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A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF) suited to fast identify, trim, and verify an architecture
to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a
methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such
platform consists in a wide set of optimized high-performance analog, digital, and software intellectual property (IP) modules for
various kinds of sensors. These IPs can be easily defined for fast prototyping of the interface circuit for the given sensor. Final ASIC
implementation for the given sensor conditioning can be easily derived with reduced risk and short development time. Some case

examples are presented to demonstrate the effectiveness and flexibility of this system.

1. Introduction

The increase of reliability and performances brought by
electronic circuits in automotive industry is leading to the
progressive replacement of predecessor mechanical and elec-
tromagnetic devices. The interest towards embedded systems
for automotive derives from the fact that an emerging class
of automotive applications, aimed to increase both safety
and comfort levels in modern automobiles (such as X by
Wire, Assisted Guidance, Collision Avoidance, and Cruising
Control), requires gathering information coming from a
huge number of sensors distributed everywhere in the car.
The related issues are the increasing of wire length, hence
weight and power consumption, and decreasing of reliability
unless proper solutions are adopted. The development of
efficient car network protocols [1] and the replacement of
electronic boards with embedded systems are counteracting
these effects. As these applications get more and more
sophisticated, according to market trends and requirements,
they need more and more accurate and reliable sensing
elements. Moreover the high number of sensors (more than
one hundred at present) will inevitably drive future choices
on cheaper and less power consuming ones.

At present the above mentioned factors make the
design of electronic systems for automotive applications
a challenging task that cannot be handled by traditional
methodologies. Electronic Design Automation (EDA) tools
have continuously improved to face with the technology
scaling down, while design productivity is still limited
by current methodologies. The need of more complex
electronic systems able to cope with the wide spectrum of
applications, together with the time-to-market pressure and
cost reduction, and also the design productivity gap have
pushed the electronic industry towards the development of
new design methodologies [2].

Among the main design methodologies described in
literature and adopted by several microelectronics industries,
the most referenced ones are the following:

(a) IP (Intellectual Property)-Design and Reuse: this
approach [2, 3] allows the quick development of
a complex ASIC by reusing pre-designed and pre-
verified configurable blocks coming from different
projects and/or IP vendors, thus saving time with
respect to developing the IP from scratch.



(b) System Level Design: this solution [4, 5] is based on a
high-level language such as SystemC used to describe
HW/SW systems at multiple levels of abstraction and
synthesis for a given technology.

(c) Platform-Based Design: this methodology [6-8]
defines the design of electronic systems from concept
to implementation as a sequence of different layers of
abstractions (each layer can be considered as a plat-
form). Concerning an embedded system, a platform
can be defined as a set of modules, interfaces, services,
and software that should be as much as possible
configurable. They are built up taking into account
the wide-ranging signal conditioning electronics for
different sensors of modern automobiles, in a way
that from such generic platform, the optimum
interface for a specific sensor can be easily derived
in a short time by means of system simulations,
verifications, and possibly prototyping. This entails
that only the required analog/digital components are
integrated onto silicon, resulting in minimized area
and power overheads.

The works in [9, 10] present a low-cost high-
performance Universal (or Generic) Sensor Interface (USI)
suited to interface different kinds of sensors in order
to perform voltage, resistance, current, impedance, and
frequency measurements. Other solutions, such as Universal
Transducer Interface (UTI) [11, 12], allow handling the low-
cost class of capacitive and amperometric sensors, often
present in the field of Micro-Electro-Mechanical (MEM)
devices. The work in [13] relates to a mixed signal platform
including an analog front-end suitable for different kinds
of sensors and a digital module composed by a core
processor and additional general purpose peripherals. All the
conditioning operations can be performed by the processor,
but this solution is limited to sensors which do not need
a complex signal conditioning. In [14] Murabayashi et al.
present a sort of digital platform including a Digital-Signal-
Processor, analog-to-digital and digital-to-analog converters
(ADC and DAC) without basic analog signal conditioning
(amplifiers, voltage/current drivers). This solution is limited
to low-frequency signals and could not be suitable for sensors
requiring a fair amount of conditioning operations. All
these solutions have the advantage to be used for several
types of sensors at the expenses of very little added external
circuitry. Anyway there is the problem of sub-optimum
architecture, since the flexibility of the system could result
in area increasing, higher power consumption, and lower
performances.

In this paper a platform-based methodology and a
mixed-signal embedded platform for automotive sensor
conditioning, developed in order to overcome the Universal
Sensor Interface limitations and reduce time-to-market, are
presented. The proposed solution allows to fast identifying
the most appropriate architecture to interface a given sensor,
to verify and to trim the overall system on a prototyping
board before final ASIC implementation. The system is
composed by an analog front-end, a digital DSP section, and
a CPU core with peripherals.
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The paper is structured as follows: after this introduc-
tion, in the next section an overview of requirements for
automotive electronic sensor interface is outlined. Section 3
describes the platform-based design flow exploited to imple-
ment the mixed-signal embedded platform depicted in
Section 4. Section 5 describes three case studies useful to
demonstrate the versatility of the platform presented in
Section 4 versus different kinds of sensors. Finally results and
conclusions are drawn in Section 6.

2. Automotive Electronic Sensor
Interface Requirements

A typical automotive embedded system gathers environmen-
tal data through a set of sensors, processes the data, and
eventually reacts through a set of actuators. Since the cost
of an electronic system involving a sensor is mainly due
to the sensor itself and to its conditioning analog circuitry
(for thermal compensation, dispersion of characteristics,
and external environment influence minimization), the basic
idea behind the considered platform is to reduce this
cost by using low-price and low-performance sensors and
by adding digital computational power in order to meet
overall sensor performance. For this purpose, a proper
digital conditioning circuitry has to be identified, trimmed,
and verified in a reasonable time and early performance
evaluations have to be extracted before going on towards the
final ASIC product. The resulting prototyping environment
is composed by hardware blocks (plugged on a prototyping
board) and software facilities suitable for the design phase,
while a proper verification methodology guarantees the
correct system behavior. The hardware side of the platform
can be identified after an investigation on the most common
architectures adopted to interface a generic automotive
sensor. This is examined in the following paragraphs.

2.1. Sensor Circuitry: Analysis of the Related Architectures.
More than a hundred of sensors are present in modern cars
[15]. They are spread along the powertrain, chassis, and
body sub-systems. Among all of them, the main percentage
is related to the following:

(a) powertrain: pressure, temperature, rotational motion
and, recently, cylinder pressure, and rotary position
for the powertrain system;

(b) chassis: chassis pressure, rotational motion, inertial
acceleration, angular-rate and, recently, yaw angular
rate, and steering wheel angular position for the
chassis system;

(c

~—

no absolute predominance of a particular sensor
exists for the body system: the sensors are uni-
formly distributed among crash-sensing accelerom-
eters, infrared thermal imaging, ambient-air electro-
chemical gas, and recently night-vision sensors.

The flexibility of the platform with respect to most of
the above mentioned sensors can be achieved by means of
a digital signal processing section: the latter includes all the
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required blocks to address the specific sensor requirements.
In this way, whatever conditioning circuitry can be quickly
mapped onto this general-purpose structure by using the
hardware configuration tool. For this purpose, several con-
ditioning circuitries have been investigated and the related
digital signal processing structure has been extracted.

2.2. Temperature Sensor Conditioning Circuitry. Many sens-
ing applications based on physical, mechanical, and chemical
phenomena show an undesired thermal cross-sensitivity.
These temperature influences cannot be easily shielded, and
consequently, they must be measured and compensated.
For this purpose, accurate temperature information has
to be acquired by a temperature sensor, usually having a
low impact on the cost of the whole system. Automotive
applications involve temperature sensors built by means
of different technologies (silicon, thermistor, and platinum
film represent some examples). Suited conditioning cir-
cuitries can provide an electrical signal whose amplitude
(voltage), duty-cycle, or frequency is a linear measure of
the temperature. Usually the signal conditioning related to
temperature sensors is always performed without using any
digital circuitry. Few examples are reported in Table 1.

2.3. Pressure Sensor Conditioning Circuitry. The pressure
sensor is intended for converting measured physical value
(pressure) into an electrical signal whose amplitude (volt-
age) or frequency is a function of the applied pressure.
Many principles have been adopted in order to convert
the physical effect in an electrical one: to name but a
few, it is possible to find capacitive, piezoresistive, and
resonant effects. A proper conditioning circuitry can then
associate the pressure information either to the amplitude
or to the frequency of the electrical signal. Table 2 gives
a list of few implementations of pressure transducers with
their related conditioning circuitry, partitioned between
analog and digital whenever this occurs. This short analysis
reveals that the basic blocks required by the analog sensor
interface are represented by amplifiers and current sources.
Voltage controlled oscillators (VCOs) are used whenever
frequency conversions are required or resonant conditions
have to be maintained (in this case the VCO is included
within a phase-locked-loop or PLL). As far as the digital
section is concerned, a microcontroller can perform lin-
earization, offset, and temperature compensation, without
the use of a dedicated hardware since the bandwidth of
the signal provided by nonresonant sensors is in the range
0-300 Hz.

2.4. Angular and Linear Position Sensor Conditioning Cir-
cuitry. Angular and linear position sensors are widely used
for many automotive measurements and applications such
as pedal position, throttle valve position, camshaft angle,
transmission control, and active suspension damper systems.
All of them require high resolution and high accuracy since
they represent the first step of more complex and advanced
control systems (e.g., Anti-Blocking-System (ABS)). The
position sensors for automotive are separated in two classes:

contact sensors based on potentiometric effect and con-
tactless sensors based on magnetoresistive or Hall Effect.
The former is interesting for the low cost but actually it
is progressively replaced by the latter, even though a more
complex digital system is required to get a linear response.
Table 3 reports both industrial and research solutions to
interface position sensors. The bandwidth of the signal
provided by the sensor is usually limited to hundreds of
Hz. Almost all position sensors are used in Wheatstone
bridge configuration, and so the signal conditioning needs
a differential amplifier before the ADC converter. The
microcontroller unit processes the digital samples coming
from the ADC block to obtain a ratiometric response of
the sensor and to compensate the thermal drift of the
characteristic.

2.5. Angular Rate Sensor Conditioning Circuitry. Rate sensors
involved in automotive applications are mostly based on
a gyroscopic structure; so they are often referred as gyro
sensors; they provide an output voltage proportional to the
angular rate of the vehicle, thus allowing the sensor to be used
in applications such as chassis suspension control (vehicle
roll and pitch), vehicle stability, and vehicle-heading naviga-
tion (yaw). Implementations of a rate sensor by using a gyro
require a discrete amount of conditioning circuitry since the
rate information is associated to the vibration, which has
to be maintained and controlled for the sensing element at
different operating conditions (temperature changes, shocks,
etc.). Table 4 lists different conditioning circuitries for the
considered type of sensor. Interfaces for this kind of sensor
usually share the same conditioning circuitry for sense (a
cascade of amplifier, demodulator and filter), for driving
(PLL and automatic gain control AGC), and balancing (gain,
offset adjustment).

2.6. Acceleration Sensor Conditioning Circuitry. The accel-
eration sensor is intended for converting the measured
acceleration into an electrical signal. Table 5 reports different
conditioning circuitries for the considered type of accel-
eration sensors. These sensors are used in the automotive
field for vehicle dynamic control and suspension control
applications or as shock/vibration sensors to detect collisions
or forced intrusion into the car. Moreover they can be used
as tilt sensors to detect if a vehicle is being jacked up, about to
be towed, or being loaded onto a flatbed truck, that are some
of the most common methods of car theft today.

All information extracted from previous sections can be
summarized in the following considerations: most of the
sensors share a basic group of analog blocks represented by
amplifiers and current and/or voltage sources. Since we are
interested in moving the remaining conditioning circuitry to
the digital side (for cost, flexibility, and prototyping reasons),
DAC and ADC blocks are required to interface the analog
and the digital domains. This allows building the digital
side of the platform in a configurable structure, made-up
by all possible blocks required to complete the sensor signal
conditioning chain and to customize it for the considered
sensor. High configurability is needed for the analog section
to be able to acquire voltages and currents or to perform



4 EURASIP Journal on Embedded Systems
TasLE 1: Examples of temperature transducer conditioning circuitry.
Technology Input/output Analog circuitry Digital circuitry
Silicon [16] temperature/frequency P.T/.\T’ ring-oscillator, pulse generator,
divisor
Silicon [17] temperature/voltage lock-in amplifier, lowpass filter
Silicon [18] temperature/voltage PTAT, comparator, DAC shift-register for the threshold
Silicon [19] temperature/voltage P.TAT’ bandgap, chopper amplifier, I>C interface
sigma-delta converter
Thermistor [20] temperature/voltage Wheatstone bridge, amplifier

TasLE 2: Examples of pressure transducer conditioning circuitry.

Effect Input/output Analog circuitry Digital circuitry

Capacitive pressure/voltage operzj\tlonal amplifier, filter, ADC, analog counter, decoder

[21] multiplexer

Piezoresistive transconductance amplifiers, sigma-delta

2] pressure/frequency converter, compensation resistors,

band-gap

}[321§?ore51st1ve pressure/voltage Wheatstone Bridge, Schmitt trigger microcontroller

Piezoresistive

polysilicon- pressure/voltage operational amplifiers, DAC reg}ster§ for various COn’lpensat.lOI’l and

on-steel calibration during manufacturing

(24]

[Czaspjacmve pressure/voltage analog multiplexer, ZA modulator FPGA, USB interface

Capacitive microcontroller (with ADCs and

2 6% pressure/voltage operational amplifier peripherals) for linearization,
compensation and calibration

Resonant (by

thermal piezoresistive element for vibration . .

excitation) pressure/frequency sensing (SR510 lock-in amplifier) (SR10 lock-in amplifier)

(27]

capacitance and resistance measurements. The digital part
has to be able to elaborate the data coming from the analog
section and to perform the signal processing that cannot be
done in the analog side.

3. Platform-Based Design Flow

The starting point of our approach is based on the realization
of a MATLAB model for the system at the highest abstraction
level, which is made of a set of functional blocks with
no distinction between analog/digital sections and software.
The sensor itself can be modeled with MATLAB and thus
co-simulated with the conditioning circuitry, helping the
designer find the most appropriate conditioning chain for
the given application. A system exploration phase, based
on simulations, design iterations, and functional blocks
refinements, leads to a first partitioning of the system in
analog, hardwired, and programmable (software) digital
building blocks. Although this subdivision cannot be taken
as frozen, the accurate MATLAB modeling and simulations
guarantee the validity of these choices.

Then each block is modeled with the most appro-
priate description language: VHDL for digital hardware,

VHDL-AMS for analog circuitry, and C/C++ for software
routines. The top-down platform-based design flow is
depicted in Figure 1: from the initial behavioral model we get
to lower levels of abstraction via synthesis steps. The result
of a synthesis step is then validated with the previous one
through a verification phase. Concerning the digital section,
a Gate-Level VHDL is realized for the selected technology
exploiting a Register Transfer Level (RTL) description and a
synthesis tool.

On the analog side, starting from VHDL-AMS (modeling
no more than the specifications), a transistor-level descrip-
tion is generated, from which a more accurate VHDL-AMS
model can be obtained and employed in a mixed-signal
simulation, together with standard VHDL and C software
running on the programmable hardware (microcontroller
or general purpose processor). After the implementation of
each single block, the relevant behavioral model is updated,
so that it behaves closer to the practical circuit. This feedback
process increases mixed simulations efficiency, allowing a
more comprehensive design space exploration and reducing
the probability of system architecture re-design [2]. VHDL-
AMS becomes therefore crucial to let designers simulate
the whole system during its own development, compare
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TaBLE 3: Examples of angular and linear position sensor conditioning circuitry.

Type Input/output Analog circuitry Digital circuitry

Anisotropic MagnetoResistive al.lgle or amplifiers, ZA converter, oscillators, decimation filter, ALU, SPI interface

(AMR) [28] displacement/voltage comparator, voltage reference,

AMR [29] angle or differential amplifiers, lowpass filter, microcontroller for calibration,
displacement/voltage ADC/DAC converter, current amplifier ~ compensation and linearization

lateral MagnetoTransistor [30]

Hall Effect [31]

inductive attenuating coupler

angle/bit stream

linear
displacement/voltage

angle/duty-cycle

differential amplifier, incremental ADC,
adder, DAC converter

low noise instrumentation amplifier

amplifiers, multiplier, IF filter, lowpass

microcontroller

digital signal generator

[32] filter, comparator.
AMR [33] linear analog multiplexer, differential amplifier, Microcontroller for calculating the
displacement/voltage ADC/DAC converter, voltage reference ~ position
TaBLE 4: Examples of rate transducer conditioning circuitry.
Type Input/output Analog circuitry Digital circuitry

piezoresistive composite beam

(34]

tuning fork quartz [35]

bulk silicon [36]

vibrating mass [37]

vibrating mass [38]

angular rate/voltage
(open loop)
angular rate/voltage
(open loop)

angular rate/digital

angular rate/digital

angular rate/voltage

sine generator, multiplier, lowpass filter,
amplifier, AGC

differential amplifier, lowpass filter, AGC,
synchronization blocks

>A ADC, PLL, AGC DAC charge, phase
shifter, charge pump

1/Q demodulator, DSP for
calibration and
compensation

C/V converter, AX modulator, PLL, AGC, temperature sensor

C/V converter, AGC, phase shifter, filters, demodulators (separated control and

sense electronics)

simulation

(X

simulation

MATLAB

Prototyping

VHDL-
AMS

SPICE
simulation

with ISIF

FiGurek 1: Platform-Based Design Flow.

results with those given by MATLAB, and thus be able to
fix as soon as possible unexpected behaviors, by trimming
the architecture and updating blocks functionalities or
specifications. The above mentioned design flow ends up
with the prototyping phase, through which the whole system
can be tested (or parts of it) under practical operating
conditions [39, 40].

The platform-Based Design flow guarantees two main
advantages: on one side this methodology represents a
powerful strategy for managing complex designs within
short time-to-market as it is typical of aggressive industrial
applications. This is obtained by high reuse of concepts,
architectures, blocks, and IPs among different projects
thanks to the multi-abstraction-layer design. On the other
side, the strong customization on the target application of
the lower abstraction layers is essential to achieve top per-
formances, unreachable with generic multi-purpose designs.
As a matter of fact system design space exploration for
sensor conditioning architecture definition only by high-
level simulations is critical. In this case the system has
to be modeled together with the target sensor in order
to get the best possible architecture for the conditioning
sensor interface. This may imply several design iterations
from the prototype back to the abstract level (thus slowing
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TaBLE 5: Examples of acceleration transducer conditioning circuitry.
Effect Input/output Analog circuitry Digital circuitry
Capacitive . demodulator, switched capacitor filter .. S .
lerat It . o ’ Digital calibrat f amplifi
(41] acceleration/voltage amplifier with programmable offset igital calibration of amplifiers
Capacitive . .. charge amplifier, Sample&Hold,
leration/digital
[42] acceleration/digita comparator, XA modulator
Efsliacmve acceleration/voltage dual Chopper amplifier, demodulator
Resistive [44] acceleration/voltage amplifier
resonant acceleration/voltage oscillator, Automatic Amplitude Control,
beams [45] 8 switched-capacitor amplifier, filter
Piezoresistive . sample&hold, Bandpass filter, rectifier,
acceleration/voltage .
(46] averaging stage

the time-to-market), not due to design faults but only to
unavoidable mismatches between a high-level modeling and
physical reality. The main consequence is that these small
inaccuracies might result in final wrong conditioning chain
implementation and in poor specifications for critical blocks.
These design issues can bring to a final prototype affected
by significant design inaccuracy leading to necessary re-
design cycles with a consequent increase of costs and time-
to-market inflation. Another big question mark for system
engineers stays in specification definition, estimation of final
system performances, and, in the end, decision whether the
project is feasible or not: a MATLAB simulation can hardly
give enough information of this kind.

3.1. Design Flow Based on ISIF Embedded Platform. The most
important advantage of the ISIF design flow is represented
by the drastic reduction of the time needed to perform
the design architectural space exploration. In place of time-
consuming simulations, with ISIF the application can be
directly evaluated on the real silicon (thus a prototype of
the target application is possible before its actual design).
Furthermore accurate feedback information coming from
IPs already on silicon can be of crucial importance, since
phenomena impossible to be foreseen in a traditional design
simulation can be observed. In addition a correct evaluation
of the real parasitics can be developed thus allowing designers
to reach a very accurate estimation of the performance of the
device to meet the specification of the final product.

Although ISIF presents some similarities with the Uni-
versal Sensor Interface (as it aims to condition a wide class
of sensors) [9, 10], it should not be considered a final
product for any target application. Indeed, its aim is to
provide designers with a powerful and complete interface
for a quick development of a final product with reduced
risks and short development time in order to achieve the
highest performances and the lowest overheads. This fact
entails that only the required analog/digital IP components
are integrated onto the final silicon for production, resulting
in minimized area and power overheads.

As soon as the sensor is available we could connect
directly the ISIF platform. The architecture space exploration
can be rapidly started by simple acquiring the signal
by an analog conditioning channel, trimming the signal

conditioning path with the desired analog IPs and then apply
complex and ad hoc algorithms thanks to the hardware
DSP structure and the emulation of software IPs. After the
ISIF system exploration phase, the Platform-Based Flow can
start straight from the HDL development of the software-
emulated IPs, with a noteworthy saving of design space
exploration time and a reasonable confidence in architecture
goodness and clear expectation of system final performances.
As soon as the prototyping phase has been successful com-
pleted all the necessary analog, digital, and software modules
have been identified with relevant interconnections. Starting
from this result the final ASIC in the same technology could
be easily achieved with short development time and, above
all, with very low development risk.

ISIF platform, which is described in detail in Section 4,
has been primarily studied to provide interfacing for capac-
itive and resistive sensors, to perform measurements of
voltages and low currents and many other applications [47].

4. ISIF Platform

The ISIF platform provides a set of high-performances
programmable analog and digital IPs directly on silicon and
it is able to configure their interconnections and integrate
them with DSP software routines. These routines emulate
hardware blocks and/or are used to perform calibrations
and compensations. Figure 2 gives an overview of the main
ISIF sections: an analog front-end, a digital DSP section,
and a CPU core with peripherals. Moreover, all the analog
and digital IPs are fully programmable by a set of status
registers linked together in a serial JTAG-like chain. For these
reasons, different interfacing architectures, data paths, and
signal processing chains can be quickly implemented and
evaluated on the field allowing a fast and flexible interfacing,
characterization, and test of the sensor.

ISIF platform has been implemented in 0.35 ym Bipolar
CMOS DMOS technology supplied by STMicroelectronics,
on a single chip with area occupation of about 72 mm?
(Figure 3).

4.1. Analog Section. The ISIF analog section consists of a
set of programmable IPs for signal acquisition and basic



EURASIP Journal on Embedded Systems

e

B EDN ﬁ%

()
()
EEETO

ADC

Analog
section

ISIE

LEON

| Digitalbus__ &

DSP

Digital section

FiGURre 2: ISIF Platform architecture.

(a)

-x......\.\lu

(®)

FiGure 3: ISTF layout and chip photo.

conditioning such as DACs, ADCs, amplifiers, filters, and
voltage/current sources.

ISIF analog section features 4 dedicated input channels
for sensor signal acquisition (Figure 4). The readout stage
is realized recurring to an operational amplifier that can
be programmed to implement a charge amplifier, a trans-
resistive stage, or an instrument amplifier thus covering a
wide range of sensor typologies. The following signal analog
processing is realized recurring to fully differential stages that
perform signal recovery, by means of highly configurable
amplifiers, and lowpass filters for antialiasing purpose. Then
the signal is converted by a fully differential 12-bit ADC or a
16-bit XA ADC. Voltage and current references are all derived
by a low-noise bandgap reference and they are trimmable
in order to achieve the required specifications in terms of
noise and power consumption. The sensor driving stage of
the platform is provided by a set of configurable 12-bit and
10-bit thermometer DACs. An input/output analog test bus

can be driven to supply external stimuli or to probe output
signals at each block output, guaranteeing an effective and
quick way to debug the analog signal conditioning path.

The analog section has been developed keeping the
design philosophy as near as possible to the digital coun-
terpart: high configurability of blocks and signal paths and
design for testability and reliability are unquestionably wel-
come in every design but are often hard to be matched with
excellent performances (up to the automotive standards).
For example, a high number of configuration bits can
easily lead to an increase of parasitics and noise due to
routing lines extension and digital switches slew (to give
an idea, the four ISIF input channels with 7 bypassable
stages each feature about 1000 configuration bits). The above
mentioned problems have been overcome by using separate
power supplies and grounds for digital (3.3V) and analog
(5V) sections, provided by independent regulators, thus
improving noise margin. System routing has been eased



and automated employing modular outline of analog blocks.
Programmability of IP cells has been carried out by means of
a JTAG-like serial chain which minimizes routing complexity
of configuration lines.

4.2. Digital Section. Digital section is involved both on
processing and monitoring activities. CPU block (Figure 5)
includes a LEON core with related peripherals and dedicated
IPs for DSP purpose. The LEON is a general purpose proces-
sor based on a 32-bit RISC Scalable Processor ARChitecture
(SPARC-V8) compliant architecture designed for embedded
applications. The LEON processor is developed by the
European Space Agency and freely distributed under Lesser
General Public License [48]. The LEON comes with several
features on-chip such as hardware multipliers, dividers,
interrupt controller, memories, an AMBA bus bridge, and
peripherals for external communication.

The digital section features a dedicated hardware digital
signal processing unit, composed by fully configurable IPs
optimized for low power consumption such as modulator
and channel demodulators, a 6 DAC controllers, filters (FIR
and IIR), and a sine wave generator which can provide up
to 16 waves with 3 different frequencies and programmable
phases. These IPs feature a flexible interconnection architec-
ture: they are hardware interconnected but they can also be
accessed at their input/output by software. LEON processor
features system monitoring and controls signal processing
chain and communication with external devices. The dig-
ital section is completed by standard peripherals such as
timers, watchdog, SPIs (Serial Peripheral Interface), UARTS
(Universal Asynchronous Receiver Transmitter), CACHE,
ROM RAM, and EEPROM memories (Figure 5). Part of
the software is included in the ROM (boot and few utility
functions), while the rest can be downloaded at startup via
UART or can be stored in external SPI EEPROM and so
directly reboot from EEPROM (which can hold different
software and data for speed up time in trimming and test
procedures). Firmware utilities can change interconnections
among digital IPs, handle communications with external
devices (for debug, monitoring), and configure the whole
analog front-end section (changing parameters such as gain,
bandwidth) to match requirements of different sensors.

4.3. DSP Software Section. The requirements of automotive
applications are pushing towards the use of hardware solu-
tions (especially concerning safety issues). On the other hand
the high number of variables (e.g., regarding block and data-
paths dimensioning) makes hardware implementation very
difficult to be successful at first time. Furthermore several
digital IPs require detailed analysis for proper parameters
setting since automotive applications often require both high
performances and reduced area, aspects not compatible with
the use of a large number of configuration bits for trimming
or over-dimensioned paths. To meet these requirements,
the ISIF platform includes software peripherals (e.g., filters,
controllers) characterized by a perfect functional match with
hardware devices.

The LEON CPU guarantees the required computational
power for real-time software IPs implementation thanks to
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good signal processing features (hardware multipliers and
accumulators). Therefore all functionalities, which are not
fulfilled by ISIF digital section, can be emulated by software
routines keeping the same behavior of the original DSP
library IPs (concerning bits width, saturation, linearity, etc.).

This feature allows input/output data to be acquired
from digital IPs, then a series of DSP routines can be
called, and eventually the results can be passed back to
physical blocks just as the data elaboration would have been
realized completely by hardware IPs. An example of hard-
ware/software mixed architecture is shown in Figure 6. The
monitoring, control, and communication functionalities are
implemented via software with two main benefits: flexibility
and possibility of updating due to system modifications
and new specifications. These features lead the designer to
identify the most suitable solution in DSP elaboration for a
specific sensor. In the final ASIC design, all the DSP software
routines (and even the LEON processor which is quite area
and power consuming) can be replaced with hardware IPs
with a zero risk for redesign, drastically reducing time-
to-market. The designer can change analog settings and
interconnections of digital IPs and even instantiate new ones
with a Personal Computer connected via UART to the ISIF
board. This allows a rapid and effective design architecture
exploration in order to achieve architecture optimization
both in terms of area and performances. The whole analysis
can be developed from the beginning of the interface concept
with the sensor connected to the ISIF board.

4.4. Graphical User Interface. Analog test buses and registers
are programmable by means of a JTAG-like chain accessible
via LEON processor or directly from outside through four
dedicated pins. To avoid any mistake in setting the JTAG-
chain (the JTAG configuration includes hundreds of bits
for each IP and a manual configuration of each bit would
be quite difficult) a dedicated LABVIEW Graphical User
Interface (GUI) has been developed. This interface can
download the firmware containing the target JTAG and
registers’ settings directly on chip through the UART. Once
the configuration of ISIF has been set by the user-friendly
GUI, the LABVIEW software generates a text file with the
settings of all the analog and digital IPs. The text file is
then used by the LEON firmware compiler and the settings
are taken as parameters for the configuration chains of the
different IPs. The GUI is able to apply minor changes to the
configuration of all IPs’ settings at run-time as well. This type
of configuration is exploited mainly when minor run-time
changes of the configuration are needed. A firmware module
running in the LEON firmware implements a communica-
tion protocol with the LABVIEW software running in the
Personal Computer. Following this protocol, the GUI is able
to set each IP’s configuration register. The GUI is depicted in
Figure 7 where the configuration of a 12-bit DAC is taken as
an example.

5. Test Cases

As already pointed out in the previous section, ISIF is
an extremely versatile platform suitable to address many
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different sensors with a short set-up time, thanks to its
high configurability of both analog and digital hardware and
the powerful software resources made available by LEON
core. Yet ISIF can be configured for prototyping many kinds
of sensor interfaces, like accelerometers, magnetosensors,
gyrosensors, and so on, with low effort, low cost, and short
set-up time. We would like here to better point out these
features with regard to three different test cases: Magnetic
angular position sensor, Low-g Accelerometer, and Rate Gyro
Sensor.

5.1. Magnetic Angular Position Sensor. Magnetic sensors have
a wide range of applications such as proximity detection,
displacement sensing, rotational reference detection, and
current sensing. The considered angular position sensor
is based on magnetoresistive (MR) effect and represents a
robust, precise, and also cost-effective solution for angular
measurements in the harsh automotive environment. An MR
sensor [28] exploits the physical properties of a thin strip of a
certain ferromagnetic alloy in which the electrical resistance
is a function of the magnitude and of the direction of an
external magnetic field. In particular, if the magnitude of
the external magnetic field is greater than approximately
6 KA/m (called saturated field), the resistance of the MR
becomes sensitive only to the direction of the field itself. This
condition is applied whenever angular measurements rather
than field measurement have to be performed.

If 6 is the angle between external saturating magnetic
field M and the current I flowing into the MR (Figure 8(a)),
the resistance of MR itself is given by the expression (1):

R = Ry + ARycos?0. (1)

When four MR sensors are arranged in a Wheatstone
bridge configuration (Figure 8(b)), the differential output

signal available on the diagonal of the bridge is given by (2):

Vi —Vy = Vyq - S-sin(20), (2)
where S (typically 15mV/V) is the sensitivity of a single
MR. Expression (2) shows dependence from the supply
voltage V44 and from the sensor sensitivity S, the latter
being a function also of the temperature T. The sensor is
applied to a mechanical system (Figure 8(c)), composed by
a permanent magnet of disc shape (for saturating the MR
sensors) coaxially to a rotary shaft, whose angular position
has to be measured. The shaft can turn around its axis for
an angle of 90°; so the differential output from the sensor
is limited to the sinusoidal curve within the dashed box in
Figure 8(d). This is also the maximum range for which no
uncertainty occurs.

Theoretically, to produce a linear response from the
signal gathered from the sensor, an inverse sine function
could be applied; in practice, either for nonlinearity reasons
or from drops on the supply voltage and/or temperature
fluctuations, it is preferable to store in a ROM memory the
sensor characteristic (voltage versus angular position) for a
standard condition and to correct it whenever the conditions
change. For this purpose, the platform can be used to make
all the operations required.

For this application two ISIF input channels have
been configured for instrument amplifier voltage detection
(Figure 9). Analog data have been converted and digitally
processed by DSP software routines, while LEON forwards
output data (via UART) to a host PC for screen displaying
and postprocessing. To compensate the dependency of the
Wheatstone bridge signal from the temperature, a thermistor
is used. In this way the processor can control the gain of
the bridge amplifier as a digital feedback loop improving the
overall system accuracy. The measured sensitivity amounts to
0.1°/s with signal up to 10 KHz bandwidth.
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5.2. Low-g Accelerometer. Low-g micromachined capacitive
accelerometers are commercially successful inertial sensors.
There are many different types of capacitive accelerometers
but their basic structures are very similar. They typically
consist of a proof mass suspended by beams anchored to a
fixed frame [49]. The presence of an external acceleration
displaces the support frame relative to the proof mass,
thus changing the capacitance between the proof mass itself
and a fixed conductive electrode separated from it with
a narrow gap. This technique is carried out using two

main basic structures: the vertical and the lateral ones.
In the vertical structure the proof mass is separated by
a narrow air gap from a fixed plate, forming a parallel
plate sense capacitance. In this case the sense direction
is perpendicular to the proof mass plane (z-axis). In a
lateral accelerometer, fingers extending from the proof
mass (sense fingers) are interdigitated with fixed fingers,
forming parallel differential capacitor elements. In these
devices the proof mass moves along its plane as shown in
Figure 10 (x — y plane).
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Readout circuits mostly use capacitance-to-frequency
converters [50, 51], capacitive AC-bridges [52], or switched
capacitor circuits [53, 54]. Sometimes switched capacitor
circuits are exploited to implement the correlated double-
sampling (CDS) technique in order to reduce the effect of
1/f noise [54, 55]. Moreover accelerometers can be operated
open loop or closed loop. The open-loop solutions are
inherently stable and they require simpler circuitry but the
linearity, bandwidth, and dynamic range cannot be better
than the sensor itself. The closed-loop solutions improve
these performances at the cost of a more complex circuitry
and risks of instability.

In this section an ISIF implementation with YZ dual
axis accelerometer is described. Such accelerometer features
an in-plain moving structure which shifts on Y axis when
subject to an acceleration, causing a AC variation of about
10{F/g in the sense capacitances, whose rest value is about
10 pE The Z moving structure is subject to a torque under
acceleration, thus featuring poor linearity, but is provided
with feedback electrodes in order to implement a closed loop
conditioning: up to =4 g acceleration can be compensated,
making possible the closed loop architecture in the target
low-g range of +2 g.

The slight AC variation in low-g applications makes
necessary a differential capacitance reading provided by
ISIF charge amplifier (Figure 11). The input channel stages
have been configured to perform a further lowpass filtering
and gain adjustment, so that the input dynamic of the
12-bit ADC converter can be fully exploited. The digital
section decimates the ADC output and lowpass filters,
while software-emulated IPs complete the signal processing
chain. Closed loop is implemented on Z axis by a reference
subtraction, a DSP controller, and a feedback actuation,
being the acceleration value calculated as the difference
between feedback driver inputs. Such signal requires further
filtering (down to the target bandwidth of 10 Hz), offset com-
pensation, and gain correction in order to have the chosen
sensitivity. Signal coming from Y axis (open loop) is directly
fed through lowpass filters and offset/gain correction stages.
Comprehensive studies on the influence of temperature (T')
on the combination of sensor and interface have revealed
an almost linear trend of offset and sensitivity over T. For
this reason a software T drift linear compensation has been
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set up, including ISIF temperature sensor readout, lowpass
filtering, and measured T employment for calculating offset
and gain correction additional coefficients.

The system provides digital output via UART or SPI,
with sensitivity of 1024 LSB/g and FS of +2g. The noise
stays within 3 mg for both axes (with 10 Hz bandwidth).
The linear procedure for compensation over T resulted in
a max offset drift of 20mg on Y and 40mg on Z, with
sensitivity error within 1% of full-scale (FS) on Y and 3% of
FS on Z [56]. With respect to commercial devices [57], this
implementation features a slightly higher noise but better 0 g
offset and stability over temperature.

5.3. Rate Gyro Sensor. Gyro sensors provide yaw rate mea-
surement by working accordingly to the Coriolis Effect
[58]. The sensor is kept oscillating at its proper resonant
frequency by a driving sine wave signal supplied to two
sensor electrodes; so an angular rotation of the MEMS causes
a perpendicular oscillation. This induced oscillation can
be discriminated by detecting the capacitance variation at
the sensing electrodes. For such application the electronic
interface has to provide a sine driving by a PLL (Phase-
Locked Loop) with the capability of locking at the gyro
resonating frequency (around 5-10KHz); meanwhile an
Automatic Gain Control (AGC) keeps its amplitude at a
safe level: more driving implies better SNR, but excessive
amplitude makes the moving structure hit the fixed frame
and causes sensor malfunctioning. A filtering path (with gain
and offset compensation) is required after demodulation
for the detected rate signal. This interface can be easily
implemented by ISIF platform: two analog input channels
are used for signal acquisition and a preliminary filtering and
dynamic conditioning; then the PLL and the AGC function-
ality is performed by the hardware modulator, demodulator,
and the NCO (Numeric Controlled Oscillator). The DSP
structure, which closes the loop for implementing the PLL
and ADC, is developed by means of firmware utilities: a DSP
controller, generic transfer function for loop filtering, signal
gain adjustments, and offset compensations (Figure 12).
Gyroscope DSP firmware routine basically works on the
execution of the on a time schedule given by data valid
coming from hardware at about 1 KHz. The remaining time
(within two interrupts) is used to handle communication
resources such as UART and SPI (both can be used for
sending commands and reading outputs).

The customization of the whole system for gyro sensor
conditioning, including optimal input channel gains and
bandwidth setting, hardware IPs configuration, and software
modules setup, has been performed in roughly one week and
resulted in a working system with a sensitivity of 20 mV/(°/s)
and a rate noise of 0.4°/s on a 10 Hz output bandwidth. The
results achieved by ISIF fast prototyping can be compared
with commercial devices. Rate noise stays at higher levels due
to the slightly higher parasites of the signal acquisition stage
(input switch matrix and programmable R and C for charge
amplifier); yet it still reaches the levels of the commercial
chips from Analog Devices [59] or Murata [60] reported as
a reference. The optimized interface for gyro sensor can be
designed using the ISIF prototype as a starting point, reusing
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most of its blocks (simply cutting unneeded configuration
options) and thus minimizing area, power consumption, and
parasites, with a strong confidence in achieving a first time
successful silicon with superior performances.

6. Conclusions

In this paper a platform-based design methodology which
allows fastening the development of a mixed-signal embed-
ded system to interface a given automotive sensor has been
presented. The ISIF mixed-signal embedded platform has
been designed to offer a wide range of software, digital, and

analog IPs in order to fast identify, verify, and prototype
a suitable architecture for automotive class sensor before
proceeding to the final ASIC implementation.

The platform has been developed on a single chip of
about 72 mm? using a 0.35 ym BCD (Bipolar CMOS DMOS)
technology.

Three applications cases have been presented in order
to demonstrate the validity of the prototyping environ-
ment and to proof its versatility towards different sensors.
Obtained results, successfully compared with state-of-the-
art approaches but with a very low set-up time, confirm the
efficacy of this methodology.
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