interchangeably in this discussion.

Real-time tasks can be classified based on the conse-
quences of a missed deadline as follows.

Hard. If a hard real-time task misses its deadline, it is
assumed that consequences for the system are catas-
trophic. It is therefore imperative that a priori
guarantees of not missing the deadlines be provided
for all hard real-time tasks.

Soft. A soft real-time task may miss deadlines, and missed
deadlines lead to degraded performance or lower
quality of service.

Firm. Firm real-time tasks are allowed to miss deadlines
occasionally. An instance of a firm task can be aborted
to create capacity for executing other jobs.

Real-time tasks may be classified along a different
dimension: their periodicity. Strictly periodic tasks have job
instances that release at precisely periodic intervals. On the
other hand, consecutive instances of a sporadic task have a
minimum separation distance, pi . The distinction between
periodic and sporadic tasks are that consecutive instances of a
periodic task are released at time instants strictly separated by
pi time units whereas consecutive instances of sporadic tasks
are separated by at least pi time units. Aperiodic tasks do
not have any constraints on the interarrival times; in general,
aperiodic workload does not constitute a majority share of
processor utilization.



2 EURASIP Journal on Embedded Systems

Liu and Layland [1] were the first to address the problem
of scheduling periodic hard real-time tasks; they developed
simple schedulability tests for periodic task sets scheduled
by the rate monotonic algorithm or the earliest deadline
first algorithm. The RM algorithm assigns higher priorities
to tasks with higher rates (lower periods), and the EDF
algorithm assigns higher priorities to tasks with earlier
absolute deadlines. Systems that assign the same priority to
every job of a task are called fixed priority real-time systems;
systems that might assign different priorities to different
instances of the same task are called dynamic priority systems.
The RM assignment is fixed priority, and EDF is a dynamic
priority assignment.

Later research on real-time systems extended Liu and
Layland’s analysis to derive schedulability conditions for hard
real-time task sets under more general settings. Feasibility
analysis with resource sharing among periodic tasks [2–4]
and in the presence of aperiodic tasks [5–10] are important
generalizations that have been studied.

Real-time systems also need to execute some tasks that
are aperiodic. These tasks may perform operations such as
maintenance work or performance logging. These operations
may not impact system functionality or criticality, but better
QoS can be provided by servicing these requests quickly. For
instance, a response to a resource utilization snapshot request
is more useful to a human operator if provided earlier rather
than later. From a scheduling perspective, the challenge is to
schedule aperiodic tasks as soon as possible without causing
periodic/sporadic (critical) tasks to miss deadlines. There are
applications that require aperiodic tasks with deadlines; in
this work, however, we focus on aperiodic tasks that do not have
deadlines associated with them.

While it is true that there are some safety-critical systems
that cannot tolerate a single deadline miss, many systems
(e.g., multimedia systems) are capable of tolerating some
missed deadlines. Moreover, even in safety-critical systems,
not all tasks are hard real-time tasks; for optimal resource
allocation, soft and firm real-time tasks need to be handled
differently. Skipping a few instances of a firm real-time
task allows a scheduler to utilize resources better and
schedule task sets that would otherwise overload the system.
Hamdaoui and Ramanathan [11] proposed the (m, k)-model
for representing firm real-time tasks; in this model, in any
window of k instances of a task, at least m instances need to
be executed successfully. Koren and Shasha [12] studied the
special case of the (1, k)-firm real-time task model. One of
the major benefits of allowing skips is the ability to improve
the response times of aperiodic tasks (more related work is
discussed in Section 2).

The main contribution of our work is the development
of mechanisms that enable schedulers to reclaim spare
bandwidth—which is nontrivial in systems that allow skips
or involve sporadic tasks—and advance the execution of
aperiodic tasks within the framework of dynamic-priority
servers that can guarantee periodic (or sporadic) tasks a
fraction of the processor. To establish the correctness of
our methods, we first discuss some basic theorems and
techniques (Section 3). Because we are concerned with tasks
that permit skips, we consider the red-tasks-only and the

blue-when-possible models [12]. We first discuss the use
of our NCLB approach with the red-tasks-only model
(Section 4) and then discuss the extensions to the blue-when-
possible model (Sections 4.2 and 5).

Experimental results (Sections 6 and 7) indicate that, by
reclaiming spare processing cycles with our approach, we can
improve the response times of aperiodic tasks significantly,
and that the overhead imposed by the suggested schemes is
low.

2. RelatedWork

For firm real-time systems, while Hamdaoui and Ramanat-
han [11] proposed the (m, k)-model for representing firm
real-time tasks and described a heuristic priority assignment
scheme for such tasks, they did not develop an exact schedu-
lability analysis. Bernat and Burns [13] described a technique
for utilizing the (m, k)-model in the presence of aperiodic
tasks along with an offline guarantee test using a worst-case
formulation for fixed priority scheduling. Koren and Shasha
[12] made important contributions when they proved that
making optimal use of skips is NP-hard and described
two (efficient, but nonoptimal) skip-over algorithms for
exploiting skips and increasing the feasible periodic load and
schedule task sets that are slightly overloaded. One skip-
over algorithm is fixed priority and extends RM scheduling;
the other algorithm is dynamic priority and is based on
the EDF algorithm. Koren and Shasha modeled a firm real-
time task, τi, using a skip factor, si, which indicates that
one instance of τi can be skipped every si instances. Koren
and Shasha also differentiated task instances using the colors
red and blue. Red instances had to be completed to satisfy
the 1-in-k requirement; blue instances could be executed if
possible and when no other task would miss its deadline by
such execution. This classification led to algorithms which
executed red tasks only (RTO) or scheduled blue instances
when possible (BWP).

There has been extensive work in dealing with aperiodic
tasks in hard real-time systems. The primary goal has been
the scheduling of aperiodic tasks in the presence of hard real-
time tasks and improving the performance over background
execution of aperiodic tasks.

The simplest approach to aperiodic task scheduling is
background scheduling: aperiodic tasks are executed only
when no periodic (or sporadic) jobs are ready for execution.
Clearly, such an approach preserves the deadlines of periodic
tasks and is simple to implement. On the other hand, the
execution of aperiodic jobs may be delayed needlessly, and,
as a result, their response times may be very high.

The predominant approaches to aperiodic real-time
scheduling can be classified as bandwidth-preserving server
schemes [14]. Bandwidth-preserving servers are aperiodic
servers which are defined by some consumption and replen-
ishment rules. These rules guarantee that each task consumes
only a certain amount of the bandwidth thereby providing
a guarantee that every hard real-time task will meet its
deadlines.



EURASIP Journal on Embedded Systems 3

Many server schemes have been proposed for both static
and dynamic priority scheduling algorithms. Predominant
server schemes have been the deferrable server [5, 15],
sporadic server [6], and the constant bandwidth server [10].
More recently, there have been efforts to handle execution
time overruns in a graceful manner while allowing periodic
and aperiodic tasks to coexist. CASH [16], BASH [17],
GRUB [18], and IRIS [19] are some of the proposals in this
direction. There have also been other efforts to integrate
aperiodic tasks with periodic hard real-time tasks [20,
21]. No prior work, however, has explicitly and efficiently
addressed the problem of completely reclaiming spare time
for aperiodic tasks in a system that tolerates skips or in
systems that deal, predominantly, with sporadic tasks.

There have been three main efforts directed at improving
aperiodic response time in a firm real-time environment;
Marchand and Silly-Chetto [22], Buttazzo and Caccamo
[23], and Thomas et al. [24] have addressed the problem to
varying extents.

Marchand and Silly-Chetto developed the EDL-RTO and
the EDL-BWP algorithms [22] for enhancing the respon-
siveness of aperiodic tasks in a firm real-time environment.
Their work is based on the EDL scheduler [25], and this leads
to high overhead (of the order of O(N 2)) where N is the
number of tasks to be scheduled).

Buttazzo and Caccamo [23] proposed a technique for
minimizing aperiodic response times in a firm real-time
environment using the model proposed by Koren and
Shasha; the underlying scheduler was the EDF scheduler.
Buttazzo and Caccamo reclaimed a portion of the spare time
created by skipping jobs to improve the response time for
aperiodic tasks. They were unable to reclaim all the spare
time, however, and observed that the spare time created
by skipping jobs has a “granular” distribution across the
schedule. They called these unevenly distributed capacities
holes. Later, Thomas et al. [24] developed the spare CASH
approach for locating and reusing these holes via the CASH
mechanism [16] in a firm real-time environment with the
RTO scheduling paradigm [12]. The work that we present
in this article improves upon spare CASH in two ways.
The mechanisms we present use the BASH server, which is
an improvement over the CASH server. Additionally, Spare
CASH cannot be utilized in conjunction with sporadic task
sets whereas we also suggest techniques that improve the
response time of aperiodic tasks in the presence of firm/hard
sporadic real-time tasks.

Lin and Brandt identified some principles for slack
reclamation in periodic real-time systems and used these
principles to develop the BACKSLASH scheme [26]. BACK-
SLASH is, however, better suited to dealing with dynamic
slack that is created by early job completions and allocating
it to tasks that may have overruns. In the context of
speeding up aperiodic tasks in firm real-time or sporadic
environments, our approach is more aggressive and attuned
to the specifics of these settings. In particular, BACKSLASH
makes no distinction between periodic and aperiodic tasks
and provides fair distribution of slack. This may not be
the best choice for all systems. In the methods that we will
present, slack present in a schedule can be transferred to tasks

that need the slack the most. We have chosen to restrict our
attention to aperiodic tasks, but the same ideas can be used
to allocate slack to other tasks executed in the system.

In this paper, we provide a simple, integrated framework
for dealing with aperiodic tasks while allowing reservations
through the use of servers and efficient resource reclamations
in the case of early task completions, skipped jobs or sporadic
tasks. We propose the NCLB (no capacity left back) class of
algorithms because we ensure that no background execution
occurs in the schedule. We consider two variants, NCLB-
CBS and NCLB-CUS, depending on whether a constant
bandwidth server or a constant utilization server [14] is
chosen as the underlying server. The choice of the server
mechanism depends onwhether the basic task set to schedule
is periodic or sporadic; with sporadic tasks, we advocate a
CU server, and, in other circumstances, it may be a matter of
implementation preference.

In the next section, we will discuss, briefly, the main
results concerning firm real-time scheduling. Our work does
address sporadic task systems as well, but, because of the
similarity between the treatment of sporadic and strictly
periodic task systems, we do not dwell on prior work on
sporadic task sets.

3. Preliminaries

3.1. Terminology and Assumptions. Each firm periodic task,
τi, is characterized by its worst-case computation time, ci, its
period, pi, a relative deadline that is equal to the period, and
a skip parameter, si, 2 ≤ si ≤ ∞. The skip parameter specifies
the minimum distance between two consecutive skips. For
example, if si = 6, 1 in every 6 instances of task τi can be
skipped. When si = ∞, no skips are allowed and the task is
a hard periodic task. The skip parameter can be viewed as
a quality of service measure; the higher the s, the better the
QoS. τi, j is used to denote the jth instance of task τi.

Using the terminology introduced by Koren and Shasha
[12], every instance of a firm periodic task can be labeled red
or blue. A red instance must complete before its deadline;
a blue instance can be aborted at any time. When a blue
instance is aborted, we say that it is skipped. If a blue instance
is skipped, then the next s− 1 instances must be red. On the
other hand, if a blue instance completes successfully, the next
task instance is also blue.

3.2. Basic Results on Firm Periodic Task Scheduling. In the
hard periodic model, where all task instances are red (no
skips are permitted), the schedulability of a periodic task
set can be tested using a simple, necessary, and sufficient
condition based upon cumulative processor utilization. Liu
and Layland [1] showed that a periodic task set is schedulable
by EDF if and only if its cumulative processor utilization,Up,
is no greater than 1. That is,

Up =
n∑

i=1

ci
pi
≤ 1. (1)

Analyzing the feasibility of firm periodic tasks is not equally
easy. Koren and Shasha [12] proved that determining



4 EURASIP Journal on Embedded Systems

whether a set of skippable periodic tasks is schedulable is NP-
hard. They also found, given a set Γ = {τi(pi, ci, si)} of firm
periodic tasks that allow skips, that

n∑

i=1

ci(si − 1)
pisi

≤ 1 (2)

is a necessary condition for the feasibility of Γ, since it rep-
resents the utilization based on the computation that must
take place.

The concepts mentioned above can be clarified with an
example. Consider the task set shown in Table 1 and the
corresponding feasible schedule, obtained by EDF, illustrated
in Figure 1. Notice that the cumulative processor utilization,
Up, is greater than 1 (Up = 1.25), but condition (2) is
satisfied.

Using the processor demand criterion, Baruah et al. [27]
showed that a set of hard periodic tasks is schedulable by EDF
if and only if, for any interval L ≥ 0,

L ≥
n∑

i=1

⌊
L

pi

⌋
ci. (3)

Based on this result, Koren and Shasha [12] proved the
following theorem, which provides a sufficient condition for
guaranteeing a set of skippable periodic tasks under EDF.

Theorem 1. A set of firm (i.e., skippable) periodic tasks is
schedulable if

∀L ≥ 0, L ≥
n∑

i=1
D(i, [0,L])

where D(i, [0,L]) =
(⌊

L

pi

⌋
−
⌊

L

pisi

⌋)
ci.

(4)

Koren and Shasha [12] proposed two online scheduling algo-
rithms, red tasks only and blue when possible, to handle
tasks with skips under EDF. In their theorem, D(i, [0,L])
represents the effective time demanded by the periodic task
Ti over the interval [0,L].

Red tasks only (RTO) always skips blue instances
whereas red ones are scheduled according to EDF.

Blue when possible (BWP) is more flexible than RTO
and schedules blue instances whenever there are no
ready red jobs to execute. Red instances are scheduled
according to EDF.

It is easy to find examples to demonstrate that BWP
improves upon RTO in the sense that it can schedule task
sets that RTO cannot schedule. In the general case, the above
algorithms are not optimal, but they are optimal under a
special task model, called the deeply-red model.

Definition 1. A system is deeply-red if all tasks are syn-
chronously activated and the first si − 1 instances of every
task τi are red.

Table 1: A schedulable set of firm periodic tasks.

Task Task 1 Task 2 Task 3

Computation 1 2 5

Period 3 4 12

Skip parameter 4 3 ∞
Up 1.25

In the same paper, Koren and Shasha showed that the
worst case for a periodic skippable task set occurs when tasks
are deeply-red. This means that, if a task set is schedulable
under the deeply-red model, it is also schedulable without
this assumption. For this reason, all results in this paper will
be proved under the assumption above.

Buttazzo and Caccamo [23] defined the equivalent pro-
cessor utilization, U∗

p , for a set of firm periodic tasks to be

U∗
p = max

L≥0

{∑
i D(i, [0,L])

L

}
. (5)

They then used the remaining (uniformly distributed) capac-
ity, 1 − U∗

p , to schedule aperiodic tasks. However, the
equivalent processor utilization overestimates the system
utilization, and there is some processor capacity that is not
reclaimed because it has a “granular” distribution [23]. The
spare capacity in the system can be calculated, and it is given
by

Uspare = 1−Up +
n∑

i=1

ci
pisi

, (6)

where Up is the cumulative processor utilization if there were
no skips.

This spare capacity can be categorized into two portions
Usa and Ush. A portion of this capacity Usa = 1 − U∗

p is
uniformly distributed and is assigned to the aperiodic server.
The remaining portion of the spare capacity is nonuniformly
distributed among many holes [23], and can be calculated as
Ush = Uspare −Usa.

Table 2 shows a set of skippable tasks that can be feasibly
scheduled under the RTO model with U∗

p = 0.80. Notice
that the capacity distributed among the holes in the schedule
accounts for 27 percent of the processor utilization. Being
able to reclaim more than a quarter of the processor capacity
can result in marked reductions in response times for
aperiodic tasks.

In our work, we identify the spare capacity that is
irregularly spaced and provide a mechanism for using this
capacity to improve response times of aperiodic tasks.

3.3. The BASH Mechanism. Using the basic results on firm
periodic task scheduling, we address the feasibility analysis
of hybrid task sets, consisting of firm periodic tasks and soft
aperiodic requests.

The bandwidth sharing mechanism (BASH) works in
conjunction with the constant bandwidth server (CBS) [28].
CBS provides isolation between tasks in a system; each
task is allocated a bandwidth and a server to ensure that



EURASIP Journal on Embedded Systems 5

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

T2

T1

T3

Skip

Skip Skip

Skip

Figure 1: A feasible schedule of the task set shown in Table 1.

Table 2: Task set illustrating the existence of holes.

Task Task 1 Task 2

Computation 2 2

Period 3 5

Skip parameter 2 2

Up 1.07

U∗
p 0.8

Usa = 1−U∗
p 0.2

Uspare 0.47

Ush 0.27

it does not use more than the allotted bandwidth. BASH
[17] was proposed as an approach for handling overruns in
systems executing periodic tasks while preserving isolation.
The primary motivation for bandwidth sharing was the
observation that only a few instances of a task execute for
the worst-case duration and that reserving resources using
the worst-case consumption is expensive. BASH advocates a
resource budget based on the bandwidth allocated to each
task; when a task exceeds the allocated budget, residual
capacities from jobs that finished before their budgets
expired can be utilized to handle the overrun. BASH was
proposed for periodic task sets with hard deadlines; if Up

is the utilization of the periodic task set, the remaining
bandwidth, 1 − Up, can be assigned to an aperiodic task
server. A global capacity queue, or a BASH queue, is used
to keep track of the available excess capacity.

The BASH algorithm is specified by the following rules.

(1) Each server Si is characterized by a budget ci and by
an ordered pair (Qi,Ti), where Qi is the maximum
budget and Ti is the period of the server. The ratio
Ui = Qi/Ti is denoted as the server bandwidth. At
each instant, a fixed deadline di,k is associated with
the server. At the beginning di,0 = 0, for all i. A global
variable tidle always maintains the finishing time of
the last idle interval, and it is initially set to zero.

(2) Each BASH capacity is represented by an ordered
tuple Capq(rq,dq, cq,Uq,Tq) where rq is its release
time (in the BASH queue), dq is its absolute deadline,

cq is its budget, and Uq and Tq are the utilization and
period of its generating server, respectively.

(3) Each task instance τi, j handled by server Si is assigned
a dynamic deadline equal to the current server
deadline di,k.

(4) A server Si is said to be active at time t if there are
pending instances. A server is said to be idle at time t
if it is not active.

(5) When a task instance τi, j arrives and the server is
idle, the server generates a new deadline di,k =
max{ri, j ,di,k−1} + Ti, and ci is recharged to the
maximum value Qi.

(6) When a task instance τi, j arrives and the server is
active, the request is enqueued in a queue of pending
jobs according to a given (arbitrary) discipline.

(7) Assuming instance τi, j is scheduled for execution
at time t, the server Si uses the capacity Capq in
the BASH queue (if there is one) with the earliest
deadline dq such that t < dq ≤ di,k ; otherwise, its own
capacity ci is used. Suppose a BASH capacity Capq is

used and rq < tidle, the budget cq of Capq is updated as

cq = min{TqUq, (dq−tidle)Uq} before Capq is used by
server Si; otherwise, the budget cq is used as is. Notice
that each BASH capacity with deadline less than or
equal to the current time t will expire and be removed
from the BASH queue.

(8) Whenever job τi, j executes, the used budget cq or ci
is decreased by the same amount. When cq becomes
equal to zero, Capq is extracted from the BASH queue
and the next capacity in the queue with deadline less
than or equal to di,k can be used.

(9) When the server is active and ci becomes equal to
zero, the server budget is recharged at the maximum
value Qi and a new server deadline is generated as
di,k = di,k−1 + Ti.

(10) When a task instance finishes, the next pending
instance, if any, is served using the current budget
and deadline. If there are no pending jobs, the server
becomes idle, the residual budget ci > 0 (if any)
is inserted in the BASH queue as a capacity with
release time equal to the current time, deadline,



6 EURASIP Journal on Embedded Systems

bandwidth, and period equal to the server deadline,
server bandwidth, and server period, respectively.
Finally, ci is set equal to zero.

(11) Each time the processor becomes idle for an interval
of time Δ(t1, t2), the global variable tidle is set equal to
t2 as soon as the idle interval ends.

BASH was developed for hard real-time task sets; our
work pushes the envelope further by dealing with firm real-
time tasks and sporadic tasks. The holes that occur in a
schedule are identified and added (at the appropriate time)
to the BASH queue and can be utilized by all tasks, especially
aperiodic tasks. BASH performs better than CASH [16]
because of improved idle-time handling.

3.4. Sequencing Aperiodic Tasks. When multiple aperiodic
tasks are active (ready to be executed) at the same time,
we have multiple policy choices to sequence the aperiodic
requests. The simplest approach is to execute aperiodic tasks
on a first-come-first-served basis. This is the approach we
apply in our work, and this is the policy chosen during our
simulations and experiments. Other policies for sequencing
aperiodic tasks such as shortest remaining processing time
(SRPT) can be applied. For instance, SRPT is likely to yield
improvements in average response times. We have, however,
not applied alternative schemes although they are compatible
with the techniques we propose. Onemay also chose to apply
some static priority rules to aperiodic tasks depending on the
application context, and this too is easily integrated into the
framework that we have developed.

Our emphasis is on showing that reclaiming spare capac-
ity improves the response time of aperiodic tasks. Further
optimizations, such as sequencing between aperiodic tasks,
can be performed, and these may yield greater benefits.

4. The NCLB-CBS Technique

In this section, we formally describe the NCLB-CBS tech-
nique assuming that each task, τi, is handled by a dedicated
CBS server, Si, running on a uniprocessor system. Bandwidth
is reclaimed through the BASH mechanism. We first present
a mechanism for the simplest case—a strictly periodic firm
task system where tasks are scheduled by EDF according to
the RTO model. Prior to the discussion, we introduce a
definition.

Definition 2. Given a set Γ = {τi(pi, ci, si)} of n periodic tasks
that allow skips, themetahyperperiod, H = lcm(p1 × s1, p2 ×
s2, . . . , pn × sn), is defined as the period after which the task
schedule repeats itself.

As an example, the metahyperperiod of the task set in
Table 2 is 30.

Spare capacities for a given task set are identified offline
and added to the global capacity queue online. Holes are
identified over the metahyperperiod for the given task set.

4.0.1. An Algorithm to Locate Holes

Definition 3. The total activity duration in an interval [t1, t2]
is defined as

A[t1, t2] =
∫ t2

t1
f (t)dt,

where f (t) =
⎧
⎨
⎩
1 if the processor is busy at t,

0 otherwise.

(7)

Remark 1. It is trivial to observe that A[t1, t2] ≤ t2 − t1.
Moreover, since D(i, [0,L]) is the effective time demand for
a firm periodic task τi, when a task set is schedulable, we
must have the activity duration over any time interval greater
than or equal to the effective time demand over that interval.
In effect, we can restate Theorem 1 as follows: a set of firm
periodic tasks is schedulable if

∀L ≥ 0, L ≥ A[0,L] ≥
n∑

i=1
D(i, [0,L]). (8)

Definition 4. A time instant t is called a skip deadline if it is
the deadline for a task instance that is skipped.

The algorithm to locate holes in the schedule inflates
the utilization of the task set by the factor 1/U∗

p . Following
this inflation, any spare capacity that exists is associated
with a hole in the schedule. Note that a fraction, Usa =
1 − U∗

p , of the processor capacity can be reclaimed simply
by using an aperiodic task server of bandwidth Usa. By
inflating the execution times, we account for the known
spare capacity and obtain only the capacity that is irregularly
distributed. The algorithm has a complexity ofO(Hn) where
H is the metahyperperiod and n represents the number of
tasks. Spare capacities (the holes) are calculated at every
skip deadline in Algorithm 1 and are characterized by the
three-tuple (Ek , rk ,dk) with Ek being the capacity, rk the
release time, and dk the hole deadline. Capacities can also
be calculated and placed at every task deadline. We will first
describe how the holes can be reused when the RTOmodel is
used. Following the description, we will formally prove that
the capacities identified by Algorithm 1 are indeed holes and
that the schedulability of the periodic task set is preserved.

4.1. RTO-EDF Scheduling with NCLB-CBS. In the RTO
model, all the blue instances are rejected. Since all blue
instances are skipped uniformly, the task schedule repeats
every metahyperperiod. The extra capacities are calculated
offline according to Algorithm 1.

Figure 2 shows the hole capacities for the task set in
Table 2. Holes are identified at every skip deadline. Extra
capacity at t = 6 is calculated according to (7) and
Algorithm 1 as

E0 = (L− A[0,L])×U∗
p = (6− 5)× 0.8 = 0.8, (9)

since A[0, 6] = 5 and U∗
p = 0.8. Similarly, extra capacity at

t = 10 is E1 = (10− 7.5)× 0.8− 0.8 = 1.2. Extra capacity E0



EURASIP Journal on Embedded Systems 7

Require: A set Γ = {τi(pi, ci, si)} of n firm periodic tasks with an equivalent processor utilization U∗
p .

k ⇐ 0
d−1 ⇐ 0
H ⇐ lcm(p1 × s1, p2 × s2, . . . , pn × sn) {metahyperperiod}
for all tasks τi do

c∗i = ci/U∗
p

end for
Schedule the task set Γ∗ = {τi(pi, c∗i , si)} using the EDF-RTO scheduler
for all time t where (t is a task skip-deadline) and (t ≤ H) to

Ek ⇐ (t −A[0, t])×U∗
p −

∑k−1
j=0 Ej

rk ⇐ dk−1
dk ⇐ t
Add hole (Ek , rk ,dk) to the hole capacity list
k ⇐ k + 1

end for

Algorithm 1: Locate holes and determine capacities.

is assigned a deadline d0 = 6, and released at time 0 while
E1 is assigned a deadline d1 = 10 and released at time 6.
In the example, no hole capacities are added at certain skip
deadlines (e.g., t = 12, t = 20) because there is no new hole
in the schedule at those time instants.

Extra capacities for the entire metahyperperiod are
calculated offline. They are released online according to
Algorithm 2.

It is important to observe that holes correspond to idle
intervals in the task schedule with inflated execution times;
however, identifying holes makes it extremely efficient to
exploit spare capacity in the system—this approach is much
better than background execution.

The BASH capacity queue can now consist of two types
of capacities—the BASH capacity that is a result of early job
completions and hole capacities. These capacities need to be
distinguished when being consumed. We denote capacities
due to holes as Holeq(Eq,dq) (A hole is characterized by the
three tuple {Ek, rk ,dk} but when the hole capacity is added
to the BASH queue it is sufficient to retain only the capacity
and deadline.) and when a hole is released Eq is set to the hole
capacity. To BASH (Rule 7) as follows.

Assuming instance τi, j is scheduled for execution at time
t, the server Si uses Holeq or Capq in the BASHqueue (if there
is one) with the earliest deadline dq such that t < dq ≤ di,k,
otherwise its own capacity ci is used.

(a) If the capacity is a hole capacity and (dq − Eq/U∗
p ) <

tidle < di, the budget cq is updated as cq = (dq −
tidle)U∗

p before Holeq is used by server Si, otherwise
the budget cq is used as it is.

(b) If Capq is used and rq < tidle, the budget cq of Capq
is updated as cq = min[TqUq, (dq − tidle)Uq] before
Capq is used by server Si, otherwise the budget cq is
used as it is.

The need for the modified rule can be understood easily:
if a hole was released before an idle interval ended, some
of the idle time leads to a reduction in hole capacity. Hole

capacities are included in the effective processor utilization,
U∗

p , therefore idling leads to a reduction in hole capacities at
the rate U∗

p . (idling will also lead to a reduction in directly
reserved aperiodic capacity at the rate of 1−U∗

p .)
The keystone for this work on exploiting holes is to

transform background time into reserved bandwidth by
reclaiming resources. Each CBS server is able to reclaim
bandwidth by consuming spare capacity while preserving its
own budget. A formal discussion of this intuition follows.

4.1.1. Theorems and Proofs

Theorem 2. Given a set Γ = {τi(pi, ci, si)} of n firm periodic
tasks with an equivalent processor utilization factor U∗

p ≤ 1,
the set Γ∗ = {τi(pi, c∗i , si)} where c∗i = ci/U∗

p is schedulable.

Proof. We need to prove that

∀L ≥ 0, L ≥
n∑

i=1
D(i, [0,L])

where D(i, [0,L]) =
(⌊

L

pi

⌋
−
⌊

L

pisi

⌋)
× c∗i .

(10)

Since c∗i = ci/U∗
p , alternatively, we need to prove that

∀L ≥ 0, L ≥
⎛
⎝

n∑

i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
∗ ci

U∗
p

⎞
⎠. (11)

By the definition of U∗
p (5), we have

U∗
p ≥

⎛
⎝

n∑

i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci

L

⎞
⎠

=⇒ L ≥
⎛
⎝

n∑

i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci

U∗
p

⎞
⎠.

(12)



8 EURASIP Journal on Embedded Systems

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

T2

T1

Skip

Skip Skip Skip

Skip Skip Skip Skip

0.8 1.2 2.4 0.8 2.8

Hole capacities

Periodic computation Aperiodic computation

Figure 2: Task set (Table 2) scheduled using the RTO model with inflated computation times.

Theorem 3. Algorithm 1 preserves the aperiodic bandwidth
over any time interval [t1, t2].

Proof. We will consider three cases.

Case 1 (Processor is fully occupied during interval [t1, t2]).
Algorithm 1 assumes that the time between [t1, t2] is divided
into discrete time units such that each unit resembles
Figure 3.

Hence, for every Δ = t2 − t1, Usa × Δ is available as ape-
riodic bandwidth. This, however, increases the computation
for task τi to ci/U∗

p ; the schedulability for which is proved in
Theorem 2.

Case 2 (Processor is idle during interval [t1, t2]). In
Algorithm 1, when spare capacity is calculated at every
skip deadline, only a fraction, U∗

p , of it is identified as
hole capacity. The remaining spare capacity is the aperiodic
bandwidth Usa = 1 − U∗

p . Therefore, for any idle interval,
[t1, t2], the aperiodic bandwidth is conserved.

Case 3 (Processor is partially busy during interval [t1, t2]).
This case is a combination of Cases 1 and 2. Since the
theorem holds for Cases 1 and 2, it holds for this case.

Theorem 4. Addition of extra capacities does not affect the
schedulability of the original task set Γ = {τi(pi, ci, si)}.

Proof. We need to prove

∀L, L ≥
n∑

i=1
D(i, [0,L]) +

(
1−U∗

p

)
L +

∑

k,dk≤L
Ek , (13)

where D(i, [0,L]) is the effective time demanded by
τi(pi, ci, si), (1 − U∗

p )L is the total aperiodic bandwidth in
[0,L], and Ek is the hole capacity with deadline dk.

U∗p 1−U∗p

Figure 3: A single unit of time.

By taking the (1−U∗
p )L term to the left-hand side and in

(13) and then dividing throughout by U∗
p , we need to show

L ≥
∑n

i=1D(i, [0,L])
U∗

p
+

∑
k,dk≤L Ek
U∗

p
. (14)

Algorithm 1 uses the task set with inflated computation
times, Γ∗. However, since U∗

p ≤ 1, Γ∗ is schedulable. From
(8), we have

A[0,L]≥
⎧
⎨
⎩

n∑

i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci
U∗

p

⎫
⎬
⎭=

∑n
i=1D(i, [0,L])

U∗
p

.

(15)

Using the above inequality in (14), to prove the theorem,
we need to show that

(L− A[0,L])×U∗
p ≥

∑

k,dk≤L
Ek. (16)

This, however, follows directly from Algorithm 1 when L is a
skip deadline because

Ek,dk=L = (L− A[0,L])×U∗
p −

∑

j,dj<L

Ej . (17)

If L is not a skip deadline, let L′ be the greatest skip
deadline such that L′ < L (L′ can be 0.) Then, we have

(L′ − A[0,L′])×U∗
p =

∑

k,dk≤L′
Ek. (18)



EURASIP Journal on Embedded Systems 9

Rewriting L − A[0,L] as (L − L′) − A[L′,L] + L′ − A[0,L′],
we need to show that

((L− L′)− A[L′,L] + L′ − A[0,L′])×U∗
p ≥

∑

k,dk<L

Ek. (19)

Using (18), we simply need to prove that (L−L′)−A[L′,L] ≥
0. This is trivial because the activity over a time interval
cannot exceed the length of the interval.

4.2. BWP-EDF Scheduling with NCLB-CBS. Having dis-
cussed scheduling firm periodic tasks and aperiodic tasks
under the RTO model, we turn our attention to the BWP
model. The focus is still on firm real-time task systems.

In Section 4.0.1, we presented an algorithm to determine
the holes in a schedule consisting of firm real-time tasks.
Locating the holes provides an elegant integration with
BASH that can reduce the response times of aperiodic
tasks. We implicitly assumed that task releases were strictly
periodic, and that the RTO model alone was employed for
scheduling. These assumptions simplified the problem of
locating holes, because it is possible to construct the schedule
offline.

It is possible to improve the scheduling behavior by
using the BWP model: whenever a job belonging to a firm
periodic task can be executed, it is. Jobs are skipped only
when their execution can cause some other job to miss
its deadline. The BWP model performs at least as well as
the RTO model. However, BWP executions create irregular
schedules, especially when periodic and aperiodic tasks are
both present. As a result, it is not possible to precompute the
parameters for the holes (release times, deadlines, and hole
sizes).

An idea that easily extends the approach used in the RTO
case employs task patterns.

Definition 5. A task pattern is defined as a fixed series of
skipped and red instances such that the minimum distance
between two skipped instances is equal to the skip para-
meter s.

It is easy to see that the total number of unique task
patterns for a task τi is equal to si—any one of the first si jobs
may be skipped, and depending on which job is dropped a
pattern starts. For a task set with n tasks, the total number
of pattern combinations is Ψ = s1 × s2 × · · · × sn. The total
number of unique task patterns for a hard task is equal to 1.

For the task set in Table 2, the total number of task
pattern combinations isΨ = s1×s2 = 2×2 = 4. One example
of these task pattern combinations is shown in Figure 2.
Another example is shown in Figure 4.

The BWP model schedules blue instances when there are
no ready red instances of periodic tasks or aperiodic jobs to
schedule. This causes the blue instances to always execute in
background. When a blue instance completes successfully,
the next task instance is made blue; this leads to a change
in the task pattern impacting the way the hole capacities are
distributed across the schedule.

The spare capacity is calculated by Algorithm 1 under
the assumption that all blue instances are rejected. We could

recalculate the extra capacities each time a blue instance
completes successfully, but the operation has to be performed
online unlike in Section 4.1 leading to an overhead O(Hn).
We propose a scheme that has lower computational overhead
but requires extra storage.

Given a set Γ = {τi(pi, ci, si)} of n periodic tasks
that allow skips, the distribution of the extra capacity is
calculated for all Ψ = s1 × s2 × ·· · × sn combinations. Each
pattern results in a unique hole capacity distribution which is
stored in a hash table indexed by the corresponding pattern
combination.

When a blue instance completes successfully at time tblue,
the task pattern change is detected and

(i) the current hole capacity (from the old pattern)
present in the global capacity queue is deleted,

(ii) hole capacities computed offline for the new pattern
are released starting with the hole with the nearest
skip deadline in the new pattern.

The online cost is minimal since the cost of pattern
lookup is O(1) (hash table). Rules for entering holes into the
BASH queue are identical to those specified in Algorithm 2.
The pattern remains unchanged until a blue instance is
completed.

An Example. Figure 5 shows the hole capacities for two
patterns for the task set in Table 2. Let us now consider a
schedule in which a blue instance of a task is able to complete
successfully at tblue = 17. Figure 6 shows such a schedule: the
blue instance of task τ2 released at time t = 15 completes
execution. This triggers a pattern switch from the current
pattern shown in Figure 5(a) to the new pattern illustrated
in Figure 5(b) at the nearest skip deadline of Pattern 2, time
t = 17.

A blue instance executes with background priority, since
both periodic and aperiodic tasks can preempt it. The
execution time of a blue instance is analogous to idle time,
and idle time rules of BASH apply. This results in the hole
capacity placed at time t = 18 being switched from 2.4 to 0.4;
the hole capacity corresponding to the old pattern is deleted,
and the hole capacity corresponding to the new pattern is
inserted. (This pattern change can be seen by comparing
Figures 5(a) and 5(b).)

Theorem 5. A task pattern switch, which leads to a new
hole capacity distribution, does not cause a deadline miss for
periodic tasks.

Proof. The task set Γ is schedulable with the addition of extra
capacities across all Ψ task patterns by Theorem 4.

Let tblue be the time at which a blue instance completes
triggering a pattern switch.

The execution time of a blue instance is analogous to idle
time, and we can apply the idle interval lemma to conclude
that events occurring at time t ≤ tblue do not impact the
schedule beyond tblue. The new hole that is introduced will
not violate any other task execution because of BASH’s idle
time rules.



10 EURASIP Journal on Embedded Systems

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

T2

T1

Skip Skip

Skip

Skip

Skip Skip

Skip Skip

Hole capacities

0.4 2.8 0.8 2 1.6 0.4

Figure 4: A combination of task patterns for the task set shown in Table 2.

k ⇐ 0
loop

t = current time()
if rk = t mod H then

Insert (Ek, (
t/H� ×H) + rk , (
t/H� ×H) + dk) into the global capacity queue.
k ⇐ (k + 1) mod listSize

end if
end ioop

Algorithm 2: Hole capacity release.

For all t ≥ tblue: this time interval belongs exclusively to
the new task pattern. The schedulability guarantee follows
directly from Theorem 4.

It is also possible to store only a subset of pattern combi-
nations. Then, successful completion of a blue instance may
not lead to the next instance being blue. In such situations,
the overhead is reduced because there are fewer pattern
switches, but this will produce suboptimal results.

In this section, we outlined a possible approach to sup-
port the BWP scheduling model for firm real-time tasks.
This approach, using task patterns, extends the approach
outlined for the RTO model using a pattern library to alter
hole information when a blue instance completes.

Next, we will explore the case when the main task set is
sporadic as opposed to being periodic. Sporadic tasks require
a different method because it is not possible to a priori
compute the idle times (holes) in a sporadic setting.

5. NCLB-CUS: Easy Reclamationwith
Sporadic Task Sets

The BWP model alone does not introduce difficulties in
determining the locations of the holes. Sporadic tasks
present similar problems. Sporadic tasks are not strictly
periodic; successive jobs belonging to the same task arrive
(are released) with a minimum separation distance. The
unpredictability in arrival times (subject to the minimum
separation) makes it difficult to identify holes ahead of time.
In this section, we will discuss a technique, NCLB-CUS, that

can accommodate sporadic tasks. This technique can be used
for both hard and firm deadlines.

A CBS-based server can provide task isolation and
ensure that no task misses deadlines as long as it does not
exceed its resource reservation. Background execution occurs
when the task set does not utilize the processor fully and
idle times (specifically, intervals when the processor would
have idled if there were only periodic tasks without skips)
occur. In a traditional CBS mechanism, tasks utilizing these
intervals are penalized with lost capacity. We can also state
this observation about CBS as follows: “By automatically
postponing a server’s deadline when the server exhausts its
budget, CBS never forces idle time.”

When tasks are strictly periodic, indeed we can locate
holes using an offline scheme (Algorithm 1), but, when tasks
are sporadic, idle times need to be identified online. At worst,
sporadic tasks are periodic, and, therefore, reservations must
be made in cognizance of this fact.

To ensure that idle time (with respect to a strictly
periodic schedule) can be identified and reclaimed with the
knowledge that any execution that occurs during such
intervals need not be associated with budget decrements, one
can employ hard reservations using a constant utilization
server [29]. CBS and CUS differ only in the manner in which
they update server budgets.

BASH can be integrated with constant utilization
(instead of constant bandwidth) servers. This requires no
changes to BASH.

The CUS replenishment rules (What we present here
is a slightly modified version of the CUS [14]. Originally,



EURASIP Journal on Embedded Systems 11

0 3 6 9 12 15 18

0 3 6 9 12 15 18

0 3 6 9 12 15 18

Skip Skip Skip

SkipSkip

2.4 0.8

Hole capacities

T2

T1

2.8

(a) Pattern 1

0 3 6 9 12 15

0 3 6 9 12 15

0 3 6 9 12 15

Skip Skip

Skip

Skip

0.4 2.8

Hole capacities

T2

T1

0.8

(b) Pattern 2

Figure 5: Task patterns for task set in Table 2.

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

0 3 6 9 12 15 18 21 24 27 30

0.8 1.2
Blue instance completes

2.4 0.4
(replacement)

2.8 0.8

Hole capacities

T2

T1

Skip Skip

Skip

Skip

Skip

Skip Skip

Figure 6: Schedule produced by BWP for the task set shown in Table 2.

CUS sets a deadline on the basis of the execution time of
the aperiodic job. We assume a server period and assign the
budget based on the server bandwidth.) for a server Si(Qi,Ti)
with budget ci and deadline di are as follows.

(1) Initially, ci = 0,di = 0.

(2) When an aperiodic job arrives at time t to an empty
aperiodic job queue,

(a) if t < di, do nothing,

(b) if t ≥ di, di = t + Ti, and ci = Qi.

(3) At the deadline di of the server,

(a) if the server is backlogged, set the server dead-
line to di + Ti and ci = Qi;

(b) if the server is idle, do nothing.

By default, the CUS approach does not schedule an
aperiodic task if it arrives at time t < di (where di is the

server’s current deadline) even if there is leftover budget
from an earlier execution. In conjunction with BASH, this
situation is easy to handle because all unused budgets are
stored in the BASH queue as capacities, and these capacities
can be used when a new aperiodic instance arrives.

The key point to note is that with CUS, a server may be
backlogged and may have run out of budget; the budget can
be recharged only at the server deadline.We call this a server’s
dormant state.When a server is backlogged and has budget to
expend, it is in the active state. When a server has no pending
jobs, it is in the inactive state. Now, under a strictly periodic
task set, there is idle time when all servers are either dormant
or inactive.

To improve aperiodic response times, our NCLB-CUS
scheme prioritizes aperiodic jobs when all servers are
dormant or inactive. Because this is time that should have
been idle time, giving preference to aperiodic tasks does not
affect any of the sporadic (or periodic) tasks. This has the
same effect as allowing the aperiodic server to use a hole
under the NCLB-CBS scheme.



12 EURASIP Journal on Embedded Systems

The proof of correctness follows trivially from the
original proofs for CUS [14] and BASH [17].

NCLB-CUS can be implemented by distinguishing
between the deadline and the replenishment time. By enforc-
ing a replenishment time (via CUS), we ensure that there
are no unnecessary deadline postponements. The approach
can be trivially incorporated in a deadline-based scheduler
by setting the deadlines of all servers in the dormant state
to infinity (some suitably large value) and introducing a
capacity into the BASH queue with infinite budget and a
deadline of infinity (as can be donewith dormant tasks). This
allows the same control mechanism for BASH capacities.
(We cannot insert a BASH capacity at each hyperperiod with
budget 1−U where U is the peak utilization of the sporadic
task set because that is not enough to reclaim all idle times.
For this reason, we introduce a capacity with infinite budget
and infinite suitably large deadline. The aperiodic server,
when in the dormant state, can access this capacity because
it too will have a sufficiently large deadline.) When a server’s
budget is recharged, its deadline can be updated. Ties among
dormant servers can be broken in favor of the aperiodic task
server.

The technique we have described in this section requires
no knowledge of holes. Holes are background cycles that are
difficult to identify with traditional BASH/CBS rules, but
using CUS rules provides sufficient information to identify
the holes and use them without deducting from server
budgets. This simplifies the implementation of the resource
reclamation mechanism.

6. Empirical Results

We tested the NCLB algorithms using the OMNe T++ simu-
lator [30] to quantify the performance gains. In this section,
we present the results of our experiments. We compare the
performance of the techniques proposed in this paper with
simple resource reclamation as enforced by BASH.

The metric for comparison in all our experiments is the
normalized aperiodic response time. Thus, a value of 5 on
the y-axis actually means an average response time five-
times longer than the task computation time; a value of
1 corresponds to the minimum achievable response time.
For all experiments, the results have been averaged over 25
runs, each of a duration of 1,000,000 time units. We do not
explicitly plot a 98% confidence interval, but we note that the
width of the confidence intervals was not greater than 7% of
the mean in any of the evaluations.

In this section, we will use the term NCLB when we refer
to both the NCLB-CBS and NCLB-CUS algorithms. When
we wish to distinguish between the two algorithms, we make
use of the specific term.

6.1. Performance Evaluation for Firm Real-Time Environ-
ments. The first five experiments were to assess the impact of
NCLB in a firm real-time environment. These experiments
can be divided into two groups. The first group shows the
performance of the algorithms as a function of the aperiodic
load, for three different values of Ush. The second group

of experiments tests the sensitivity of the algorithms to the
average computation time of aperiodic requests.

Execution times of aperiodic requests were chosen from a
uniform distribution over a predefined interval whereas their
interarrival times were generated according to an exponential
distribution, with the mean computed to impose a specific
aperiodic load ρa. The periodic task set consists of five
periodic tasks with U∗

p = 0.90 and different hole capacities,
Ush.

We do not employ BWP in any of our experiments.
Our main objectives are to determine the improvements in
aperiodic response using NCLB when compared to a simple
BASH implementation, and to investigate the difference
between NCLB-CBS and NCLB-CUS with RTO scheduling.

We emphasize that the basic implementation that uses
BASH alone is identical to EDF-RTO when no task uses
less than its budget. That is the model we use for our
empirical analysis, and, therefore, the BASH evaluation
represents the performance that can be achieved by the
basic approach proposed by Koren and Shasha [12]. We
demonstrate that our approach improves the behaviour of
aperiodic tasks significantly in comparison to the simplest
possible approach.

6.1.1. Performance with Varying Aperiodic Load. The first set
of experiments includes three simulations which show the
performance of the algorithms as a function of the aperiodic
load for low, medium, and high values of Ush. Execution
times of aperiodic requests were chosen to be uniformly
distributed in the interval [2, 10]. Periods, computation
times, and skip parameters of the tasks for every simulation
are shown in Table 3. Notice that the value ofUsh is increased
from the first to the third simulation, which means that more
instances are skipped in the second and third experiments.
The equivalent processor utilization, U∗

p , is kept constant at
0.90 for all three experiments. The aperiodic server has a
fixed bandwidth Usa = 1−U∗

p = 0.10.

Figure 7 shows the results of the first experiment, with
Ush = 0.12, in which very few periodic instances are skipped
and includes a periodic hard task. As the reader can see,
the NCLB algorithms outperform vanilla BASH, and, in
fact, the lowest average response times are achieved when
NCLB-CUS policy is used because it can handle BWP as
well. NCLB algorithms outperform BASH for values of ρa
in the range (0.08–0.24). This range is approximately equal
to Ush. For values of ρa outside this range, the aperiodic
response behavior for both the algorithms is similar. The
aperiodic response time under the BASH algorithm grows
at a moderate pace after an initial spurt, since aperiodic
requests continue to be serviced during the holes with
deadlines periodically postponed according to CBS rules.

NCLB, in general, performs better than BASH because of
aggressive reclamation. This holds for all our experiments.
Among the NCLB algorithms, we find that using NCLB-CBS
(determining holes offline and inserting them into the BASH
queue) yields better response times for aperiodic tasks. This
is to be expected because CBS is set up to reduce response
times of tasks. CBS advances a server’s deadline and recharges



EURASIP Journal on Embedded Systems 13

Table 3: Simulations parameters for the first set of experiments.

Simulation Task Task 1 Task 2 Task 3 Task 4 Task 5

I
Computation 8 5 35 15 20

Period 90 100 150 60 60

Skip 5 3 ∞ 5 5

II
Computation 12 5 50 20 25

Period 90 100 150 60 60

Skip 2 3 3 2 2

III
Computation 10 2 46 18 26

Period 90 100 150 55 55

Skip 2 2 2 2 2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

60

50

40

30

20

10

0

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CBS
NCLB-CUS

Figure 7: Varying aperiodic load; U∗
p = 0.9, Ush = 0.12, Usmax =

0.22.

the budget as soon as the budget expires. This gives CBS an
opportunity to schedule the task immediately; CUS, on the
other hand, replenishes the budget only at specific times and
may cause tasks to wait.

Figure 8 refers to the second experiment, in which Ush =
0.20. More periodic instances are skipped which results
in a lower aperiodic response when compared to the first
experiment, as aperiodic load remains identical. NCLB
improves aperiodic response time for values of ρa in the
range (0.08–0.26). This range is higher than the first
experiment since Ush = 0.20 > 0.12. Again, the performance
of both algorithms is seen to be similar for values outside this
range.

The results of the third experiment is shown in Figure 9.
In this case, Ush = 0.27 is the highest value in all the
experiments. The improvement in aperiodic response time
occurs over a larger range (0.08–0.32); thus, NCLB can yield
better response times even when a large fraction of processor
cycles are unused.

The NCLB algorithms work by identifying holes (idle
times that would lead to background execution of ape-
riodic tasks) and explicitly avoiding unnecessary deadline
postponements for the aperiodic server; this enables better
aperiodic response times.

According to the first set of experiments, three distinct
zones can be identified in terms of achieved performance.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

35

30

25

20

15

10

5

0

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CBS
NCLB-CUS

Figure 8: Varying aperiodic load; U∗
p = 0.9, Ush = 0.20, Usmax =

0.30.

25

20

15

10

5

0

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CBS
NCLB-CUS

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

Figure 9: Varying aperiodic load; U∗
p = 0.9, Ush = 0.27, Usmax =

0.38.

(1) ρa ≤ Usa: in this zone, aperiodic response of BASH
and NCLB are identical. If aperiodic load is less
than Usa, BASH can be as competitive as NCLB in
scheduling aperiodic tasks. The hole capacity, Ush, is
not utilized much in this traffic zone.

(2) Usa < ρa ≤ Uspare: here NCLB outperforms BASH.
The workload is consistently greater than Usa, and,
therefore, the holes are necessary, and NCLB is able
to serve aperiodic tasks better.



14 EURASIP Journal on Embedded Systems

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CBS
NCLB-CUS

16

14

12

10

8

6

4

2

0
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

Figure 10: Medium length aperiodic tasks; U∗
p = 0.9, Ush = 0.27,

Usmax = 0.38.

(3) ρa > Uspare: aperiodic response is identical again.
When the aperiodic workload exceeds Usa + Ush, the
response times increase rapidly for BASH and NCLB.
The aperiodic tasks saturate all capacity, and this
leads to the convergence in performance.

Moreover, we observe that when the number of skips
increases (but aperiodic load is held constant), the gap
between BASH and NCLB decreases. This might seem to
be counterintuitive, but the reason is straightforward: when
more jobs are skipped, more idle time is created. Even if
CBS postpones deadlines, aperiodic tasks still complete early.
Thus, the gap between BASH and NCLB reduces when we
increase the skips. In our experiment, when all tasks have
a skip factor of 2, the effect is almost the same as doubling
the period of the tasks. A lot of spare capacity is uniformly
distributed and can be reclaimed quite easily by an aperiodic
task server.

6.1.2. Sensitivity to Aperiodic Computation Time. To test the
sensitivity of the algorithms with respect to the length of
aperiodic tasks, three simulations were carried out using task
sets with short, medium, and long aperiodic computation
times (ACT). In particular, execution times of aperiodic
requests were chosen from the uniform distribution over
the interval [15,20] (medium length) and [25,30] (long). To
limit the total number of graphs, the periodic tasks used
were only those used in the earlier group of experiments.
Additionally, in the earlier set of experiments we used
aperiodic tasks with execution time uniformly distributed
over the [2,10] interval, and they represent short aperiodic
tasks. The results of the experiments to measure the impact
of aperiodic computation time are shown in Figures 10 and
11, respectively.

The improvement in performance achieved by NCLB
over BASH is more significant when aperiodic requests have
short computation times (compare Figures 9 and 10, e.g.).
As the ACTs become longer, the performance of both NCLB
algorithms tend to be similar to the one achieved by BASH.
This is because, for long aperiodic tasks, advancing the

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CBS
NCLB-CUS

16

14

12

10

8

6

4

2

0
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

Figure 11: Long aperiodic tasks; U∗
p = 0.9, Ush = 0.27, Usmax =

0.38.

position of small slack intervals in the schedule does not
make a great impact on the response times.

6.2. Aperiodic Tasks Along with a Set of Sporadic Hard Real-
Time Tasks. In this section, we elaborate on the performance
of NCLB-CUS when scheduling aperiodic tasks along with
sporadic tasks. For these experiments, we generated random
task sets with varying levels of utilization. Aperiodic tasks
were generated in the same manner as in the previous
experiments.

For sporadic task sets, the utilization factor is, more
precisely, the peak utilization factor (when all tasks are
periodic). For each task generated, the minimum interarrival
time, pi, between instances was chosen at random, and
during the experiments, the actual interarrival time between
jobs belonging to the same task were chosen as follows.

Moderate Sporadicity. For each task τi, the interarrival time
was chosen from the uniform distribution over the range
[pi, 1.4pi].

High Sporadicity. For each task τi, the interarrival time
was chosen from the uniform distribution over the range
[pi, 2pi].

We first kept the peak utilization of the sporadic task set
constant at 0.75 and varied the aperiodic load (For these
experiments, we generated 20 sporadic task sets at random
with peak utilizations of 0.75.). We considered the two cases:
moderately sporadic tasks (Figure 12) and highly sporadic
tasks (Figure 13).

NCLB-CUS performs much better than BASH because
BASH is ideally suited for strictly periodic task sets and is
unable to account for extra processor bandwidth that results
from sporadicity. NCLB-CUS can recognize this additional
capacity and does not waste the budget of the aperiodic
server when this capacity can be exploited. With moderately
sporadic task sets, NCLB-CUS provides greater performance
by reclaiming even the small capacity excess that is a result of
moderate sporadicity. As sporadicity increases and aperiodic
load is held constant, there is a uniform increase in available
bandwidth, and the gap between BASH and NCLB-CUS



EURASIP Journal on Embedded Systems 15

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CUS

16

14

12

10

8

6

4

2

0
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

Figure 12: Task set with moderate sporadicity.

Aperiodic load

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

BASH
GRUB

NCLB-CUS

16

14

12

10

8

6

4

2

0
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

Figure 13: Task set with high sporadicity.

decreases. Both of them perform better when sporadicity is
high when compared to the situation when sporadicity is
moderate.

The last set of experiments measure the impact of the
peak sporadic workload (Figures 14 and 15). For these
experiments, the aperiodic load was kept constant at 0.25.
When peak utilization of the sporadic task set is low,
most of the processor bandwidth is directly available to the
aperiodic server, and there is not much difference between
BASH and NCLB-CUS. As the peak utilization increases, a
smaller fraction of the processor can be reserved a priori
for the aperiodic server, and the aperiodic response times
increase. NCLB-CUS continues to perform better, and the
gap between NCLB-CUS and BASH is greatest when the
utilization of the sporadic task set is high and sporadicity is
moderate.

7. Implementation

To further validate the proposed approach, we implemented
the NCLB-CBS and NCLB-CUS scheduling policies within
the RTLinux kernel [31].Wemodified an existing implemen-
tation of CBS on RTLinux [32] to support our schemes.

To test our implementation, we built a prototype appli-
cation for building security. This application retrieves image
streams, over the local area network, from web cameras.

BASH
GRUB

NCLB-CUS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

12

10

8

6

4

2

0

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

Peak sporadic load

Figure 14: Impact of varying peak task set utilization; moderate
sporadicity.

BASH
GRUB

NCLB-CUS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

12

10

8

6

4

2

0

N
or

m
al

iz
ed

ap
er

io
di

c
re

sp
on

se
ti

m
e

Peak sporadic load

Figure 15: Impact of varying peak task set utilization; high
sporadicity.

These streams are essentially a sequence of JPEG images
retrieved at configurable rates. We chose this design for its
simplicity. Displaying a sequence of JPEG images requires an
extremely simple viewer, and it avoids the need forMPEG (or
similar) decoding that is more sensitive to the frames that can
be dropped. With a sequence of still images, we could obtain
sufficient video fidelity and skip frames without considering
semantic information.We varied the number of camera feeds
from 4 to 10 to change the periodic workload. The skip factor
for each feed was 12, that is, one frame could be dropped in
a window of 12 frames. The frame rate for each camera was
chosen to be 24 frames per second. As a source of aperiodic
workload, we ran an instance of the Apache web server that
would process simple HTTP requests.

This prototype loosely mimics a security system that
can process many video streams (periodic, firm, real-time
tasks) and handle other aperiodic requests that could include
messages to security personnel.

The purpose of this implementation was to obtain a
measure of the overhead introduced by adding complexity
to the scheduler. We performed our evaluation on an Intel
Pentium III processor running at 1 GHz with 512MB RAM.
The overhead was measured in CPU cycles using the RDTSC



16 EURASIP Journal on Embedded Systems

(read timestamp counter) instruction. Our results for the two
scheduling policies are summarized below.

NCLB-CBS: we observed that for up to 10 image
streams (with the rates and skip factors mentioned
earlier), and with the web server responding with
28KB HTML pages at the rate of 1 page every 5
seconds, the scheduler overhead was never more than
2600 CPU cycles. When the number of image streams
was only 4, the CPU overhead was never more than
1800 CPU cycles. The memory requirements were
also nominal: the scheduler never required more than
1KB memory.

NCLB-CUS: for a similar workload as the earlier
experiment and with 10 image streams, the scheduler
overhead was never more than 2000 CPU cycles.
When the number of image streams was only 4,
the CPU overhead was never more than 1500 CPU
cycles. The memory requirements were less than that
imposed by the NCLB-CBS scheduler, as can be
expected.

To understand the CPU cycles overhead, wemeasured the
overhead of running the same set of tasks with the default
EDF scheduler and found the overhead to be not more than
1200 CPU cycles. These results reflect that there is some
penalty paid for the extra complexity, but this penalty is
no more than a factor of 2.4 over the normal scheduling
overhead.With increasing processor speeds, this is acceptable
penalty. These results are, in fact, consistent with earlier
measurements made by Brandt et al. [33].

We did not extensively evaluate the performance of the
aperiodic workload because our goal was predominantly to
understand if the scheduling overheads were reasonable. The
few experiments performed to measure aperiodic response
times were consistent with the results from simulations;
we do not include them here for brevity. We have tested
our implementation with low to moderate workload, and
we find the performance satisfactory. It is possible that the
overhead may dominate with many tasks, but we expect
that our approach will produce shorter response times for
aperiodic tasks when the periodic (or sporadic) task set is not
large. (The BWP scheme that we have articulated provides
completeness to our work on reclaiming spare capacity, but
we found that realizing an actual implementation of such a
scheduler may introduce excessive overhead.)

8. Discussion

In this article, we have presented two different approaches
for improving the completion times of aperiodic tasks. The
first approach, NCLB-CBS, uses CBS as the underlying
scheduling mechanism and BASH to reclaim holes. The
holes, of course, need to be located beforehand and, during
runtime, get added to the BASH queue at appropriate
instants. NCLB-CBS can handle both the RTO and the BWP
models for firm real-time systems but is not capable of
working in a sporadic environment.

To reclaim idle time arising because of sporadic tasks,
we presented the NCLB-CUS algorithm. This variant of our
resource reclamation methodology does not require any pre-
computation. It identifies intervals where the processor can
idle (in the absence of aperiodic computation requirements)
and prioritizes aperiodic requests during these durations.
We suggest enforcing this prioritization within the BASH
framework.

NCLB-CUS has wider applicability: it can be used for
firm real-time task sets and sporadic task sets. In a firm real-
time setting, NCLB-CUS can automatically deal with BWP
scheduling, but it is not always the best scheme to adopt.
Our evaluation demonstrates that NCLB-CBS, which locates
holes offline and utilizes them at runtime, leads to better
aperiodic response times in a firm real-time system. As a
result, when the basis set of tasks to be scheduled is firm and
periodic, NCLB-CBS is preferable and has a clean integration
with BASH.

A parameter that affects both NCLB resource reclama-
tion algorithms is the ratio between the largest period (or
interarrival time) and the smallest period (or interarrival
time). If T1 is the smallest period and Tn is the largest
period, the ratio α = Tn/T1 determines the effectiveness
of the NCLB algorithms. When α is small (closer to 1), we
can reclaim holes quickly and improve the response times of
aperiodic jobs. As α increases, the task with period Tn has a
distant deadline and will always be eligible to execute pushing
the idle time closer to its deadline. As a result, aperiodic
jobs may have to wait a long time before exploiting the
holes. When α is large, we suggest period transformations
(reducing the largest period in the system by dividing the
task into portions) to create a new task set with a smaller
α. For example, if T1 = 10 and Tn = 90 and the execution
time of the task with period Tn = 90 is 20 time units, an
equivalent task set has T1 = 10 and Tn = 45 and the task
with period Tn = 45 has an execution time of 10 units.
This changes α from 9 to 4.5. Period transformations do not
affect schedulability,but they do create more opportunities
for resource reclamation. In the extreme but impractical
case—impractical because of timer granularity and context
switch overheads—all tasks can be made to have periods of
length 1 and any unused cycles can be reclaimed within every
unit of activity.

9. Conclusion

In this paper, we presented the NCLB class of algorithms
for reclaiming holes that are created when scheduling tasks
that allow skips and when scheduling sporadic tasks. Skips
and sporadic tasks create extra processor capacity (holes)—
capacity that is hard to identify—that can be used to improve
the response times of aperiodic tasks.

Our evaluations can be summarized as follows.

(i) Reclaiming spare time leads to significant reductions
in aperiodic response time.

(ii) In a firm real-time environment, NCLB-CBS and
NCLB-CUS can be used; NCLB-CBS provides



EURASIP Journal on Embedded Systems 17

shorter response times and is the better scheme for
this situation.

(iii) When the basic set of tasks are sporadic, NCLB-
CUS can be used; it is not possible to use NCLB-
CBS because background time cannot be identified
offline.

Identifying and reclaiming holes transforms background
capacity into reserved capacity; this transformation results
in improved behavior of constant bandwidth servers. In this
work, we push the envelope on the applications of the BASH
technique by utilizing it in a firm real time environment.
By applying BASH and the constant utilization server in
conjunction, we also open up a new domain for BASH:
sporadic real-time systems.

We relax the need for offline computations of holes and
improve the results from prior work [24]. By generalizing
the resource reclamation techniques to sporadic and firm
real-time tasks, we provide a comprehensive framework for
managing aperiodic tasks in real-time systems. The work
described in this article can be extended to support energy-
efficient scheduling mechanisms that utilize slack to slow the
processor down; this is a direction for future investigations.

References

[1] C. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 40–61, 1973.

[2] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: an approach to real-time synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[3] T. P. Baker, “Stack-based scheduling of realtime processes,”
Real-Time Systems, vol. 3, no. 1, pp. 67–100, 1991.

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.
Wellings, “Applying new scheduling theory to static priority
preemptive scheduling,” Software Engineering Journal, vol. 8,
no. 5, pp. 284–292, 1993.

[5] J. Lehoczky, L. Sha, and J. Strosnider, “Enhanced aperiodic
responsiveness in hard real-time environments,” in Proceed-
ings of the IEEE Real-Time Systems Symposium, pp. 261–270,
1987.

[6] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard-real-time systems,” Real-Time Systems, vol. 1, no. 1,
pp. 27–60, 1989.

[7] J. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems,” in Proceedings of the IEEE Real-Time Systems Sym-
posium, pp. 110–123, 1992.

[8] M. Spuri and G. Buttazzo, “Efficient aperiodic service under
earliest deadline scheduling,” in Proceedings of the IEEE Real-
Time Systems Symposium, pp. 2–11, 1994.

[9] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline
scheduling environment,” Real-Time Systems, vol. 9, no. 1, pp.
21–36, 1995.

[10] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in
dynamic priority systems,” Real-Time Systems, vol. 10, no. 2,
pp. 179–210, 1996.

[11] M. Hamdaoui and P. Ramanathan, “A dynamic priority
assignment technique for streams with (m, k)-firm deadlines,”
IEEE Transactions on Computers, vol. 44, no. 12, pp. 1443–
1451, 1995.

[12] G. Koren and D. Shasha, “Skip-over: algorithms and com-
plexity for overloaded systems that allow skips,” in Proceedings
of the 16th IEEE Real-Time Systems Symposium, pp. 110–117,
December 1995.

[13] G. Bernat and A. Burns, “Combining (n,m)-hard deadlines
and dual priority scheduling,” in Proceedings of the 18th IEEE
Real-Time Systems Symposium, pp. 46–57, December 1997.

[14] J. W.-S. Liu, Real-Time Systems, Prentice-Hall, 2000.
[15] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “Deferrable server

algorithm for enhanced aperiodic responsiveness in hard real-
time environments,” IEEE Transactions on Computers, vol. 44,
no. 1, pp. 73–91, 1995.

[16] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for
overrun control,” in Proceedings of the 21st IEEE Real-Time
Systems Symposium (RTSS ’00), pp. 295–304, 2000.

[17] M. Caccamo, G. C. Buttazzo, and D. C. Thomas, “Efficient
reclaiming in reservation-based real-time systems with vari-
able execution times,” IEEE Transactions on Computers, vol. 54,
no. 2, pp. 198–213, 2005.

[18] G. Lipari and S. Baruah, “Greedy reclamation of unused
bandwidth in constant-bandwidth servers,” in Proceedings of
the Euromicro Conference on Real-Time Systems, 2000.

[19] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: a
new reclaiming algorithm for server-based real-time systems,”
in Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’04), pp. 211–
218, May 2004.

[20] G. Fohler, T. Lennvall, andG. Buttazzo, “Improved handling of
soft aperiodic tasks in offline schedule real-time systems using
total bandwidth server,” in Proceedings of the IEEE Symposium
on Emerging Technologies and Factory Automation (ETFA ’01),
vol. 1, pp. 151–157, 2001.

[21] D. Isovic and G. Fohler, “Efficient scheduling of sporadic,
aperiodic, and periodic tasks with complex constraints,” in
Proceedings of the 21st IEEE Real-Time Systems Symposium
(RTSS ’00), pp. 207–216, 2000.

[22] A. Marchand and M. Silly-Chetto, “QoS and aperiodic task
scheduling for real-time Linux applications,” in Proceedings of
the 6th RTL Workshop, 2004.

[23] G. C. Buttazzo and M. Caccamo, “Minimizing aperiodic
response times in a firm real-time environment,” IEEE Trans-
actions on Software Engineering, vol. 25, no. 1, pp. 22–32, 1999.

[24] D. C. Thomas, S. Gopalakrishnan, M. Caccamo, and C. G.
Lee, “Spare CASH: reclaiming holes to minimize aperiodic
response times in a firm real-time environment,” in Proceed-
ings of the 17th Euromicro Conference on Real-Time Systems
(ECRTS ’05), pp. 147–156, July 2005.

[25] H. Chetto and M. Chetto, “Some results of the earliest
deadline scheduling algorithm,” IEEE Transactions on Software
Engineering, vol. 15, no. 10, pp. 1261–1269, 1989.

[26] C. Lin and S. A. Brandt, “Improving soft real-time perfor-
mance through better slackmanagement,” in Proceedings of the
IEEE Real-Time Systems Symposium, pp. 3–14, 2005.

[27] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor,” Real-Time Systems, vol. 2,
no. 4, pp. 301–324, 1990.

[28] L. Abeni and G. Buttazzo, “Integrating multimedia applica-
tions in hard real-time systems,” in Proceedings of the 19th IEEE
Real-Time Systems Symposium, pp. 4–13, December 1998.

[29] Z. Deng, J. W.-S. Liu, and J. Sun, “A scheme for scheduling
hard real-time applications in open system environment,” in
Proceedings of the Euromicro Workshop on Real-Time Systems,
pp. 191–199, 1997.



18 EURASIP Journal on Embedded Systems

[30] A. Varga, “OMNeT++ 2.0: Discrete Event Simulation Sys-
tem,” Department of Telcommunications (BME-HIT), Tech-
nical University of Budapest, Hungary, 2000, http://www
.hit.bme.hu/phd/vargaa/omnetpp.htm.

[31] RTLinux. 2008, http://www.rtlinuxfree.com/.
[32] P. Mendoza and P. Balbastre, “Constant bandwidth server

in RTLinux,” 2003, http://www.ocera.org/download/compo-
nents/WP5/rtlcbs-0.1-1.html.

[33] S. A. Brandt, S. Banachowski, C. Lin, and T. Bissom, “Dynamic
integrated scheduling of hard real-time, soft real-time and
non-real-time processes,” in Proceedings of the 24th IEEE
International Real-Time Systems Symposium (RTSS ’03), pp.
396–407, December 2003.


	1. Introduction
	2. Related Work
	3. Preliminaries
	3.1. Terminology and Assumptions
	3.2. Basic Results on Firm Periodic Task Scheduling
	3.3. The BASH Mechanism
	3.4. Sequencing Aperiodic Tasks

	4. The NCLB-CBS Technique
	4.0.1. An Algorithm to Locate Holes
	4.1. RTO-EDF Scheduling with NCLB-CBS
	4.1.1. Theorems and Proofs

	4.2. BWP-EDF Scheduling with NCLB-CBS

	5. NCLB-CUS: Easy Reclamation with Sporadic Task Sets
	6. Empirical Results
	6.1. Performance Evaluation for Firm Real-Time Environments
	6.1.1. Performance with Varying Aperiodic Load
	6.1.2. Sensitivity to Aperiodic Computation Time

	6.2. Aperiodic Tasks Along with a Set of Sporadic Hard Real-Time Tasks

	7. Implementation
	8. Discussion
	9. Conclusion
	References



