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1. Introduction

One of the main steps of the HW/SW codesign of a mixed
electronic system (Software and Hardware) is the scheduling
of the application tasks on the processing elements (PEs) of
the platform. The scheduling of an application formed by
N tasks on M target processing units consists in finding the
realizable partitioning in which the N tasks are launched onto
their corresponding M units and an ordering on each PE
for which the total execution time of the application meets
the real-time constraints. This problem of multiprocessor
scheduling is known to be NP-hard [1, 2], that is, why we
propose a heuristic approach.

Many applications, in particular in image processing
(e.g., an intelligent embedded camera), have dependent data
execution times according to the nature of the input to be
processed. In this kind of application, the implementation
is often stressed by real-time constraints, which demand
adaptive computation capabilities. In this case, according
to the nature of the input data, the system must adapt its
behaviour to the dynamics of the evolution of the data and
continue to meet the variable needs of required calculation

(in quantity and/or in type). Examples of applications where
the processing needs changes in quantity (the computation
load is variable) come from the intelligent image processing
where the duration of the treatments can depend on the
number of the objects in the image (motion detection,
tracking, etc.) or of the number of interest areas (contours
detection, labelling, etc.).

We can quote also the use of run time of different filters
according to the texture of the processed image (here it is
the type of processing which is variable). Another example
of the dynamic applications is video encoding where the run-
length encoding (RLE) of frames depends on the information
within frames.

For these dynamic applications, many implementation
ways are possible. In this paper we consider an intelligent
embedded camera for which we propose a new design
approach compared to classical worst case implementations.

Our method consists in evaluating online the application
context and adapting its implementation onto the different
targeted processing units by launching a run time partition-
ing algorithm. The online modification of the partitioning
result can also be a solution of fault tolerance, by affecting



in run time the tasks of the fault target unit on others
operational targets [3]. This induces also to revise the
scheduling strategy. More precisely, the result of this later
must change at run time in two cases.

(i) Firstly, to evaluate the partitioning result. After each
modification of the tasks implementations we need to
know the new total execution time. And this is only
possible by rescheduling all the tasks.

(ii) Secondly, by modifying the scheduling result we
can obtain a better total execution time which
meets the real-time constraint without modifying the
partitioning. This is because the characteristics of the
tasks (mainly execution time) are modified according
to the nature of the input data.

In that context, the choice of the implementation of the
scheduler is of major importance and depends on the
heuristic complexity. Indeed, with our method the decisions
taken online by our scheduler can be very time consuming.
A software implementation of the proposed scheduling
strategies will then delay the application tasks. For this
reason, we propose in this work a hardware implementation
for our scheduling heuristic.

With this implementation, the scheduler takes only few
clock cycles. So we can easily call the scheduler at run
time without penalty on the total execution time of the
application.

The primary contribution of our work is the concept
of an efficient online scheduling heuristic for heterogeneous
multiprocessor platforms. This heuristic provides good
results for both hardware tasks (onto the FPGA) and software
tasks (onto the targeted General Purpose Processors) as well
as an extensive speedup through the hardware implementa-
tion of this scheduling heuristic. Finally, the implementation
of our scheduler allows the system to adapt itself to the
application context in real time. We have simulated and
synthesized our scheduler by targeting a FPGA (Xilinx Virtex
5) platform. We have tested the scheduling technique on
several image processing applications implemented onto a
heterogeneous target architecture composed of two proces-
sors coupled with a configurable logic unit (FPGA).

The remainder of this paper is organized as follows.
Section 2 presents related works on hardware/software
scheduling approaches. Section 3 introduces the framework
of our scheduling problem. Section 4 presents the proposed
approach. Section 5 shows the experimental results, and
finally Section 6 concludes this paper.

2. Related Works

The field of study which tries to find an execution order for
a set of tasks that meets system design objectives (e.g., min-
imize the total application execution time) has been widely
covered in the literature. In [4-6] the problem of HW/SW
scheduling for system-on-chip platforms with dynamically
reconfigurable logic architecture is exhaustively studied.
Moreover several works deal with scheduling algorithm
implemented in hardware [7-9]. Scheduling in such systems
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is based on priorities. Therefore, an obvious solution is to
implement priorities queues. Many hardware architectures
for the queues have been proposed: binary tree comparators,
FIFO queues plus a priority encoder, and a systolic array
priority queue [7]. Nevertheless, all these approaches are
based on a fixed priority static scheduling technique. More-
over most of the hardware proposed approaches addresses
the implementation of only one scheduling algorithm (e.g.,
Earliest Deadline First) [9, 10]. Hence they are inefficient and
not appropriate for systems where the required scheduling
behavior changes during run time. Also, system performance
for tasks with data dependent execution times should be
improved by using dynamic schedulers instead of static (at
compile time) scheduling techniques [11, 12].

In our work, we propose a new hardware implemented
approach which computes at run-time tasks priorities based
on the characteristics of each task (execution time, graph
dependencies, etc.). Our approach is dynamic in the sense
that the execution order is decided at run time and supports
a heterogeneous (HW/SW) multiprocessor architecture.

The idea of dynamic partitioning/scheduling is based
on the dynamic reconfiguration of the target architecture.
Increasingly FPGA [13, 14] offers very attractive reconfigu-
ration capabilities: partial or total, static or dynamic.

The reconfiguration latency of dynamically reconfig-
urable devices represents a major problem that must not
be neglected. Several references can be found addressing
temporal partitioning for reconfiguration latency minimiza-
tion [15]. Moreover, configuration prefetching techniques
are used to minimize reconfiguration overhead. A similar
technique to lighten this overhead is developed in [16] and
is integrated into an existing design environment. A prefetch
and replacement unit modifies the schedule and significantly
reduces the latency even for highly dynamic tasks.

In fact, there are two different approaches in the litera-
ture: the first approach reduces reconfiguration overhead by
modifying scheduling results.

The second one distinguishes between scheduling and
reconfiguration. The reconfiguration occurs only if the
HW/SW partitioning step needs it. The scheduling algorithm
is needed only to validate this partitioning result.

After partitioning, the implementation of each task
is unchanged and configuration is not longer necessary.
Scheduling aims at finding the best execution time for a given
implementation strategy. Since scheduling does not change
partitioning decision it does not take reconfiguration time
into account.

In this paper, we focus only on the scheduling strategy in
the second case. We assume that the reconfiguration aspects
are taken into account during the HW/SW partitioning
step (decision of task implementation). Furthermore we
addressed this last step in our previous works [17].

3. Problem Definition

3.1. Target Architecture. The target architecture is depicted in
Figure 1. It is a heterogeneous architecture, which contains
two software processing units: a Master Processor and a Slave
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FiGure 1: The target architecture.

Processor. The platform also contains a hardware processing
unit: (Reconfigurable Computing Unit) RCU and shared
memory resources. The software processing units are Von-
Neumann monoprocessing systems and execute only a single
task at a time.

Each hardware task (implemented on the RCU) occupies
a tile on the reconfigurable area [18]. The size of the tile
is the same for all the tasks to facilitate the placement and
routing of the RCU. We choose, for example, the tile size of
the task which uses the maximum of resources on the RCU
(we designate by “resource” here the Logic Element used by
the RCU to map any task).

The RCU unit can be reconfigured partially or totally.
Each hardware task is represented by a partial bitstream.
All bitstreams are memorized in the contexts memory (the
shared memory between the processors and the RCU in
Figure 1). These bitstreams will be loaded in the RCU
before scheduling to reconfigure the FPGA according to
run-time partitioning results [17]. The HW/SW partition-
ing result can change at run time according to temporal
characteristics of tasks [6]. In [17] we proposed an HW/SW
partitioning approach based on HW — SW and SW — HW
tasks migrations. The theory of tasks migrations consists in
accelerating the task(s) which become critical by modifying
their implementations from software units to hardware units
and to decelerate the tasks which become noncritical by
returning them to the software units.

After each new HW/SW partitioning result, the scheduler
must provide an evaluation for this solution by providing the
corresponding total execution time. Thus it presents a real-
time constraint since it will be launched at run time. With
this approach of dynamic partitioning/scheduling the target
architecture will be very flexible. It can self-adapt even with
very dynamic applications.

3.2. Application Model. The considered applications are data
flow oriented applications such as image processing, audio
processing, or video processing. To model this kind of
applications we consider a Data Flow Graph (DFG) (an
example is depicted in Figure 2) which is a directed acyclic
graph where nodes are processing functions and edges
describe communication between tasks (data dependencies

MS: Master processor
SL: Slave processor
HW: FPGA

FIGURE 2: An Example of DFG with 6 tasks.

between tasks). The size of the DFG depends on the
functional partitioning of the application and then on the
number of tasks and edges. We can notice that the structure
of the DFG has a great effect on the execution time of the
scheduling operations. A low granularity DFG makes the
system easy to be predictable because tasks execution time
does not vary considerably, thus limiting timing constraints
violation. On the other hand, for a very low granularity DFG,
the number of tasks in a DFG of great size explodes, and the
communications between tasks become unmanageable.

Each node of the DFG represents a specific task in the
application. For each task there can be up to three different
implementations: Hardware implementations (HW) placed
in the FPGA, Software implementations running on the mas-
ter processor (MS), and another Software implementation
running on the slave processor (SL).

Each node of Figure 2 is annotated with two data: one
about the implementation (MS or SL or HW) and the other
is the execution time of the task. Similarly each edge is
annotated with the communication time between two nodes
(two tasks).

Each task of the DFG is characterized by the following
four parameters:

(a) Texe (execution time),

(b) Impl (implementation on the RCU or on the master
processor or on the slave processor),

(c) Nbpred (number of predecessor tasks),

(d) The Nbsucc (number of successor tasks).

All the tasks of a DFG are thus modeled identically, and
the only real-time constraint is on the total execution time.
At each scheduler invocation, this total execution time
corresponds to the longest path in the mapped task graph.
It then depends both on the application partitioning and on
the chosen order of execution on processors.

4. Proposed Approach

The applications are periodic. In one period, all the tasks
of the DFG must be executed. In the image processing,
for instance, the period is the execution time needed to



For all Software tasks do
{
Comput ASAP
Task with minimum ASAP will be chosen
If (Equality of ASAP)
Compute Urgency
Task with maximum urgency will be chosen
If (Equality of Urgency)
Compare Execution time
Task with maximum execution time will be chosen

ArcoritTaM 1: Principle of our scheduling policy.

process one image. The scheduling must occur online at the
end of the execution of all the tasks, and when a violation
of real-time constraints is predicted. Hence the result of
partitioning/scheduling will be applied on the next period
(next image, for image processing applications).

Our run-time scheduling policy is dynamic since the
execution order of application tasks is decided at run time.
For the tasks implemented on the RCU, we assume that the
hardware resources are sufficient to execute in parallel all
hardware tasks chosen by the partitioning step. Therefore
the only condition for launching their execution is the
satisfaction of all data dependencies. That is to say, a task
may begin execution only after all its incoming edges have
been executed.

For the tasks implemented on the software processors,
the conditions for launching are the following.

(1) The satisfaction of all data dependencies.
(2) The discharge of the software unit.

Hereby the task can have four different states.

(i) Waiting.
(ii) Running.
(iii) Ready.
(iv) Stopped.

The task is in the waiting state when it waits the end
of execution of one or several predecessor tasks. When a
software processing unit has finished the execution of a
task, new tasks may become ready for execution if all their
dependencies have been completed of course.

The task can be stopped in the case of preemption or after
finishing its execution.

The states of the processing units (SW, SL, and HW) in
our target architecture are: execution state, reconfiguration
state or idle state.

In the following, we will explain the principle of our
approach as well as a hardware implementation of the
proposed HW/SW scheduler.

As explained in Algorithm 1, the basic idea of our
heuristic of scheduling is to take decision of tasks priorities
according to three criteria.
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The first criterion is the As Soon As Possible (ASAP) time.
The task which has the shortest ASAP date will be launched
first.

The second criterion is the urgency time: the task which
has the maximum of urgency will have priority to be
launched before the others. This new criterion is based on the
nature of the successors of the task. The urgency criterion is
employed only if there is equality of the first criterion for at
least two tasks. If there is still equality of this second criterion
we compare the last criterion which is execution time of the
tasks. We choose the task which has the upper execution time
to launch first.

We use these criteria to choose between two or several
software tasks (on the Master or on the Slave) for running.

4.0.1. The Urgency Criterion. The urgency criterion is based
on the implementation of tasks and the implementations of
their successors. A task is considered as urgent when it is
implemented on the software unit (Master or slave) and has
one or more successor tasks implemented on other different
units (hardware unit or software unit).

Figure 3 shows three examples of DFG. In Figure 3(a) task
C is implemented on the Slave processor and it is followed
by task D which is implemented on the RCU. Thus the
urgency (Urg) of task C is the execution time of its successor
(Urg (C) = 13). In example (b) it is the task B which is
followed by the task D implemented on a different unit (on
the Master processor). In the last example (c) both tasks B
and C are urgent but task B is more urgent than task C since
its successor has an execution time upper than the execution
time of the successor of task C.

When a task has several successors with different imple-
mentations, the urgency is the maximum of execution times
of the successors.

In general case, when the direct successor of task A
has the same implementation as A and has a successor
with a different implementation, then this last feedbacks the
urgency to task A.

We show the scheduling result for case (a) when we
respect the urgency criterion in Figure 3(d) and otherwise
in Figure 3(e). We can notice for all the examples of DFG
in Figure 3 that the urgency criterion makes a best choice to
obtain a minimum total execution time. The third criterion
(the execution time) is an arbitrary choice and has very rarely
impact on the total execution time.

We can notice also that our scheduler supports the
dynamic creation and deletion of tasks. These online services
are only possible when keeping a fixed structure of the DFG
along the execution. In that case the dependencies between
tasks are known a priori. Dynamic deletion is then possible
by assigning a null execution time to the tasks which are
not active. and dynamic creation by assigning their execution
time when they become active.

This scheduling strategy needs an online computation of
several criterions for all software tasks in the DFG.

We tried first to implement this new scheduling policy
on a processor. Figure 4 shows the computation time of our
scheduling method when implemented on an Intel Core 2



EURASIP Journal on Embedded Systems

ES

SL
3
()

(a) Urg[C] =13 (b) Urg[B] =5 (c) Urg[B] = 8, Urg[C]
=2
I 1
D D
HW HW

I 1

B| C : C |B |

SL ; SL ;

8 15 ! 12 15 !

A I A 1

MS ; MS !
5 28 5 |25

I I

(d) Case of DFG (a) task B before task C

(e) Case of DFG (a) task C before task B

FIGURE 3: Case examples of urgency computing.

Scheduling execution time on
Intel (R) Core (TM) 2 Duo CPU 2.8 Ghz + 4Go RAM

— 35 33.49652
E 30
L
E 2 20.6904
g 2 16.17788
§ 15 12-68212 1414|788 ‘
3 | .
B "H
g 5
0'—‘ N AN o~ N N A N — 1N O o I~
A3 2R AR FRZETE R
— = N NN o FF N n O NN
Images

FIGURE 4: Execution time of the software implementation of the
scheduler.

Duo CPU with a frequency of 2.8 GHz and 4 Go of RAM.
We can notice that the average computation time of the
scheduler is about 12 milliseconds for an image. These
experiments are done on an image processing application
(the DFG depicted on Figure 12) whose period of processing
by an image is 19 milliseconds. So the scheduling (with this
software implementation) takes about 63% of a one image
processing computation time on a desktop computer.

We can conclude that, in an embedded context, a
software implementation of this strategy is thus incompatible
with real-time constraints.

We describe in the following an optimized hardware
implementation of our scheduler.

4.1. Hardware Scheduler Architecture. In this section, we
describe the proposed architecture of our scheduler. This
architecture is shown in Figure 5 for a DFG example of three
tasks. It is divided in four main parts.

(1) The DFG_IP_Sched (the middle part surrounded by a
dashed line in the figure).

(2) The DFG_Update (DFG_Up in the figure).
(3) The MS_Manager (SWTM).
(4) The Slave_Manager (SLTM).

The basic idea of this hardware architecture is to parallelize
at the maximum the scheduling of processing tasks. So, at the
most (and in the best case), we can schedule all the tasks of
the DFG in parallel for infinite resources architecture.

We associate to the application DFG a modified graph
with the same structure composed of the IP nodes (each 1P
represents a task). Therefore in the best case, where tasks are
independent, we could schedule all the tasks in the DFG in
only one clock cycle.

To parallelize also the management of the software
execution times, we associate for each software unit a
hardware module:

(i) the Master Task Manager (SWTM in Figure 5),

(ii) the Slave Task Manager (SLTM in the Figure 5).
These two modules manage the order of the tasks executions
and compute the processor execution time for each one.

The inputs signals of this scheduler architecture are the
following.

(i) A pointer in memory to the implementations of all
the tasks. We have three kinds of implementation
(RCU, Master, and Slave). With the signals SW and
HW we can code these three possibilities.

(i) The measured execution time of each task (Texe).

(iii) The Clock signal and the Reset.
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FIGURE 5: An example of the scheduler architecture for a DFG of
three tasks.

The outputs signals are the following.

(i) The total execution time after scheduling all tasks
(Texe_Total).

(ii) The signal All_Done which indicates the end of the
scheduling.

(iii) Scheduled _DFG is a pointer to the scheduling result
matrix to be sent to the operating system (or any
simple executive).

(iv) The Nb_Task and the Nb_Task_Slave are the number
of tasks scheduled on the Master and the number of
tasks scheduled on the Slave, respectively. As noted
here, these two signals were added solely for the
purpose of simulation in ModelSim (to check the
scheduling result). In the real case we do not need
these two output signals since this information comes
from the partitioning block.

The last one is the DFG_Up. This allows updating the
results matrix after each scheduling of a task.

In the following paragraphs, we will detail each part of
this architecture.

4.1.1. The DFG_IP_Sched Block. In this block there are N
components (N is the number of tasks in the application).
For each task we associate an IP component which computes
the intrinsic characteristics of this task (urgency, ASAP,
Ready state, etc.). It also computes the total execution time
for the entire graph.

The proposed architecture of this IP is shown in Figure 6
(in the appendix).

For each task the implementation PE and the execution
time are fixed, so the role of this IP is to calculate the start
time of the task and to define its state. This is done by taking
into account the state of the corresponding target (master,
slave, or RCU). It then iterates along the DFG structure to
determine a total execution ordering and to affect the start
time.

This IP calculate also the urgency criterion of critical
tasks according to the implementation and the execution
time of their successors.

If the task is implemented on the RCU it will be launched
as soon as all its predecessors will be done. So the scheduling
time of hardware tasks depends on the number of tasks that
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we can run in parallel. For example, the IP can schedule
all hardware tasks that can run in parallel in a one clock
cycle.

For the software tasks (on the master or on the slave)
the scheduling will take one clock cycle per task. Thus the
computing time of the hardware scheduler only depends on
the result of the HW/SW partitioning.

4.1.2. The DFG_Update Block. When a DFG is scheduled
the result modifies the DFG into a new structure. The
DFG_Update block (Figure 7 in the appendix) generates
new edges (dependencies between tasks) after scheduling in
objective to give a total order of execution on each computing
unit according to the scheduling results.

We represent dependencies between tasks in the DFG by
a matrix where the rows represent the successors and the
columns represent the predecessors. For example, Figure 8
depicts the matrix of dependencies corresponding to the
DEG of Figure 2. After scheduling, the resulting matrix is
the update of the original one. It contains more depen-
dencies than this later. This is the role of the DFG_Update
block.

4.1.3. The MS_Manager Block. The objective of this module
is to schedule the software tasks according to the algorithm
given above. Figure 9 in the appendix presents the architec-
ture of the Master Manager bloc. The input signal ASAP_SW
represents the ASAP times of all the tasks. The Urgency_Time
signal represents the urgency of each task of the application.
The SW _Ready signal represents the Ready signals of all the
software tasks.

The Signal MIN_ASAP_TASKS represents all the tasks
“Ready” and having the same minimum values of time ASAP.

The signal MAX_CT_TASKS represents all the tasks
“Ready” and having the same maximum of urgency. The
tasks which have the two preceding criteria will be rep-
resented by the Tasks_Ready signal. The Task_Scheduled
signal determines the only software task which will be
scheduled. With this signal, it is possible to choose the good
value of signal TEXE_.SW and to give the new value of
the SW_Total_Time signal thereafter. A single clock cycle is
necessary to schedule a single software task.

By analogy the Slave_Manager block has the same role as
the SW_Manager block. From scheduling point of view there
is no difference between the two processors.

4.2. HW/SW Scheduler Outputs. In this section, we describe
how the results of our scheduler are processed by a target
module such as an executive or a Real-Time Operating
System (RTOS). As depicted in Figure 8 , the output of
our run-time HW/SW scheduler is # X n matrix where “n”
is the total number of tasks in the DFG. Figure 10 shows
the scheduling result of the DFG depicted in Figure 12.
This matrix will be used by a centralized Operating Sys-
tem (OS) to fill its task queues for the three computing
units.

The table shown in Figure 11 is a compilation of both the
results of the partitioning and scheduling operations.
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FIGURE 6: An IP representing one task.
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The OS browses the matrix row by row. Whenever it finds
a “17 it passes the task whose number corresponds to the
column in the waiting state. At the end of a task execution
the corresponding waiting tasks on each units will become
either Ready or Running.

A task will be in the Ready state only when all its
dependencies are done and that the target unit is busy. Thus
there is no Ready state for the hardware tasks.

It should be noted that if the OS runs on the Master
processor, for example, this later will be interrupted each
time to execute the OS.

5. Experiments and Results

With the idea to cover a wide range of data-flow applications,
we leaded experiments on real and artificial applications. In
the context of this paper we present the summary of the
results obtained on a 3-case studies in the domain of real-
time image processing:

(i) a motion detection application,
(ii) an artificial extension of this detection application,

(iii) a robotic vision application.
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The second case study is a complex DFG which contains
different classical structures (Fork, join, sequential). This
DEFG is depicted in Figure 12. It contains twenty tasks. Each
task can be implemented on the Software computation unit
(Master or Slave processor) or on the Reconfigurable RCU.
The original DFG is the model of an image processing
application: motion detection on a fixed image background.
This application is composed of 10 sequential tasks (from
ID 1 to ID 10 in Figure 12). We added 10 others virtual
tasks to obtain a complex DFG containing the different
possible parallel structures. This type of parallel program
paradigm (Fork, join, etc.) arises in many application
areas.

In order to test the presented scheduling approach, we
have performed a large number of experiments where several
scenarios of HW/SW partitioning results were analyzed.

As an example, Figure 12 presents the scheduling result
when tasks 3, 4, 7, 8, 11, 12 17, 18, and 20 are implemented
in hardware. As explained in Section 4.1 new dependencies
(dotted lines) are added in the original graph to impose a
total order on each processor. In this figure all the execution
times are in milliseconds (ms).

We also leaded our experiments on a more dynamic
application from robotic vision domain [19]. It consists in
a subset of a cognitive system allowing a robot equipped
with a CCD-camera to navigate and to perceive objects. The
global architecture in which the visual system is integrated is
biologically inspired and based on the interactions between
the processing of the visual flow and the robot movements. In
order to learn its environment the system identifies keypoints
in the landscape.
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Keypoints are detected in a sampled scale space based on
an image pyramid as presented in Figure 13. The application
is dynamic in the sense that the number of keypoints depends
on the scene observed by the camera. Then the execution
time of the Search and Extract tasks in the graph dynamically
changes (see [19] for more details about this application).

5.1. Comparison Results. Throughout our experiments, we
compared the result of our scheduler with the one given
by the HCP algorithm (Heterogeneous Critical Path) devel-
oped by Bjorn-Jorgensen and Madsen [20]. This algorithm
represents an approach of scheduling on a heterogeneous
multiprocessor architecture. It starts with the calculation of
priorities for each task associated with a processor. A task is
chosen depending on the length of its critical path (CPL).
The task which has the largest minimum CPL will have the
highest priority. We compared with this method because it is
shown better than several other approaches (MD, MCP, PC,
etc.) [21].

The summary of the experiments leaded is presented
in Figure 14. Each column gives average values for one of
the three presented applications with different partitioning
strategies.

By comparing the first and second rows, our scheduling
method provides consistent results.

The quality of the scheduling solutions found by our
method and the HCP method is similar. Moreover, our
method obtains better results for the complex Icam appli-
cation. The HCP method returns an average total execution
time equal to 69 milliseconds whereas our method returns
only 58 milliseconds for the same DFG. For the icam_simple
application, the DFG is completely sequential, so whatever
the scheduling method the result is always the same. For the
robotic vision application, we find the same total execution
time with the two methods because of the existence of
a critical path in the DFG which always sets the overall
execution time. We also measured the execution overhead of
the proposed scheduling algorithm when it is implemented
in software (third row of Figure 14) and in hardware (forth
row).

Since the scheduling overhead depends on the number of
tasks in the application we only indicate the average values
in Figure 14. For example, Figure 15 presents the execution
time of the hardware scheduler (in cycles) according to the
number of software tasks.

From Figure 15, it may be concluded that when the result
of partitioning changes at runtime, then the computation
time needed for our scheduler to schedule all the DFG
tasks is widely dependent on this modification of tasks
implementations. So:

(1) there is a great impact of the partitioning result and
the DFG structure on the scheduler computation
time,

(2) the longest sequential sequence of tasks corresponds
to the case where all tasks are on the Software (each
task takes one clock cycle). This case corresponds to
the maximum of schedule computation time,
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FiGure 9: The module of the MS Manager.

TasBLE 1: Device utilization

summary after synthesis.

Used logic utilization Icam_simple

Icam_complex Robotic_vision

Number of slices registers <1%
Number of slice LUTs 3%
Number of fully used Bit Slices 5%
Number of bonded IOBs 24%
Number of BUFG/BUFGCTRLs 3%
Scheduler frequency 23,94 Mhz
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FIGURE 10: Scheduling result.

(3) the minimum schedule computation time depends
on the DFG structure. The longest sequential
sequence of tasks when all tasks are on the hardware
(each task takes one clock cycle).

In our case (Figure 12) this sequence is formed by 10
tasks, so the minimum schedule computation time is equal
to 10 clock cycles for this application.

The results confirm that a software implementation
of our scheduling algorithm is incompatible with online
scheduling. Instead, the hardware implementation proposed
in the paper brings determinism, a better scalability, and an
%x20000 speedup.

5.2. Synthesis Results. We have synthesized our scheduler
architecture with an FPGA target platform (Virtex5, device
XC5VLX330 -2 ff 1760) [22] for the RCU of Figure 1.
Table 1 shows the device utilization summary for the three
considered applications when we choose a size of the bus
equal to 16 bits. We noticed that for the presented complex
DFG, our scheduler uses only 6% of the device slices LUTs
which is reasonable. These results are obtained with a design
frequency about 19,54 MHz. The device Virtex V XCVLX330
provide 207360 Slices registers, 207360 Slices LUT, 9687 fully
used Bit slices, 1200 I0Bs, and 32 BUFG/BUFGCTRLs.
These results are confirmed in Figure 16, where we
synthesize the same Scheduler for the three applications, but
with 10 bits bus size as explained in the following paragraph.

5.3. Accuracy of Execution Times Values. The accuracy of
the execution time values is defined by the size of the bus
which must convey the information from module to another.
The size of this bus is a very determinant parameter in the
scheduler synthesis.
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TaBLE 2: Behaviour of the scheduler in dynamic situations.

Total execution N Size of the Need to
. . Scheduling time .
time of application scheduler IP resynthesize
Variation of execution time of tasks Impacted Not impacted Not impacted No
Variation of partitioning results Impacted Impacted Not impacted No
Variation of the DFG structure (fork, join, etc.)  Impacted Impacted Not impacted Yes
Variation of the application Impacted Impacted Impacted Yes
Variation of the execution time precision Not impacted Impacted Impacted Yes
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FiGURE 11: Lists of management for a centralised OS.

As shown in Figure 17 , when the size of the bus
increases the number of hardware resources used increases
also and the frequency of the circuit decreases. But for
our scheduler, even with a size of 32-bit, the IP keeps a
relatively small size compared to the total number of available
resources (20% of Slices LUTs). This is another advantage of
our scheduler architecture.

In the general case, the designer has to make a tradeoff
between accuracy of performance measures (in this case
the execution time) and the cost in number of hardware
resources and the maximum frequency of the circuit.

5.4. Summary

5.5. Description of the Scheduling Algorithm. Through the
various results of synthesis, we confirm the effectiveness
of the hardware architecture for our proposed scheduling
method. With these three applications, we have swept
most of existing DFGs structures: the sequential in the

Covering Virtual
(envelope) Irtu
P W task
2
2

Motion test SW
5 HW Virtual
task
Updating SL 2
background
1

Figure 12: DFG application. The interrupted lines represent the
scheduling results.

application icam_simple, the fork and join in the application
icam_complex, and the parallelism in the application of
robotic vision.

This scheduling heuristic gives better results than the
HCP method. Moreover the proposed hardware architecture
is very efficient in terms of resources utilization and schedul-
ing latency.



EURASIP Journal on Embedded Systems

11

Low frequency Medium frequency High frequency
FiGure 13: DFG graph of the robotic vision application.
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FIGURE 14: Execution time for 3 applications.

These features allow our scheduling IP to run online
and meet the needs of the dynamic nature of most today
applications.

6. Conclusions

In this paper, we presented a complete run-time hardware-
software scheduling approach. Results of our experiments
show the efficiency of the adaptation of the scheduling to
a dynamic change of the partitioning that can be due to

FIGURE 15: Variation of scheduling computation time according to
tasks implentations.

a new mode of a dynamic application or to fault detection.
As developed in this paper, a dynamic HW/SW schedul-
ing approach has many advantages over static traditional
approaches. In addition, the efficiency of our hardware
implementation gives to our scheduler a minimal overhead
in on line execution context.

In conclusion, Table 2 resumes the behavior of our
scheduling approach with different situations of dynamicity.

We show through this table in which case it is necessary
to restrict the IP scheduler and resynthesize it and in which
case the IP can adapt to the dynamic system.
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Synthesis results for Bus_size = 10 bits
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FIGURre 16: Scalability of the method according to application
complexity.

55 Variation of synthesis results according to bus size
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FIGURre 17: Impact of bus size on the scheduler synthesis results for
robotic vision application.

Our future works consist in integrating our scheduling
approach among the services of an RTOS for dynamically
reconfigurable systems.

Appendix
Block Diagrams of the Hardware Scheduler

See Figures 6, 7, and 9.
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