Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 758480, 17 pages
doi:10.1155/2009/758480

Research Article

Time-Predictable Computer Architecture

Martin Schoeberl

Institute of Computer Engineering, Vienna University of Technology, 1040 Vienna, Austria

Correspondence should be addressed to Martin Schoeberl, mschoebe@mail.tuwien.ac.at

Received 8 August 2008; Accepted 6 December 2008

Recommended by Bernhard Rinner

Today’s general-purpose processors are optimized for maximum throughput. Real-time systems need a processor with both a
reasonable and a known worst-case execution time (WCET). Features such as pipelines with instruction dependencies, caches,
branch prediction, and out-of-order execution complicate WCET analysis and lead to very conservative estimates. In this paper,
we evaluate the issues of current architectures with respect to WCET analysis. Then, we propose solutions for a time-predictable
computer architecture. The proposed architecture is evaluated with implementation of some features in a Java processor. The
resulting processor is a good target for WCET analysis and still performs well in the average case.

Copyright © 2009 Martin Schoeberl. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Standard computer architecture is driven by the following
paradigm: Make the common case fast and the uncommon
case correct [1]. However, this design approach leads to
architectures where the worst-case execution time (WCET)
is high and hard to predict by static analysis. For real-time
systems, we have to design architectures with the following
paradigm: Make the worst case fast and the whole system easy
to analyze.

Classic enhancements in computer architectures are
pipelining, instruction and data caching, dynamic branch
prediction, out-of-order execution, speculative execution,
and fine-grained chip multithreading. These features are
increasingly harder to model for the low-level WCET anal-
ysis. Execution history is the key to performance enhance-
ments, and also the main issue for WCET analysis. Thus, we
need techniques to manage the execution history.

Pipelines should be simple, with minimum dependencies
between instructions. It is agreed that caches are mandatory
to bridge the gap between processor speed and memory
access time. Caches in general, and particularly data caches,
are usually hard to analyze statically. Therefore, we are
introducing caches that are organized to speed up execution
time and provide tight WCET bounds. We propose three
different caches: (1) an instruction cache for full methods,
(2) a stack cache, and (3) a small, fully associative buffer for

heap access. Furthermore, the integration of a program—or
compiler—managed scratchpad memory can help to tighten
bounds for hard-to-analyze memory access patterns.

Out-of-order execution and speculation result in pro-
cessor models that are too complex for WCET analysis.
We discuss that the transistors are better used onchip
multiprocessors (CMPs) with simple in-order pipelines.
Real-time systems are naturally multithreaded and thus map
well to the explicit parallelism of chip multiprocessors.

We propose a multiprocessor model with one processor
per thread. Thread switching and schedulability analysis for
each individual core disappears, but the access to the shared
resource main memory still needs to be scheduled.

We have implemented most of the proposed concepts for
evaluation in a Java processor. The Java processor JOP [2] is
intended for real-time and safety critical applications written
in a modern object-oriented language. It has to be noted that
all concepts can also be applied to a standard RISC processor.
The following list points out the key arguments for a time-
predictable computer architecture.

(i) There is a mismatch between performance-oriented
computer architectures and worst-case analyzability.

(ii) Complex features result in increasingly complex
models.

(iii) Caches, a very important feature for high perfor-
mance, need new organization.



(iv) Thread level parallelism is natural in embedded
systems. Exploration of this parallelism with simple
chip multiprocessors is a valuable option.

(v) One thread per processor obviates the classic schedu-
lability analysis and introduces scheduling of mem-
ory access.

Catching up with WCET analysis of features that enhance
the average-case performance is not an option for future real-
time systems. We need a sea change and should take the
constructive approach by designing computer architectures
where predictable timing is a first-order design factor.

The contributions of the paper are twofold: (1) an exten-
sive overview is given of processor features that make WCET
estimation difficult, (2) solutions for a time-predictable
architecture that can be implemented in RISC, CISC, or
VLIW style processors are provided. The implementations
of some of the proposed concepts in the context of a Java
processor, as described in Section 5, have been previously
published in [3, 4].

The paper is organized as follows. Section 2 presents
related work on real-time architectures. In Section 3, we
describe the main issues that hamper tight WCET estimates
of actual processors. We propose solutions for these issues
in Section 4. In Section 5, we evaluate the proposed time-
predictable computer architecture with an implementation
of a Java processor in an FPGA. Section 6 concludes the

paper.

2. Related Work

Bate et al. [5] discuss the usage of modern processors in
safety critical applications. They compare commercial off-
the-shelf (COTS) processors with a customized processor
developed specifically for the safety critical domain. While
COTS processors benefit from a large user base and the
resulting maturity of the design process, customized proces-
sors provide the following advantages:

(i) design in conjunction with the safety argument,
(ii) design for good worst-case performance,
(iii) using only features that can be easily analyzed,

(iv) the processor can be treated as a white box during
verification and testing.

Despite these advantages, few research projects exist in
the field of WCET-optimized hardware. Thiele and Wilhelm
[6] discuss that a new research discipline is needed for time-
predictable embedded systems to “match implementation
concepts with techniques to improve analyzability.”

Similarly, Edwards and Lee discussed as “It is time
for a new era of processors whose temporal behavior is
as easily controlled as their logical function” [7]. A first
simulation of their PRET architecture is presented in [8].
PRET implements the SPARC V8 instruction set architecture
(ISA) in a six-stage pipeline and performs chip level multi-
threading for six threads to eliminate data forwarding and
branch prediction. Scratchpad memories are used instead of

EURASIP Journal on Embedded Systems

instruction and data caches. The shared main memory is
accessed via a TDMA scheme, called memory wheel, similar
to the TDMA-based arbiter used in the JOP CMP system [9].
The SPARC ISA is extended with a deadline instruction that
stalls the current thread until the deadline is reached. This
instruction is used to perform time-based, instead of lock-
based, synchronization for access to shared data.

Berg et al. identify the following design principles for
a time-predictable processor: “recoverability from informa-
tion loss in the analysis, minimal variation of the instruction
timing, noninterference between processor components,
deterministic processor behavior, and comprehensive doc-
umentation” [10]. The authors propose a processor archi-
tecture that meets these design principles. The processor is
a classic five-stage RISC pipeline with minimal changes in
the instruction set: it handles function calls with an explicit
instruction for simpler reconstruction of the control flow
graph and construction of 32-bit immediate values with two
instructions to avoid immediate values in the code segment.
The memory system has to be organized in Harvard-style
with dedicated busses to the FLASH memory for the code
and the SRAM memory for the data. The replacement
strategy of caches has to be least-recently used (LRU).

Heckmann et al. provide examples of problematic pro-
cessor features in [11]. The most problematic features found
are the replacement strategies for set-associative caches.
A pseudo-round-robin replacement strategy of the 4-way
set-associative cache in the ColdFire MCF 5307 effectively
renders the associativity useless for WCET analysis. The
use of a single 2-bit counter for the whole cache destroys
age information within the cache sets. The analysis of that
cache results in effectively modeling only a quarter of the
cache as a direct-mapped cache. Similarly, a pseudo-LRU
replacement strategy for an 8-way set-associative cache of
the PowerPC 750/755 uses an age counter for each set. Here,
only half of the cache is modeled by the analysis. Slightly
more complex pipelines, with branch prediction and out-
of-order execution, need an integrated pipeline and cache
analysis to provide useful WCET bounds. Such integrated
analysis is complex and also demanding with respect to the
computational effort. In conclusion, Heckmann et al. suggest
the following restrictions for time-predictable processors: (1)
separate data and instruction caches, (2) locally deterministic
update strategies for caches, (3) static branch prediction, and
(4) limited out-of-order execution. The authors discuss for
restriction of processor features of actual processors (of the
time) for embedded systems, but do not provide suggestions
for additional or alternative features for a time-predictable
processor.

The VISA approach [12] adapts a complex simultaneous
multithreading processor that can be reconfigured to a
simple single-issue pipeline. The complexity of the processor
can be dynamically disabled at runtime. WCET analysis is
performed for the simple pipeline. A task is divided into
subtasks and each subtask is assigned a checkpoint. The
task is executed on the complex pipeline and only if the
checkpoint is missed, the processor is switched to the simple
mode. The checkpoint is inserted early enough to complete
the subtask on the simple pipeline before the deadline. The



EURASIP Journal on Embedded Systems

available slack time, when the task is executed on the fast,
complex pipeline, is utilized for energy saving.

Puschner and Burns discuss for a single-path program-
ming style [13] that results in a constant execution time.
In that case, WCET can easily be measured. However, this
programming paradigm is quite uncommon and restrictive.
Single-path programming can be inefficient when the control
flow is data-dependent. A processor, called SPEAR [14], was
especially designed to evaluate the single-path programming
paradigm. A single predicate bit can be set with a compare
instruction whereby several instructions (e.g., move, arith-
metic operations) can be predicated. The SPEAR implements
a three-stage in-order pipeline and uses onchip memories for
instruction and data instead of caches.

Complex hardware and software architectures hinder
hierarchical timing analysis [15]. A radical simplification of
the whole system to avoid unwanted timing interactions is
proposed—single path programming, execution of a single
task/thread per core, simple in-order pipelines, and statically
scheduled access to shared memory in CMPs.

Whitham discusses that the execution time of a basic
block has to be independent of the execution history
[16]. As a consequence, his MCGREP architecture reduces
pipelining to two stages (fetch and execute) and avoids caches
all together. To reduce the WCET, Whitham proposes to
implement the time-critical functions in microcode on a
reconfigurable function unit (RFU). The main processor
implements an RISC ISA as a microprogrammed, sequential
processor. The interesting approach in MCGREDP is that the
RFUs implement the same architecture and microcode as
the main CPU. Therefore, mapping a sequence of RISC
instructions to microcode for one or several RFUs is
straightforward. With several RFUs, it is possible to explicitly
extract instruction level parallelism (ILP) from the original
RISC code in a similar way to VLIW architectures.

Whitham and Audsley extend the MCGREP architecture
with a trace scratchpad [17]. The trace scratchpad caches
microcode and is placed after the decode stage. It is similar
to a trace cache found in newer Pentium CPUs to cache the
translated micro-operations. The differences from a cache
are that the execution from the trace scratchpad has to be
explicitly started and the scratchpad has to be loaded under
program control. The authors extract ILP at the microcode
level and schedule the instructions statically—similar to a
VLIW architecture.

3. WCET Analysis Issues

The WCET of tasks is the necessary input for schedulability
analysis. Measuring the WCET is not a safe option. Only
static WCET analysis can provide safe upper bounds of
execution times.

WCET analysis can be separated into high-level and low-
level analysis. The high-level analysis is a mature research
topic [18-20]. An overview of WCET-related research can be
found in [21, 22]. The main issues that need to be solved are
in the low-level analysis. The processors that can be analyzed
are usually several generations behind actual architectures

[11,23,24] (e.g., Thesing models, in his Ph.D. thesis [25], the
MPC755 variant of the PowerPC 750). The PowerPC 750 was
introduced in 1997 and the MPC755 was not recommended
for new designs in 2006.

The main issues in low-level analysis are features that
increase average performance. All these features, such as mul-
tilevel caches, branch target buffer, out-of-order execution,
and speculation, include a state that heavily depends on a
large execution history. This caching of the execution history
is actually fundamental for performance enhancements.
However, it is the history which is hard to model for WCET
analysis. A long history leads to a state explosion for the final
WCET calculation. Low-level WCET analysis thus usually
performs simplifications and uses conservative estimates.
One example of this conservative estimate is to classify a
cache access as a miss, if the outcome of the cache access is
unknown.

Lundqvist and Stenstrém have shown that this intuitive
assumption can be wrong on dynamically scheduled micro-
processors [26]. They provide an example of such a timing
anomaly in which a cache hit can cause a longer execution
time than a cache miss. The principles behind these timing
anomalies are further elaborated in [27].

3.1. Pipeline Dependencies. Simple pipelines, similar to the
original Berkeley/Stanford RISC design [28], are easy to
model for WCET analysis. In a nonstalled pipeline, the
execution time latency corresponds to the length of the
pipeline. The effective execution time itself is only a single
cycle. What makes pipeline analysis necessary are stalls
introduced by dependencies within the pipeline. Those stalls
are introduced by

(1) data dependencies between instructions,

(2) control dependencies between instructions.

In one of the first RISC designs, the MIPS [29], these
dependency hazards are explicitly exposed to the compiler.
They have to be resolved by the compiler with instruction
scheduling for delayed branches and for the single cycle delay
between a memory load and the data use. Therefore, these
effects are also recognized by the WCET tool. More advanced
pipelines avoid exposing stalls from the ISA in order to avoid
too many (compiler) target variations and retain binary
compatibility between processor versions. Nevertheless, this
information is needed for WCET analysis.

Dependencies within a basic block can be easily modeled.
The challenge is to merge the effects from different basic
blocks and across function boundaries. In [30], the timing
schema [31] is extended to include the pipeline information.
Timing schema is a tree-based WCET analysis. After the
determination of basic block execution times, the control
flow graph is processed in a bottom-up manner until a final
WCET bound is available. Branches are merged with the
higher WCET bound as result. For the extension, the pipeline
is represented by reservation stations, and the state at the
head and tail of a basic block is considered when basic blocks
are merged.



Pipelines with timing dependencies can result in an
unbounded effect, called long timing effect (LTE) [32]. This
means that an instruction far back in the history (longer
than the pipeline length) influences the execution time of the
current instruction. These LTEs can be negative or positive.
A positive LTE means longer execution time. An instruction
with a possible positive LTE needs a safe approximation of
that effect for the pipeline analysis.

More complex pipelines can be analyzed with abstract
interpretation, but the analysis time can become impractical.
Berg et al. [10] report that up to 1000 states per instruction
are needed for the model of the PowerPC 755. This processor
was introduced in 1998 and we expect a considerable growth
of the states that need to be tracked by abstract interpretation
for newer processors.

3.2. Instruction Fetch. The instruction fetching is often
decoupled from the main memory or the instruction cache
by a prefetch unit. This unit fills the prefetch queue with
instructions independently of the main pipeline. This form
of prefetching is especially important for a variable length
instruction set as the x86 ISA or the bytecode instructions of
the Java virtual machine (JVM). The fill status of the prefetch
queue depends on the history of the instruction stream. The
possible length of this history is unbounded. To model this
queue for a WCET tool, we need to cut the maximum history
and assume an empty queue at such a cut point.

In [33], the authors model the 4-byte-long prefetch
queue of an Intel 80188. Even for this simple prefetch
queue, the authors have to perform some simplifications in
their approach to handle the resulting complexity due to
the interaction between the instruction execution and the
instruction prefetch (the consuming and the producing ends
of the queue).

3.3. Caches. Between the middle of the 1980s and 2002,
CPU performance increased by around 52% per year, but
memory latency decreased only by 9% [1]. To bridge this
growing gap between CPU and main memory performance,
a memory hierarchy is used. Several layers with different
tradeoffs between size, speed, and cost form that memory
hierarchy. A typical hierarchy consists of

(1) register file,

(2) per-processor level 1 instruction and data cache,
(3) onchip, shared unified level 2 cache,

(4) offchip level 3 cache,

(5) main memory,

(6) hard disc for virtual memory.

The only layer under the control of the compiler is the
register file. The rest of the memory hierarchy is usually
not visible—it is not part of the ISA abstraction. Placement
of data in the different layers is performed automatically
by the hardware for caches and by the OS for virtual
memory management. The access time for a word located
in a memory block paged out by the OS is several orders of

EURASIP Journal on Embedded Systems

magnitude higher than a level 1 cache hit. Even the access
times to the level 1 cache and to the main memory differ by
two orders of magnitudes.

Cache memories for the instructions and data are classic
examples of the make the common case fast paradigm.
Avoiding or ignoring this feature in real-time systems, due
to its unpredictable behavior, results in a very pessimistic
WCET bound. Much effort has been expended on research
to integrate the instruction cache into the timing analysis of
tasks [34, 35], on the cache’s influence on task preemption
[36, 37], and on integration of the cache analysis with
the pipeline analysis [38]. The influence of different cache
architectures on WCET analysis is described in [11].

A unified cache for data and instructions can easily
destroy all the information on abstract cache states. Access
to n unknown addresses in an n-way set-associative cache
results in the state unknown for all cache lines. Modern pro-
cessors usually have separate instruction and data caches for
the level 1 cache. However, the level 2 cache is usually shared.
Most CMP systems also share the level 2 cache between the
different cores. The possible interactions between concurrent
threads running on different cores are practically impossible
to model.

Data caches are considerably harder to analyze than
instruction caches. For some data accesses, especially for data
allocated on the heap, the addresses cannot be predicted.
However, access to the stack can be predicted statically. A
data cache that caches heap and stack content suffers from
the same problem as a unified instruction and data cache: an
unknown address for a heap access will evict one block from
all sets in the abstract cache state and will increase the age of
all cache blocks.

In a recent paper, Reineke et al. analyzed the pre-
dictability of different cache replacement policies [39]. It is
shown that LRU performs best with respect to predictability.
Pseudo-LRU and FIFO perform similarly, as both perform
considerably worse than LRU. In an 8-way set-associative
setting, pseudo-LRU and FIFO take more than twice as long
as LRU to recover from lost information.

3.4. Branch Prediction. Accurate branch prediction is of
utmost importance to keep long pipelines filled. The penalty
of a wrongly predicted conditional branch is typically almost
as long as the pipeline length. Modern branch predictors
guess the outcome primarily from results of earlier branches.
They heavily rely on the execution history, an effect we want
to avoid for a tight worst-case prediction. Global branch
predictors and caches have a similar issue: as soon as a
single index into the branch history is unknown, the whole
information of branch prediction is lost for the analysis at
that point.

Two-level branch predictors are not suitable for time-
predictable architectures [40]; for example, on the Pentium
III, Pentium 4, and UltraSparc III, a decrease in the number
of loop iterations can actually result in an increase of the
execution time. This is another form of timing anomaly [26].

Branch prediction also interferes with cache contents.
When the analysis cannot anticipate the outcome of the



EURASIP Journal on Embedded Systems

prediction, both branch directions need to be considered for
cache analysis.

3.5. Instruction Level Parallelism. Some microprocessors try
to extract ILP from the instruction stream, that is, execute
more than one instruction per clock cycle. ILP extractions
can be done either statically by the compiler or dynamically
by the hardware.

Processors with static-scheduled ILP are known as very
long instruction word (VLIW) processors. The main issue
of VLIW processors is that the pipeline details are exposed
at the ISA. The compiler has to group parallel instructions
and needs to consider pipeline constraints. Some processors
rely on the compiler to resolve data dependencies and do not
stall the pipeline. Therefore, each new generation of VLIW
processors needs a new compiler back end. However, this
issue is actually an advantage for low-level WCET analysis,
as these details are needed for the pipeline analysis.

Dynamically scheduled, superscalar microprocessors
combine several parallel execution units with an out-of-
order execution to extract the ILP from the instruction
stream. In current processors, about hundred instructions
(e.g., 128 in the Pentium 4 [1]) can be in flight at each cycle.
Analysis of a realistically sized application with an accurate
processor model is thus (almost) impossible. Even modeling
the pipeline states for basic blocks leads to a state space
explosion; and modeling only basic blocks would result in
very long penalties for the branches—on a later version of
the Pentium 4, a simple instruction takes at least 31 clock
cycles from fetch to retire [1].

Despite this complexity, in [41], a hypothetical out-of-
order executing microprocessor is modeled for WCET analy-
sis. Verification of the proposed approach on a real processor
is missing. We think modeling out-of-order processors is
practically not feasible.

3.6. Chip Multithreading. Dynamic extraction of ILP is
limited to about two instructions per cycle on current
processors, such as Pentium 4 and AMD Opteron [1].
Another path to speed up multithreaded workloads is the
extraction of thread-level parallelism (TLP). The concept
of TLP in a single processor is quite old—it was used in
the CDC 6600, a supercomputer from the 1960s—but is
now being reconsidered in all desktop and server processors.
Fine-grained multithreading can hide the latency of load/use
hazards or a cache miss for one thread by the execution of
other threads.

The main issue with multithreading in real-time systems
arises when the execution time of one thread depends on
the state of a different thread. The main source of timing
interactions in a CMP comes from shared caches and shared
main memory. In the worst case, all latency hiding has to be
ignored by the analysis and the sum of the execution times of
several threads is the same as the serial execution on a single-
threaded CPU. In addition, multithreaded processors usually
share the level 1 caches. Therefore, each thread invalidates the
abstract cache state of the other threads.

Dynamic ILP and TLP can be combined for simultaneous
multithreading (SMT). With this technique, independent
threads can be active in the same pipeline stage. This results
in a higher utilization of processor resources that are already
available for the ILP extraction. Modeling the fine-grained
interaction of different SMT threads for WCET analysis
seems, at least to the author, an intractable problem.

3.7. Chip Multiprocessors. Due to the power wall [1], CMP
systems are now state-of-the-art in desktop and server
processors. There are three different CMP systems: (1)
multicore versions of superscalar architectures (Intel/ AMD),
(2) multicore chips with simple RISC processors (Sun
Niagara), and (3) the cell architecture.

Mainstream desktop processors from Intel and AMD
include two or four out-of-order executing processors. These
processors are replications of the original, complex cores that
share a level 2 cache and the memory bus. Cache coherence
protocols on the chip keep the level 1 caches coherent
and consistent. Furthermore, these cores also support SMT,
sometimes also called hyperthreading.

Sun took a completely different approach with their Nia-
gara T1 [42] by abandoning their superscalar architecture.
The T1 contains 8 simple RISC cores, each supporting 4
threads, scheduled round-robin. When a thread stalls due
to a cache miss or a load-use dependency, it is skipped in
the schedule. The first version of the chip contains a single
floating point unit which is shared by all 8 processors. Each
core implements a six-stage, single-issue pipeline similar to
the original five-stage RISC pipeline. Such a simple pipeline
brings WCET analysis back into consideration.

The cell multiprocessor [43—-45] takes an approach
similar to a distributed memory multiprocessor. The cell
contains, beside a PowerPC microprocessor, 8 synergistic
processors (SPs). The SPs contain 256 KB onchip memory
that is incoherent with the main memory. The PowerPC, the
8 SPs, and the memory interface are connected via a net-
work consisting of four independent rings. Communication
between the cores in the network has to be set up explicitly.
All memory management, for example, transfer between SPs
or between onchip memory and main memory, is under
program control, resulting in a new programming model.
The time-predictable memory access to the onchip memory
and the in-order pipeline of the SPs should be a reasonable
target for WCET analysis. The challenge is to include the
explicit memory transfers between the cores and the main
memory into the analysis.

Intel recently announced a CMP system named Larrabee
[46]. Larrabee is intended as a replacement for graphic
processing units from other vendors. It is notable that Intel
uses several dual issue, in-order x86 cores. They discuss
that for some workloads, in-order pipelines are more power
efficient than out-of-order cores. The design is based on
the first Pentium processor, enhanced with multithreading
support and vector instructions.

The main source of timing interactions in a CMP comes
from the shared level 2 (and probably level 3) cache and
the shared main memory. The shared memory provides an



6 EURASIP Journal on Embedded Systems
Pessimism
A
COTS processor I I If ]

BCET ACET WCET Bound Execution time

TP processor A I i I I . .
BCET ACET WCET Bound Execution time

TP processor B I i I I —
BCET ACET WCET Bound Execution time

FiGure 1: Distribution of the best-case, average-case, and worst-case execution times and the WCET bound of a task on different
architectures. A time-predictable processor has less pessimism and the average-case execution time is not important.

easy-to-use programming model at the cost of unpredictable
access time to the data. A shared level 2 cache is practically
not analyzable due to the interthread interference. This is the
same issue as with multithreading with a shared level 1 cache.

Cache coherence protocols (bus snooping or directory
based) enforce a coherent and consistent view of the main
memory. These protocols exchange the cache information
between all cores on each memory access and introduce a
high variability of the cache access time even when the access
is a cache hit.

Yan and Zhang analyze a shared instruction cache on
a dual core system that executes two threads [47]. To
restrict the set of conflicting cache blocks, they introduce
the category always-except one hit for level 2 cache blocks.
Assuming threads A and B, a cache block ¢ is classified as
always-except one hit for thread A when ¢ is part of a loop
in thread A, ¢ conflicts with a block used by thread B, and
the conflicting block in thread B is not part of a loop in
thread B. However, the approach has two drawbacks: (1) for
n threads/cores, several categories (up to n — 1) need to be
introduced; (2) not in a loop is not a proper model for real-
time threads as these are usually periodic.

The memory arbitration algorithm determines the
worst-case access time to the main memory. Any fairness-
based arbitration is, at least, difficult to integrate into WCET
analysis. Priority-based arbitration can only guarantee access
time for the core with the highest priority because lower
priority cores can be blocked indefinitely.

3.8. Documentation. To model the processor for the low-
level analysis, an accurate documentation of the processor
internals is needed. However, this information is often
not available or sometimes simply wrong [32]. For actual
processors, the documentation of the internals is usually
not disclosed. Over time, due to reverse engineering and
less competition with other processors, more information
becomes available. This is probably another reason why
WCET analysis is about 10 years behind the processor
technology.

3.9. Summary. While conventional techniques in designing
processor architectures increase average throughput, they
are not feasible for real-time systems. The influence of
these architectural enhancements is at best hardly WCET

analyzable. From a survey of the literature, we found that
modeling a new version of a microprocessor and finding all
undocumented details is usually worth a full Ph.D. thesis.

We discuss that trying to catch up on the analysis
side with the growing complexity of modern computer
architectures is not feasible. A paradigm shift is necessary.
Computer architecture has to be redefined or adapted for
real-time systems. Predictable and analyzable execution time
is of primary importance.

4. Time-Predictable Architecture

We propose a computer architecture designed especially for
real-time applications. We do not want to restrict features
only, but we also want to actively add features that enhance
performance and are time-predictable.

Figure 1 illustrates the aim of a time-predictable archi-
tecture, showing the distribution of the different execution
times for a task: they are best-case execution time (BCET),
average-case execution time (ACET), worst-case execution
time (WCET), and the bound of the WCET that an
analysis tool can provide. The difference between the actual
WCET and the bound is caused by the pessimism of the
analysis resulting from two factors: (a) certain information,
for example, infeasible execution paths, not being known
statically and (b) the simplifications to make the analysis
computationally practical. For example, infeasible execution
paths may significantly impact the WCET bound because
the static analysis cannot prove that these paths may never
be executed. Similarly, dynamic features such as speculative
execution and pipelining often need to be modeled conser-
vatively to prevent an explosion of the analysis complexity.

The first time line shows the distribution of the execution
times for a commercial off-the-shelf (COTS) processor. The
other two time lines show the distribution for two different
time-predictable processors.

Variant A depicts a time-predictable processor with a
higher BCET, ACET, and WCET than a standard processor.
Although the WCET is higher than the WCET of the standard
processor, the pessimism of the analysis is lower and the
resulting WCET bound is lower as well. Even this type of
processor is a better fit for hard real-time systems than
today’s standard processors.

Processor B shows an architecture where the BCET and
ACET are further increased, but the WCET and the WCET



EURASIP Journal on Embedded Systems

TaBLE 1: Architectural issues for WCET analysis of standard processors and proposed architectural solutions.

Standard processor WCET issues

Time-predictable processor

Pipeline Dependencies and shared state

Instruction fetch Unbounded timing effects

Caches .
destruction by unknown addresses

Branch prediction Long history in dynamic predictors
Superscalar architectures Timing anomalies
Chip-multithreading

Chip-multiprocessors

Replacement policy, abstract cache state

Interthread interference (cache, pipeline)

Intercore interference via shared memory, cache

Simple pipeline
Avoid prefetch queue, use double buffer

Method cache, stack cache, and a highly associative,
small heap cache

Static branch prediction

Avoid, instead use CMP and/or VLIW
Avoid, instead use CMP

TDMA scheduled memory access

bound are decreased. Our goal is to design an architecture
with a low WCET bound. For hard real-time systems, the
likely increase in the ACET and BCET is acceptable because
the complete system needs to be designed to reduce the
WCET. It should be noted that a processor designed for
low WCET will never be as fast in the average case as
a processor optimized for ACET. Those are two different
design optimizations. We define a time-predictable processor
as “under the assumption that only feasible execution paths
are analyzed, a time-predictable processor’s WCET bound is
close to the real WCET.

In the following, we propose time-predictable solutions
or replacements, if possible, for the issues we identified in
the Section 6. Table 1 summarizes the issues of standard
processors for WCET analysis and the proposed architectural
solutions.

4.1. Pipeline Dependencies. Pipelining is a major architec-
tural feature to speed up program execution. Different stages
of an instruction are overlapped and, therefore, executed in
parallel. The theoretical throughput of a scalar pipeline is one
instruction per clock cycle.

In contrast to Whitham [16], we think that a time-
predictable architecture should be pipelined. The pipeline
should be simple and dependencies between instructions
avoided, or at least minimized, to avoid unbounded timing
effects.

4.2. Instruction Fetch. To avoid a prefetch queue, with
probably unbounded execution-time dependencies over a
stream of instructions, a fixed-length instruction set is
recommended. Variable length instructions can complicate
instruction cache analysis because an instruction can cross
a block boundary. The method cache, as proposed in the
following section, avoids this issue. Either all instructions of
a function, independent of their length, are in the cache, or
none of them.

Fetching variable-sized instructions from the method
cache can be performed in a single cycle. The method
cache is split into two interleaved memories banks. Each
of the two cache memories needs a read port wide enough
for a maximum-sized instruction. Accessing both memories
concurrently with a clever address calculation overcomes the
boundary issue for variable-sized instruction access.

F M$ Pipeline
Memory S$ T

o

Figure 2: Cache configuration for the time-predictable archi-
tecture. The method cache M$ caches instructions of a full
method/function. The data cache D$ is augmented by a stack cache
S$ to avoid cache trashing of stack allocated data with heap allocated
data.

CPU

4.3. Caches. To reduce the growing gap between the clock
frequency of the processor and memory access times,
multilevel cache architectures are commonly used. Since
even a single-level cache is problematic for WCET analysis,
more levels in the memory architecture are practically not
analyzable. The additional levels also increase the latency of
the memory access on a cache miss.

For the cache analysis, the addresses of the memory
accesses need to be predicted. The addresses for the instruc-
tion fetch are easy to determine, and access to stack allocated
data, for example, function arguments and local variables, is
also quite regular. The addresses can be predicted when the
call tree is known.

The addresses for heap-allocated data are very hard
to predict statically—the addresses are only known during
runtime (we found no publication that describes analysis of
the data cache for heap-allocated data). Without knowing the
address, a single access influences all sets in the cache.

To avoid corruption of the abstract cache state in the
analysis by data accesses, separate instruction and data caches
are mandatory [11]. Furthermore, we propose to split the
data cache into a cache for stack-allocated data and a cache
for global- or heap-allocated data. As stack allocated data
is guaranteed thread local, the stack cache can be further
simplified for CMP systems.

For the instruction cache, we propose a new form of
organization where whole functions are loaded on a miss on
call or return. Figure 2 shows the proposed organization of
the three caches.



4.3.1. The Instruction Cache. We propose a new form of
organization for the instruction cache: the method cache [3],
which has a novel replacement policy. A whole function or
method is loaded into the cache on a call or return. This
cache fill strategy pools all the cache misses of a function.
All instructions except call and return are guaranteed cache
hits. Only the call tree needs to be analyzed during the cache
analysis. With the proposed cache organization, the cache
analysis can be performed independently of the pipeline
analysis.

Filling the cache on call and return only removes another
source of interference: there is no competition for the main
memory access between instruction cache and data cache.
In traditional architectures, there is a subtle dependency
between the instruction cache and memory access for a load
or store instruction. For example, a load or store at the end
of the processor pipeline competes with an instruction fetch
that results in a cache miss. One of the two instructions is
stalled for additional cycles by the other instruction. With a
data cache, this situation can be even worse. The worst-case
scenario for the memory stall time for an instruction fetch or
a data load is two miss-penalties when both cache reads are a
miss.

The main restriction of the method cache is that a whole
method needs to fit into the cache. For larger methods,
software- and hardware-based options are possible to resolve
this issue. The compiler can split large methods into several
shorter methods. At the hardware level, there are two options
for methods that are too large: the cache can be disabled
or the method cache can be switched into a direct-mapped
mode.

If we avoid absolute jumps within a method, we can use
a relative program counter within the method and place a
method at each position within the cache. This property is
fulfilled with Java bytecode, but can also be enforced by the
compiler for C code.

For a full method load into the cache, we need to know
the length of the method. This information is available in
the Java class file. For compiled C code, this information
can be provided in the executable. A simple convention,
implemented in the linker, is to store the method length one
word before the actual method starts. In order to use the
method cache in an RISC processor, the ISA is extended with
a prefetch instruction to force the cache load. The prefetch
instruction can be placed immediately before the call or
return instruction. It can also be scheduled earlier to hide
the cache load latency.

4.3.2. The Stack Cache. Access patterns to stack allocated
data are different from heap- or static-allocated data.
Addresses into the stack are easy to predict statically because
the allocation addresses of stack frames can be predicted by
the analysis of the call tree. Furthermore, a new stack frame
for a function call does not need to be cache-consistent with
the main memory. The involved cache blocks need no cache
fill from the main memory.

To benefit from these properties for WCET analysis, we
propose to split the data cache into a stack cache and a cache

EURASIP Journal on Embedded Systems

for static- and heap-allocated data (it is possible to further
split the data cache into a cache for static data and heap data).
The organization of the cache for static- and heap-allocated
data, further referred to as data cache, will be proposed in the
following section.

The regular access pattern to the stack cache will not
benefit from set associativity. Therefore, the stack cache
is a simple direct-mapped cache. The stack contains local
variables and the write frequency is higher than for other
memory areas. The high frequency mandates a write back
organization.

A stack cache is similar to a windowed register file as
implemented in the Berkeley RISC processor [28]. A stack
cache can be organized to exchange data with the main
memory on a stack frame basis. When the cache overflows,
which happens only during a call, the oldest frame or frames
have to be moved to the memory. A frame needs to be loaded
from the memory only when a function returns. Exchange
with the main memory can be implemented in hardware,
microcode, or with compiler visible machine instructions.

If the maximum call depth results in a stack that is
smaller than the stack cache, all accesses will be a cache hit. A
write back occurs first when the program reaches a call depth
resulting in a wrap around within the cache. A cache miss
can occur only when the program goes up in the call tree and
needs access to a cache block that was evicted by a call down
in the call tree.

Figure 3 shows the call and return behavior of a program
over time and the changing stack cache window. The stack
grows downwards in the figure. The dashed box shows a
possibility to enforce a write back at some program point.
The following stack changes fit into the enforced stack
window and no memory transactions are necessary.

On a return, the previously used cache blocks can be
marked empty because function local data is not accessible
after the return (it could be accessed in C by returning
a pointer to the stack data; however, this is undefined
and considered poor programming practic). As a result,
cache lines will never need to be written back on a cache
wrap around after return. The stack cache activity can be
summarized in the following way.

(1) A cache miss can only occur after a return. The first
miss is at least one cache size away from a leaf in the
call tree.

(2) Cache write back can only occur after a function call.
The first write back is one cache size away from the
root of the call tree.

We can make the misses and write backs more predictable
by forcing them to occur at explicit points in the call tree. At
these points, the cached stack frames are written back to the
main memory and the whole stack cache is marked empty.
If we place the flush points at function calls in the call tree
that are within one cache size from the leaf functions, all cache
accesses into that area are guaranteed hits. This algorithm can
actually improve WCET because most of the execution time
of a program is spent in inner loops further down the call
tree.



EURASIP Journal on Embedded Systems

Time

Return ——
|

Cache fill

7

Write back

Stack depth

Call

N

v

% Enforced write back

/7

FIGURE 3: Stack usage for call and return and the resulting stack cache window. When the window overflows on a call, a write back of old
frames is necessary. The stack cache fill is caused by an underflow after a return. Enforcing a write back of the whole stack cache can guarantee

hits for subsequent, more deeply nested functions.

Stack data is usually not shared between threads and
no cache coherence and consistence protocol—the major
bottleneck for CMP scaling—needs to be implemented for
a CMP system.

4.3.3. The Data Cache. For conservatively written programs
with statically allocated data, the address of the data is
known after program linking. Value analysis results in a good
prediction of read and write addresses. The addresses are the
input for the cache analysis. In [48], control tasks, from a
real-time benchmark provided by Airbus, were analyzed. For
this benchmark, 90% of the memory accesses were predicted
precisely.

In a modern object-oriented language, data is usually
allocated on the heap. The address for these objects is only
known at runtime. Even when using such a language in
a conservative style, where all data is allocated during an
initialization phase, it is not easy to predict the resulting
addresses. The order of the allocations determines the
addresses of the objects. When the order becomes unknown
at one point in the initialization phase, the addresses for all
following allocations cannot be determined precisely.

It is possible to analyze local cache effects with unknown
addresses for an LRU set-associative cache. For an n-way
associative cache, the history for n different addresses can
be tracked. Because the addresses are unknown, a single
access influences all sets in the cache. The analysis reduces
the effective cache size to a single set.

The local analysis for the LRU-based cache is illustrated
by a small example with a four-word cache. The example
cache allocates a cache block on a write. Table 2 shows a
code fragment with access to heap-allocated data (objects
a, b, ¢, and d). The cache state after the load or store
instruction is shown in the right section of the table. The
leftmost column of the cache state represents the youngest

TABLE 2: An example of analyzable accesses to three heap-allocated
objects with a four-word LRU cache. The cache content after the
execution of a statement is depicted in the right section of the table.

Cache state

Instruction Memory Youngest Oldest
a.v=123; store a.v a.v — — —
b.v = 456; store b.v b.v av — —

load b.v b.v a.v — —
cv=b.v;

store c.v v b.v av —
dv=bv: load b.v b.v v a.v —

store d.v d.v b.v v a.v

load a.v a.v d.v b.v v
bv=av;

store b.v b.v a.v d.v (A%

element, the rightmost column the oldest (the LRU element).
We assume a 4-way set-associative cache for the example.
Therefore, we can locally track four different and unknown
addresses. After the first two constant assignments, we know
that a.v and b.v are in the cache. The following load of b.v is
trivially a hit and the store into c.v changes the cache content
and the age of a.v and b.v. All following loads are hits and
only change the age ordering of the cache elements. In this
small example we dealt with four different and unknown
addresses, but could classify all read accesses as hits for a four-
word cache.

We propose to implement the cache architecture exactly
as it results from this analysis—a small, fully associative cache
with an LRU replacement policy. This cache organization is
similar to the victim cache [49], which adds associativity to
a direct-mapped cache. A small, fully associative buffer holds
discarded cache blocks. The replacement policy is LRU.

LRU is difficult to calculate in hardware and only possible
for very small sets. Replacement of the oldest block gives an



10

approximation of LRU. The resulting FIFO strategy can be
used for larger caches. To offset the less predictable behavior
of the FIFO replacement [39], the cache has to be much larger
than an LRU-based cache.

4.3.4. The Scratchpad Memory. A common method for
avoiding data caches is an onchip memory called scratchpad
memory, which is under program control. This program
managed memory entails a more complicated programming
model although it can be automatically partitioned [50, 51].
A similar approach for time-predictable caching is to lock
cache blocks. The control of the cache locking [52] and the
allocation of data in the scratchpad memory [53, 54] can
be optimized for the WCET. A comparison between locked
cache blocks and a scratchpad memory with respect to the
WCET can be found in [55].

Exposing the scratchpad memory at the language level
can further help to optimize the time-critical path of the
application.

4.4. Branch Prediction. As the pipelines of current general-
purpose processors become longer to support higher clock
rates, the penalty of branches also increases. This is compen-
sated by branch prediction logic with branch target buffers.
However, the upper bound of the branch execution time is
the same as without this feature.

Simple static branch prediction (e.g., backward branches
are assumed taken, forward branches not taken) or compiler-
generated branch predictions are WCET-analyzable options.
One-level dynamic branch predictors can be analyzed [56].
The branch history table has to be separate from the
instruction cache to allow independent modeling for the
analysis.

4.5. Instruction Level Parallelism. Statically scheduled VLIW
processors are an option for a time-predictable architecture.
The balance between the VLIW width and the number
of cores in a CMP system depends on the application
domain. For control-oriented applications, we assume that
a dual-issue VLIW is a practical architecture. DSP-related
applications can probably fill more instruction slots with
useful instructions.

Dynamically scheduled superscalar architectures are not
considered as an option for a time-predictable architecture.
The amount of hardware that is needed to extract ILP from a
single thread is better spent on a (VLIW-based) CMP system.

4.6. Chip Multithreading. Fine-grained multithreading
within the pipeline is in principle not an issue for WCET
analysis. The scheduling algorithm of the threads needs to
be known and must not depend on the state of the threads.
Round-robin scheduling is a time-predictable option. The
execution time for simple instructions simply increases by a
factor equal to the number of threads. The benefit of hiding
pipeline stalls due to data dependencies or branches results
in a lower factor for these instructions. Execution of # tasks
on an n-way multithreading pipeline takes less (predictable)
time than executing these tasks serially on a single threaded

EURASIP Journal on Embedded Systems

processor. However, cache misses, even if a single cache miss
could be hidden, result in interference between the different
threads because the memory interface is a shared resource.

Fine-grained multithreading resolves the data dependen-
cies for a thread within the pipeline: the thread is only
active in a single pipeline stage. Therefore, the forwarding
network can be completely removed from the processor. This
is an important simplification of the pipeline because the
forwarding multiplexer is often part of the critical path that
restricts the maximum clock frequency.

To avoid cache thrashing, each thread needs—in addition
to its own register file—its own instruction and data
cache, which reduces the effectively shared transistors to the
pipeline itself. We think that the cost is too high for the small
performance enhancement. Therefore, also duplicating the
pipeline—resulting in a CMP solution—will result in a better
performance/cost factor.

SMT is not an option as the interaction between the
threads is too complex to model.

4.7. Chip Multiprocessors. Embedded applications need to
control and interact with the real-world, a task that is
inherently parallel. Therefore, these systems are good can-
didates for CMPs. We discuss that the transistors required
to implement superscalar architectures are better used on
complete replication of simple cores.

CMP systems share the access bandwidth to the main
memory. To build a time-predictable CMP system, we need
to schedule the access to the main memory in a predictable
way. A predictable scheduling can only be time-based, where
each core receives a fixed time slice. This scheduling scheme is
called time division multiple access (TDMA). The time slices
do not need to be of equal size. The execution time of un-
cached loads and stores and the cache miss-penalty depend
on this schedule and, therefore, for accurate WCET analysis,
the complete schedule needs to be known.

Assuming that enough cores are available, we propose
a CMP model with a single thread per processor. In that
case, thread switching and schedulability analysis for each
individual core disappears. Since each processor executes
only a single thread, the WCET of that thread can be as long
as its deadline. When the period of a thread is equal to its
deadline, 100% utilization of that core is feasible. For threads
that have enough slack time left, we can increase the WCET
by decreasing their share of the bandwidth on the memory
bus. Other threads with tighter deadlines can, in turn, use
the freed bandwidth and run faster. The usage of the shared
resource main memory is adjusted by the TDMA schedule.
The TDMA schedule itself is the input for WCET analysis for
all threads. Finding a TDMA schedule, where all tasks meet
their deadlines, is thus an iterative optimization problem.

Figure 4 shows the analysis tool flow for the proposed
time-predictable CMP with three tasks. First, an initial
arbiter schedule is generated, for example, one with equal
time slices. That schedule and the tasks are the input of
WCET analysis performed for each task individually. If all
tasks meet their deadline with the resulting WCETs, the
system is schedulable. If some tasks do not meet their



EURASIP Journal on Embedded Systems

Gle)r_lerate }in(iitielll 5| Arbiter
arbiter schedule schedule
Task 1 Task 2 Task 3
WCET WCET WCET
analysis analysis analysis
WCETﬁ WCETj WCET 3
] Generate
Deadhgles arbiter -
met? schedule

Yes

System
schedulable

FiGure 4: Tool flow for a CMP-based real-time system with one
task per core and a static arbiter schedule. If the deadlines are not
met, the arbiter schedule is adapted according to the WCETs and
deadlines of the tasks. After the update of the arbiter schedule, the
WCET of all tasks needs to be recalculated.

deadline and other tasks have some slack time available, the
arbiter scheduler is adapted accordingly. WCET analysis is
repeated, with the new arbiter schedule until all tasks meet
their deadlines or no slack time for an adaption of the arbiter
schedule is available. In the latter case, no schedule for the
system is found.

4.8. Documentation. The hardware description language
VHDL was originally developed to document the behavior
of digital circuits. Today, digital hardware can be synthesized
from a VHDL description. Therefore, the VHDL code for the
processor is the ideal form of documentation. VHDL code
can also be simulated and all interactions between different
components are observable.

An open-source design enables the WCET tool provider
to check the real processor when the documentation is
missing; documentation errors are also easier to find.
Sun provides the Verilog source of their Niagra TI
[42] as open-source under the GNU GPL (http://www
.opensparc.net/opensparc-t1/downloads.html).

11

5. Evaluation

In this section, we evaluate some of the proposed time-
predictable architectural features with JOP [2], an imple-
mentation of a Java processor. We have chosen to natively
support Java as it is the language which will be used for
future safety critical systems [57, 58]. Java’s intermediate
representation, the Java class file, is analysis friendly and
the type information can be reconstructed from the class
file. Executing bytecodes—the instruction set of the Java
virtual machine (JVM)—directly in the hardware allows
WCET analysis at the bytecode level. The translation step
from bytecode to machine code, which introduces timing
inaccuracies, can be avoided.

5.1. The Java Processor JOP. The major design goal of JOP
is the time-predictable execution of Java bytecodes [59].
All functional units, and especially the interactions between
them, are carefully designed to avoid any timing dependency
between bytecodes.

JOP dynamically translates the Java bytecodes to a stack-
based microcode that can be executed in a three-stage
pipeline. The translation takes exactly one cycle per bytecode.
Compared to other forms of dynamic code translation, the
scheme used in JOP does not add any variable latency to the
execution time and is, therefore, time-predictable.

JOP contains a simple execution stage with the two
topmost stack elements as discrete registers. No write back
stage or forwarding logic is needed. The short pipeline (four
stages) results in short conditional branch delays; a difficult
to analyze branch prediction logic or a branch target buffer
can be avoided.

All microcode instructions have a constant execution
time of one cycle. No stalls are possible in the microcode
pipeline. Loads and stores of object fields are handled
explicitly. The absence of timing dependencies between
bytecodes results in a simple processor model for the low-
level WCET analysis.

The proposed architecture is open-source and all design
files are available (http://www.jopdesign.com/). The instruc-
tion timing of the bytecodes is documented.

5.1.1. Method Cache. JOP contains the proposed method
cache. The default configuration is 4 KB, divided into 16
blocks of 256 Bytes. The replacement strategy is FIFO.
WCET analysis of the method cache and of standard
instruction caches is currently under development. There-
fore, we perform only average-case measurements for a
comparison between a time-predictable cache organization
and a standard cache organization. With a simulation of
JOP, we measure the cache misses and miss-penalties for
different configurations of the method cache and a direct-
mapped cache. The miss-penalty and the resulting effect on
the execution time depend on the main memory system.
Therefore, we simulate three different memory technologies:
static RAM (SRAM), synchronous DRAM (SDRAM), and
double data rate (DDR) SDRAM. For the SRAM, a latency
of 1 clock cycle and an access time of 2 clock cycles per 32 bit



12

TaBLE 3: Direct-mapped cache, average memory access time.

Cache size Block size SRAM SDRAM DDR
1KB 8B 0.18 0.25 0.19
1KB 16 B 0.22 0.22 0.16
1KB 32B 0.31 0.24 0.15
2 KB 8B 0.11 0.15 0.12
2 KB 16 B 0.14 0.14 0.10
2 KB 32B 0.22 0.17 0.11
TaBLE 4: Method cache, average memory access time.
Cache size Block size SRAM SDRAM DDR
1KB 16 B 0.36 0.21 0.12
1KB 32B 0.36 0.21 0.12
1KB 64 B 0.36 0.22 0.12
1KB 128 B 0.41 0.24 0.14
2KB 32B 0.06 0.04 0.02
2KB 64 B 0.12 0.08 0.04
2KB 128 B 0.19 0.11 0.06
2KB 256 B 0.37 0.22 0.13

word are assumed. For the SDRAM, a latency of 5 cycles (3
cycles for the row address and 2 cycles for the CAS latency) is
assumed. The SDRAM delivers one word (4 bytes) per cycle.
The DDR SDRAM has a shorter latency of 4.5 cycles and
transfers data on both the rising and falling edges of the clock
signal.

The resulting miss-cycles are scaled to the bandwidth
consumed by the instruction fetch unit. The result is the
number of cache fill cycles per fetched instruction byte: in
other words, the average main memory access time in cycles
per instruction byte. A value of 0.1 means that for every 10
fetched instruction bytes, one clock cycle is spent to fill the
cache.

Table 3 shows the result for different configurations of
a direct-mapped cache. For the evaluation, we used an
adapted version of the real-time application Kfl (the Kfl
benchmark is also used in Section 5.4), which is a node in a
distributed control application. As the embedded application
is quite small (1366 LOC), we simulated small instruction
caches. The best performing configuration depends on
the relationship between memory bandwidth and memory
latency. The data in bold emphasize the best block size for
the different memory technologies. As expected, memories
with a higher latency and bandwidth perform better with
larger block sizes. For small block sizes, the latency clearly
dominates the access time. Although the SRAM has half
the bandwidth of the SDRAM and a quarter of the DDR
SDRAM, it is faster than the SDRAM memories with a block
size of 8 byte. In most cases, a block size of 16 bytes is fastest.

Table 4 shows the average memory access time per
instruction byte for the method cache. Because we load
full methods, we have chosen larger block sizes than for a
standard cache. All configurations benefit from a memory

EURASIP Journal on Embedded Systems

system with a higher bandwidth. The method cache is
less latency sensitive than the direct-mapped instruction
cache. For the small 1KB cache, the access time is almost
independent of the block size. The capacity misses dominate.
From the 2 KB configuration, we see that smaller block sizes
result in less cache misses. However, smaller block sizes result
in more hardware for the hit detection since the method
cache is in effect fully associative. Therefore, we need a
balance between the number of blocks and the performance.

The cache conflict is high for the small configuration
with 1 KB cache. The direct-mapped cache, backed up with a
low-latency main memory, performs better than the method
cache. When high-latency memories are used, the method
cache performs better than the direct-mapped cache. This is
expected as the long latency for a transfer is amortized when
more data (the whole method) is filled in one request.

A small block size of 32bytes is needed in the 2 KB
method cache to outperform the direct-mapped cache with
the low-latency main memory as represented by the SRAM.
For higher latency memories (SDRAM and DDR), a method
cache with a block size of 128 bytes outperforms the direct-
mapped instruction cache.

The comparison does not show if the method cache is
more easily predictable than other cache solutions. It shows
that caching full methods performs similarly to standard
caching techniques.

5.1.2. Stack Cache. In JOP, a simplified version of the
proposed stack cache is implemented. The JVM uses the
stack not only for the activation frame and for local variables
but also for operands. Therefore, the two top elements
of the stack are implemented as registers [4]. With this
configuration, we can avoid the write-back pipeline stage.

The fill and spill between the stack cache and the main
memory is simplified. The cache content is exchanged only
on a thread switch. Therefore, the maximum call depth is
restricted by the onchip cache size. In a future version of
JOP, we intend to relax this limitation. The cache fill will
be performed on a return and the write back on invoke
when necessary. A stack analysis tool will add a marker to
the methods where a full cache write back will be performed
and the stack access in methods deeper in the call tree will be
guaranteed hits. Heap-allocated data and static fields are not
cached in the current implementation of JOP.

5.1.3. Branch Prediction. In JOP, branch prediction is
avoided. This results in pressure on the pipeline length. The
microprogrammed core processor has a pipeline length of as
little as three stages resulting in a branch execution time of
three cycles in microcode. The two slots in the branch delay
can be filled with instructions or nop. With the additional
bytecode fetch and translation stage, the overall pipeline is
four stages and results in a four-cycle execution time for a
bytecode branch.

5.2. WCET Analysis. Bytecode instructions that do not
access memory have a constant execution time. Most simple
bytecodes are executed in a single cycle. Table5 shows



EURASIP Journal on Embedded Systems

example instructions and their timing. The access time to
object, array, and class fields depends on the timing of the
main memory. With a memory with r,,; wait states for a read
access, the execution time for, for example, getfield, is

Lgetfield = 11 + 2ys. (1)

To demonstrate that JOP is amenable to WCET analysis,
we have built an IPET-based WCET analyzer [60]. While
loop bounds are annotated at the source level, the analysis
is performed at the bytecode level. Without dependencies
between bytecodes, the pipeline analysis can be omitted.
The execution time of basic blocks is calculated simply by
adding the execution time of individual bytecodes. For the
method cache, we have implemented a simplified analysis
where only leaf nodes in the call tree are considered. A
return from such a leaf node is a guaranteed hit. (The
maximum method size is restricted to half of the cache
size.) Invocation of a leaf node in a tight loop (without
invocations of other methods) is classified as a miss for the
first iteration and a hit for the following iterations. For small
benchmarks, the overestimation of the WCET is around 5%.
For two real applications (Lift and Kfl) the analysis resulted
in an overestimation of 56% and 116%. It should be noted
that the overestimation is calculated by comparison with
measurement-based WCET estimation, which is not a safe
approach.

Another indication that JOP is a WCET friendly design is
that other real-time analysis projects use JOP as the primary
target platform. Harmon has developed a tree-based WCET
analyzer for interactive back-annotation of WCET estimates
into the program source [61]. Bagholm et al. have developed
an integrated WCET and scheduling analysis tool based on
model checking [62].

5.3. Comparison with picoJava. We compare the time-
predictable JOP design with picoJava [63, 64], a Java
processor designed for average-case performance. Simple
bytecodes are directly supported by the processor. Most of
them execute in a single cycle. More complex bytecodes trap
to a software routine. However, the invocation time of the
trap depends on the cache state and is between 6 cycles in
the best case and 426 cycles in the worst case—a factor in the
order of two magnitudes. Some of the trapped instructions
(e.g., invokevirtual) can be replaced at runtime by a quick
version (e.g., invokevirtual_quick). This replacement results
in different execution times for the first execution of some
code and following executions.

To speed up sequences of stack operations, picoJava can
fold several instructions into an RISC style three register
operation, for example, the sequence: load, load, add, store.
This feature compensates for the inefficiency of a stack
machine. However, the folding unit depends on a 16-byte
instruction buffer with all the resulting unbounded timing
effects of a prefetch queue.

However, picoJava implements a 64-word stack buffer
as discrete registers. Spill and fill of that stack buffer is
performed in background by the hardware. Therefore, the
stack buffer closely interacts with the data cache. The

13

TABLE 5: Execution time of simple bytecodes in cycles.

Instruction Cycles Funtion

iconst_0 1 load constant 0 on TOS
bipush 2 load a byte constant on TOS
iload_0 1 load local variable 0 on TOS
iload 2 load a local variable on TOS
dup 1 duplicate TOS

iadd 1 integer addition

isub 1 integer subtraction

ifeq 4 conditional branch

TaBLE 6: Application benchmark performance on different Java
systems. The table shows the benchmark results in iterations per
second—a higher value means higher performance.

Kfl Udplp Lift

Cjip 176 91

Jamuth 3400 1500

EJC 9893 2882

SHAP 11570 5764 12226
aJ100 14148 6415

JOP 18275 8467 18649
picoJava 23813 11950 25444
CACAO/YARI 39742 17702 38437

interference between the folding unit, the instruction buffer,
the instruction cache, the stack buffer, the data cache, and the
memory interface causes complications in modeling picoJava
for WCET analysis.

Also, picoJava is about 8 times larger than JOP and can
be clocked at less than half of the frequency of JOP in the
same technology [65]. Therefore, the small size of a time-
predictable architecture naturally leads to a CMP system.

5.4. Performance. One important question remains: is a
time-predictable processor slow? We evaluate the average-
case performance of JOP by comparing it with other
embedded Java systems: Java processors from industry and
academia as well as two just-in-time (JIT) compiler-based
systems. For the comparison, we use JavaBenchEmbedded,
(available at http://www.jopwiki.com/JavaBenchEmbedded)
a set of open-source Java benchmarks for embedded systems.
However, Kfl and Lift are two real-world applications
adapted with a simulation of the environment to run as
stand-alone benchmarks. Udplp is a simple client/server test
program that uses a TCP/IP stack written in Java.

Table 6 shows the raw data of the performance mea-
surements of different embedded Java systems for the three
benchmarks. The numbers are iterations per second whereby
a higher value represents better performance. Figure 5 shows
the results scaled to the performance of JOP.

The numbers for JOP are taken from an implementation
in the Altera Cyclone FPGA [66], running at 100 MHz. JOP is
configured with a 4 KB method cache and a 1 KB stack cache.



14

2.5

Performance

o =9 [=3 =¥ s =
2 £ B 2 &8 &8 & 23
g T 5 = g 3=
s @ S ZS
B 2 3
B Kfl
B Udplp
Lift

FIGURE 5: Performance comparison of different Java systems with
embedded application benchmarks. The results are scaled to the
performance of JOP.

TaBLE 7: Resource consumption and maximum operating fre-
quency of JOP, YARI, and picoJava.

Soft-core Logic cells Memory Frequency
JOpP 3,300 7.6 KB 100 MHz
YARI 6,668 18.9KB 75 MHz
picoJava 27,560 47.6 KB 40 MHz

Cjip [67] and aJ100 [68] are commercial Java proces-
sors, which are implemented in an ASIC and clocked at
80 and 100 MHz, respectively. Both cores do not cache
instructions. However, aj100 contains a 32 KB onchip stack
memory. jamuth [69] and SHAP [70] are Java processors
that are implemented in an FPGA. Also, jamuth is the
commercial version of the Java processor Komodo [71],
a research project for real-time chip multithreading; and
it is configured with a 4KB direct-mapped instruction
cache for the measurements. The architecture of SHAP
is based on JOP and enhanced with a hardware object
manager. Also, SHAP implements the method cache [72].
The benchmark results for SHAP are taken from the SHAP
website (http://shap.inf.tu-dresden.de/, accessed July, 2008);
and it is configured with a 2 KB method cache and 2 KB stack
cache.

Also, picoJava [73] is a Java processor developed by
Sun. picoJava is no longer produced and the second version
(picoJava-1I) was available as open-source Verilog code.
Puffitsch implemented picoJava-II in an FPGA (Altera
Cyclone-II) and the performance numbers are obtained from
that implementation [65]. picoJava is configured with a
direct-mapped instruction cache and a 2-way set-associative
data cache. Both caches are 16 KB.

EJC [74] is an example of a JIT system on an RISC
processor (32-bit ARM720T at 74 MHz). The ARM720T
contains an 8 KB unified cache. To compare JOP with a

EURASIP Journal on Embedded Systems

JIT-based system in exactly the same hardware, we use the
research JVM CACAO [75] on top of the MIPS compatible
soft-core YARI [76]. YARI is configured with a 4-way set-
associative instruction cache and a 4-way set-associative
write-through data cache. Both caches are 8 KB.

The measurements do not provide a clear answer to the
question of whether a time-predictable architecture is slow.
JOP is about 33% faster than the commercial Java processor
aJ100. However, picoJava is 36% faster than JOP and the
JIT/RISC combination is about 111% faster than JOP. (The
numbers of CACAO/YARI are from [76]. In the mean time,
YARI has been enhanced and outperforms JOP by a factor of
2.8.) We conclude that a time-predictable solution will never
be as fast in the average case as a solution optimized for the
average case.

5.5. Hardware Area and Clock Frequency. Table 7 compares
the resource consumption and maximum clock frequency of
a time-predictable processor (JOP), a standard MIPS archi-
tecture (YARI), and a complex Java processor (picoJava),
when implemented in the same FPGA. The streamlined
architecture of JOP results in a small design: JOP is half
the size of the MIPS core YARI, and compared to picoJava
consumes about 12% of the resources. JOP’s size allows
implementing a CMP version of JOP even in a low-cost
FPGA. The simple pipeline of JOP achieves the highest
clock frequency of the three designs. From the frequency
comparison, we can estimate that the maximum clock
frequency of JOP in an ASIC will also be higher than a
standard RISC pipeline in an ASIC.

5.6. JOP CMP System. We have implemented a CMP version
of JOP with a fairness-based arbiter [77]. All cores are
allotted an equal share of the memory bandwidth. Each core
has its own method cache and stack cache. Heap-allocated
data is not cached in this design.

When comparing a JOP CMP system against the complex
Java processor picoJava, a dual core version of JOP is about
5% slower than a single picoJava core, but consumes only
22% of the chip resources. With four cores, JOP outperforms
picoJava by 30% with size of 43% of picoJava.

A configurable TDMA arbiter for a time-predictable
CMP system and the integration of the arbitration schedule
into the WCET tool [60] is presented in [9].

5.7. Summary. A model of a processor with accurate timing
information is essential for tight WCET analysis. The archi-
tecture of JOP and the microcode are designed with this in
mind. Execution time of bytecodes is known cycle accurately
[59]. It is possible to analyze the WCET at the bytecode level
[78] without the uncertainties of an interpreting JVM [79]
or generated native code from ahead-of-time compilers for
Java.

6. Conclusion

In this paper, we discuss a time-predictable computer
architecture for embedded real-time systems that supports



EURASIP Journal on Embedded Systems

WCET analysis. We have identified the problematic microar-
chitecture features of standard processors and provided
alternative solutions when possible.

Dynamic features, which model a large execution history,
are problematic for WCET analysis. Especially interferences
between different features result in a state space explo-
sion for the analysis. The proposed architecture is an in-
order pipeline with minimized instruction dependencies.
The cache memory consists of a method cache containing
whole methods and a data cache that is split for stack-
allocated data and heap-allocated data. The pipeline can be
extended to a dual-issue pipeline when the instructions are
compiler scheduled. For further performance enhancements,
we propose a CMP system with time-sliced arbitration of
the main memory access. Running each task on its own
core in a CMP system eliminates scheduling, and the related
cache thrashing, from the analysis. The schedule of the
memory access becomes an input for WCET analysis. With
nonuniform time slices, the arbiter schedule can be adapted
to balance the utilization of the individual cores.

The concept of the proposed architecture is evaluated by
a real-time Java processor, called JOP. We have presented
a brief overview of the architecture. A simple four-stage
pipeline and microcoded implementation of JVM bytecodes
result in a time-predictable architecture. The proposed
method and stack caches are implemented in JOP. The
resulting design makes JOP an easy target for the low-level
WCET analysis of Java applications.

We compared JOP against several embedded Java sys-
tems. The result shows that a time-predictable computer
architecture does not need to be slow. A streamlined, time-
predictable processor design is quite small. Therefore, we
can regain performance by the exploration of thread level
parallelism in embedded applications with a replication of
the processor in a CMP architecture.

The proposed processor has been used with success
to implement several commercial real-time applications
[80]. JOP is open-source under the GNU GPL, and
all design files and the documentation are available at
http://www.jopdesign.com/.

We plan to implement some of the suggested architec-
tural enhancements in an RISC-based system in the future.
We will implement the proposed stack cache and the method
cache in YARI [76], an open-source, MIPS ISA-compatible
RISC implementation in an FPGA.

A scratchpad memory for JOP is implemented and
the integration into the programming model is under
investigation. We will add a small fully associative data cache
to JOP. This cache will also serve as a buffer for a real-
time transactional memory for the JOP CMP system. We
will investigate whether a standard cache for static data is a
practical solution for Java.

Acknowledgment

The author thanks Wolfgang Puffitsch and Florian Brandner
for the productive discussions on the topic and suggestions
for improving the paper.

15

References

[1] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 4th edition, 2006.

[2] M. Schoeberl, “A Java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol. 54, no.
1-2, pp. 265286, 2008.

[3] M. Schoeberl, “A time predictable instruction cache for a Java
processor,” in Proceedings of the On the Move to Meaningful
Internet Systems: Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES ’04), vol. 3292 of Lecture
Notes in Computer Science, pp. 371-382, Springer, Agia Napa,
Cyprus, October 2004.

[4] M. Schoeberl, “Design and implementation of an efficient
stack machine,” in Proceedings of the 12th IEEE Reconfigurable
Architecture Workshop (RAW °05), Denver, Colo, USA, April
2005.

[5] 1. Bate, P. Conmy, T. Kelly, and J. McDermid, “Use of modern
processors in safety-critical applications,” The Computer Jour-
nal, vol. 44, no. 6, pp. 531-543, 2001.

[6] L. Thiele and R. Wilhelm, “Design for timing predictability,”
Real-Time Systems, vol. 28, no. 2-3, pp. 157-177, 2004.

[7] S. A. Edwards and E. A. Lee, “The case for the precision
timed (PRET) machine,” in Proceedings of the 44th ACM/IEEE
Annual Conference on Design Automation (DAC °07), pp. 264—
265, ACM Press, San Diego, Calif, USA, June 2007.

[8] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and
E. A. Lee, “Predictable programming on a precision timed
architecture,” in Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems
(CASES °08), E. R. Altman, Ed., pp. 137-146, ACM Press,
Atlanta, Ga, USA, October 2008.

[9] C. Pitter, “Time-predictable memory arbitration for a Java
chip-multiprocessor,” in Proceedings of the 6th International
Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES °08), pp. 115-122, Santa Clara, Calif, USA,
September 2008.

[10] C. Berg, J. Engblom, and R. Wilhelm, “Requirements for and
design of a processor with predictable timing,” in Perspectives
Workshop: Design of Systems with Predictable Behaviour, L.
Thiele and R. Wilhelm, Eds., vol. 03471 of Dagstuhl Seminar
Proceedings, Internationales Begegnungsund Forschungszen-
trum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.

[11] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm,
“The influence of processor architecture on the design and the
results of WCET tools,” Proceedings of the IEEE, vol. 91, no. 7,
pp. 1038-1054, 2003.

[12] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F.
Mueller, “Virtual simple architecture (VISA): exceeding the
complexity limit in safe real-time systems,” in Proceedings
of the 30th Annual International Symposium on Computer
Architecture (ISCA ’03), pp. 350-361, ACM Press, San Diego,
Calif, USA, June 2003.

[13] P. Puschner and A. Burns, “Writing temporally predictable
code,” in Proceedings of the 7th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS *02),
pp- 85-94, IEEE Computer Society, San Diego, Calif, USA,
January 2002.

[14] M. Delvai, W. Huber, P. Puschner, and A. Steininger, “Pro-
cessor support for temporal predictability—the SPEAR design
example,” in Proceedings of the 15th Euromicro Conference on
Real-Time Systems (ECRTS °03), pp. 169-176, Porto, Portugal,
July 2003.



16

(15]

(19]

(20]

(21]

[22

(27

(28]
(29]

(30]

P. Puschner and M. Schoeberl, “On composable system
timing, task timing, and WCET analysis,” in Proceedings of
the 8th International Workshop on Worst-Case Execution Time
(WCET) Analysis, Prague, Czech Republic, July 2008.

J. Whitham, Real-time processor architectures for worst case
execution time reduction, Ph.D. thesis, University of York, York,
UK, 2008.

J. Whitham and N. Audsley, “Using trace scratchpads to
reduce execution times in predictable real-time architectures,”
in Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS °08), pp. 305—
316, St. Louis, Mo, USA, April 2008.

Y.-T. S. Li and S. Malik, “Performance analysis of embedded
software using implicit path enumeration,” in Proceedings of
the ACM SIGPLAN Workshop on Languages, Compilers, & Tools
for Real-Time Systems (LCTES ’95), pp. 88—98, ACM Press, La
Jolla, Calif, USA, November 1995.

P. P. Puschner and A. V. Schedl, “Computing maximum
task execution times—a graph-based approach,” Real-Time
Systems, vol. 13, no. 1, pp. 67-91, 1997.

J. Gustafsson, Analyzing execution-time of object-oriented
programs using abstract interpretation, Ph.D. thesis, Uppsala
University, Uppsala, Sweden, 2000.

P. Puschner and A. Burns, “Guest editorial: a review of worst-
case execution-time analysis,” Real-Time Systems, vol. 18, no.
2-3, pp. 115-128, 2000.

R. Wilhelm, J. Engblom, A. Ermedahl, et al., “The worst-case
execution-time problem-overview of methods and survey of
tools,” Transactions on Embedded Computing Systems, vol. 7,
no. 3, pp. 1-53, 2008.

J. Engblom, A. Ermedahl, M. Sodin, J. Gustafsson, and H.
Hansson, “Worst-case execution-time analysis for embedded
real-time systems,” International Journal on Software Tools for
Technology Transfer, vol. 4, no. 4, pp. 437-455, 2003.

K. D. Nilsen and B. Rygg, “Worst-case execution time analysis
on modern processors,” ACM SIGPLAN Notices, vol. 30, no.
11, pp. 20-30, 1995.

S. Thesing, Safe and precise worst-case executiontime prediction
by abstract interpretation of pipeline models, Ph.D. thesis,
University of Saarland, Saarland, Germany, 2004.

T. Lundqvist and P. Stenstrom, “Timing anomalies in dynam-
ically scheduled microprocessors,” in Proceedings of the 20th
IEEE Real-Time Systems Symposium (RTSS ’99), pp. 12-21,
IEEE Computer Society, Phoenix, Ariz, USA, December 1999.
I. Wenzel, R. Kirner, P. Puschner, and B. Rieder, “Principles
of timing anomalies in superscalar processors,” in Proceedings
of the 5th International Conference on Quality Software (QSIC
’05), pp. 295-303, IEEE Computer Society Press, Melbourne,
Australia, September 2005.

D. A. Patterson, “Reduced instruction set computers,” Com-
munications of the ACM, vol. 28, no. 1, pp. 8-21, 1985.

J. L. Hennessy, “VLSI processor architecture,” IEEE Transac-
tions on Computers, vol. 33, no. 12, pp. 1221-1246, 1984.

S.-S. Lim, Y. H. Bae, G. T. Jang, et al., “An accurate worst
case timing analysis for RISC processors,” IEEE Transactions
on Software Engineering, vol. 21, no. 7, pp. 593-604, 1995.

A. C. Shaw, “Reasoning about time in higher-level language
software,” IEEE Transactions on Software Engineering, vol. 15,
no. 7, pp. 875-889, 1989.

J. Engblom, Processor pipelines and static worst-case execution
time analysis, Ph.D. thesis, Uppsala University, Uppsala,
Sweden, 2002.

EURASIP Journal on Embedded Systems

[33] N. Zhang, A. Burns, and M. Nicholson, “Pipelined processors
and worst case execution times,” Real-Time Systems, vol. 5, no.
4, pp. 319-343, 1993.

[34] R.Arnold, E. Mueller, D. Whalley, and M. Harmon, “Bounding
worst-case instruction cache performance,” in Proceedings of
the Real-Time Systems Symposium (RTSS °94), pp. 172-181,
San Juan, Puerto Rico, USA, December 1994.

[35] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating
the timing analysis of pipelining and instruction caching,” in
Proceedings of the 16th Real-Time Systems Symposium, pp. 288—
297, Pisa, Italy, December 1995.

[36] C.-G. Lee, J. Hahn, Y.-M. Seo, et al., “Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling,”
IEEE Transactions on Computers, vol. 47, no. 6, pp. 700-713,
1998.

[37] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A.
Wellings, “Adding instruction cache effect to schedulability
analysis of preemptive real-time systems,” in Proceedings of the
2nd IEEE Real-Time Technology and Applications Symposium
(RTAS °96), pp. 204-212, IEEE Computer Society Press,
Brookline, Mass, USA, June 1996.

[38] C. A. Healy, R. D. Arnold, E Mueller, D. B. Whalley, and
M. G. Harmon, “Bounding pipeline and instruction cache
performance,” IEEE Transactions on Computers, vol. 48, no. 1,
pp. 53-70, 1999,

[39] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing pre-
dictability of cache replacement policies,” Real-Time Systems,
vol. 37, no. 2, pp. 99-122, 2007.

[40] J. Engblom, “Analysis of the execution time unpredictability
caused by dynamic branch prediction.,” in Proceedings of the
9th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS ’03), pp. 152-159, IEEE Computer
Society, Toronto, Canada, May 2003.

[41] X.Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order
processors for WCET analysis,” Real-Time Systems, vol. 34, no.
3, pp. 195227, 2006.

[42] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-
way multithreaded sparc processor,” IEEE Micro, vol. 25, no.
2, pp- 21-29, 2005.

[43] H. P. Hofstee, “Power efficient processor architecture and the
cell processor,” in Proceedings of the 11th International Sympo-
sium on High-Performance Computer Architecture (HPCA °05),
Pp- 258-262, San Francisco, Calif, USA, February 2005.

[44] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the cell multipro-
cessor,” IBM Journal of Research and Development, vol. 49, no.
4-5, pp. 589-604, 2005.

[45] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor
communication network: built for speed,” IEEE Micro, vol. 26,
no. 3, pp. 10-23, 2006.

[46] L. Seiler, D. Carmean, E. Sprangle, et al., “Larrabee: a
many-core x86 architecture for visual computing,” ACM
Transactions on Graphics, vol. 27, no. 3, pp. 1-15, 2008.

[47] J. Yan and W. Zhang, “WCET analysis for multi-core pro-
cessors with shared L2 instruction caches,” in Proceedings
of the 14th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS °08), pp. 80-89, St. Louis, Mo,
USA, April 2008.

[48] C. Ferdinand, R. Heckmann, M. Langenbach, et al., “Reliable
and precise WCET determination for a real-life processor,”
in Proceedings of the Ist International Workshop on Embedded
Software (EMSOFT °01), T. A. Henzinger and C. M. Kirsch,



EURASIP Journal on Embedded Systems

Eds., vol. 2211 of Lecture Notes in Computer Science, pp. 469—
485, Springer, Tahoe City, Calif, USA, October 2001.

N. P. Jouppi, “Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers,” in Proceedings of the 17th Annual International
Symposium on Computer Architecture (ISCA °90), pp. 364-373,
Seattle, Wash, USA, May 1990.

E Angiolini, L. Benini, and A. Caprara, “Polynomial-time
algorithm for on-chip scratchpad memory partitioning,” in
Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES 03),
pp. 318-326, ACM Press, San Jose, Calif, USA, October-
November 2003.

M. Verma and P. Marwedel, “Overlay techniques for scratch-
pad memories in low power embedded processors,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 8, pp. 802-815, 2006.

1. Puaut, “WCET-centric software-controlled instruction
caches for hard real-time systems,” in Proceedings of the 18th
Euromicro Conference on Real-Time Systems (ECRTS "06), vol.
2006, pp. 217-226, Dresden, Germany, July 2006.

L. Wehmeyer and P. Marwedel, “Influence of memory hier-
archies on predictability for time constrained embedded soft-
ware,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’05), vol. 1, pp. 600-605, Munich,
Germany, March 2005.

V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET
centric data allocation to scratchpad memory,” in Proceedings
of the 26th IEEE International Real-Time Systems Symposium
(RTSS ’05), pp. 223-232, IEEE Computer Society, Miami, Fla,
USA, December 2005.

L. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE 07), pp. 1484—1489, EDA Consortium, Nice,
France, April 2007.

A. Colin and L. Puaut, “Worst case execution time analysis for
a processor with branch prediction,” Real-Time Systems, vol.
18, no. 2-3, pp. 249-274, 2000.

A. Wellings, “Is Java augmented with the RTS] a better realtime
systems implementation technology than Ada 95,” Ada Letters,
vol. 23, no. 4, pp. 16-21, 2003.

Java Expert Group, “Java specification request JSR 302: Safety
critical Java technology,” http://jcp.org/en/jsr/detail?id=302.
M. Schoeberl, “A time predictable Java processor,” in Proceed-
ings of the Conference on Design, Automation and Test in Europe
(DATE °06), vol. 1, pp. 800-805, Munich, Germany, March
2006.

M. Schoeberl and R. Pedersen, “WCET analysis for a Java
processor,” in Proceedings of the 4th International Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES
’06), vol. 177, pp. 202-211, ACM Press, Paris, France, October
2006.

T. Harmon and R. Klefstad, “Interactive back-annotation of
worst-case execution time analysis for Java microprocessors,”
in Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA °07), pp. 209-216, Daegu, Korea, August 2007.

T. Bogholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and
K. G. Larsen, “Model-based schedulability analysis of safety
critical hard real-time Java programs,” in Proceedings of the
6th International Workshop on Java Technologies for Real-Time

17

and Embedded Systems (JTRES *08), pp. 106—114, ACM Press,
Santa Clara, Calif, USA, September 2008.

[63] Sun, “picoJava-II Microarchitecture Guide,” Sun Microsys-
tems, March 1999.

[64] Sun, “picoJava-II Programmer’s Reference Manual,” Sun
Microsystems, March 1999.

[65] W. Puffitsch, picoJava-II in an FPGA, M.S. thesis, University of
Technology, Vienna, Austria, 2007.

[66] Altera, “Cyclone FPGA Family Data Sheet,” ver. 1.2, April

2003.

[67] Imsys, Im1101c (the Cjip) technical reference manual, v0.25,
2004.

[68] aJile, “aj-100 real-time low power Java processor,” preliminary

data sheet, 2000.

[69] S. Uhrig and J. Wiese, “Jamuth: an IP processor core for
embedded Java real-time systems,” in Proceedings of the 5th
International Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES *07), pp. 230237, ACM Press,
Vienna, Austria, September 2007.

[70] M. Zabel, T. B. Preufer, P. Reichel, and R. G. Spallek, “Secure,
real-time and multi-threaded general-purpose embedded Java
microarchitecture,” in Proceedings of the 10th Euromicro
Conference on Digital System Design Architectures, Methods and
Tools (DSD °07), pp. 59—62, Liibeck, Germany, August 2007.

[71] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
Th. Ungerer, “Real-time event-handling and scheduling on
a multithreaded Java microcontroller,” Microprocessors and
Microsystems, vol. 27, no. 1, pp. 19-31, 2003.

[72] T. B. Preufler, M. Zabel, and R. G. Spallek, “Bump-pointer
method caching for embedded Java processors,” in Proceedings
of the 5th International Workshop on Java Technologies for Real-
Time and Embedded Systems (JTRES 07), pp. 206-210, ACM
Press, Vienna, Austria, September 2007.

[73] J. M. O’Connor and M. Tremblay, “picoJava-I: the Java virtual
machine in hardware,” IEEE Micro, vol. 17, no. 2, pp. 45-53,
1997.

[74] EJC, “The ejc (embedded Java controller) platform,” http://
www.embedded-web.com/index.html.

[75] A.Krall and R. Grafl, “CACAO—a 64-bit JavaVM just-in-time
compiler,” in Proceedings of the Workshop on Java for Science
and Engineering Computation (PPoPP ’97), G. C. Fox and W.
Li, Eds., ACM Press, Las Vegas, Nev, USA, June 1997.

[76] E. Brandner, T. Thorn, and M. Schoeberl, “Embedded JIT
compilation with CACAO on YARI,” Tech. Rep. RR 35/2008,
Institute of Computer Engineering, Vienna University of
Technology, Vienna, Austria, June 2008.

[77] C. Pitter and M. Schoeberl, “Performance evaluation of a Java
chip-multiprocessor,” in Proceedings of the 3rd International
Symposium on Industrial Embedded Systems (SIES "08), pp. 34—
42, La Grande Motte, France, June 2008.

[78] G. Bernat, A. Burns, and A. Wellings, “Portable worst-case
execution time analysis using Java byte code,” in Proceedings of
the 12th Euromicro Conference on Real-Time Systems (ECRTS
’00), pp. 81-88, Stockholm, Sweden, June 2000.

[79] 1. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low-
level analysis of a portable Java byte code WCET analysis
framework,” in Proceedings of the 7th International Conference
on Real-Time Computing and Applications (RTCSA °00), pp.
39-48, Cheju Island, Korea, December 2000.

[80] M. Schoeberl, “Application experiences with a real-time Java
processor,” in Proceedings of the 17th IFAC World Congress,
Seoul, Korea, July 2008.



	1. Introduction
	2. RelatedWork
	3.WCET Analysis Issues
	4. Time-Predictable Architecture
	5. Evaluation
	6. Conclusion
	Acknowledgment
	References

