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This paper presents a word length selection method for the implementation of digital controllers in both fixed-point and floating-
point hardware on FPGAs. This method uses the new types defined in the VHDL-2008 fixed-point and floating-point packages.
These packages allow customizing the word length of fixed and floating point representations and shorten the design cycle
simplifying the design of arithmetic operations. The method performs bit-true simulations in order to determine the word
length to represent the constant coefficients and the internal signals of the digital controller while maintaining the control system
specifications. A mixed-signal simulation tool is used to simulate the closed loop system as a whole in order to analyze the impact
of the quantization effects and loop delays on the control system performance. The method is applied to implement a digital
controller for a switching power converter. The digital circuit is implemented on an FPGA, and the simulations are experimentally
verified.

1. Introduction

The advances in FPGAs technology [1, 2] have had a big
impact on the implementation of digital control algorithms
[3]. With the introduction of advanced FPGA architectures,
it has become affordable to implement fixed-point [4–8],
and floating-point [9–13] data formats and operations in
these FPGAs. In addition to implementing these algorithms
directly in hardware, FPGAs also allow an HW/SW real-
ization of these algorithms using soft-core or hard-core
processors. This work will focus on the first option.

The best representation, fixed-point or floating-point,
depends on the application. So, the designer must analyze
which is the suitable representation for his application.
On one hand, floating-point implementations will consume
more FPGA hardware resources and achieve lower speed. On
the other hand, digital controllers are designed considering
real number coefficients and signals, and floating-point to
fixed-point conversion may become a difficult and time-
consuming process. In fact, this process has been identified

in a recent survey [14] as the most difficult aspect of
implementing a fixed-point algorithm on an FPGA.

VHDL is a standard Hardware Description Language
that allows high flexibility and technology independence.
However, VHDL hardware description is considered as a
low abstraction level tool and, in order to reduce design
time and effort, some fixed-point implementations use tools
such as Altera DSP Builder [4] Xilinx System Generator
[6] that directly generates VHDL from Matlab/Simulink, or
Handle-C [7].

This work shows how to implement digital controllers
in fixed-point using the VHDL-2008 fixed-point package
fixed pkg [15], and in floating point using the VHDL-2008
floating-point package float pkg [16]. These packages are
included in the IEEE Standard VHDL LRM 1076–2008.
The utilization of these packages simplifies the design of
arithmetic operations, shortens the design cycle, and makes
VHDL competitive with other alternatives. These packages
also allow customizing the word length of fixed and floating
point representations. This method can also be applied
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to the implementation of any infinite impulse response
filter.

Several techniques based on bit-true simulations or
analytical analysis have been proposed to determine the
word length in fixed-point implementations of digital signal
processing applications [17–23] and digital controllers [24–
27]. There are fewer methods [28] that offer a uniform
treatment for bit-width selection of both fixed-point and
floating-point designs. However, in [28] analytical analysis
is applied to data flows without feedback, while in this work,
the whole system is simulated in closed loop.

We perform bit-true simulations using the new types
defined in the VHDL-2008 fixed-point and floating-point
packages, and a word length that maintains an acceptable
closed-loop performance in both cases is determined using
an approach very closely related to the method presented
in [17, 22]. Thus, our method covers both fixed-point and
floating-point word length selection. Except on [25, 27],
Matlab/Simulink or C/C++ is used to perform bit-true
simulations, and then VHDL is automatically generated by
the tool. Using the types defined in the packages has the
advantage that the simulated code is also the synthesized one.
This paper further develops the work described in [12, 27],
developing a framework that offers and unifies treatment for
fixed-point and floating-point designs.

The remainder of this paper is organized as follows.
Section 2 provides a brief description of fixed-point and
floating-point numerical representations. Section 3 shows
the traditional approach to implement arithmetic operations
in VHDL using the numeric std package, and how the
new packages simplify the design of fixed and floating-
point operations. Section 4 presents the proposed word
length selection procedure that is applied to an application
example in Section 5. Section 6 shows the experimental
results obtained using the proposed method and VHDL-
2008 packages, and finally in Section 7 some conclusions are
drawn.

2. Numerical Representations

Figure 1 shows the data format of a fixed-point two’s
complement representation. The values are coded in w bits
with nq bits after the point (fractional word length).

A fixed-point data format is expressed as 〈w,nq〉. The
value of a w-bit binary number in this representation is
x · 2−nq, where x is the integer equivalent of the two’s
complement w bit binary number. The MSB position with
respect to the binary point is ni = w −nq − 1. The resolution
of the fixed point number is 2−nq, and the range is

[
−2ni, 2ni − 2−nq

]
. (1)

FPGAs are not constrained to work with a specific
number of bits w to represent data. However, in fixed-point
DSPs, w is kept constant because it is constrained by the DSP
architecture.

Floating point numbers are represented using an expo-
nent and a mantissa following the format shown in Figure 2,
where s is the sign bit (0 for positive and 1 for negative

ni

q

w bits

nq bitsMSB

0 −1
s i

−nq

Figure 1: Fixed-point format.

s e f

1 bit ne bits n f bits

MSB LSB

Figure 2: Floating-point format.

numbers), e is the exponent, and f is the unsigned fractional
part of the mantissa. The floating-point is “normalized”
when it uses a hidden bit, so that the mantissa value is 1 + f .
The exponent is biased with bias = 2ne−1 − 1, where ne is
the number of bits in the exponent field. Then, the value of
the normalized number is

(−1)s · (1. f ) · 2e−bias. (2)

The range of normalized numbers is composed of the
intervals [−max, −min] and [min, max] where

min = 2emin−bias = 21−bias,

max =
(
2− 2−n f

)
· 2emax−bias =

(
2− 2−n f

)
· 2bias.

(3)

A single precision floating point number in the standard
IEEE-754 [29] is encoded in 32 bits with ne = 8, bias = 127,
and n f = 23. A double precision floating point number in
this standard is encoded in 64 bits with ne = 11, bias = 1023,
and n f = 52. Again, FPGAs, unlike DSPs, are not constrained
to work with these standards to represent data.

Certain values of e and f are reserved for representing
special numbers, such as 0, NaNs (Not-a-Number) that indi-
cates exceptions, ±∞ (Infinity), and denormalized numbers.
These special values are as follows.

(i) If e = 0 and f = 0, it represents a 0.

(ii) If e = 11. . .1 and f /= 0, it represents an NaN.

(iii) If e = 11. . .1 and f = 0, it represents ±∞ depending
on sign.

(iv) If e = 0 and f /= 0, it is a denormal number with value:

(−1)s · (0. f ) · 2−bias+1. (4)

3. Fixed and Floating-Point Number
Representations in VHDL

The traditional approach to make arithmetic operations
between vectors of std logic elements is to use numeric std
or std logic arith packages. Both packages define the signed
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vector type and arithmetic and comparison operations
between objects of this type. From now on, we will use the
first package.

In order to sum two operands in fixed-point format,
the VHDL designer has to align the binary points, and take
into account that the add operator produces a result vector
whose length is equal to the length of the longest operand.
The following code shows how the signal with the smallest
number of fractional bits is left shifted to align the binary
point. Besides, sign extension has to be explicitly described
in VHDL to manage the carry.

signal A: signed(8 downto 0);

-- <w=9,nq=8> format

signal B: signed(7 downto 0); --<8,5>

signal Y: signed(11 downto 0); --<12,8 >

--

Y <= A + (B(7)&B& "000");

The multiplication of two signed has the length of the
sum of the lengths of the operands. Thus, the designer is
in charge of managing the bit growth, and uses slicing and
indexing of the result to extract the required part of the
result. To perform rounding, before cutting off the bits below
the specified LSB, LSB/2 is added first.

signal C: signed(7 downto 0); -- <8,5>

signal D: signed(7 downto 0); -- <8,5>

signal Y: signed(10 downto 0); --<11,7>

signal Y tmp: signed(15 downto 0);

constant LSB2: signed(3 downto 0):=

"0100";

--

Y tmp <= (C ∗ D) + LSB2;

Y <= Y tmp(13 downto 3);

In the above VHDL code, an overflow will occur if the
multiplication result cannot be represented in the destination
operand format <11,7>. This event must be explicitly
managed by the designer using saturation arithmetic for
instance.

Figure 3 shows a block diagram with the steps required
to implement the addition of two floating-point numbers nA
and nB [30]. It is assumed that the operands and the result
nR are normalized single precision floating point numbers.
Basically, the exponents of the two numbers are compared
and the mantissa corresponding to the smaller exponent is
right shifted by the difference of the exponents so that the
resulting two mantissas are aligned and can be added. The
result is rounded to the appropriate number of bits and
normalized. Using the numeric std package, the designer has
to describe in VHDL all these operations [11] in order to
implement an addition.

Exponent
comparator

Exponent

difference
Shifter

Sign
calculator

+/−

Rounding
& normalizer

sR eR 1. fR

sA sB eA eB 1. fA 1. fB

8 8 24 24

8 24

Figure 3: Floating point adder block diagram.

3.1. Fixed-Point Package. The VHDL fixed pkg package sup-
ports the design of fixed-point digital systems from a higher
abstraction level. This fully synthesizable package is part of
the VHDL-2008 standard and is intended to work with fixed-
point arithmetic. A compatibility version with VHDL-1993 is
available to allow its use with no up-to-date tools.

This package defines two new types to represent unsigned
and signed fixed-point numbers, respectively ufixed and
sfixed. They are arrays of std logic objects with integer range,
and then a signal with format 〈w,nq〉 is declared as follows:

signal A: sfixed (ni downto -nq);

The package defines arithmetic, and comparison opera-
tions between objects of these types, following the propaga-
tion rules shown in Table 1 for addition and multiplication.

Then, the designer is relieved of aligning binary points
and performing sign extension in sum operations.

signal A: sfixed(0 downto -8); -- <9,8>

signal B: sfixed(2 downto -5); -- <8,5>

signal Y: sfixed(3 downto -8); --<12,8>

--

Y <= A + B;

The package also defines a resize function to convert
from one fixed-point type to another. This function allows
specifying the quantization mode (truncation or rounding)
and the overflow mode (wrap-around or saturation), and is
very useful for managing the bit growth in multiplication
operations.

signal C: sfixed(2 downto -5); -- <8,5>

signal D: sfixed(2 downto -5); -- <8,5 >

signal Y: sfixed(3 downto -7); --<11,7>

--

Y <= resize(C∗D,Y,fixed saturate,

fixed round);
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Table 1: Fixed pkg propagation rules.

Operation Result range

A ± B MAX(A’left,B’left)+1 downto MIN(A’right,B’right)

A ∗ B A’left+B’left+1 downto A’right+B’right

The arguments are the data to be resized, the size of the
result, the overflow style, and the rounding method.

3.2. Floating-Point Package. The VHDL float pkg package
provides resources to design floating-point digital systems
from a higher abstraction level. This fully synthesizable
package is part of the VHDL-2008 standard; a compatibility
version with VHDL-1993 is available to allow its use with no
up-to-date tools.

The float pkg package is VHDL-93 compatible and
defines the type float to represent floating-point numbers as
an array of std logic objects with integer range:

signal A: float (ne downto -nf);

The top bit is the sign bit (A(ne)), the next bits are the
exponent (A(ne-1 downto 0)), and the negative bits are the
fraction (A(–1 downto-n f )). Operators for all of the standard
arithmetic and compare operations are defined in this pack-
age. Floating point result will have the maximum exponent
and maximum mantissa of its input arguments. There is
also a resize function to perform floating point conversions.
Using this package, all the burden of exponent alignment
and normalization described in Figure 3 is transparent to the
designer as the following example shows.

signal A, B, Y: float(8 downto -23);

--

Y <= A + B;

Formost designs, full IEEE supportmay be not necessary.
The package allows to turn off denormal numbers (turn on
by default), and turn off NaNs and overflow checks (turn on
by default), select truncate (round to nearest by default), turn
off guard bits (3 extra bits are used to maintain precision by
default). This way, the hardware resource utilization can be
reduced and the design clock frequency increased. However,
this package does not allow pipelining the operations to
increase speed.

4. Word Length Selection Procedure

The proposed methodology defines the necessary steps to
obtain a synthesizable VHDL description of the digital
controller from its transfer function C(z) and architecture
specification. The synthesized controller must fulfill the con-
troller specifications. In the time domain, the specifications
usually are the settling time, the percent overshoot, and
the steady-state error, and in the frequency domain, the
bandwidth and the gain crossover frequency.

It is assumed that the transfer function C(z) of the digital
controller can be written as

C(z) =
∑N

j=0 bj · z− j

1 +
∑M

j=1 aj · z− j
, (5)

where numerator b j and denominator a j coefficients are
constant. The controller can be implemented using different
structures or architectures. The more common architectures
are: direct forms I/II, transposed forms, parallel/cascade of
second order sections, and multicycle [31]. These architec-
tures have equivalent input-output behavior but they have
different internal signal range and quantization sensitivity.
Then, the architecture is an input of this procedure.

This proposed word length selection procedure is a
refinement process that selects the finite word length char-
acteristics of each signal in the digital controller. For each
coefficient and internal signal in the selected architecture,
it is necessary to determine its finite word length format:
ni and nq for fixed-point signals, and ne and n f for float-
point signals, and for each operator or format change, the
overflow and rounding strategies. To measure the finite word
length effects, some performance parameters are chosen.
These parameters are used to guide the word length selection
procedure to meet the required controller specifications.

We use a hybrid approach inspired by [17, 22] that
makes use of the VHDL-2008 libraries to perform bit-
true simulations. The design flow is shown in Figure 4 and
involves the following steps.

Step A [Reference Test Bench Generation]. A test bench to
simulate in closed loop the plant, and the digital controller
is generated to verify the functionality in representative
working conditions. If the controlled plant is an analog
system, then the complete system (plant + controller) is
modeled using a mixed-signal simulation tool that can
simulate any combination of Spice-like models and mixed
signal hardware description languages such as VHDL-AMS.
The electrical/electronic systems will be modeled in Spice,
nonelectrical systems such as mechanical, thermal, optical,
and chemical [32] will be modeled in VHDL-AMS, and the
digital controller is modeled in VHDL.

The coefficients and internal signals are modeled in
VHDL using real type objects. The VHDL predefined
floating-point type real corresponds to the IEEE 64-bit
double precision representation. This type can be simulated
but it is not synthesizable. We will assume that signals of type
real are represented with infinite precision, that is, do not
have quantization errors. This will be the reference model for
the next step.

Step B [Reference Model Simulation]. If the digital controller
is implemented in fixed point, the model is simulated to
obtain the maximum smax

i values for each signal stored in
registers. From these values and using (1), the correspondent
parameters ni are obtained.

If the digital controller is implemented in floating point,
the model is simulated to obtain the maximum smax

i and
minimum smin

i values for each signal stored in registers, since
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only normalized numbers will be used. From these values
and using (3), the correspondent parameters ne are obtained
taking into account that bias = 2ne−1 − 1.

Once these parameters are chosen, range propagation
is performed for multipliers and adders output. Then,
parameter ni or ne for each internal node is obtained to avoid
overflow.

Step C [Synthesizable Digital Controller Design]. A fully
synthesizable model of the controller is designed using the
VHDL fixed-point or floating-point packages [15, 16].

Initially, the quantized coefficients â j and b̂ j are obtained
to meet the controller specifications in the frequency
domain. If the controller includes an integrator in order to
have zero steady-state error, the quantized coefficients of the
denominator must fulfill the following condition:

M∑

j=1
â j = −1. (6)

If the digital controller is implemented in fixed point,
coefficients are declared as constants of type sfixed with
the parameters ni and nq necessary to meet the controller
specifications. Internal nodes are declared as signals of type
sfixed with the parameter ni obtained in Step B to avoid
overflow. The fractional word lengths are initialized.

In the same way, if the digital controller is implemented
in floating point, coefficients are declared as constants of
type float with the parameters ne and n f needed to meet
the controller specifications. Internal nodes are declared as
signals of type float with the parameter ne obtained in step B
to avoid overflow. The mantissa word lengths are initialized.

On an FPGA, the designer can use a different parameter
(nq or nf depending on the numerical representation) for
each internal signal in the controller. In order to reduce the
design space, some signals with similar finite word length
characteristics are grouped together, and the same tentative
fractional or mantissa word length is assigned to each group.

Step D [Bit-True Simulation]. The testbench with the syn-
thesizable digital controller is simulated and the results
are compared with the ones of the reference model. The
precision of the internal signals (parameter nq or n f ) is
increased until the performance parameter is achieved.

In order to set this word length in a systematic way, we
apply two different procedures depending on the created
number of groups. If only one group has been created, the
procedure begins setting the precision of the internal signals
to the output precision, and it is iteratively incremented and
the system is resimulated until the specifications are met. If
multiple groups have been created, the min +1minimization
procedure presented in [22] is used to tune the word lengths.

5. Application Example

In this section, the design of a digital compensator is
presented to control a buck converter using the proposed
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Figure 4: Design Flow.

word length selection procedure. We present two implemen-
tations, one using fixed point arithmetic and the other with
floating point arithmetic.

Figure 5 shows the reference example. The power stage
is a buck converter with the following parameters: input
voltageVg = 12V, L = 47 µH,C = 200 µF, capacitor equivalent
series resistance RC = 25mΩ, inductor DC resistance RL =
30mΩ, load resistance RO = 2.7Ω, and switching frequency
fSW = 100 kHz. The output voltage vo has to be regulated at
Vo ref = 5V.

The output voltage is measured using a resistor divisor
with RS = 100 kΩ which scales the output voltage to the
ADC input voltage range [0, 3.3 V]. The digital controller
C(z) determines the value of the power switch duty ratio.
The digital pulse width modulator (DPWM) generates the
driving signal qc that controls the switch SW of the converter.
The ADC output (v f (k)) resolution is 7 bits with format
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Figure 6: Direct form I implementation.

unsigned <7,0>, the FPGA clock frequency is 50MHz, and
the DPWM input (d(k)) resolution is 9 bits with format
unsigned <9,9> and clamped between 0.1 and 0.9. Thus,
assuming a sampling period of T = 1/fSW , the digital
controller C(z) to implement is

C(z) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2

= 0.1222− 0.2236 z−1 + 0.1019 z−2

1− 0.9 z−1 − 0.1 z−2
.

(7)

The system bandwidth (BW) is 5 kHz with a phase mar-
gin (PM) of 61.4◦. The compensator will be implemented in
direct form I (Figure 6).

Step A [Reference Test-Bench Generation]. The whole system
shown in Figure 5 has been simulated in closed loop using
the mixed-signal simulation tool ADVance MS from Mentor

Graphics. The buck converter has been modeled in Eldo.
The conversion of the digital signal qc to the voltage VSW
that controls switch SW is generated in VHDL-AMS. Switch
SWR allows simulating step load changes. The ideal transfer
characteristic and the serial interface of the ADC aremodeled
in VHDL. The compensator shown in Figure 6 is modeled in
nonsynthesizable VHDL.

The stabilization time is taken as performance parameter,
we define this parameter as the time between a change in
the load and the instant when the error becomes 0 and the
controller output d(k) is stable.

Step B [Reference Test-Bench Simulation]. Figure 7 shows a
transient response simulation of the closed loop from start-
up. Once steady-state is reached after start-up, the load
resistor is stepped from 2.7Ω to 1.35Ω at 12.8ms. From
top to bottom, the buck output voltage (V out), the digital
error (error), the 9-bits duty ratio command of the DPWM
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(d(n)), the value of the digital signal duty 0, and abs(duty 0)
are shown.

We have chosen the settling time as the performance
parameter and evaluated it for the reference model. It can
be seen in Figure 7 that there are not limit cycles and
oscillations stop inside the zero error bin from start-up in
6.98ms, and from the first load change in 1.7ms. Then our
design objective is to model a finite word length controller
with approximately the same values for this parameter and
without limit cycles.

From this simulation, we also obtain the range of the
signals that are stored in flip-flops. Figure 6 shows the
architecture of the implemented controller, in which, the
delay units are modeled using flip-flops.

The controller input signal is obtained subtracting v f to
Vref, since both operands have the format unsigned <7,0>,
error 0 has the format signed <8,0>. The nonrecursive part
flip-flops have the same format and range as error 0, whereas

the recursive part flip-flops have both the same format and
range. From the reference model simulation, we can obtain
the range of the signal duty 0, in this case (Figure 7 bottom
wave):

0.5× 10−3 ≤ abs
(
duty 0

)
< 13. (1)

Step C [Synthesizable Digital Controller Design (Fixed-Point)].
In this implementation, each coefficient and node in the
system is modeled using a custom fixed point format.

The compensator coefficients must be quantized. The
quantization process is performed using high level design
tools like Matlab, such that controller specifications are
maintained in the frequency domain. Table 2 shows the
quantized coefficients. With these coefficients, the new
values for bandwidth and phase margin are BW = 5.1 kHz,
PM = 62◦.
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Table 2: Quantized coefficients.

coeff quantized error sfixed range float range

b0 0.1222 500 × 2−12 −1.297e−4 (−3 downto −12) (4 downto −8)
b1 −0.2236 −916 × 2−12 −3,281e−5 (−2 downto −12) (4 downto −9)
b2 0.1019 417 × 2−12 9,336e−5 (−3 downto −12) (4 downto −8)
−a1 0.9 29 × 2−5 6,25e−3 (0 downto −5) (3 downto −4)
−a2 0.1 3 × 2−5 6,25e−3 (−3 downto −5) (4 downto −1)

Table 3: Fixed-point node formats.

Node sfixed range

error 0, error 1, error 2 (7 downto 0)

n3 (7 downto −12)
duty 0 (8 downto MIN(−12,−(fbits + 5)))

duty 1, duty 2 (4 downto-fbits)

The quantized coefficients (Table 2) are declared as
constants in VHDL using the function to sfixed from the
fixed pkg:

constant A2:sfixed(-3 downto -5):=

to sfixed(-0.09375,-3,-5);

...

The compensator in Figure 6 can be seen as two subsys-
tems in cascade. The first is the nonrecursive part and has
the structure of an FIR filter, the second is the recursive part.
Then the signals in each block are grouped together.

In the nonrecursive part, the format of nodes error 1 and
error 2 is the same as the input of the controller error 0, that
is signed with format <8,0>. The formats of the nodes n0 to
n3 are obtained applying the propagation rules in Table 1.

In the recursive part, parameter ni for nodes duty 1 and
duty 2 is obtained from the range analysis performed in
previous step (1). This value is set to 4. Parameter nq for
nodes duy 1 and duty 2 is the unknown fbits. The formats
of the nodes duty 0, n4, and n5 are obtained applying the
propagation rules in Table 1. It is necessary to resize the
signal duty 0 to obtain duty 1; it is performed by the resize( )
function using wrap-around and rounding to the nearest.

The results are summarized in Table 3.

Step D [Bit-True Simulations (Fixed-Point)]. In this step, we
have to set the value of fbits, and we proceed as follows.
Starting from a given minimum value of fbits = 9 (duty
resolution), it is iteratively incremented and the system is
resimulated until the specifications are met. Table 4 shows
the values obtained for the start-up settling time parameter
in this iterative process, we have used the start-up settling
time because it is the most restrictive in the simulations. It is
shown that quantization causes limit cycles (l.c.) in recursive
structures if resolution is not enough. The chosen value is
fbits = 13.

Step E [Synthesizable Digital Controller Design (Floating-
Point)]. In this implementation, each node in the system

Table 4: fbits parameter versus start-up settling time.

fbits 9 10 11 12 13

Settlling time l.c. l.c. l.c. l.c. 6.74ms

is modeled using a custom floating point format in which
denormals, NaNs, and ±∞ are disabled. To avoid format
changes that require additional hardware, we use only two
different floating-point formats (subtypes) with the same ne
to model the system, one to model nodes and coefficients of
nonrecursive part (err type), and other to model the nodes
and coefficients of recursive part (duty type). These subtypes
are defined in VHDL as follows:

subtype err type is float(eebits downto

-embits);

subtype duty type is float(debits downto

-dmbits);

The quantized coefficients (Table 2) are declared as
constants in VHDL using the function to float from the
float pkg:

constant A2:duty type:=

to float(-0.09375,debits,dmbits);

...

The compensator input signal (error 0) is obtained
subtracting v f to Vref. These signals are std logic vector
objects and the result of the subtraction must be converted
to float type. The float pkg provides the function to float to
perform this conversion.

The digital compensator in Figure 6 is modeled using
the resources provided by float pkg and the defined floating
point subtypes. Table 5 shows the selected floating-point
formats.

We set the floating-point format for subtype err type
from the known range and precision of the input and the
quantized coefficients that allows to determinate the range
and precision of node n3.

The range analysis performed in Step B is used to set the
value of debits in duty type from the range of signal duty 0
(1). The number of bits used to represent the mantissa in
duty type (dmbits) will be selected by simulation in the next
step. Table 5 summarizes the used formats.

Step F [Bit-True Simulations (Floating-Point)]. In this step,
we use simulations and an iterative process to set the value of
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Table 5: Floating-point node formats.

node subtype float range

error 0, error 1, error 2 err type (5 downto − 18)

n1, n2, n3 err type (5 downto − 18)

b0, b1, b2 err type (5 downto − 18)

duty 0, duty 1, duty 2 duty type (5 downto −dmbits)

n4, n5 duty type (5 downto −dmbits)

a1, a2 duty type (5 downto −dmbits)
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Figure 8: Load transient response. (a) Simulation (b) Measured,
voltage: 50mV/div, current: 0.9 A/div, time: 50 µs/div.

dmbits. Starting from a given minimum value of dmbits = 9
(duty resolution), it is iteratively incremented and simulated
until the specifications are met in bit-true simulations.
Table 6 shows the obtained start-up values obtained in this
process. The selected value is dmbits = 14.

A conversion is needed to obtain the DPWM input
from the compensator output. To simplify this function and

Table 6: dmbits parameter versus start-up settling time.

dmbits 9 10 11 12 13 14

Settling time l.c. l.c. l.c. l.c. l.c. 7.1ms

following [33], the system has been readjusted to provide a
duty ratio command between 1.1 and 1.9. Then this block
confines duty 0 to values between 1.1 and 1.9 saturating if it
is needed. So that the 9 most significant bits of the fractional
part of this clamped value is the DPWM input d(k).

6. Experimental Results

A buck converter prototype has been designed for testing
purposes [27]; the proposed controller has been imple-
mented in a Xilinx FPGA XC3S400 Spartan-3 embedded in
a Digilent Spartan-E System Board. The controller has been
synthesized using Precision RTL Synthesis 2007a.18 from
Mentor Graphics and implemented using Xilinx ISE 9.2.

The A/D converter is the ADCS7476 from National
Semiconductor. It has 12 bits and can operate at 1MSPS. As
analyzed in [34], a necessary condition to avoid limit cycle
oscillations is that the DPWM will be able to find an output
voltage that lies within the ADC zero error bin. Thus, the
resolution of the DPWMmust be greater than the resolution
of the ADC. In order to fulfill this condition, only the 7 most
significant bits of the ADC are used.

We have used this prototype to verify the fixed and float
point implementations. Figure 8 shows the simulated (a) and
measured (b) response of the converter output voltage to
a step-load change, where the load has been stepped from
1.35Ω to 2.7Ω. This simulation corresponds to the custom
floating point format without denormals and NaNs; it can be
seen that simulations closely match experimental results.

7. Conclusions

We present in this paper a word selection method valid
for both fixed and floating point implementations of digital
controllers on FPGAs. This method is based on mixed-signal
bit-true simulations of the whole system. The test bench is
modeled in VHDL-AMS and Spice. The controller is mod-
eled in VHDL using the VHDL-2008 fixed pkg and float pkg
packages that are included in the Draft Standard VHDL LRM
P1076/D4.2. These packages allow customizing the word
length of fixed and floating point representations which can
result in important resource savings and computation speed
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up. Besides, they simplify the design of arithmetic operations
shortening the design cycle.

We have used this method in the design flow of a
digital controller for a switching power converter that is
implemented on an FPGA. Two implementations of the
digital controller have been presented using fixed point and
floating point arithmetic. Experimental results of the second
implementation are presented. The results show that the
designed system meets its specifications and the simulations
match closely experimental results.
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