
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 704174, 3 pages
doi:10.1155/2009/704174

Letter to the Editor

Comments on “Techniques and Architectures for Hazard-Free
Semi-Parallel Decoding of LDPC Codes”

Kiran K. Gunnam,1, 2 Gwan S. Choi,2 andMark B. Yeary3

1Channel Architecture, Storage Peripherals Group, LSI Corporation, Milpitas, CA 95035, USA
2Department of ECE, Texas A&M University, College Station, TX 77843, USA
3Department of ECE, University of Oklahoma, Norman, OK 73019, USA

Correspondence should be addressed to Kiran K. Gunnam, kgunnam@ieee.org

Received 7 December 2009; Accepted 7 December 2009

This is a comment article on the publication “Techniques and Architectures for Hazard-Free Semi-Parallel Decoding of LDPC
Codes” Rovini et al. (2009). We mention that there has been similar work reported in the literature before, and the previous work
has not been cited correctly, for example Gunnam et al. (2006, 2007). This brief note serves to clarify these issues.

Copyright © 2009 Kiran K. Gunnam et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The recent work by Rovini and others in [1] states that
“Gunnam et al. describe in [10] a pipelined semi-parallel
decoder for WLAN LDPC codes, but the authors do not
mention the issue of the pipeline hazards; only, the need
of properly scrambling the sequence of data in order to
clear some memory conflicts is described.” On the contrary,
we gave detailed explanation of our decoder architecture,
concepts of out-of-order processing in [2–6]. The proposed
approach Unconstrained Output Processing (UoP) in [1] is
similar to our approach outlined in [2–6]. So we would like
to clarify more in this matter.

We describe in [2–6] a pipelined semi-parallel decoder
for WLAN LDPC codes, that used scheduling of layered
processing and out-of-order block processing to minimize
the pipeline hazards and memory stall cycles. The following
paragraph from [4, Page 1, Column 2], correctly describes
our work: “This paper introduces the following concepts
to LDPC decoder implementation: Block serial scheduling
[5], value-reuse, scheduling of layered processing, out-of-
order block processing, master-slave router, dynamic state.
All these concepts are termed as on-the-fly computation as
the core of these concepts is based on minimizing memory
and re-computations by employing just-in-time scheduling.”
More detailed explanations and illustrations can be found in
the presentations [5, 6] which were available on-line from
October 2006 and May 2007, respectively.

Also [1] did not cite our work on layer reordering for
optimizing the pipeline and memory accesses. In [3, Page
4, Column 2], last paragraph, we clearly mention that “It
is possible to do the decoding using a different sequence
of layers instead of processing the layers from 1 to j which
is typically used to increase the parallelism such that it is
possible to process two block rows simultaneously [4]. In
this work, we use the concept of reordering of layers for
increased parallelism as well as for low complexity memory
implementation and also for inserting additional pipeline
stages without incurring overhead.”

Our proposal of out-of-order processing (OoP) for the
layered decoding [2–6] is to process the circulants in a layer
in out-of-order (not necessarily sequential) to remove the
pipeline andmemory conflicts. This includes the partial state
processing and other related steps (Rold message generation,
Q message generation, CNU partial state processing. that
is, the processing step of finding Min1,Min2, Min1 ID), in
out-of-order fashion and the processing of Rnew messages
in out-of-order fashion. For instance, while processing the
layer 2, the blocks/circulants which depend on layer 1 will
be processed last to allow for the pipeline latency. Also Rnew
selection is out-of-order (these messages will come from the
most recently updated connected block), so that it can feed
the data required for the PS processing of the second layer. A
dependent circulant or connected circulant is the non-zero



2 EURASIP Journal on Embedded Systems

circulant that supplies the last updated information of P
message to the specified nonzero circulant. The dependent
layer is the layer which contains dependent circulant. So
circulants in second layer will get the latest P update based
on the Rnew messages from different connected circulant
in different connected layers. Thus OoP for PS processing
is across one layer (i.e., at any time the CNU partial state
processing is concerned with starting and completing one
layer; however, the order of the circulants processed in the
layer is processed in out-of-order to satisfy the pipeline and
memory constraints); OoP for Rnew message generation
is across several layers. Also the P update (Q + Rnew),
in [2, (9)] is computed on-the-fly along with reading of
the Q message of the last updated circulant in the same
block column from the Q memory and the Rnew message
generation that is, at the precise moment when it is needed;
this avoids the use of P memory and needs a single-port
read and single-port write Qmemory whose storage capacity
is equal to the code length multiplied by the word length
of Q message. The bandwidth of this memory measure in
terms of number of Q messages is equal to the decoder
parallelization [2–6]. Other decoder hardware architectures
and implementations use both P memory and Q memory,
use mirror memories, or use more complicated multiported
memory. Illustrations for out-of-order processing were given
in [5, 6].

We gave more explanation in [5]: “The decoder hardware
architecture is proposed to support out-of-order processing
to remove pipeline and memory accesses or to satisfy any
other performance or hardware constraint. Remaining hard-
ware architectures will not support out-of-order processing
without further involving more logic and memory. For the
above hardware decoder architecture, the optimization of
decoder schedule belongs to the class of NP-complete prob-
lems. So there are several classic optimization algorithms
such as dynamic programming that can be applied. We apply
the following classic approach of optimal substructure.”

Step 1. “We will try different layer schedules (j! i.e., j factorial
of j if there are j layers). For simplicity, we will try only
a subset of possible sequences so as to have more spread
between the original layers.”

Step 2. “Given a layer schedule or a re-ordered H matrix, we
will optimize the processing schedule of each layer. For this,
we use the classic approach of optimal substructure that is,
the solution to a given optimization problem can be obtained
by the combination of optimal solutions to its sub problems.
So first we optimize the processing order to minimize the
pipeline conflicts. Then we optimize the resulting processing
order to minimize the memory conflicts. So for each layer
schedule, we are measuring the number of stall cycles (our
cost function).”

Step 3. “We choose a layer schedule whichminimizes the cost
function that is meets the requirements with less stall cycles
due to pipeline conflicts and memory conflicts and also
minimizes the memory accesses (such as FSmemory accesses
to minimize the number of ports needed and to save the

access power and to minimize the more muxing requirement
and any interface memory access requirements).”

Also we would like to mention how we calculate the
architecture efficiencies: we mention in [2], “Here, all
calculations for the decoded throughput are based on an
average of 5 decoding iteration to achieve frame error rate
of 10e-4, while itmax is set to 15.” If we are considering
the actual system throughput, then we should consider
how many maximum iterations the system can run and
what is the additional overhead from LLR/Q memory and
hard decision memory statistical buffering and loading and
unloading times. We have close to 1.5 iteration overhead
due to statistical buffering. So mixing the average number
of iterations with actual system throughput to calculate the
decoder core architecture efficiency is not a fair metric. In
our works [2–6], for the decoders based on one-circulant
processing, the number of clock cycles for decoding of
each block/circulant is 1. Note that [2] and [3] designs
are similar and have the pipeline depth of 5. The Clock
Cycles Per Iteration (CCI) for most of the IEEE 802.11n
and IEEE 802.16e H matrices after reordering of layers and
out-of-order processing and data forwarding and speculative
computations is the number of blocks in H matrix. The only
exception is the rate 5/6 matrix of IEEE 802.16e and IEEE
802.11n. For 802.16e 5/6 matrix, the CCI is 87 clock cycles
to process 80 blocks. For 802.11n 5/6 matrix, the CCI is 85
clock cycles to process 79 blocks. We gave the worst case for
CCI as total number of blocks in Hmatrix + 2 cycle overhead
per each layer in [3, Page 6, Column 1, Line 23–28]. So if
we were to report the Architecture Efficiency = CCI/Ideal
CCI, the architecture efficiency for our decoders would be
1 for all the codes except 2 cases. For 802.16e 5/6 matrix,
this number would be 1.0875. For 802.11n 5/6 matrix, the
number would be 1.0759. Even if we use the above worst case
number reported in [3] for all the codes even though it is
not necessary, then the architecture efficiency number would
vary from 1.0759 to 1.29 for 802.11n codes and 1.0875 to
1.3158 for 802.16e codes.

Also our work covers more aspects. We can apply OoP
for PS processing across multiple layers. While waiting for
the data from the currently processed layer 1, we can start
processing the independent circulants in next layer 2 that will
not depend on current layer 1 and also the circulants in layer
3 that will not depend on layer 1 and layer 2. In [5], “also we
will sequence the operations in layer such that we process the
block first that has dependent data available for the longest
time. This naturally leads us to true out-of-order processing
across several layers. In practice we won’t do out-of-order
partial state processing involving more than 2 layers.”

References

[1] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “Techniques and
architectures for hazard-free semi-parallel decoding of LDPC
codes,” EURASIP Journal on Embedded Systems, vol. 2009,
Article ID 723465, 15 pages, 2009.

[2] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate
layered decoder architecture for block LDPC codes of the



EURASIP Journal on Embedded Systems 3

IEEE 802.11n wireless standard,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’07),
pp. 1645–1648, New Orleans, La, USA, May 2007.

[3] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman,
“VLSI architectures for layered decoding for irregular LDPC
codes of WiMax,” in Proceedings of the IEEE International
Conference on Communications (ICC ’07), pp. 4542–4547,
Glasgow, UK, June 2007.

[4] K. K. Gunnam, G. S. Choi, W. Wang, E. Kim, and M. B.
Yeary, “Decoding of quasi-cyclic LDPC codes using an on-the-
fly computation,” in Proceedings of the 4th Asilomar Conference
on Signals, Systems and Computers, pp. 1192–1199, October-
November 2006.

[5] K. Gunnam, Area and energy efficient VLSI architectures for
low density parity-check decoders using an on-the-fly compu-
tation, Ph.D. presentation, Texas A&M University, College
Station, Tex, USA, October 2006, http://dropzone.tamu.edu/
∼kirang/10112006.pdf.

[6] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate
layered decoder architecture for block LDPC codes of the
IEEE 802.11n wireless standard,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’07),
pp. 1645–1648, New Orleans, La, USA, May 2007.


	References

