Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 753821, 11 pages
doi:10.1155/2008/753821

Research Article

Lutin: A Language for Specifying and Executing

Reactive Scenarios

Pascal Raymond, Yvan Roux, and Erwan Jahier

VERIMAG (CNRS, UJE, INPG), 2 avenue de Vignate, Giéres 38610, France

Correspondence should be addressed to Pascal Raymond, pascal.raymond@imag.fr

Received 13 September 2007; Accepted 10 January 2008

Recommended by Michael Mendler

This paper presents the language Lutin and its operational semantics. This language specifically targets the domain of reactive
systems, where an execution is a (virtually) infinite sequence of input/output reactions. More precisely, it is dedicated to the
description and the execution of constrained random scenarios. Its first use is for test sequence specification and generation. It can
also be useful for early simulation of huge systems, where Lutin programs can be used to describe and simulate modules that are not
yet fully developed. Basic statements are input/output relations expressing constraints on a single reaction. Those constraints are
then combined to describe non deterministic sequences of reactions. The language constructs are inspired by regular expressions
and process algebra (sequence, choice, loop, concurrency). Moreover, the set of statements can be enriched with user-defined
operators. A notion of stochastic directives is also provided in order to finely influence the selection of a particular class of scenarios.

Copyright © 2008 Pascal Raymond et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

The targeted domain is the one of reactive systems, where an
execution is a (virtually) infinite sequence of input/output
reactions. Examples of such systems are control/command
in industrial process, embedded computing systems in
transportation.

Testing reactive software raises specific problems. First
of all, a single execution may require thousands of atomic
reactions, and thus as many input vector values. It is
almost impossible to write input test sequences by hand;
they must be automatically generated according to some
concise description. More specifically, the relevance of input
values may depend on the behavior of the program itself;
the program influences the environment which in turn
influences the program. As a matter of fact, the environment
behaves itself as a reactive system, whose environment is the
program under test. This feedback aspect makes offline test
generation impossible; testing a reactive system requires to
run it in a simulated environment.

All these remarks have led to the idea of defining
a language for describing random reactive systems. Since
testing is the main goal, the programming style should be
close to the intuitive notion of test scenarios, which means
that the language is mainly control-flow oriented.

The language can also be useful for early prototyping
and simulation, where constrained random programs can
implement missing modules.

1.1. Ourproposal: Lutin

For programming random systems, one solution is to use
a classical (deterministic) language together with a random
procedure. In some sense, nondeterminism is achieved
by relaxing deterministic behaviors. We have adopted an
opposite solution, where nondeterminism is achieved by
constraining chaotic behaviors; in other terms, the proposed
language is mainly relational not functional.

In the language Lutin, nonpredictable atomic reactions
are expressed as input/output relations. Those atomic reac-
tions are combined using statements like sequence, loop,
choice or parallel composition. Since simulation (execution)
is the goal, the language also provides stochastic constructs
to express that some scenarios are more interesting/realistic
than others.

Since the first version [1], the language has evolved
with the aim of being a user-friendly, powerful program-
ming language. The basic statements (inspired by regular
expressions) have been augmented with more sophisticated
control structures (parallel composition, exceptions) and

EURASIP Journal on Embedded Systems

a functional abstraction has been introduced in order to
provide modularity and reusability.

1.2. Related works

This work is related to synchronous programming languages
[2, 3]. Some constructs of the language (traps and par-
allel composition) are directly inspired by the imperative
synchronous language Esterel [4], while the relational part
(constraints) is inspired by declarative languages like Lustre
[5] and Signal [6].

Related works are abundant in the domain of models
for nondeterministic (or stochastic) concurrent systems:
Input/Output automata [7], and their stochastic extension
[8] (stochastic extension of process algebra [9, 10]). There are
also relations with concurrent constraint programming [11],
in particular, with works that adopt a synchronous approach
of time and concurrency [12, 13]. However, the goals are
rather different; our goal is to maintain an infinite interaction
between constraints generators, while concurrent constraint
programming aims at obtaining the solution of a complex
problem in a (hopefully) finite number of interactions.

Moreover, a general characteristic of these models is that
they are defined to perform analysis of stochastic dynamic
systems (e.g., model checking, probabilistic analysis). On the
contrary, Lutin is specifically designed for simulation rather
than general analysis. On one hand, the language allows to
concisely describe, and then execute a large class of scenarios.
On the other hand, it is in general impossible to decide if
a particular behavior can be generated and even less with
which probability.

1.3. Plan

The article starts with an informal presentation of the lan-
guage. Then, the operational semantics is formally defined
in terms of constraints generator. Some important aspects, in
particular constraints solving, are parameters of this formal
semantics; they can be adapted to favor the efficiency or
the expressive power. These aspects are presented in the
implementation section. Finally, we conclude by giving some
possible extensions of this work.

2. OVERVIEW OF THE LANGUAGE
2.1. Reactive, synchronous systems

The language is devoted to the description of nondetermin-
istic reactive systems. Those systems have a cyclic behavior;
they react to input values by producing output values and
updating their internal state. We adopt the synchronous
approach, which here simply means that the execution is
viewed as a sequence of pairs “input values/output values.”
Such a system is declared with its input and output
variables; they are called the support variables of the system.

Example 1. We illustrate the language with a simple “tracker”
program that receives a boolean input (c) and a real input (t)
and produces a real output (x). The high-level specification

of the tracker is that the output x should get closer to the
input t when the command c is true or should tend to zero
otherwise. The header of the program is

system tracker (c: bool; t: real) returns (x: real)

= statement.

(1)

The core of the program consists of a statement describ-
ing the program behavior. The definition of statement is
developed later.

During the execution, inputs are provided by the system
environment; they are called uncontrollable variables. The
program reacts by producing outputs; they are called control-
lable variables .

2.2. Variables, reactions, and traces

The core of the system is a statement describing a sequence
of atomic reactions.

In Lutin, a reaction is not deterministic; it does not define
uniquely the output values, but states some constraints on
these values. For instance, the constraint ((x > 0.0) and
(x < 10.0)) states that the current output should be some
value comprised between 0 and 10.

Constraints may involve inputs, for instance, ((x > t —
2.0) and (x < t)). In this case, during the execution, the
actual value of t is substituted, and the resulting constraint
is solved.

In order to express temporal constraints, previous values
can be used; pre id denotes the value of the variable id
at the previous reaction. For instance, (x > pre x) states
that x must increase in the current reaction. Like inputs,
pre variables are uncontrollable; during the execution, their
values are inherited from the past and cannot be changed—
this is the nonbacktracking principle.

Performing a reaction consists in producing, if it exists,
a particular solution of the constraint. Such a solution may
not exist.

Example 2. Consider the constraint
(c and (x > 0.0) and (x < pre x + 10.0)), (2)

where c (input) and pre x (past value) are uncontrollable.
During the execution, it may appear that c is false and/or
that pre x isless than —10.0. In those cases, the constraint is
unsatisfiable; we say that the constraint deadlocks.

Local variables may be useful auxiliaries for expressing
complex constraints. They can be declared within a program:

local ident: type in statement. (3)

A local variable behaves as a hidden output; it is
controllable and must be produced as long as the execution
remains in its scope.

2.3. Composing reactions

A constraint (Boolean expression) represents an atomic
reaction; it defines relations between the current values of

Pascal Raymond et al.

the variables. Scenarios are built by combining such atomic
reactions with temporal statements. We introduce the type
trace for typing expressions made of temporal statements.
A single constraint obviously denotes a trace of length 1; in
other terms, expressions of type bool are implicitly cast to
type trace when combined with temporal operators.

The basic trace statements are inspired by regular
expression, and have following signatures:

(i) fby: trace X trace — trace [sequence]
(ii) loop: trace — trace [unbounded loop]
(iii) | trace X trace — trace [nondeterministic
choice]

Using regular expressions makes the notion of sequence
quite different from the one of Esterel, which is certainly the
reference in control-flow oriented synchronous language [4].
In Esterel, the sequence (semicolon) is instantaneous, while
the Lutin construct £by “takes” one instant of time, just like
in classical regular expressions.

Example 3. With those operators, we can propose a first
version of our example. In this version, the output tends to
0 or taccording to a first-order filter. The nondeterminism
resides in the initial value, and also in the fact that the system
is subject to failure and may miss the ¢ command.

((—=100.0 < x) and (x < 100.0)) fby—initial constraint
loop{

(c and (x = 0.9%(pre x) + 0.1%xt))—x gets closer to t
| ((x =0.9%(pre x))—x gets closer to 0

}
(4)

Initially, the value of x is (randomly) chosen between —100
and +100, then forever, it may tend to t or to 0.

Note that, inside the loop, the first constraint (x tends
to t) is not satisfiable unlessc is true, while the second is
always satisfiable. If ¢ is false, the first constraint deadlocks. In
this case, the second branch (x gets closer to 0) is necessarily
taken. If ¢ is true, both branches are feasible: one is randomly
selected and the corresponding constraint is solved.

This illustrates an important principle of the language,
the reactivity, principle, which states that a program may only
deadlock, if all its possible behaviors deadlock.

2.4. Traces, termination, and deadlocks

Because of nondeterminism, a behavior has in general
several possible first reactions (constraints). According to the
reactivity principle, it deadlocks only if all those constraints
are not satisfiable. If at least one reaction is satisfiable, it must
“do something;” we say that it is startable.

Termination, startability, and deadlocks are important
concepts of the language; here is a more precise definition
of the basic statements according to these concepts.

(i) A constraint ¢, if it is satisfiable, generates a particular
solution and terminates, otherwise it deadlocks.

(ii) st1 £by st2 executes st1, and if and when it terminates,
it executes st2. If st1 deadlocks, the whole statement
deadlocks.

(iii) Loop st, if st is startable, behaves as st £by loop
st, otherwise it terminates. Indeed, once started, st
fby loop st may deadlock if the first sz, and so on.
Intuitively, the meaning is “loop as long as starting a
step is possible.”

(iv) {st1]- - - Istn} randomly chooses one of the startable
statements from stl,...,stn. If none of them are
startable, the whole statement deadlocks.

(v) The priority choice {st1| > ---| > stn} behaves as
st1 if st1 is startable, otherwise, behaves as st2 if st2 is
startable and so on. If none of them are startable, the
whole statement deadlocks.

(vi) Try st1 do st2 catches any deadlock occurring during
the execution of st1 (not only at the first step). In case
of deadlock, the control passes to st2.

2.5. Well-founded loops

Let us denote by ¢ the identity element for fby (i.e., the
unique behavior such that bfby ¢ = € by b = b). Although
this “empty” behavior is not provided by the language, it is
helpful for illustrating a problem raised by nested loops.

As a matter of fact, the simplest way to define the loop is
to state that “loop ¢” is equivalent to “c fby loop ¢ | > €’
that is, try in priority to perform one iteration and if it fails,
stop. According to this definition, nested loops may generate
infinite and instantaneous loops, as shown in the following
example.

Example 4.
loop{loop c}. (5)

Performing an iteration of the outer loop consists in execut-
ing the inner loop{loop c}. If ¢ is not currently satisfiable,
loop ¢ terminates immediately and thus, the iteration is
actually “empty”—it generates no reaction. However, since
it is not a deadlock, this strange behavior is considered by the
outer loop as a normal iteration. As a consequence, another
iteration is performed, which is also empty, and so on. The
outer loop keeps the control forever but does nothing.

One solution is to reject such programs. Statically
checking whether a program will infinitely loop or not
is undecidable, it may depend on arbitrarily complex
conditions. Some over-approximation is necessary, which
will (hopefully) reject all the incorrect programs, but also
lots of correct ones. For instance, a program as simple as
“loop {{loop a} fby {loop b}}” will certainly be rejected
as potentially incorrect.

We think that such a solution is too much restrictive and
tedious for the user and we prefer to slightly modify the
semantics of the loop. The solution retained is to introduce
the well-founded loop principle; a loop statement may stop or
continue, but if it continues it must do something. In other
terms, empty iterations are dynamically forbidden.

EURASIP Journal on Embedded Systems

The simplest way to explain this principle is to introduce
an auxiliary operator st \.. If st terminates immediately, st \,
deadlocks, otherwise it behaves as st. The correct definition
ofloop st follows:

(i) if st \. is startable, it behaves as st \, by loop st,
(ii) otherwise loop st terminates.

2.6. Influencing non-determinism

When executing a nondeterministic statement, the problem
of which choice should be preferred arises. The solution
retained is that, if k out of the n choices are startable, each
of them is chosen with a probability 1/k.

In order to influence this choice, the language provides
the concept of relative weights:

{st] weight wl |- - - |stn weight wn}. (6)

Weights are basically integer constants and their interpre-
tation is straightforward. A branch with a weight 2 has twice
the chance to be tried than a branch with weight 1. More
generally, a weight can depend on the environment and on
the past; it is given as an integer expression depending on
uncontrollable variables. In this case, weight expressions are
evaluated at runtime before performing the choice.

Example 5. In a first version (Example 3), our example
system may ignore the command c with a probability 1/2.
This case can be made less probable by using weights (when
omitted, a weight is implicitly 1):

loop{

(c and (x = 0.9%(pre x) +0.1%t)) weight 9
| ((x =0.9%(pre x))
}

In this new version, a true occurrence ofc is missed with the
probability 1/10.

(7)

Note that, weights are not only directives. Even with a
big weight, a nonstartable branch has a null probability to be
chosen, which is the case in the example whencis false.

2.7. Random loops

We want to define some loop structure, where the number
of iterations is not fully determined by deadlocks. Such
a construct can be based on weighted choices, since a
loop is nothing but a binary choice between stopping and
continuing. However, it seems more natural to define it in
terms of expected number of iterations. Two loop “profiles”
are provided as follows.

(i) loop[min, max]: the number of iterations should be
between the constants min and max.

(ii) loop~av : sd : the average number of iteration should
be av, with a standard deviation sd.

Note that random loops, just like other nondeterministic
choices, follow the reactivity principle; depending on dead-
locks, looping may sometimes be required or impossible. As

a consequence, during an execution, the actual number of
iterations may significantly differ from the “expected” one
(see Sections 4 and 5.3).

Moreover, just like the basic loop, they follow the well-
founded loop principle, which means that, even if the core
contains nested loops, it is impossible to perform “empty”
iterations.

2.8. Parallel composition

The parallel composition of Lutin is synchronous; each
branch produces, at the same time, its local constraints. The
global reaction must satisfy the conjunction of all those local
constraints. This approach is similar to the one of temporal
concurrent constraint programming [12].

A parallel composition may deadlock for the following
two reasons.

(i) Obviously, if one or more branches deadlock, the
whole statement aborts.

(ii) It may also appear that each individual statement has
one or more possible behaviours, but that none of the
conjunctions are satisfiable, in which case the whole
statement aborts.

If no deadlock occurs, the concurrent execution termi-
nates, if and when all the branches have terminated (just like
in the Esterel Language).

One can perform a parallel composition of several
statements as follows:

{st] & >+ -& >stn}. (8)

The concrete syntax suggests a noncommutative opera-
tor; this choice is explained in the next section.

2.9. Parallel composition versus stochastic directives

It is impossible to define a parallel composition which is fair
according to the stochastic directives (weights), as illustrated
in the following example.

Example 6. Consider the statement
{{X weight 1000|Y}& > {{A weight 1000/B}}, (9)

where X, A, X A B,A A Y are all startable, but not X A A.
The higher priority can be given to

(i) X A B, but it would not respect the stochastic directive
of the second branch;

(ii) A A'Y, but it would not respect the stochastic directive
of the first branch;

In order to deal with this issue, the stochastic directives
are not treated in parallel, but in sequence, from left to right.

(i) The first branch “plays” first, according to its local
stochastic directives.

(ii) The next ones make their choice according to what has
been chosen for the previous ones.

In the example, the priority is then given to X A B.

Pascal Raymond et al.

The concrete syntax (& >) has been chosen to reflect the
fact that the operation is not commutative. The treatment is
parallel for the constraints (conjunction), but sequential for
stochastic directives (weights).

2.10. Exceptions

User-defined exceptions are mainly means for by-passing
the normal control flow. They are inspired by exceptions in
classical languages (Ocaml, Java, Ada) and also by the trap
signals of Esterel.

Exceptions can be globally declared outside a system
(exception ident) or locally within a statement, in which case
the standard binding rules hold

exception ident in st. (10)
An existing exception ident can be raised with the statement:
raise ident (11)

and caught with the statement:
catch ident in st1 do st2. (12)

If the exception is raised in st1, the control immediately
passes to st2. The do part may be omitted, in which case the
control passes in sequence.

2.11. Modularity

An important point is that the notion of system is not a
sufficient modular abstraction. In some sense, systems are
similar to main programs in classical languages. They are
entry point for the execution but are not suitable for defining
“pieces” of behaviors.

Data combinators

A good modular abstraction would be one that allows to
enrich the set of combinators. Allowing the definition of data
combinators is achieved by providing a functional-like level
in the language. For instance, one can program the useful
“within an interval” constraint;

let within (x, min, max : real) : bool

= (x >= min) and (x <= max). (13)

Once defined, this combinator can be instantiated, for
instance,
within (a,0.8,0.9) (14)
or

within(a+b,c— 1.0,c + 1.0). (15)

Note that, such a combinator is definitively not a func-
tion in the sense of computer science—it actually computes
nothing. It is rather a well-typed macro defining how to build
a Boolean expression with three real expressions.

Reference arguments

Some combinators specifically require support variables as
argument (input, output, local). This is the case for the
operator pre, and as a consequence, for any combinator
using a pre . This situation is very similar to the distinction
between “by reference” and “by value” parameters in imper-
ative languages. Therefore, we solve the problem in a similar
manner by adding the flag ref to the type of such parameters.

Example 7. The following combinator defines the generic
first-order filter constraint. The parameter y must be a
real support variable (real ref) since its previous value is
required. The other parameters can be any expressions of
type real.

Let fof (y:real;gain,x:real) : bool =

(y = gainxk(pre y) + (1.0 — gain)*x). (16)

Trace combinators

User-defined temporal combinators are simply macros of
type trace.

Example 8. The following combinator is a binary parallel
composition, where the termination is enforced when the
second argument terminates.

Let,as long as, (X,Y : trace) : trace =
exception Stop in
catch Stop in{ (17)
X& > {Y fby raise Stop}

Local combinators

A macro can be declared within a statement, in which case
the usual binding rules hold; in particular, a combinator may
have no parameter at all;

Let id ([params]) : type = statement in statement. (18)

Example 9. We can now write more elaborated scenarios for
the system of Example 3. For the very first reaction (line
2), the output is randomly chosen between —100 and +100,
then the system enters its standard behavior (lines 3 to 14).
A local variablea is declared, which will be used to store
the current gain (line 3). An intermediate behavior (lines
4 to 6) is declared, which defines how the gain evolves; it
is randomly chosen between 0.8 and 0.9, then it remains
constant during 30 to 40 steps, and so on. Note that, this
combinator has no parameter since it directly refers to the
variable a. Lines 7 to 14 define the actual behavior; the user-
defined combinator as long as runs in parallel the behavior
gen_gain (line 8) with the normal behavior (9 to 11). In
the normal behavior, the system works almost properly for
about 1000 reactions; if c is true, x tends to t 9 times out of
10 (line 10), otherwise it tends to 0 (line 11). As soon as the
normal behavior terminates, the whole parallel composition

EURASIP Journal on Embedded Systems

(3) local a: real in

(6) }in

(7) as-long.as(

(8) gen_gain(),

9) loop™ 1000 : 100{

(11) \
(12) }
(13)) fby
(14) loop fof (x,0.7,0.0)

fof (x,a,0.0)

(1) system tracker(c:bool;t:real) returns(x:real) =
(2) within(x,—100.0,100.0) fby

(4) let gen_gain(): trace = loop{
(5) within(a,0.8,0.9) fby loop[30,40] (a = pre a)

(10) (c and fof (x,a,t))weight 9

FIGURE 1: A full example: the “tracker” program.

160 £]
120 3
80 | 1
40 ¢ :
0 — I 1 I L1 I A1 1 | —
0 200 400 600 800 1000 1200
Steps

FIGURE 2: An execution of the tracker program.

terminates (definition of as long as). Then, the system breaks
down andx quickly tends to 0 (line 14).

Figure 2 shows the timing diagram, a particular execu-
tion of this program. Input values are provided by the envi-
ronment (i.e., us) according to the following specification,
the input t remains constant (150) and the command c
toggles each about 100 steps.

3. SYNTAX SUMMARY

Figure 3 summarizes the concrete syntax of Lutin. The
detailed syntax for expression is omitted. They are made of
classical algebraic expressions with numerical and logical
operators, plus the special operator pre. The supported type
identifiers are currently bool, int, and real.

We do not present the details of the type checking,
which is classical and straightforward. The only original
check concerns the arguments of the loop profiles and of
the weight directive, that must be uncontrollable expressions
(not depending on output or local variables).

4. OPERATIONAL SEMANTICS
4.1. Abstract syntax

We consider here a type checked Lutin program. For the
sake of simplicity, the semantics is given on the flat language.
User-defined macros are inlined, and local variables are made

global through some correct renaming of identifiers. As a
consequence, an abstract system is simply a collection of
variables (inputs, outputs, and locals) and a single abstract
statement.

We use the following abstract syntax for statements,
where the intuitive meaning of each construct is given
between parenthesis:

t = c (constraint).|e(empty behavior).
[t \ e(empty filter).t - t (sequence).
|t*(priority loop).|t""" (random loop). (19)
| & (raise).|[t & t7] (catch).
[~ ti(priority).||iL, ti/wi(choice).
|&iL, ti (parallel).

This abstract syntax slightly differs from the concrete one
on the following points.

(i) The empty behavior (¢) and the empty behavior
filter (¢ \ ¢) are internal constructs that will ease the
definition of the semantics.

(ii) Random loops are normalized by making explicit their
weight functions:

(a) the stop function w; takes the number of already
performed iterations and returns the relative
weight of the “stop” choice;

(b) the continue function w, takes the number of
already performed iterations and returns the
relative weight of the “continue” choice.

These functions are completely determined by the loop
profile in the concrete program (interval or average,
together with the corresponding static arguments). See
Section 5.3 for a precise definition of these weight
functions.

(iii) The number of already performed iterations (k) is
syntactically attached to the loop; this is convenient to
define the semantics in terms of rewriting (in the initial
program, this number is obviously set to 0).

Pascal Raymond et al. 7

system = system ident([params])returns (params]) = statement
params = ident : typel;ident : type}
statement ::= expression | {statement} | statement £by statement
|Loop[loop-profile] statement
|exception ident in statement | raise ident
|try statement [do statement] | catch identin statement
|let ident ([params]) : type = statementin statement
|local ident: typein statement
|statement[weight expression]{| statement[weight expression]}
|statement{| > statement}
|statement{& > statement}
loop-profile ::= [expression, expression]
|~ expression : expression
type ::= ident[ref])

F1GURE 3: The concrete EBNF syntax of Lutin.

Definition 1. T denotes the set of trace expressions (as de-
fined above) and C denotes the set of constraints.

4.2. The execution environment

The execution takes place within an environment which
stores the variable values (inputs and memories). Constraint
resolution, weight evaluation, and random selection are also
performed by the environment. We keep this environment
abstract. As a matter of fact, resolution capabilities and
(pseudo)random generation may vary from one implemen-
tation to another and they are not part of the reference
semantics.

The semantics is given in term of constraints generator.
In order to generate constraints, the environment should
provide the two following procedures.

Satisfiability

the predicate e |= c is true if and only if the constraint ¢ is
satisfiable in the environment e.

Priority sort

Executing choices first requires to evaluate the weights in the
environment. This is possible (and straightforward) because
weights may dynamically depends on uncontrollable vari-
ables (memories, inputs), but not on controllable variables
(outputs, locals). Some weights may be evaluated to 0, in
which case the corresponding choice is forbidden. Then a
random selection is made, according to the actual weights,
to determine a total order between the choices.

For instance, consider the following list of pairs (trace/
weight), where x and y are uncontrollable variables,

(ti/x+ y), (t2/1), (t3/y), (t4/2). (20)

In an environment, where x = 3 and y = 0, weights are
evaluated to

(t1/3), (t2/1), (t3/0), (t4/2). (21)

The choice 3 is erased and the remaining choices are
randomly sorted according to their weights. The resulting
(total) order may be

(i) t1, 12, ts with a probability 3/6 x 1/3 = 1/6,
(ii) t1, ts, t, with a probability 3/6 x 2/3 = 1/3,
(iii) ta,t1,t, with a probability 2/6 x 3/4 = 1/4,
(iv) so on.

All these treatments are “hidden” within the function
Sort, which takes a list of pairs (choice/weights) and returns
a totally ordered list of choices.

4.3. The step function

An execution step is performed by the function Step(e,t)
taking an environment e and a trace expression t. It returns
an action which is either
(i) a transition — n, which means that t produces a
satisfiable constraint ¢ and rewrite itself in the (next)
trace n,
(ii) a termination <. where x is a termination flag which
is either ¢ (normal termination), ¢ (deadlock) or some
user-defined exception.

Definition 2. A denotes the set of actions and X denotes the
set of termination flags.

4.4. Therecursive step function

The step function Step(e, t) is defined via a recursive function
Se(t,g,s), where the parameters g and s are continuation
functions returning actions.

(i) g: CXT ~ Aisthe goto function defining how alocal
transition should be treated according to the calling
context.

(ii) s : X — A is the stop function defining how a local
termination should be treated according to the calling
context.

At the top-level, 4, is called with the trivial continuations,

s(x) =<
(22)

Step (e) t) = Je(t)g, 5) with g(C, V) =5 v

EURASIP Journal on Embedded Systems

Basic traces

The empty behavior raises the termination flag in the current
context. A raise statement terminates with the corresponding
flag. At last, a constraint generates a goto or raises a deadlock
depending on its satisfiability;

8.(e,8,5) = s(e)

8. (‘i,g,s) = s5(x) (23)
8.(¢c,g,s) = if (e |= c) then g(c,¢) else s(9).

Sequence
The rule is straightforward;
53(1’ . t,>g,3) = Se(t:g’:S,))
where g'(c,n) = g(c,n - t')
s'(x) = if x = € then 8.(t',g,s) else s(x).
(24)
Priority choice

We only give the definition of the binary choice, since
the operator is right-associative. This rule formalizes the
reactivity principle. All possibilities in must have failed
before ¢’ is taken into account,

St (g9 =i (2 =) then 7 el 8(F\g9h

where r = 8,(t,g,5).

Empty filter and priority loop

The empty filter intercepts the termination of ¢ and replaces
by a deadlock,

Se(t\ &,g,5) = 8e(t,g,s"),s where s'(x) =if (x = ¢)

then s(8) else s(x).
(26)

The semantics of the loop results from the equivalence
t* = (t\e)-t* > (27)

Catch

This internal operator ([n < t]) covers the cases of try (z =
§) and catch (z is a user-defined exception)

8([t = £'],8,5) = 8olt:8',5),
where ¢'(¢,n) = g(c, [n S

s'(x) = if (x = z) then 4.(t',g,s) else s(x).
(28)

Parallel composition

We only give the definition of the binary case, since the
operator is right-associative;

8.(t&t',g,5) = 8.(t,¢',5),
where s'(x) = if (x = ¢) then $.(t',g,s) else s(x),
g'(e,n) =S.(t',g",s"),
where 5" (x) = if (x = ¢) then g(c, n) else s(x)
g’ n)=glenc,n&n’).
(29)

Weighted choice

The evaluation of the weights and the (random) total
ordering of the branches are both performed by the function
Sort, (cf., Section 4.2).

If Sort, ({ti/wi},_,...,) = @ : 8 (|, ti/wi,gs) = s(8)
otherwise, /36(|?:1 ti/wi g, s) = 8.(> Sort,(t1/w1,...,

tn/Wn), 45 5)-
(30)

Random loop

We recall that this construct is labelled by two weight
functions (w, for continue, w; for stop) and by the current
number of already performed iterations (i). The weight
functions are evaluated for i and the statement is then
equivalent to a binary weighted choice,

£ s (1) &) - £ S (i) | elwg(i), (31)
Note that, the semantics follows the well-founded loop
principle.

4.5. A complete execution
Solving a constraint

The main role of the environment is to store the values of
uncontrollable variables; it is a pair of stores “past values,
input values.” For such an environment e = (p,) and a
satisflable constraint ¢, we suppose given a procedure able to
produce a particular solution of ¢ : Solve, ,(c) = y (where y is
a store of controllable variables). We keep this Solve function
abstract, since it may vary from one implementation to
another (see Section 5).

Execution algorithm

A complete run is defined according to

(i) a given sequence of input stores i, (1. .., ln,
(ii) an initial (main) trace to,
(iii) an initial previous store (values ofpre variables) po.

Pascal Raymond et al.

A run produces a sequence of (controllable variables) stores
Y1, Y25 -+ » Yk, where k < n. For defining this output sequence,
we use intermediate sequences of traces (t1,...,tk+1), previ-
ous stores (pi,...,pk), environments (eo,...,ex), and con-
straints (co,. .., ck). The relation between those sequences are
listed below, for all step j =0+ - - k:

(i) the current environment is made of previous and input
values, e; = (p;j, 1),

(i) the current trace makes a transition, e; : t; g tiv1,

(iii) a solution of the constraint is elected, y; = Solve,,(c;),

(iv) the previous store for the next step is the union of
current inputs/outputs: pj1 = (1; ® y;).

At the end, we have

(1) either k = n, which means that the execution has run
to completion,

(i) or (prr1>tks1) © te < which means that it has been
aborted.

5. IMPLEMENTATION

A prototype has been developed in Ocaml. The constraint
generator strictly implements the operational semantics
presented in the previous section. The tool can do the
following.

(i) Interpret/simulate Lutin programs in a file-to-file (or
pipe-to-pipe) manner. This tool serves for simula-
tion/prototyping; several Lutin simulation sessions
can be combined with other reactive process in order
to animate a complex system.

(ii) Compile Lutin programs into the internal format of
the testing tool Lurette. This format, called Lucky,
is based on flat, explicit automata [14]. In this case,
Lutin serves as a high-level language for designing test
scenarios.

5.1. Notes on constraint solvers

The core semantics only defines how constraints are gener-
ated, but not how they are solved. This choice is motivated
by the fact that there is no “ideal” solver.

A required characteristic of such a solver is that it
must provide a constructive, complete decision procedure;
methods that can fail and/or that are not able to exhibit
a particular solution are clearly not suitable. Basically, a
constraint solver should provide the following.

(i) A syntactic analyzer for checking if the constraints are
supported by the solver (e.g., linear arithmetics); this is
necessary because the language syntax allows to write
arbitrary constraints.

(ii) A decision procedure for the class of constraints
accepted by the checker.

(iii) A precise definition of the election procedure which
selects a particular solution (e.g., in terms of fairness).

Even with those restrictions, there is no obvious best solver
as follows.

c d
VNN

e False True False
N

False True

e False

N

True False

FIGURE 4: A BDD containing 10 solutions (ade, abce, and abd).

(i) It may be efficient, but limited in terms of capabilities.
(ii) It may be powerful, but likely to be very costly in terms
of time and memory.

The idea is that the user may choose between several solvers
(or several options of a same solver) the one which best fits
his needs.

The solver that is currently used is presented in the next
section.

5.2. The Boolean/linear constraint solver

Actually, we use the solver [15] that have been developed for
the testing tool Lurette [16, 17]. This solver is quite powerful,
since it covers Boolean algebra and linear arithmetics.
Concretely, constraints are solved by generating a normalized
representation mixing binary decision diagrams and convex
polyhedra. This constraint solver is sketched below and fully
described in [15]

First of all, each atomic numeric constraint (e.g., x +
y > 1) is replaced by a fresh Boolean variable. Then,
the resulting constraint is translated into a BDD. Figure 4
shows a graphical representation of a BDD; then (resp., else)
branches are represented at the left-hand-side (resp., right-
hand-side) of the tree. This BDD contains 3 paths to the true
leaf: ade, abce, and abd. When we say that the monomial
(conjunction of literals) abce is a solution of the formula. It
means that variables a and e should be false; variables b and ¢
should be true; and variable d can be either true or false. The
monomial abce, therefore, represents two solutions, whereas
ade and abd represents 4 solutions each, since 2 variables are
left unconstrained.

In Figure 4 and in the following, for the sake of simplicity,
we draw trees instead of DAGs. The key reason why BDDs
work well in practice is that in their implementations,
common subtrees are shared. For example, only one node
“true” would be necessary in that graph. Anyway, the
algorithms work on DAGs the same way as they work on
trees.

Random choice of Boolean values

The first step consists in selecting a Boolean solution. Once
the constraint has been translated into a BDD, we have a
(hopefully compact) representation of the set of solutions.

10

EURASIP Journal on Embedded Systems

We first need to randomly choose a path into the BDD that
leads to a true leaf. But if we naively performed a fair toss
at each branch of the BDD during this traversal, we would
be very unfair. Indeed, consider the BDD of Figure 4; the
monomial ade has 50% of chances to be tried, whereas abce
and abd have 25% each. One can easily imagine situation,
where the situation is even worse. This is the reason why
counting the solutions before drawing them is necessary.

Once each branch of the BDD is decorated with its
solution number performing a fair choice among Boolean
solutions is straightforward.

Random choice of numeric values

From the BDD point of view, numeric constraints are just
Boolean variables. Therefore, we have to know if the obtained
set of atomic numeric constraints is satisfiable. For that
purpose, we use a convex polyhedron library [18].

However, a solution from the logical variables point of
view may lead to an empty set of solutions for numeric
variables . In order to chose a Boolean monomial that is valid
with respect to numerics, a (inefficient) method would be
to select at random a path in the BDD until that selection
corresponds to a satisfiable problem for the numeric con-
straints. The actual algorithm is more sophisticated [15], but
the resulting solution is the same.

When there are solutions to the set of numeric con-
straints, the convex polyhedron library returns a set of
generators (the vertices of the polyhedron representing the
set of solutions). Using those generators, it is quite easy to
choose point inside (or more interestingly, at edges or at
vertices) the polyhedron.

Using polyhedra is very powerful, but also very costly.
However the solver benefits from several years of exper-
imentation and optimizations (partitioning, switch from
polyhedra to intervals, whenever it is possible).

5.3. Notes on predefined loop profiles

In the operational semantics, loops with iteration profile are
translated into binary weighted choices. Those weights are
dynamic; they depend on the number of (already) performed
iterations k.

Interval loops

For the “interval” profile, those weights functions are
formally defined and thus, they could take place in the
reference semantics of the language. For a given pair of
integers (min, max) such that 0 < min < max and a number
k of already performed iterations, we have the following:

(i) if k < min, then ws(k) = 0 and w.(k) = 1 (loop is

mandatory);

(ii) if k > max, then ws(k) = 1 and w.(k) = 0 (stop is
mandatory);

(iii) if min < k < max, then ws(k) = 1 and w.(k) = 1 +
max —k.

Average loops

There is no obvious solution for implementing the “average”
profile in terms of weightss. A more or less sophisticated
(and accurate) solution should be retained, depending on the
expected precision.

In the actual implementation, for an average value av
and a standard variation sv, we use a relatively simple
approximation as follows.

(i) First of all, the underlying discrete repartition law is
approximated by a continuous (Gaussian) law. As a
consequence, the result will not be accurate if av is
too close to 0 and/or if st is too big comparing to av.
Concretely, we must have 10 < 4 * sv < av.

(ii) It is well known that no algebraic definition for the
Gaussian repartition function exists. This function is
then classically approximated by using an interpola-
tion table (512 samples with a fixed precision of 4
digits).

6. CONCLUSION

We propose a language for describing constrained-random
reactive systems. Its first purpose is to describe test scenarios,
but it may also be useful for prototyping and simulation.

We have developed a compiler/interpreter which strictly
implements the operational semantics presented here.
Thanks to this tool, the language is integrated into the
framework of the Lurette tool, where it is used to describe
test scenarios. Further works concerns the integration of the
language within a more general prototyping framework.

Other works concern the evolution of the language. We
plan to introduce a notion of signal (i.e., event) which is
useful for describing values that are not always available
(this is related to the notion of clocks in synchronous
languages). We also plan to allow the definition of (mutually)
tail-recursive traces. Concretely, that means that a new
programming style would be allowed, based on explicit
concurrent, hierarchic automsata.

REFERENCES

[1] P.Raymond and Y. Roux, “Describing non-deterministic reac-
tive systems by means of regular expressions,” in Proceedings of
the 1st Workshop on Synchronous Languages, Applications and
Programming (SLAP ’02), Grenoble, France, April 2002.

[2] A. Benveniste and G. Berry, “The synchronous approach
to reactive and real-time systems,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1270-1282, 1991.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems,
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1993.

[4] G.Berryand G. Gonthier, “The Esterel synchronous program-
ming language: design, semantics, implementation,” Science of
Computer Programming, vol. 19, no. 2, pp. 87-152, 1992.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUSTRE,”
Proceedings of the IEEE, vol. 79, no. 9, pp. 1305-1320, 1991.

[6] T. Gauthier, P. Le Guernic, and L. Besnard, “Signal: a declar-
ative language for synchronous programming of real-time
systems,” in Proceedings of the 3rd Conference on Functional

Pascal Raymond et al.

11

[13]

(14]

[15]

[16]

(17]

(18]

Programming Languages and Computer Architecture, vol. 274
of Lecture Notes in Computer Science, pp. 257-277, Springer,
Portland, Ore, USA, September 1987.

N. A. Lynch and M. R. Tuttle, “An introduction to
Input/Output automata,” CWI-Quarterly, vol. 2, no. 3, pp.
219-246, 1989.

S.-H. Wu, S. A. Smolka, and E. W. Stark, “Composition
and behaviors of probabilistic I/O automata,” Theoretical
Computer Science, vol. 176, no. 1-2, pp. 1-38, 1997.

M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic pro-
cess algebra: from an algebraic formalism to an architectural
description language,” in Performance Evaluation of Complex
Systems: Techniques and Tools, vol. 2459 of Lecture Notes in
Computer Science, pp. 173—182, Springer, Berlin, Germany,
2002.

B. Jonsson, K. G. Larsen, and W. Yi, “Probabilistic extensions
of process algebras,” in Handbook of Process Algebra, North-
Holland, Amsterdam, The Netherlands, 2001.

V. A. Saraswat, Ed., Concurrent Constraint Programming, MIT
Press, Cambridge, Mass, USA, 1993.

M. Nielsen, C. Palamidessi, and F. D. Valencia, “Temporal
concurrent constraint programming: denotation, logic and
applications,” Nordic Journal of Computing, vol. 9, no. 1, pp.
145-188, 2002.

V. A. Saraswat, R. Jagadeesan, and V. Gupta, “Foundations of
timed concurrent constraint programming,” in Proceedings of
the 9th Annual IEEE Symposium on Logic in Computer Science
(LICS °94), pp. 71-80, Paris, France, July 1994.

P. Raymond, E. Jahier, and Y. Roux, “Describing and executing
random reactive systems,” in Proceedings of the 4th IEEE
International Conference on Software Engineering and Formal
Methods (SEFM °06), pp. 216-225, Pune, India, September
2006.

E. Jahier and P. Raymond, “Generating random values using
Binary decision diagrams and convex polyhedra,” in Proceed-
ings of the Workshop on Constraints in Software Testing, Veri-
fication and Analysis (CSTVA ’06), Nantes, France, September
2006.

E. Jahier, P. Raymond, and P. Baufreton, “Case studies
with Lurette V2,” International Journal on Software Tools for
Technology Transfer, vol. 8, no. 6, pp. 517-530, 2006.

P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs,
“Automatic testing of reactive systems,” in Proceedings of
the 19th IEEE Real-Time Systems Symposium, pp. 200-209,
Madrid, Spain, December 1998.

B. Jeannet, “The Polka Convex Polyhedra library Edition 2.0,
May 2002, www.irisa.fr/prive/bjeannet/newpolka.html/.

	1. INTRODUCTION
	1.1. Our proposal: Lutin
	1.2. Related works
	1.3. Plan

	2. OVERVIEWOF THE LANGUAGE
	2.1. Reactive, synchronous systems
	2.2. Variables, reactions, and traces
	2.3. Composing reactions
	2.4. Traces, termination, and deadlocks
	2.5. Well-founded loops
	2.6. Influencing non-determinism
	2.7. Random loops
	2.8. Parallel composition
	2.9. Parallel composition versus stochastic directives
	2.10. Exceptions
	2.11. Modularity

	3. SYNTAX SUMMARY
	4. OPERATIONAL SEMANTICS
	4.1. Abstract syntax
	4.2. The execution environment
	4.3. The step function
	4.4. The recursive step function
	4.5. A complete execution

	5. IMPLEMENTATION
	5.1. Notes on constraint solvers
	5.2. The Boolean/linear constraint solver
	5.3. Notes on predefined loop profiles

	6. CONCLUSION
	REFERENCES

