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1. Introduction

In the continuing quest for computing architectures that are
capable of solving more computationally complex problems,
a new direction of study is high-performance reconfigurable
computing (HPRC). HPRC can be defined as a marriage of
traditional high-performance computing (HPC) techniques
and reconfigurable computing (RC) devices.

HPC is a well-known set of architectural solutions
for speeding up the computation of problems that can
be divided neatly into pieces. Multiple general-purpose
processors (GPPs) are linked together with high-speed
networks and storage devices such that they can share data.
Pieces of the problem are then distributed to the individual
processors and computed, and the answer is assembled
from the pieces. Commonly available HPC systems include
Beowulf clusters and other supercomputers. Reconfigurable
computing uses many of the same concepts as HPC, but at a
finer grain. A special-purpose processor (SPP), often a field-
programmable gate array (FPGA), is attached to a GPP and
programmed to execute a useful function. Special-purpose
hardware computes the answer to the problem quickly by
exploiting hardware design techniques such as pipelining, the

replication of small computation units, and high-bandwidth
local memories.

Both of these computing architectures reduce compu-
tation time by exploiting the parallelism inherent in the
application. They rely on the fact that multiple parts of the
overall problem can be computed relatively independently
of each other. Though HPC and RC act on different levels
of parallelism, in general, applications with a high degree of
parallelism are well-suited to these architectures.

The idea behind HPRC is to provide a computing
architecture that takes advantage of both the coarse-grained
parallelism exploited by clustered HPC systems and the fine-
grained parallelism exploited by RC systems. In theory, more
exploited parallelism means more speedup and faster com-
putation times. In reality, factors such as communications
bandwidth may prevent performance from improving as
much as is desired.

In this paper, we examine one application that contains
a very high degree of parallelism. The backprojection image
formation algorithm for synthetic aperture radar (SAR)
systems is “embarrassingly parallel”, meaning that it can
be broken down and parallelized on many different levels.
For this reason, we chose to implement backprojection on
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an HPRC machine at the Air Force Research Laboratory
in Rome, NY, USA, as part of an SAR processing system.
We present an analysis of the algorithm and its inherent
parallelism, and we describe the implementation process
along with the design decisions that went into the solution.

Our contributions are as follows.

(i) We implement the backprojection algorithm for
SAR on an FPGA. Though backprojection has been
implemented many times in the past (see Section 3),
FPGA implementations of backprojection for SAR
are not well represented in the literature.

(ii) We further parallelize this implementation by devel-
oping an HPC application that produces large SAR
images on a multinode HPRC system.

The rest of this paper is organized as follows. Section 2
provides some background information on the backpro-
jection algorithm and the HPRC system on which we
implemented it. In Section 3, we discuss related research.
Section 4 describes the backprojection implementation and
how it fits into the overall backprojection application. The
performance data and results of our design experiments are
analyzed in Section 5. Finally, Section 6 draws conclusions
and suggests future directions for research.

Readers who are interested in more detail about this work
are directed to the master thesis on which it is based [1].

2. Background

This section provides supporting information that is useful
to understanding the application presented in Section 4.
Section 2.1 describes backprojection and SAR, highlighting
the mathematical function that we implemented in hard-
ware. Section 2.2 presents details about the HPRC system
that hosts our application.

2.1. Backprojection Algorithm. We briefly describe the back-
projection algorithm in this section. Further details on the
radar processing and signal processing aspects of this process
can be found in [2, 3].

Backprojection is an image reconstruction algorithm that
is used in a number of applications, including medical imag-
ing (computed axial tomography, or (CAT)) and synthetic
aperture radar (SAR). The implementation we describe is
used in an SAR application. For both radar processing
and medical imaging applications, backprojection provides
a method for reconstructing an image from the data that are
collected by the transceiver.

SAR data are essentially a series of time-indexed radar
reflections observed by a single transceiver. At each step
along the synthetic aperture, or flight path, a pulse is emitted
from the source. This pulse reflects off elements in the scene
to varying degrees, and is received by the transceiver. The
observed response to a radar pulse is known as a “trace”.

SAR data can be collected in one of two modes,
“strip-map” or “spotlight”. These modes describe the motion
of the radar relative to the area being imaged. In the
spotlight mode of SAR, the radar circles around the scene.

Our application implements the strip-map mode of SAR, in
which radar travels along a straight and level path.

Regardless of mode, given a known speed at which the
radar pulse travels, the information from the series of time-
indexed reflections can be used to identify points of high
reflectivity in the target area. By processing multiple traces
instead of just one, a larger radar aperture is synthesized and
thus a higher-resolution image can be formed.

The backprojection image formation algorithm has two
parts. First, the radar traces are filtered according to a linear
time-invariant system. This filter accounts for the fact that
the airplane on which the radar dish is situated does not
fly in a perfectly level and perfectly straight path. Second,
after filtering, the traces are “smeared” across an image plane
along contours that are defined by the SAR mode; in our case,
the flight path of the plane carrying the radar. Coherently,
summing each of the projected images provides the final
reconstructed version of the scene.

Backprojection is a highly effective method of processing
SAR images. It is computationally complex, much like tradi-
tional Fourier-based image formation techniques. However,
backprojection contains a high degree of parallelism, which
makes it suitable for the implementation on reconfigurable
devices.

The operation of backprojection takes the form of a
mapping from projection data p(t,u) to an image f (x, y). A
single pixel of the image f corresponds to an area of ground
containing some number of objects which reflect radar to a
certain degree. Mathematically, this relationship is written as

f (x, y) =
∫
p
(
i(x, y,u),u

)
du, (1)

where i(x, y,u) is an indexing function indicating, at a given
u, those t that play a role in the value of the image at location
(x, y). For the case of SAR imaging, the projection data
p(t,u) take the form of the filtered radar traces described
above. Thus, the variable u corresponds to the slow-time
location of the radar, and t is the fast-time index into that
projection. Fast-time variables are related to the speed of
radar propagation (i.e., the speed of light), while slow-time
variables are related to the speed of the airplane carrying the
radar. The indexing function i takes the following form for
SAR:

i(x, y,u) = χ(y ± x tanφ)·
√
x2 + (y − u)2

c
, (2)

where c is the speed of light, φ the beamwidth of the radar,
and χ(a, b) equal to 1 for a ≤ u ≤ b and 0 otherwise. x and
y describe the two-dimensional offset between the radar and
the physical spot on the ground corresponding to a pixel, and
can thus be used in a simple distance calculation as seen in
the right-hand side of (2).

In terms of implementation, we work with a discretized
form of (1) in which the integral is approximated as a
Riemann sum over a finite collection of projections uk, k ∈
{1 · · ·K} and is evaluated at the centers of image pixels (xi,
yj), i ∈ {1 · · ·N}, j ∈ {1 · · ·K}. Because the evaluation
of the index function at these discrete points will generally
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not result in a value of t which is exactly at a sample location,
interpolation could be performed to increase accuracy.

2.2. HPRC Architecture. This project aimed at exploiting the
full range of resources available on the heterogeneous high-
performance cluster (HHPC) at the Air Force Research Lab-
oratory in Rome, NY, USA [4]. Built by HPTi [5], the HHPC
features a Beowulf cluster of 48 heterogeneous computing
nodes, where each node consists of a dual 2.2 GHz Xeon PC
running Linux and an Annapolis Microsystems WildStar II
FPGA board.

The WildStar II features two VirtexII FPGAs and con-
nects to the host Xeon general-purpose processors (GPPs) via
the PCI bus. Each FPGA has access to 6 MB of SRAM, divided
into 6 banks of 1 MB each, and a single 64 MB SDRAM bank.
The Annapolis API supports a master-slave paradigm for
control and data transfer between the GPPs and the FPGAs.
Applications for the FPGA can be designed either through
traditional HDL-based design and synthesis tools, as we have
done here, or by using Annapolis’s CoreFire [6] module-
based design suite.

The nodes of the HHPC are linked together in three
ways. The PCs are directly connected via gigabit Ethernet
as well as through Myrinet MPI cards. The WildStar II
boards are also directly connected to each other through
a low-voltage differential signaling (LVDS) I/O daughter
card, which provides a systolic interface over which each
FPGA board may talk to its nearest neighbor in a ring.
Communication over Ethernet is supplied by the standard
C library under Linux. Communication over Myrinet is
achieved with an installation of the MPI message-passing
standard, though MPI can also be directed to use Ethernet
instead. Communicating through the LVDS interconnect
involves writing communication modules for the FPGA
manually. In this project, we relied on Myrinet to move
data between nodes. This architecture represents perhaps the
most direct method for adding reconfigurable resources to
a supercomputing cluster. Each node architecture is similar
to that of a single-node reconfigurable computing solution.
Networking hardware which interfaces well to the Linux
PCs is included to create the cluster network. The ability
to communicate between FPGAs is included but remains
difficult for the developer to employ. Other HPRC platforms,
such as those developed by Cray and SRC, may employ
different interconnection methods, programming methods,
and communication paradigms.

3. RelatedWork

Backprojection itself is a well-studied algorithm. Most
researchers have focused on implementing backprojection
for computed tomography (CT) medical imaging applica-
tions; backprojection for synthetic aperture radar (SAR) on
FPGAs is not well-represented in the literature.

The precursor to this work is that of Coric et al. [7]
Backprojection for CT uses the “spotlight” mode of imaging,

in which the sensing array is rotated around the target
area. (Contrast this with the “strip-map” mode described in
Section 2.1.) Other implementations of backprojection for
CT on FPGAs have been published [8].

CT backprojection has also been implemented on several
other computing devices, including GPUs [9] and the cell
broadband engine [10]. Results are generally similar (within
a factor of 2) to those achieved on FPGAs.

Of the implementations of backprojection for SAR,
almost none has been designed for FPGAs. Soumekh et al.
have published on implementations of SAR in general and
backprojection in particular [11], as well as the Soumekh
reference book on the subject [2], but they do not examine
the use of FPGAs for computation. Some recent work on
backprojection for SAR on parallel hardware has come from
Halmstad University in Sweden [12, 13]; their publications
lay important groundwork but have not been implemented
except in software and/or simulation.

Backprojection is not the only application that has been
mapped to HPRC platforms, though signal processing is
traditionally a strength of RC and so large and complex signal
processing applications like backprojection are common.
With the emergence of HPRC, scientific applications are
also seeing significant research effort. Among these are
such applications as hyperspectral dimensionality reduction
[14], molecular dynamics [15, 16], and cellular automata
simulations [17].

Another direction of HPRC research has been the devel-
opment of libraries of small kernels that are useful as building
blocks for larger applications. The Vforce framework [18]
allows for portable programming of RC systems using a
library of kernels. Other developments include libraries of
floating-point arithmetic units [19], work on FFTs [20], and
linear algebra kernels such as BLAS [21, 22].

Several survey papers [23, 24] address the trends that
can be found among the reported results. The transfer
of data between GPP and FPGA can significantly impact
performance. The ability to determine and control the
memory access patterns of the FPGA and the on-board
memories is critical. Finally, sacrificing the accuracy of the
results in favor of using lighter-weight operations that can be
more easily implemented on an FPGA can be an effective way
of increasing performance.

4. Experimental Design

In this section, we describe an implementation of the
backprojection image formation algorithm on a high-
performance reconfigurable computer. Our implementation
has been designed to provide high-speed image forma-
tion services and support output data distribution via a
publish/subscribe [25] methodology. Section 4.1 describes
the system on which our implementation runs. Section 4.2
explores the inherent parallelism in backprojection and
describes the high-level design decisions that steered the
implementation. Section 4.3 describes the portion of the
implementation that runs in software, and Section 4.4
describes the hardware.
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Figure 1: Block diagram of Swathbuckler system. (Adapted from [26].)

4.1. System Background. In Section 2.2, we described the
HHPC system. In this section, we will explore more deeply
the aspects of that system that are relevant to our experimen-
tal design.

4.1.1. HHPC Features. Several features of the Annapolis
WildStar II FPGA boards are directly relevant to the design of
our backprojection implementation. In particular, the host-
to-FPGA interface, the on-board memory bandwidth, and
the available features of the FPGA itself guided our design
decisions.

Communication between the host GPP and the WildStar
II board is over a PCI bus. The HHPC provides a PCI bus
that runs at 66 MHz with 64-bit datawords. The WildStar II
on-board PCI interface translates this into a 32-bit interface
running at 133 MHz. By implementing the DMA data
transfer mode to communicate between the GPP and the
FPGA, the on-board PCI interface performs this translation
invisibly and without significant loss of performance. A
133 MHz clock is also a good and achievable clock rate for
FPGA hardware, so most of the hardware design can be run
directly off the PCI interface clock. This simplifies the design
since there are fewer clock domains (see Section 4.4.1).

The WildStar II board has six on-board SRAM memories
(1 MB each) and one SDRAM memory (64 MB). It is
beneficial to be able to read one datum and write one datum
in the same clock cycle, so we prefer to use multiple SRAMs
instead of the single larger SDRAM. The SRAMs run at
50 MHz and feature a 32-bit dataword (plus four parity bits),
but they use a DDR interface. The Annapolis controller for
the SRAM translates this into a 50 MHz 72-bit interface. Both
features are separately important: we will need to cross from
the 50 MHz memory clock domain to the 133 MHz PCI clock
domain, and we will need to choose the size of our data
such that they can be packed into a 72-bit memory word (see
Section 4.2.4).

Finally, the Virtex2 6000 FPGA on the Wildstar II has
some useful features that we use to our advantage. A large
amount of on-chip memory is available in the form of
BlockRAMs, which are configurable in width and depth but
can hold at most 2 KB of data each. One hundred forty four
of these dual-ported memories are available, each of which
can be accessed independently. This makes BlockRAMs a
good candidate for storing and accessing input projection
data (see Sections 4.2.4 and 4.4.3.) BlockRAMs can also be

configured as FIFOs, and due to their dual-ported nature,
can be used to cross clock domains.

4.1.2. Swathbuckler Project. This project was designed to
fit in as part of the Swathbuckler project [26–28], an
implementation of synthetic aperture radar created by a
joint program between the American, British, Canadian, and
Australian defense research project agencies. It encompasses
the entire SAR process including the aircraft and radar dish,
signal capture and analog-to-digital conversion, filtering,
and image formation hardware and software.

Our problem as posed was to increase the processing
capabilities of the HHPC by increasing the performance of
the portions of the application seen on the right-hand side of
Figure 1. Given that a significant amount of work had gone
into tuning the performance of the software implementation
of the filtering process [26], it remained for us to improve
the speed at which images could be formed. According to
the project specification, the input data are streamed into the
microprocessor main memory. In order to perform image
formation on the FPGA, it is then necessary to copy data
from the host to the FPGA. Likewise, the output image must
be copied from the FPGA memory to the host memory
so that it can be made accessible to the publish/subscribe
software. These data transfer times are included in our
performance measurements (see Section 5).

4.2. Algorithm Analysis. In this section, we dissect the
backprojection algorithm with an eye toward implementing
it on an HPRC machine. There are many factors that
need to be taken into account when designing an HPRC
application. First and foremost, an application that does
not have a high degree of parallelism is generally not
a good candidate. Given a suitable application, we then
decide how to divide the problem along the available levels
of parallelism in order to determine what part of the
application will be executed on each available processor.
This includes GPP/FPGA assignment as well as dividing
the problem across the multiple nodes of the cluster. For
the portions of the application run on the FPGAs, data
arrays must be distributed among the accessible memories.
Next, we look at some factors to improve the performance
of the hardware implementation, namely, data formats and
computation strength reduction. We conclude by examining
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the parameters of the data collection process that affect the
computation.

4.2.1. Parallelism Analysis. In any reconfigurable applica-
tion design, performance gains due to implementation in
hardware inevitably come from the ability of reconfigurable
hardware (and, indeed, hardware in general) to perform
multiple operations at once. Extracting the parallelism
in an application is thus critical to a high-performance
implementation.

Equation (1) shows the backprojection operation in
terms of projection data p(t,u) and an output image f (x, y).
That equation may be interpreted to say that for a particular
pixel f (x̂, ŷ), the final value can be found from a summation
of contributions from the set of all projections p(t,u) whose
corresponding radar pulse covered that ground location.
The value of t for a given u is determined by the mapping
function i(x, y,u) according to (2). There is a large degree of
parallelism inherent in this interpretation.

(1) The contribution from projection p(û) to pixel
f (x̂, ŷ) is not dependent on the contributions from
all other projections p(u), u /= û to that same pixel
f (x̂, ŷ).

(2) The contribution from projection p(û) to pixel
f (x̂, ŷ) is not dependent on the contribution from
p(û) to all other pixels f (x, y), x /= x̂, y /= ŷ.

(3) The final value of a pixel is not dependent on the
value of any other pixel in the target image.

It can be said, therefore, that backprojection is an
“embarrassingly parallel” application, which is to say that
it lacks any data dependencies. Without data dependencies,
the opportunity for parallelism is vast and it is simply a
matter of choosing the dimensions along which to divide
the computation that best matches the system on which the
algorithm will be implemented.

4.2.2. Dividing the Problem. There are two ways in which
parallel applications are generally divided across the nodes
of a cluster.

(1) Split the data. In this case, each node performs the
same computation as every other node, but on a
subset of data. There may be several different ways
that the data can be divided.

(2) Split the computation. In this case, each node per-
forms a portion of the computation on the entire
dataset. Intermediate sets of data flow from one node
to the next. This method is also known as task-
parallel or systolic computing.

While certain supercomputer networks may make the
task-parallel model attractive, our work with the HHPC indi-
cates that its architecture is more suited to the data-parallel
mode. Since internode communication is accomplished over
a many-to-many network (Ethernet or Myrinet), passing
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Figure 2: Division of target image across multiple nodes.

data from one node to the next as implied by the task-
parallel model will potentially hurt performance. A task-
parallel design also implies that a new FPGA design must be
created for each FPGA node in the system, greatly increasing
design and verification time. Finally, the number of tasks
available in this application is relatively small and would not
occupy the number of nodes that are available to us.

Given that we will create a data-parallel design, there
are several axes along which we considered splitting the
data. One method involves dividing the input projection
data p(t,u) among the nodes along the u dimension. Each
node would hold a portion of the projections p(t, [ui,uj])
and calculate that portion contribution to the final image.
However, this implies that each node must hold a copy of
the entire target image in memory, and furthermore, that all
of the partial target images would need to be added together
after processing before the final image could be created. This
extra processing step would also require a large amount of
data to pass between nodes. In addition, the size of the final
image would be limited to that which would fit on a single
FPGA board.

Rather than dividing the input data, the preferred
method divides the output image f (x, y) into pieces along
the range (x) axis (see Figure 2). In theory, this requires that
every projection be sent to each node; however, since only
a portion of each projection will affect the slice of the final
image being computed on a single node, only that portion
must be sent to that node. Thus, the amount of input data
being sent to each node can be reduced to p([ti, t j],u). We
refer to the portion of the final target image being computed
on a single node, f ([xi, xj], y), as a “subimage”.

Figure 2 shows that t j is slightly beyond the time index
that corresponds to xj . This is due to the width of the cone-
shaped radar beam. The dotted line in the figure shows a
single radar pulse taken at slow-time index y = u. The
minimum distance to any part of the subimage is at the
point (xi,u), which corresponds to fast-time index ti in the
projection data. The maximum distance to any part of the
subimage, however, is along the outer edge of the cone to
the point (xj ,u ± w), where w is a factor calculated from
the beamwidth angle of the radar and xj . Thus, the fast-time
index t j is calculated relative to xj and w instead of simply
xj . This also implies that the [ti, t j] range for two adjacent
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nodes will overlap somewhat, or (equivalently) that some
projection data will be sent to more than one node.

Since the final value of a pixel does not depend on the
values of the pixels surrounding it, each FPGA needs hold
only the subimage that it is responsible for computing. That
portion is not affected by the results on any other FPGA,
which means that the postprocessing accumulation stage can
be avoided. If a larger target image is desired, subimages can
be “stitched” together simply by concatenation.

In contrast to the method where input data are divided
along the u dimension, the size of the final target image is
not restricted by the amount of memory on a single node,
and furthermore, larger images can be processed by adding
nodes to the cluster. This is commonly referred to as coarse-
grained parallelism, since the problem has been divided into
large-scale independent units. Coarse-grained parallelism is
directly related to the performance gains that are achieved by
adapting the application from a single-node computer to a
multinode cluster.

4.2.3. Memory Allocation. The memory devices used to
store the input and output data on the FPGA board may
now be determined. We need to store two large arrays
of information: the target image f (x, y) and the input
projection data p(t,u). On the Wildstar II board, there are
three options: an on-board DRAM, six on-board SRAMs,
and a variable number of BlockRAMs which reside inside
the FPGA and can be instantiated as needed. The on-board
DRAM has the highest capacity (64 MB) but is the most
difficult to use and only has one read/write port. BlockRAMs
are the most flexible (two read/write ports and a flexible
geometry) and simple to use, but have a small (2 KB)
capacity.

For the target image, we would like to be able to both read
and write one target pixel per cycle. It is also important that
the size of the target image stored on one node be as large as
possible, so memories with larger capacity are better. Thus,
we will use multiple on-board SRAMs to store the target
image. By implementing a two-memory storage system, we
can provide two logical ports into the target image array.
During any given processing step, one SRAM acts as the
source for target pixels, and the other acts as the destination
for the newly computed pixel values. When the next set of
projections is sent to the FPGA, the roles of the two SRAMs
are reversed.

Owing to the 1 MB size of the SRAMs in which we store
the target image data, we are able to save 219 pixels. We choose
to arrange this into a target image that is 1024 pixels in the
azimuth dimension and 512 in the range dimension. Using
power-of-two dimensions allows us to maximize our use of
the SRAM, and keeping the range dimension small allows
us to reduce the amount of projection data that must be
transferred.

For the projection data, we would like to have many small
memories that can each feed one of the projection adder
units. BlockRAMs allow us to instantiate multiple small
memories in which to hold the projection data; each memory
has two available ports, meaning that two adders can be

supported in parallel. Each adder reads from one SRAM and
writes to another; since we can support two adders, we could
potentially use four SRAMs.

4.2.4. Data Formats. Backprojection is generally accom-
plished in software using a complex (i.e., real and imaginary
parts) floating-point format. However, since the result of this
application is an image which requires only values from 0
to 255 (i.e., 8-bit integers), the loss of precision inherent
in transforming the data to a fixed-point/integer format is
negligible. In addition, using an integer data format allows
for much simpler functional units.

Given an integer data format, it remains to determine
how wide the various datawords should be. We base our
decision on the word width of the memories. The SRAM
interface provides 72 bits of data per cycle, comprised of
two physical 32-bit datawords plus four bits of parity each.
The BlockRAMs are configurable, but generally can provide
power-of-two sized datawords.

Since backprojection is in essence an accumulation oper-
ation, it makes sense for the output data (target image pixels)
to be wider than the input data (projection samples). This
reduces the likelihood of overflow error in the accumulation.
We, therefore, use 36-bit complex integers (18-bit real and
18-bit imaginary) for the target image, and 32-bit complex
integers for the projection data.

After backprojection, a complex magnitude operator is
needed to reduce the 36-bit complex integers to a single 18-
bit real integer. This operator is implemented in hardware,
but the process of scaling data from 18-bit integer to 8-bit
image is left to the software running on the GPP.

4.2.5. Computation Analysis. The computation to be per-
formed on each node consists of three parts. The summation
from (1) and the distance calculation from (2) represent the
backprojection work to be done. The complex magnitude
operation is similar to the distance calculation.

While adders are simple to replicate in large numbers,
the hardware required to perform multiplication and square
root is more costly. If we were using floating-point data
formats, the number of functional units that could be
instantiated would be very small, reducing the parallelism
that we can exploit. With integer data types, however, these
units are relatively small, fast, and easily pipelined. This
allows us to maintain a high clock rate and one-result-per-
cycle throughput.

4.2.6. Data Collection Parameters. The conditions under
which the projection data are collected affect certain aspects
of the backprojection computation. In particular, the spacing
between samples in the p(t,u) array and the spacing between
pixels in the f (x, y) array imply constant factors that must be
accounted for during the distance-to-time index calculation
(see Section 4.4.3).

For the input data, Δu indicates the distance (in meters)
between samples in the azimuth dimension. This is equiv-
alent to the distance that the plane travels between each
outgoing pulse of the radar. Often, due to imperfect flight
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paths, this value is not regular. The data filtering that occurs
prior to backprojection image formation is responsible for
correcting for inaccuracies due to the actual flight path, so
that a regular spacing can be assumed.

As the reflected radar data are observed by the radar
receiver, they are sampled at a particular frequency ω. That
frequency translates to a range distance Δt between samples
equal to c/2ω, where c is the speed of light. The additional
factor of 1/2 accounts for the fact that the radar pulse travels
the intervening distance, is reflected, and travels the same
distance back. Owing to the fact that the airplane is not flying
at ground level, there is an additional angle of elevation that
is included to determine a more accurate value for Δt.

For the target image (output data), Δx and Δy simply
correspond to the real distance between pixels in the range
and azimuth dimensions, accordingly. In general, Δx and
Δy are not necessarily related to Δu, and Δt and can be
chosen at will. In practice, setting Δy = Δu makes the
algorithm computation more regular (and thus more easily
parallelizable). Likewise, setting Δx = Δt reduces the need
for interpolation between samples in the t dimension since
most samples will line up with pixels in the range dimension.
Finally, setting Δx = Δy provides for square pixels and an
easier-to-read aspect ratio in the output image.

The final important parameter is the minimum range
from the radar to the target image, known as Rmin. This is
related to the ti parameter, and is used by the software to
determine what portion of the projection data is applicable
to a particular node.

4.3. Software Design. We now describe the HPRC imple-
mentation of backprojection. As with most FPGA-based
applications, the work that makes up the application is
divided between the host GPP and the FPGA. In this section,
we will discuss the work done on the GPP; in Section 4.4, we
continue with the hardware implemented on the FPGA.

The main executable running on the GPP begins by
using the MPI library to spawn processes on several of the
HHPC nodes. Once all MPI jobs have started, the host code
configures the FPGA with the current values of the flight
parameters from Section 4.2.6. In particular, the values of
Δx, Δy, and Rmin (the minimum range) are sent to the
FPGA. However, in order to avoid the use of fractional
numbers, all of these parameters are normalized such that
Δt = 1. This allows the hardware computation to be in
terms of fast-time indices in the t domain instead of ground
distances.

Next, the radar data is read. In the Swathbuckler system,
this input data would be streamed directly into memory and
no separate “read” step would be required. Since we are not
able to integrate directly with Swathbuckler, our host code
reads the data from a file on the shared disk. These data are
translated from complex floating-point format to integers.
The host code also determines the appropriate range of t that
is relevant to the subimage being calculated by this node (see
Section 4.2.2).

The host code then loops over the u domain of the
projection data. A chunk of the data is sent to the FPGA
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Figure 3: Block diagram of backprojection hardware unit.

and processed. The host code waits until the FPGA signals
processing is complete, and then transmits the next chunk
of data. When all projection data have been processed, the
host code requests that the final target image be sent from the
FPGA. The pixels of the target image are scaled, rearranged
into an image buffer, and an image file is optionally produced
using a library call to the GTK+ library [29].

After processing, the target subimages are simply held in
the GPP memory. In the Swathbuckler system, subimages
are distributed to consumers via a publish/subscribe mech-
anism, so there is no need to assemble all the subimages into
a larger image.

4.3.1. Configuration Parameters. Our backprojection imple-
mentation can be configured using several compile-time
parameters in both the host code and the VHDL code that
describes the hardware. In software, the values of Δx and Δy
are set in the header file and compiled in. The value of Rmin

is specific to a dataset, so it is read from the file that contains
the projection data.

It is also possible to set the dimensions of the subimage
(1024× 512 by default), though the hardware would require
significant changes to support this.

The hardware VHDL code allows two parameters to be
set at compile time (see Section 4.4.3). N is the number of
projection adders in the design, and R is the size of the
projection memories (R × 1024 words). Once compiled, the
value of these parameters can be read from the FPGA by the
host code.

4.4. FPGA Design. The hardware that is instantiated on
the FPGA boards runs the backprojection algorithm and
computes the values of the pixels in the output image. A
block diagram of the design is shown in Figure 3. References
to blocks in this figure are printed in monospace.

4.4.1. Clock Domains. In general, using multiple clock
domains in a design adds complexity and makes verification
significantly more difficult. However, the design of the
Annapolis Wildstar II board provides for one fixed-rate clock
on the PCI interface, and a separate fixed-rate clock on the
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SRAM memories. This is a common attribute of FPGA-based
systems.

To simplify the problem, we run the bulk of our design
at the PCI clock rate (133 MHz). Since Annapolis VHDL
modules refer to the PCI interface as the “LAD bus”, we
call this the L-clock domain. Every block in Figure 3, with
the exception of the SRAMs themselves and their associated
Address Generators, is run from the L-clock.

The SRAMs are run from the memory clock, or M-
clock, which is constrained to run at 50 MHz. Between the
Target Memories and the Projection Adders, there is
some interface logic and an FIFO. This is not shown in
Figure 3, but exists to cross the M-clock/L-clock domain
boundary.

BlockRAM-based FIFOs, available as modules in the
Xilinx CORE Generator [30] library, are used to cross
clock domains. Since each of the ports on the dual-ported
BlockRAMs is individually clocked, the read and write can
happen in different clock domains. Control signals are
automatically synchronized to the appropriate clock, that is,
the “full” signal is synchronized to the write clock and the
“empty” signal to the read clock. Using FIFOs whenever clock
domains must be crossed provides a simple and effective
solution.

4.4.2. Control Registers and DMA Input. The Annapolis API,
like many FPGA control APIs, allows for communication
between the host PC and the FPGA with two methods:
“programmed” or memory-mapped I/O (PIO), which is best
for reading and writing one or two words of data at a time;
direct memory access (DMA), which is best for transferring
large blocks of data.

The host software uses PIO to set control registers
on the FPGA. Projection data is placed in a specially
allocated memory buffer, and then transmitted to the FPGA
via DMA. On the FPGA, the DMA Receive Controller
receives the data and arranges it in the BlockRAMs inside the
Projection Adders.

4.4.3. Datapath. The main datapath of the backprojec-
tion hardware is shown in Figure 4. It consists of five
parts: the Target Memory SRAMs that hold the target
image, the Distance-To-Time Index Calculator (DIC),
the Projection Data BlockRAMs, the Adders to perform
the accumulation operation, and the Address Generators
that drive all of the memories. These devices all operate in
a synchronized fashion, though there are FIFOs in several
places to temporally decouple the producers and consumers
of data, as indicated in Figure 4 with segmented rectangles.

Address Generators. There are three data arrays that must be
managed in this design: the input target data, the out-
put target data, and the projection data. The pixel
indices for the two target data arrays (Target Memory
A and Target Memory B in Figure 4) are managed directly
by separate address generators. The address generator for the
Projection Data BlockRAMs also produces pixel indices;

Target memory A
(1 MB SRAM)

Address
generator

Address
generator

Projection adder 1

Projection adder 2

... ...
...

Projection adder N

Target memory B
(1 MB SRAM)

Address
generator

FIFO

+Distance-to-time
calculator

Projection data
(2 KB BlockRAM)

Figure 4: Block diagram of hardware datapath.

the DIC converts the pixel index into a fast-time index that is
used to address the BlockRAMs.

Because a single read/write operation to the SRAMs
produces/consumes two pixel values, the address generators
for the SRAMs run for half as many cycles as the address
generator for the BlockRAMs. However, address generators
run in the clock domain relevant to the memory that they
are addressing, so n/2 SRAM addresses take slightly longer to
generate at 50 MHz than n BlockRAM addresses at 133 MHz.

Because of the use of FIFOs between the memories and
the adders, the address generators for Target Memory A
and the Projection Data BlockRAMs can run freely. FIFO
control signals ensure that an address generator is paused in
time to prevent it from overflowing the FIFO. The address
generator for Target Memory B is incremented whenever
data are available from the output FIFO.

Distance-To-Time Index Calculator. The Distance-To-
Time Index Calculator (DIC) implements (2), which is
comprised of two parts. At first glance, each of these parts
involves computation that requires large amount of hardware
and/or time to calculate. However, a few simplifying assum-
ptions make this problem easier and reduce the amount of
needed hardware.

Rather than implementing a tangent function in hard-
ware, we rely on the fact that the beamwidth φ of the radar
is a constant. The host code performs the tanφ function and
sends the result to the FPGA, which is then used to calculate
χ(a, b). This value is used both on a coarse-grained level
to narrow the range of pixels which are examined for each
processing step, and on a fine-grained level to determine
whether or not a particular pixel is affected by the current
projection (see Figure 2).
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The right-hand side of (2) is a distance function

(
√
x2 + y2) and a division. The square root function is

executed using an iterative shift-and-subtract algorithm. In
hardware, this algorithm is implemented with a pipeline
of subtractors. Two multiplication units handle the x2 and
y2 functions. Some additional adders and subtractors are
necessary to properly align the input data to the output
data according to the data collection parameters discussed
in Section 4.2.6. We used pipelined multipliers and division
units from the Xilinx CORE Generator library; adders and
subtractors are described with VHDL arithmetic operators,
allowing the synthesis tools to generate the appropriate
hardware.

The distance function and computation of χ(·) occur
in parallel. If the χ(·) function determines that the pixel is
outside the affected range, the adder input is forced to zero.

Projection Data BlockRAMs. The output of the DIC is a fast-
time index into the p(t,u) array. Each Projection Data
BlockRAM holds the data for a particular value of u. The
fast-time index t is applied to retrieve a single value of p(t,u)
that corresponds to the pixel that was input by the address
generator. This value is stored in an FIFO, to be synchronized
with the output of the Target Memory A FIFO.

Projection Data memories are configured to hold 2 k
datawords by default, which should be sufficient for a 1 k
range pixel image. This number is a compile-time parameter
in the VHDL source and can be changed. The resource
constraint is the number of available BlockRAMs.

Projection Adder. As the FIFOs from the Projection
Data memories and the Target Memory are filled, the
Projection Adder reads datawords from both FIFOs, adds
them together, and passes them to the next stage in the
pipeline (see Figure 4).

The design is configured with eight adder stages, meaning
eight projections can be processed in one step. This number
is a compile-time parameter in the VHDL source and
can be changed. The resource constraint is a combina-
tion of the number of available BlockRAMs (because the
Projection Data BlockRAMs and FIFO are duplicated)
and the amount of available logic (to implement the DIC).

The number of adder stages implemented directly
impacts the performance of our application. By computing
the contribution of multiple projections in parallel, we
exploit the fine-grained parallelism inherent in the backpro-
jection algorithm. Fine-grained parallelism is directly related
to the performance gains achieved by implementing the
application in hardware, where many small execution units
can be implemented that all run at the same time on different
pieces of data.

4.4.4. Complex Magnitude and DMA Output. When all
projections have been processed, the final target image data
reside in one of the Target Memory SRAMs. The host code
then requests that the image data be transferred via DMA to
the host memory. This process occurs in three steps.

First, an Address Generator reads the data out of
the SRAM in the correct order. Second, the data are
converted from complex to real. The Complex Magnitude
operator performs this function with a distance calculation
(
√

re2 + im2). We instantiate another series of multipliers,
adders, and subtractors (for the integer square root) to
perform this operation. Third, the real-valued pixels are
passed to the DMA Transmit Controller, where they are
sent from the FPGA to the host memory.

5. Experimental Results

After completing the design, we conducted a series of
experiments to determine the performance and accuracy
of the hardware. When run on a single node, a detailed
profile of the execution time of both the software and
hardware programs can be determined, and the effects of
reconfigurable hardware design techniques can be studied.
Running the same program on multiple nodes shows how
well the application scales take advantage of the processing
power available on HPC clusters. In this section, we describe
the experiments and analyze the collected results.

5.1. Experimental Setup. Our experiments consist of running
programs on the HHPC and measuring the run time of
individual components as well as the overall execution time.
There are two programs: one which forms images by running
backprojection on the GPP (the “software” program), and
one which runs it in hardware on an FPGA (the “hardware”
program).

We are concerned with two factors: speed of execution
and accuracy of solution. We will consider not only the
execution time of the backprojection operation by itself,
but also the execution time of the entire program including
peripheral operations such as memory management and data
scaling. In addition, we examine the full application run
time.

In terms of accuracy, the software program computes
its results in floating point while the hardware uses integer
arithmetic. We will examine the differences between the
images produced by these two programs in order to establish
the error introduced by the data format conversion.

The ability of our programs to scale across multiple
nodes is an additional performance metric. We measure
the effectiveness of exploiting coarse-grained parallelism by
comparing the relative performance of both the software
program and the hardware implementation when run on one
node and when run on many nodes.

5.1.1. Software Design. All experiments were conducted on
the HHPC system as described in Section 2.2. Nodes on the
HHPC run the Linux operating system, RedHat release 7.3,
using kernel version 2.4.20.

Both the software program and the calling framework for
the hardware implementation are written in C and produce
an executable that is started from the Linux shell. The
software program executes entirely on the GPP: memory
buffers are established, projection data are read from disk,
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the backprojection algorithm is run, and output data are
transformed from complex to real. The final step involves
rearranging the output data and scaling it, then writing a
PNG image to disk.

The hardware program begins by establishing memory
buffers and initializing the FPGA. Projection data are read
from disk into the GPP memory. Those data are then
transferred to the FPGA, where the backprojection algorithm
is run in hardware. Output data are transformed from
complex to real on the FPGA, then transferred to the GPP
memory. The GPP then executes the same rearrangement
and scaling step as the software program.

To control the FPGA, the hardware program uses an API
that is provided by Annapolis to interface to the WildStar
II boards. The FPGA hardware was written in VHDL and
synthesized using version 8.9 of Synplify Pro. Hardware place
and route used the Xilinx ISE 9.1i suite of CAD tools.

The final step of both programs, where the target data are
written as a PNG image to disk by the GPP, uses the GTK+
[29] library version 2.0.2. For the multinode experiments,
version 1.2.1.7b of the MPICH [31] implementation of MPI
is used to handle internode startup, communication, and
synchronization.

The timing data presented in this section were collected
using timing routines that were inserted into the C code.
These routines use Linux system calls to display timing
information. The performance of the timing routines was
determined by running them several times in succession
with no code in between. The overhead of the performance
routines was shown to be less than 100 microseconds , so
timing data are presented as accurate to the millisecond.
Unless noted otherwise, applications were run five times
and an average (arithmetic mean) was taken to arrive at the
presented data.

We determine accuracy both qualitatively (i.e., by exam-
ining the images with the human eye) and quantitatively by
computing the difference in pixel values between the two
images.

5.1.2. Test Data. Four sets of data were used to test our
programs. The datasets were produced using a MATLAB
simulation of SAR taken from the Soumekh book [2]. This
MATLAB script allows the parameters of the data collection
process to be configured (see Section 4.2.6). When run, it
generates the projection data that would be captured by an
SAR system imaging that area. A separate C program takes
the MATLAB output and converts it to an optimized file that
can be read by the backprojection programs.

Each dataset contains four point source (i.e., 1 × 1 pixel
in size) targets that are distributed randomly through the
imaged area. The imaged area for each set is of a similar size,
but situated at a different distance from the radar. Targets are
also assigned a random reflectivity value that indicates how
strongly they reflect radar signals.

5.2. Results and Analysis. In general, owing to the high degree
of parallelism inherent in the backprojection algorithm, we

Table 1: Single-node experimental performance.

Component Software Hardware Ratio

Backprojection 76.4 s 351ms 217:1

Complex magnitude 73 ms 15 ms 4.9:1

Form image (software) 39 ms 340 ms 1:8.7

Total 76.5 s 706 ms 108:1

Table 2: Single-node backprojection performance by dataset.

Dataset Software Hardware BP speedup App speedup

1 24.5 s 146 ms 167.4 49.8

2 30.4 s 169 ms 179.5 61.9

3 47.7 s 268 ms 177.5 75.5

4 76.5 s 351 ms 217.6 108.4

expect a considerable performance benefit from implemen-
tation in hardware even on a single node. For the multinode
program, the lack of need to transfer data between the nodes
implies that the performance should scale in a linear relation
to the number of nodes.

5.2.1. Single Node Performance. The first experiment involves
running backprojection on a single node. This allows us to
examine the performance improvement due to fine-grained
parallelism, that is, the speedup that can be gained by imple-
menting the algorithm in hardware. For this experiment, we
ran the hardware and software programs on all four of the
datasets. Table 1 shows the timing breakdown of dataset no.
4; Table 2 shows the overall results for all four datasets. Note
that dataset no. 1 is closest to the radar, and dataset no. 4 is
furthest away.

In Table 1, Software and Hardware refer to the run time
of a particular component; Ratio is the ratio of software
time to hardware time, showing the speedup or slowdown
of the hardware program. Backprojection is the running of
the core algorithm. Complex Magnitude transforms the data
from complex to real integers. Finally, Form Image scales the
data to the range [0:255] and creates the memory buffer that
is used to create the PNG image.

There are a number of significant observations that can
be made from the data in Table 1. Most importantly, the
process of running the backprojection algorithm is greatly
accelerated in hardware, running over 200x faster than our
software implementation. It is important to emphasize that
this includes the time required to transfer projection data
from the host to the FPGA, which is not required by the
software program. Many of the applications discussed in
Section 3 exhibit only modest performance gains due to the
considerable amount of time spent transferring data. Here,
the vast degree of fine-grained parallelism in the backpro-
jection algorithm that can be exploited by FPGA hardware
allows us to achieve excellent performance compared to a
serial software implementation.

The complex magnitude operator also runs about 5x
faster in hardware. In this case, the transfer of the output
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data from the FPGA to the host is overlapped with the
computation of the complex magnitude. This commonly
used technique allows the data transfer time to be “hidden”,
preventing it from affecting overall performance.

However, the process of converting the backprojection
output into an image buffer that can be converted to a PNG
image (Form Image) runs faster when executed as part of the
software program. This step is performed in software regard-
less of where the backprojection algorithm was executed.
The difference in run time can be attributed to memory
caching. When backprojection occurs in software, the result
data lie in the processor cache. When backprojection occurs
in hardware, the result data are copied via DMA into the
processor main memory, and must be loaded into the cache
before the Form Image step can begin.

We do not report the time required to initialize either
the hardware or software program, since in the Swathbuckler
system it is expected that initialization can be completed
before the input data become available.

Table 2 shows the single-node performance of both
programs on all four datasets. Note that the reported run
times are only the times required by the backprojection
operation. Thus, column four, BP Speedup, shows the
factor of speedup (software:hardware ratio) for only the
backprojection operation. Column five, App Speedup, shows
the factor of speedup for the complete application including
all of the steps shown in Table 1.

These results show that the computation time of the
backprojection algorithm is data dependent. This is directly
related to the minimum range of the projection data.
According to Figure 2, as the subimage gets further away
from the radar, the width of the radar beam is larger. This
is reflected in the increased limits of the χ(a, b) term of (2),
which are a function of the tangent of the beamwidth φ and
the range. A larger range implies more pixels are impacted by
each projection, resulting in an increase in processing time.
The hardware and software programs scale at approximately
the same rate, which is expected since they are processing the
same amount of additional data at longer ranges.

More notable is the increase in application speedup;
this can be explained by considering that the remainder of
the application is not data dependent and stays relatively
constant as the minimum range varies. Therefore, as the
range increases and the amount of data to process increases,
the backprojection operation takes up a larger percentage
of the run time of the entire application. For software, this
increase in proportion is negligible (99.5% to 99.8%), but
for the hardware, it is quite large (12.6% to 25.0%). As the
backprojection operator takes up more of the overall run
time, the relative gains from implementing it in hardware
become larger, resulting in the increasing speedup numbers
seen in the table.

5.2.2. Single Node Accuracy. Qualitatively, the hardware
images look very similar, with the hardware images perhaps
slightly darker near the point source target. This is due to
the quantization imposed by using integer data types. As
discussed in Section 5.2.1, a longer range implies a wider

Table 3: Image accuracy by dataset.

Dataset Errors Max error Mean error

1 4916 0.9% 18 7.0% 1.55

2 13036 2.5% 19 7.4% 1.73

3 18706 3.6% 12 4.6% 1.56

4 29093 5.6% 16 6.2% 1.64

radar beam. The χ(a, b) function from (2) determines how
wide the beam is at a given range. When computed in fixed
point for the hardware program, y ± x tanφ returns slightly
different values than when the software program computes it
in floating point. Thus, there is a slight smearing or blurring
of the point source. Recall that dataset no. 4 has a longer
range than the other datasets; appropriately, the smearing is
most notable in that dataset.

Quantitatively, the two images can be compared pixel-by-
pixel to determine the differences. For each dataset, Table 3
presents error in terms of the differences between the image
produced by the software program and the image produced
by the hardware program.

The second column shows the number of pixels that are
different between the two images. There are 1024×512 pixels
in the image, so the third column shows the percent of overall
image pixels that are different. The maximum and arithmetic
mean error are shown in the last two columns. Recall that our
output images are 256 gray scale PNG files; the magnitude of
error is given by err(x, y) = |hw(x, y)− sw(x, y)|.

Again, errors can be attributed to the difference in the
computed width of the radar beam between the software
and hardware programs. For comparison, a version of each
program was written that does not include the χ(a, b) func-
tion and instead assumes that every projection contributes
to every pixel (i.e., an infinite beamwidth). In this case, the
images are almost identical; the number of errors drops to
0.1%, and the maximum error is 1. Thus, the error is not
due to quantization of processed data; the computation of
the radar beamwidth is responsible.

5.2.3. Multinode Performance. The second experiment in-
volves running backprojection on multiple nodes simul-
taneously, using the MPI library to coordinate. These results
show how well the application scales due to coarse-grained
parallelism, that is, the speedup that can be gained by
dividing a large problems into smaller pieces and running
each piece separately. For this experiment, we create an
output target image that is 64 times the size of the image
created by a single node. Thus, when run on one node,
64 iterations are required; for two nodes, 32 iterations are
required, and so on. Table 4 shows the results for a single
dataset.

For both the software and hardware programs, five
trials were run. For each trial, the time required to run
backprojection and form the resulting image on each node
was measured, and the maximum time reported. Thus, the
overall run time is equal to the run time of the slowest node.
The arithmetic mean of the times (in seconds) from the five
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Table 4: Multinode experimental performance.

Nodes
Software Hardware

Mean Standard deviation Speedup Mean Standard deviation Speedup

1 1943.2 6.15 1.0 25.0 .01 1.0

2 983.2 10.46 2.0 13.4 .02 1.9

4 496.0 4.60 3.9 7.8 .02 3.9

8 256.5 5.85 7.6 4.0 .06 6.0

16 128.4 1.28 15.1 — — —

trials are presented, with standard deviation. The mean run
time is compared to the mean run time for one node in order
to show the speedup factor.

Results are not presented for a 16-node trial of the
hardware program. During our testing, it was not possible
to find 16 nodes of the HHPC that were all capable of
running the hardware program at once. This was due to
hardware errors on some nodes, and inconsistent system
software installations on others.

The mostly linear distribution of the data in Table 4
shows that for the backprojection application, we have
achieved a nearly ideal parallelization. This can be attributed
to the lack of data passing between nodes, combined with
an insignificant amount of overhead involved in running
the application in parallel with MPI. The hardware program
shows a similar curve, except for N = 8 nodes, where
the speedup drops off slightly. At run times under five
seconds, the MPI overhead involved in synchronizing the
nodes between each processing iteration becomes significant,
resulting in a slight slowdown (6x speedup compared to the
ideal 8x).

The speedup provided by the hardware program is
further described in Table 5. Compared to one node running
the hardware program, we have already seen the nearly linear
speedup. Compared to an equal number of nodes running
the software program, the hardware consistently performs
around 75x faster. Again, for N = 8, there is a slight drop
off in speedup owing to the MPI overhead for short run
times. Finally, we show that when compared to a single
node running the software program, the combination of
fine- and coarse-grained parallelism results in a very large
performance gain.

6. Discussion

The results from Section 5.2.3 show that excellent speedup
can be achieved by implementing the backprojection algo-
rithm on an HPRC machine. As HPRC architectures improve
and more applications are developed for them, designers will
continue to search for ways to carve out more and more
performance. Based on the lessons learned in Section 3 and
our work on backprojection, in this section we suggest some
directions for future research.

6.1. Future Backprojection Work. This project was devel-
oped with an eye toward implementation as a part of

Table 5: Speedup factors for hardware program.

Nodes
Ratio compared to

1 hardware N software 1 software

1 1.0 77.8 77.8

2 1.9 75.8 149.8

4 3.9 76.5 299.8

8 6.0 61.1 463.0

the Swathbuckler SAR system (see Section 4.1.2). Owing
to the classified nature of that project, additional work
beyond the scope of this project is required to integrate
our backprojection implementation into that project. To
determine the success of this aspect of the project, we would
need to compare backprojection to the current Swathbuckler
image formation algorithm, both in terms of run time as well
as image quality.

Despite excellent speedup results, there are further
avenues for improvement of our hardware. The Wildstar II
boards feature two identical FPGAs, so it may be possible to
process two images at once. If the data transfer to one FPGA
can be overlapped with computation on the other, significant
speedup is possible. It may also be possible for each FPGA
to create a larger target image using more of the on-board
SRAMs.

An interesting study could be performed by porting
backprojection to several other HPRC systems, some of
which can be targeted by high-level design languages. This
would be the first step toward developing a benchmark suite
for testing HPRC systems; however, without significant tool
support-to-support application portability between HPRC
platforms, this process would be daunting.

6.2. HPRC Systems and Applications. One common theme
among the FPGA applications mentioned in Section 3 is data
transfer. Applications that require a large amount of data to
be moved between the host and the FPGA can eliminate most
of the gains provided by increased parallelism. Backprojec-
tion does not suffer from this problem because the amount
of parallelism exploited is so high that the data transfer is a
relatively small portion of the run time, and some of the data
transfers can be overlapped with computation. These are
common and well-known techniques in HPRC application
design.
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This leads us to two conclusions. First, when considering
porting an application to an HPRC system, it is important
to consider whether the amount of available parallelism is
sufficient to provide good speedup. Tools that can analyze an
application to aid designers in making this decision are not
generally available.

Second, it is crucial for the speed of the data transfers
to be as high as possible. Early HPRC systems such as the
HHPC use common bus architectures like PCI, which do not
provide very high bandwidth. This limits the effectiveness of
many applications. More recent systems such as the SRC-7
have included significantly higher bandwidth interconnect,
leading to improved data transfer performance and increas-
ing the number of applications that can be successfully
ported. Designers of future HPRC systems must continue to
focus on ways to improve the speed of these data transfers.

It is also noteworthy that the backprojection application
presented here was developed using hand-coded VHDL, with
some functional units from the Xilinx CoreGen library [30].
Writing applications in an HDL provides the highest amount
of flexibility and customization, which generally implies the
highest amount of exploited parallelism. However, HDL
development time tends to be prohibitively high. Recent
research has focused on creating programming languages
and tools that can be used to increase programmer produc-
tivity, but applications developed with these tools have not
provided speedups comparable to those of hand-coded HDL
applications. The HPRC community would benefit from the
continued improvement of development tools such as these.

Finally, each HPRC system has its own programming
method that is generally incompatible with other systems.
The standardization of programming interfaces would make
the development of design tools easier, and would also
increase application developer productivity when moving
from one machine to the next. Alternately, tools to support
portability of HPRC applications such as the VForce project
[18] would also help HPRC developers.

7. Conclusions

In conclusion, we have shown that backprojection is an
excellent choice for porting to an HPRC system. Through
the design and implementation of this application, we have
explored the benefits and difficulties of HPRC systems
in general, and identified several important features of
both these systems and applications that are candidates
for porting. Backprojection is an example of the class of
problems that demand larger amounts of computational
resources than can be provided by desktop or single-node
computers. As HPRC systems and tools mature, they will
continue to help in meeting this demand and making new
categories of problems tractable.
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