Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 518904, 15 pages
doi:10.1155/2008/518904

Research Article

Assessing Task Migration Impact on Embedded Soft
Real-Time Streaming Multimedia Applications

Andrea Acquaviva,' Andrea Alimonda,? Salvatore Carta,? and Michele Pittau?

nstitute of Information Science and Technology, Electronics and Systems Design Group, University of Verona, 37100 Verona, Italy
2 Department of Mathematics and Computer Science, University of Cagliari, 09100 Cagliari, Italy

Correspondence should be addressed to Andrea Alimonda, alimonda@sc.unica.it

Received 4 April 2007; Revised 10 August 2007; Accepted 19 October 2007

Recommended by Alfons Crespo

Multiprocessor systems on chips (MPSoCs) are envisioned as the future of embedded platforms such as game-engines, smart-
phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient
mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been re-
cently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task
migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact,
these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware
infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its
impact on multimedia soft real-time applications using a software FM Radio benchmark.

Copyright © 2008 Andrea Acquaviva et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Multiprocessor systems on chip are of increasing and wide-
spread use in many embedded applications ranging from
multimedia to biological processing [1]. To satisfy applica-
tion requirements by ensuring flexibility, many proposals
were rising for architectural integration of system compo-
nents and their interconnection. Currently, two main direc-
tions can be identified that lead to commercial products:
master-slave architectures [2, 3], homogeneous architectures
[4]. Due to the advances in integration and the increasing
chip size, computational tiles are going to be resemble to el-
ements of a cluster, with a nonuniform type of memory ac-
cess (NUMA) and connected by networks on chip (NoC).
This architecture addresses the scalability issues proper of
symmetric multiprocessors that limit the number of inte-
grable cores. It follows the structure envisioned for non-
cache-coherent MPSoCs [5, 6]. These systems run tasks in
private memories, like in distributed systems but similarly to
symmetric multiprocessor SoCs, they exploit shared mem-
ories for communication and synchronization between pro-
cessing nodes.

Even if MPSoCs are becoming the preferred target for
multimedia embedded systems because they allow to fit a
huge number of different applications, there are still funda-
mental challenges concerning the mapping of task into such
a complex systems. The target is to balance the workload
among processing units to minimize some metric such as
overall execution time, power, or even temperature. Never-
theless, the software support implementing these strategies,
that can be defined as the resource manager, must provide to
the programmer a clean and standard interface for develop-
ing and running multimedia applications while hiding low-
level details such as to which processor each task of the appli-
cation is mapped. Given the large variety of possible use cases
that these platforms must support and the resulting work-
load variability, offline approaches are no longer sufficient
as application mapping paradigms, because they are limited
in handling workload modifications due to variable quality
of service (QoS) requirements. The extensive offline charac-
terization on which they are based becomes unpractical in
this context. Moreover, even when workload is constant, next
generation processor will be characterized by variable perfor-
mance, requiring online adaptation [7].



EURASIP Journal on Embedded Systems

For this reason, dynamic mapping strategy have been
recently proposed [8]. Run-time task allocation has been
shown to be a promising technique to achieve load balanc-
ing, power minimization, temperature balancing, and relia-
bility improvement [9]. To enable dynamic allocation, a task
migration support must be provided. In distributed systems
such as high-end multiprocessors and clusters of worksta-
tions (CoW) [10], task migration has been implemented and
supported at the middleware level. Mosix is a well-known
load-balancing support for CoW implemented at the ker-
nel level that moves tasks in a fully transparent way. In the
embedded multimedia system context however, task migra-
tion support has to trade off transparency with efficiency
and lightweight implementation. User-level migration sup-
port may help in reducing its impact on performance [11].
However, it requires a nonnegligible effort by the program-
mer that has to explicitly define the context to be saved and
restored in the new process life.

Multimedia applications are characterized by soft real-
time requirements. As a consequence, migration overheads
must be carefully evaluated to prevent deadline misses when
moving processes between cores. These overheads depend on
migration implementation which in turn depends on system
architecture and communication paradigm. In distributed
memory MPSoCs task migration involves task memory con-
tent transfer. As such, migration overhead depends both on
the migration mechanism and on the task memory footprint.
For this reason, there is the need of developing an efficient
task migration strategy suitable for embedded multimedia
MPSoC systems.

In this work, we address this need by presenting a mid-
dleware layer that implements task migration in MPSoCs
and we assess its effectiveness when applied in the context
of soft real-time multimedia applications. To achieve this
target, we designed and implemented the proposed mid-
dleware on top of uClinux operating system running on
a prototype multicore emulation platform [12]. We char-
acterized its performance and energy overhead through
extensive benchmarking and we finally assessed its effec-
tiveness when applied to a multitask software FM Ra-
dio multitasking application. To test migration effective-
ness, we impose in our experiments a variable frame rate
to the FM Radio. Tasks are moved among processors as
the frame rate changes to achieve the best configuration
in terms of energy efficiency that provides the required
performance level. Each configuration consists in a map-
ping of task to processor and the corresponding frequencies.
Configurations are precomputed and stored for each frame
rate.

Our experiments demonstrate that (i) migration at the
middleware/OS level is feasible and improves energy effi-
ciency of multimedia applications mapped on multiproces-
sor systems; (ii) migration overhead in terms of QoS can be
hidden by the data reservoir present in interprocessor com-
munication queues.

The rest of the paper is organized in the following way.
Background work is covered in Section 2. Section 3 describes
the architectural template we considered. Section 4 covers
the organization of the software abstraction layer. Multime-

dia application mapping is discussed in Section 5 while re-
sults are discussed in Section 6.

2. BACKGROUND WORK

Due to the increasing complexity of these processing plat-
forms, there is a large quantity and variety of resources that
the software running on top of them has to manage. This may
become a critical issue for embedded application developers,
because resource allocation may strongly affect performance,
energy efficiency, and reliability [13]. As a consequence, from
one side there is need of efficiently exploit system resources,
on the other side, being in an embedded market, fast and
easy development of applications is a critical issue. For ex-
ample, since multimedia applications are often made of sev-
eral tasks, their mapping into processing elements has to be
performed in a efficient way to exploit the available compu-
tational power and reducing energy consumption of the plat-
form.

The problem of resource management in MPSoCs can be
tackled from either a static or dynamic perspective. Static re-
source managers are based on the a priori knowledge of ap-
plication workload. For instance, in [14] a static scheduling
and allocation policy is presented for real-time applications,
aimed at minimizing overall chip power consumption taking
also into account interprocessor communication costs. Both
worst case execution time and communication needs of each
tasks are used as input of the minimization problem solved
using integer linear programming (ILP) techniques. In this
approach, authors first perform allocation of tasks to proces-
sors and memory requirement to storage devices, trying to
minimize the communication cost. Then scheduling prob-
lem is solved, using the minimization of execution time as
design objective.

Static resource allocation can have a large cost, especially
when considering that each possible set of applications may
lead to a different use case. The cost is due to run-time analy-
sis of all use cases in isolation. In [15] a composition method
is proposed to reduce the complexity of this analysis. An in-
teresting semistatic approach that deals with scheduling in
multiprocessor SoC environments for real-time systems is
presented in [16]. The authors present a task decomposi-
tion/clustering method to design a scalable scheduling strat-
egy. Both static and semistatic approaches have limitations
in handling varying workload conditions due to data de-
pendency or to changing application scenarios. As a conse-
quence, dynamic resource management came into play.

Even if scheduling can be considered a dynamic resource
allocation mechanism, in this paper we assume that a main
feature of a dynamic resource manager in a multiprocessor
system is the capability of moving tasks from processing ele-
ments at run time. This is referred to as task migration.

In the field of multiprocessor systems-on-chip, process
migration can be effectively exploited to facilitate thermal
chip management by moving tasks away from hot process-
ing elements, to balance the workload of parallel processing
elements and reduce power consumption by coupling dy-
namic voltage and frequency scaling [17-19]. However, the
implementation of task migration, traditionally developed



Andrea Acquaviva et al.

for computer clusters or symmetric multiprocessor, cache-
coherent machines, poses new challenges [11]. This is spe-
cially true for non-cache-coherent MPSoCs, where each core
runs its own local copy of the operating system in private
memory. A migration paradigm similar to the one imple-
mented in computer clusters should be considered, with
the addition of a shared memory support for interprocessor
communication.

For instance, many embedded system architectures do
not even provide support for virtual memory; therefore,
many task migration optimization techniques applied to sys-
tems with remote paging support cannot be directly de-
ployed, such as the eager dirty [10] or the copy-on-reference
[20] strategies.

In general, migrating a task in a fully distributed system
involves the transfer of processor state (registers), user level
and kernel level context, and address space. A process ad-
dress space usually accounts for a large fraction of the pro-
cess state; therefore, process migration performance largely
depends on the transfer efficiency of the address space. Al-
though a number of techniques have been devised to allevi-
ate this migration cost (e.g., lazy state transfer, precopying,
residual dependencies [21]), a frequent number of migra-
tions might seriously degrade application performance in an
MPSoC scenario. As a consequence, assessing the impact of
migration overhead is critical.

In the context of MPSoCs, in [8] a selective code/data mi-
gration strategy is proposed. Here authors use a compilation-
level code profiling technique to evaluate the communica-
tion energy cost of transferring each function and procedure
over the on-chip network. This information is used to decide
whether it is worth migrating tasks on the same processor
to reduce communication overhead or transferring data be-
tween them.

In [11], a feasibility study for the implementation of
a lightweight migration mechanism is proposed. The user-
managed migration scheme is based on code checkpoint-
ing and user-level middleware support. The user is respon-
sible for determining the context to be migrated. To evalu-
ate the practical viability of this scheme, authors propose a
characterization methodology for task migration overhead,
which is the minimum execution time following a task mi-
gration event during which the system configuration should
be frozen to make up for the migration cost.

In this work, task migration for embedded systems is
evaluated when applied to a real-world soft real-time ap-
plication. Compared to [11], our migration strategy is im-
plemented at the operating system and middleware level.
Checkpoints are only used to determine migration points,
while the context is automatically determined by the oper-
ating system.

3. TARGET ARCHITECTURE ORGANIZATION

The software infrastructure we present in this work is tar-
geted to a wide range of multicore platforms having a num-
ber of homogeneous cores that can execute the same set
of tasks, otherwise task migration is unfeasible. A typi-
cal target homogeneous architecture is the one shown in

Figure 1(a). The architectural template we consider is based
on a configurable number of 32-bit RISC processors with-
out memory management unit (MMU) accessing cacheable
private memories and a single noncacheable shared mem-
ory.

The template we are targeting is compliant with state-
of-the-art MPSoC architectures. For instance, because of its
synergistic processing elements with local storage and shared
memory used as support for message-based stream process-
ing is closely related to CELL [22].

In our target platform, each core runs in the logical pri-
vate memory a single operating system instance. This is com-
pliant with the state-of-the-art homogeneous multicore ar-
chitectures such as the MP211 multicore by NEC [23].

As regards as task migration, the main architectural im-
pact is related to the interconnect model. As we will describe
in Section 6, our target platform uses a shared bus as inter-
connect. This is the worst case for task migration since it im-
plies data transfers from the private memory of one core to
the one of another core.

As far as this MPSoC model is concerned, processor
cores execute tasks from their private memory and explic-
itly communicate with each others by means of the shared
memory [24]. Synchronization and communication are sup-
ported by hardware semaphores and interrupt facilities: (i)
each core can send interrupts to others using a memory-
mapped interprocessor interrupt module; (ii) cores can syn-
chronize between each other using a hardware test-and-set
semaphore module that implements test-and-set operations.
Additional dedicated hardware modules can be used to en-
hance interprocessor communication [25, 26]. In this paper,
we consider a basic support to save the portability of the ap-
proach.

4. SOFTWARE INFRASTRUCTURE

Following the distributed NUMA architecture, each core
runs its own instance of the uClinux operating system [27]
in the private memory. The uClinux OS is a derivative
of Linux 2.4 kernel intended for microcontrollers without
MMU. Each task is represented using the process abstraction,
having its own private address space. As a consequence, com-
munication has to be explicitly carried on using a dedicated
shared memory area on the same on-chip bus. The OS run-
ning on each core sees the shared area as an external memory
space.

The software abstraction layer is described in Figure 1(b).
Since uClinux is natively designed to run in a single-
processor environment, we added the support for interpro-
cessor communication at the middleware level. This organi-
zation is a natural choice for a loosely coupled distributed
systems with no cache coherency, to enhance efficiency of
parallel application without the need of a global synchro-
nization, that would be required by a centralized OS. On top
of local OSes we developed a layered software infrastructure
to provide an efficient parallel programming model for MP-
SoC software developers enabled by an efficient task migra-
tion support layer.



4 EURASIP Journal on Embedded Systems
Tile 0 TileN -1
Private Private
memory Processor Cache memory Processor Cache
7 T T %
|2 T M 2 T 2 2 T N
Shared Semaphores Interrupts
memory peripheral peripheral
(a)
Applications Task 1 || Task 2 |
Task migration
Communication & synchronization
0os/ I
middleware
Operating system 1 | | Operating system N |
| Processor 1 | | Processor N |
Shared |,
HW memory
| Private memory 1 | | Private memory N |
(®)
FIGURE 1: Hardware and software organizations: (a) target hardware architecture; (b) scheme of the software abstraction layer.
4.1. Communication and synchronization support 4.2. Task migration support

The communication library supports message passing
through mailboxes. They are located either in the shared
memory space or in smaller private scratch-pad memories,
depending on their size and depending if the task owner of
the queue is defined as migratable or not. The concept of mi-
gratable task will be explained later in this section. For each
process a message queue is allocated in shared memory.

To use shared memory paradigm, two or more tasks are
enabled to access a memory segment through a shared malloc
function that returns a pointer to the shared memory area.
The implementation of this additional system call is needed
because by default the OS is not aware of the external shared
memory. When one task writes into a shared memory loca-
tion, all the other tasks update their internal data structure
to account for this modification. Allocation in shared mem-
ory is implemented using a parallel version of the Kingsley
allocator, commonly used in Linux kernels.

Task and OS synchronization is supported providing ba-
sic primitives like binary and counting semaphores. Both
spinlock and blocking versions of semaphores are pro-
vided. Spinlock semaphores are based on hardware test-
and-set memory-mapped peripherals, while nonblocking
semaphores also exploit hardware interprocessor interrupts
to signal waiting tasks.

To handle dynamic workload conditions and variable task
and workload scenarios that are likely to arise in MPSoCs
targeted to multimedia applications, we implemented a task
migration strategy enabled by the middleware support. Mi-
gration policies can exploit this mechanism to achieve load
balancing for performance and power reasons. In this sec-
tion, we describe the middleware-level task migration sup-
port. In Section 6, we will show how task migration can be
used to improve the efficiency of the system.

In our implementation, migration is allowed only at pre-
defined checkpoints, that are provided to the user through
a library of functions together with message passing prim-
itives. A so-called master daemon runs in one of the cores
and takes care of dispatching tasks on the processors. We
implemented two kinds of migration mechanisms that dif-
fers in the way the memory is managed. A first version,
based on a so-called “task-recreation” strategy, kills the pro-
cess on the original processor and recreate it from scratch
on the target processor. This support works only in operat-
ing systems supporting dynamic loading, such as uClinux.
Task recreation is based on the execution of fork-exec sys-
tem calls that take care of allocating the memory space re-
quired for the incoming task. To support task recreation on
an architecture without MMU performing hardware address



Andrea Acquaviva et al.

translation, a position-independent type of code (called PIC)
is required to prevent the generation of wrong references of
pointers, since the starting address of the process memory
space may change upon migration.

Unfortunately, PIC is not supported by the target proces-
sor we are using in our platform (microblazes) [28]. For this
reason, we implemented an alternative migration strategy
where a replica of each task is present in each local OS, called
“task-replication.” Only one processor at a time can run one
replica of the task. While here the task is executed normally,
in the other processors it is in a queue of suspended tasks.
As such, a memory area is reserved for each replica in the
local memory, while kernel-level task-related information is
allocated by each OS in the process control block (PCB) (i.e.,
an array of pointers to the resources of the task). A second
valid reason to implement this alternative technique is be-
cause deeply embedded operating systems are often not ca-
pable of dynamic loading and the application code is linked
together with the OS code. Task replication is suitable for an
operating system without dynamic loading because the abso-
lute memory position of the process address space does not
change upon migration, since it can be statically allocated at
compile time. This is the case of deeply embedded operating
systems such as RTEMS or eCos. This is compliant also with
heterogeneous architectures, slave processors run a minimal-
ist OS, that is, a library statically linked with the tasks to be
run, that are known a priori. The master processor typically
runs a general purpose OS such as Linux. Even if this tech-
nique leads to a waste of memory for migratable tasks, it has
also the advantage of being faster, since it cuts down on mem-
ory allocation time with respect to a task recreation.

To further limit waste of memory, we defined both mi-
gratable and nonmigratable types of tasks. A migratable task
is launched using a special system call, that enables the repli-
cation mechanism. Nonmigratable tasks are launched nor-
mally. As such, in the current implementation the user is re-
sponsible for distinguishing between the two types of tasks.
However, in future implementation the middleware itself
could be responsible of selecting migratable tasks depending
on task characteristics.

The difference in terms of migration costs for the two
strategies is shown in Figure 2. Cost is shown in terms of pro-
cessor cycles needed to perform migrations as a function of
the task size. In both cases, there is a contribution to migra-
tion overhead due to the amount of data transferred through
the shared memory. Moreover, for task recreation technique,
there is another overhead due to the additional time required
to reload the program code from the file system. This ex-
plains the offset between the two curves. Moreover, the task
recreation curve as a larger slope. This is due to the fact thata
large amount of memory transfers also lead to an increasing
contention on the bus, so that the contribution on the execu-
tion time increases more as the file size increases with respect
to the task replication case.

In our system, the migration process is managed using
two kinds of kernel daemons (part of the middleware layer), a
master daemon running in a single processor, and slave dae-
mons running in all the processors. The communication be-
tween master and slave daemons is implemented using dedi-

x10°

—
(=)

-
—
e

Clock cycles
[ S TS VRN O} B o N e BN«

s
o«

------- L e e B L R

0 12 256 384 512 640 768 896 1024
Task size (KB)

(=}

—o— Task recreation
—=— Task replication

FIGURE 2: Migration cost as a function of task size for task replica-
tion and task recreation.

cated, interrupt-based messages in shared memory. The mas-
ter daemon takes care of implementing the run-time task
allocation policy. Tasks can be migrated only correspond-
ing to user-defined checkpoints. The code of the check-
points is provided as a library to the programmer. When a
new task or an application (i.e., a set of tasks) is launched
by the user, the master daemon sends a message to each
slave, that forks an instance of each task in the local pro-
cessor. Depending on master’s decision, tasks that have not
to be executed on the local processor are placed in the sus-
pended tasks queue, while the others are placed in the ready
queue.

During execution, when a task reaches a user-defined
checkpoint, it checks for migration requests performed by
the master daemon. If the migration is taken, they suspend
their execution waiting to be deallocated and restore to an-
other processor from the migration middleware. When the
master daemon wants to migrate a task, it signals to the slave
daemons of the source processor that a task has to be mi-
grated. A dedicated shared memory space is used as a buffer
for task context transfer. To assist migration decision, each
slave daemon writes in a shared data structure the statistics
related to local task execution (e.g., processor utilization and
memory occupation of each task) that are periodically read
by the master daemon.

Migration mechanisms are outlined in Figure 3. Both ex-
ecution and memory views are shown. With task replication
(Figures 3(a) and 3(b)), the address space of all the tasks is
present in all the private memories of processor 0,1, and 2.
However, only a single instance of a task is running on pro-
cessor 0, while others are sleeping on processors 1 and 2. It
must be noted that master daemon (M_daemon in Figure 3)
runs on processor 0 while slave daemons (S_daemon in
Figure 3) run on all of the processors. However, any proces-
sor can run the master daemon.



6 EURASIP Journal on Embedded Systems
Task replication Task replication

T T T T TS M T ST T T T T TSI T T T TS T T o e s e e e e e e I

! P . .
1 PO Running E\Sleepmg Iﬁkepmg : tmee;ing PO Runnincjgﬁleemng :

. | !

Exe_cutl.on | | Core Core Core | Execution| | cqgpe Core Core i
view: 11 #0 #1 #2 I view: | #0 #1 #2 !
| | 1
! | I I

view:
Task replication
(a)
Task recreation
r-—"""""" T T T TTTTTTTTTTTTTTT-TT=T=T=T= =777 7 |
} PO |Running —> Exited :
L] I
Execution | | Core Core Core |
view: } #0 #1 #2 I
|
1 |

Private

b_daemon

Shared

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task deallocation

(c)

R s e e

|
! 1
1 1
Mevmory : Private }
view: | I
! 1
|
! Shared :
Task replication
(b)
Task recreation
r--r-r-—---7TT-TTT-TTTTTTTTTTT T YT T T T T TT T T T T T |
I Exited PO _|Running :
|
Execution | |Core Core Core |
view: | #0 #1 #2 |
1 |
e | S —— 1
i | I
R R i
! _daemon
Me_mory : Private!
view: |

Task recreation

(d)

FIGURE 3: Migration mechanism: (a) task replication phase 1; (b) task replication phase 2; (c) task recreation phase 1; (d) task recreation

phase 2.

Figures 3(c) and 3(d) shows task recreation mechanism.
Before migration, process PO runs on processor 0 and oc-
cupies memory space on the private memory of the same
processor. Upon migration, PO performs an exit system call
and thus its memory space is deallocated. After migration
(Figure 3(d)), memory space of PO is reallocated on proces-
sor 1, where PO runs.

Being based on a middleware-level implementation run-
ning on top of local operating systems, the proposed mecha-
nism is suitable for heterogeneous architectures and its scal-
ability is only limited by the centralized nature of the master-
slave daemon implementation.

It must be noted that we have implemented a particu-
lar policy, where the master daemon keeps track of statistics
and triggers the migration; however, based on the proposed
infrastructure, a distributed load balancing policy can be im-
plemented with slave daemons coordinating the migration
without the need of a master daemon. Indeed, the distinction
between master and slaves is not structural, but only related
to the fact that the master is the one triggering the migra-
tion decision, because it keeps track of task allocation and
loads. However, using an alternative scalable distributed pol-
icy (such as the Mosix algorithm used in computer clusters)
this distinction is no longer needed and slave daemons can
trigger migrations without the need of a centralized coordi-
nation.

5. MULTIMEDIA SOFT REAL-TIME
APPLICATION MAPPING

Multimedia applications are typically composed by multiple
tasks. In this paper, we consider each task as a process with
its own private address space. This allows us to easily map
these applications on a distributed memory platform like the
one we are targeting in this work. The underlying framework
supports task migration so that dynamic resource manage-
ment policies can take care of run-time mapping of task to
processors, to improve performance, power dissipation, ther-
mal management, reliability. The programmer is not exposed
to mapping issues, it is only responsible for the communi-
cation and synchronization as well as code checkpointing
for migration. Indeed, task migration can occur only corre-
sponding to checkpoints manually inserted in the code by the
programmer.

In our migration framework, all the data structures de-
scribing the task in memory are replicated. Upon migration,
the only kernel structure that is moved is the stack. As such, if
a process has opened a local resource, this information is lost
after migration. The programmer is responsible for carefully
selecting migration points or eventually reopening resources
left open in the previous task life.

An alternative, completely transparent approach, is the
one implemented in Mosix for computer clusters [10], where



Andrea Acquaviva et al.

FPGA
PPC subsystem Frequency domain 0 Frequency domain 3
MBO IEShj MB3 || Cashe
Private Stats handling
memory timer/trigger : T | :I:
) 7 $ OPB bus :I: OPB bus
1 | PLBbus OPB/PLB bridge OPB/PLB bridge
- g Fixed $
PPC PLB/OPB/PLB bridge
| T—g| | Addresses re-mapper | f;?]‘;incy | Addresses re-mapper |
us
/F
1 9 £
Stats sniffing Semaphores Interrupts
& virtual clock | DDR interface | .Ph h ioh P 1 UART
management peripheral periphera periphera
RS232
MBO MB3 o (to/from the linux
private private ;ﬁ?ﬁfﬁf ) consolles and to/from the
memory memory 4 A thermal model on the
host PC)
Board T
N
FIGURE 4: Overview HW architecture of emulated MPSoC platform.
1.2 of code checkpointing and run-time support. A second set
. L6V of tests were performed on a soft real-time streaming ap-
plication to highlight the effect of migration on a real-life
0.8 multimedia application. Results show that a temporary QoS
z degradation due to migration can be hidden by exploiting
5 06 ui/ data reservoir in interprocessor communication buffers and
S o4 — Prov@e design guidelines concerning buffer size and migra-
LO7V tion times.
0.2 1.U:'V/,/
0 i i i i i 6.1. Emulation platform description and setup
0 100 200 300 400 500 600
Frequency (MHz) For the simulation and performance evaluation of the pro-

FIGURE 5: Power model: power as a function of the frequency.

a home processor defined for each process requires the im-
plementation of a forwarding layer that takes care of for-
warding system calls to the home node. In our system, we
do not have the notion of home node. A more complex pro-
gramming paradigm is thus traded off with efficiency and
predictability of migration process. This approach is much
more suitable to an embedded context, where controllability
and predictability are key issues.

6. EXPERIMENTAL RESULTS

In this section, results of a deep experimental analysis of
the multiprocessing middleware performed using an FPGA-
based multiprocessor emulation platform are described. A
first run of tests, based on synthetic applications, have been
used to characterize the overhead of migration in terms

posed middleware, we used an FPGA-based, cycle accurate,
MPSoC hardware emulator [12] built on top of the Xilinx
XUP FPGA board [28], and described in Figure 4. Time and
energy data are run-time stored using a nonintrusive, statis-
tics subsystem, based on hardware sniffers which store fre-
quencies, bus, and memory accesses. A PowerPC processor
manages data and control communication with the host PC
using a dedicated UART-based serial protocol. Run-time fre-
quency scaling is also supported and power models run-
ning on the host PC allow to emulate voltage scaling mech-
anism. Frequency scaling is based on memory-mapped fre-
quency dividers, which can be programmed both by microb-
lazes or by PowerPC. The power associated to each processor
is 1 Watt for the maximum frequency, and scales down al-
most cubically to 84 mW as voltage and frequency decrease.
Power data refers to a commercial embedded RISC processor
and is provided by an industrial partner. Power/frequency
relationship is detailed in Figure 5. The emulation plat-
form runs at 1/10 of the emulated frequency, enabling the
experimentation of complex applications which may not be



8 EURASIP Journal on Embedded Systems
0.25 / 0.25
02 02 =
S S
g 015 g o015
.g 0‘1 E 0.1
=) =)
[a T}
6 //:> O //
0.05 0.05
0 ;M ; 0

0 20 40 60 80 100
Update frequency (Hz)

—o— Without decision 8 tasks —a— With decision 8 tasks
—a— Without decision 16 tasks —%— With decision 16 tasks

(a)

0 10 20 30 40 50 60 70 80 90 100
Update frequency (Hz)

—— 8 tasks

—=— 16 tasks

(b)

FIGURE 6: Migration daemon overhead in terms of processor utilization: (a) master daemon CPU load; (b) slave daemon CPU load.

experimented using software simulators with comparable ac-
curacy.

In our platform, private memories are physically mapped
into an external DDR memory. This is because the image of
uClinux does not fit into the on-chip SRAM. This architec-
tural solution is similar to NEC MP211 multicore platform
[23].

Even in this particular implementation, we use an exter-
nal DDR to map shared and private memories, the proposed
approach (i.e., task replication version) can be also imple-
mented in deeply embedded operating systems whose mem-
ory footprint would fit into a typical on-chip SRAM.

6.2. Migration support characterization

We present the results of experiments carried out to assess
the overhead of the task migration infrastructure in terms of
execution time. We exploited a controllable synthetic bench-
mark to this purpose, thanks to which we evaluated three
components of the migration overhead: (i) the cost of the
slave daemons running in background to check tasks run-
time statistics; (ii) the cost of the master daemon running in
background to trigger task shutoff and resume in the various
processor cores; (iii) the number of cycles required to com-
plete a migration, that is to shut off a task in the source core,
transfer its context, and resume it on the destination core.
We evaluated the overhead of the master daemon by mea-
suring its CPU utilization. Its job is to read the statistics
about all the tasks in the system from the shared memory
and look in a prestored lookup table whether or not a task
should be migrated and where. As such, this overhead does
not include the overhead due to (i) the pure cost of migra-
tion support and (ii) to the cycles spent to look in the table.
We measured these two contributions separately to evaluate
migration overhead independently from the particular mi-
gration policy. Figure 6(a) shows the CPU load for the two
considered cases as a function of the frequency of daemon
invocation and for two different quantities of task present in

the system. We observed a negligible overhead, highlighting
that there is a room for implementing more complex task al-
location and migration policies in the master daemon with-
out impacting system performance.

We evaluated the CPU utilization imposed by slave dae-
mons which periodically write task information (currently
the task load) in a dedicated data structure allocated in
shared memory. This information is then exploited for mi-
gration decisions. In Figure 6(b), the CPU utilization of the
daemon is shown as a function daemon period in a range of 1
to 100 Hz, two curves are plotted, for 8 and 16 tasks, referred
to a core speed of 100 MHZ. It is worth to note that, although
the processor speed is moderate, the overhead is negligible
being lower than 0.25% in the worst case (update frequency
of 100 Hz).

Finally, to quantitatively evaluate the cost of a single task
migration, we exploited the capability of our platform to
monitor the amount of processor cycles needed to perform
a migration, from the checkpoint execution to the complete
resume of the task on the new processor. Figure 7 shows mi-
gration cost as a function of the task size. Migration overhead
is dominated by data transfer. Two main contributions affect
the size of the task context to be transferred. The first is the
kernel memory space reserved by uClinux to each process to
allocate process data structures and the user memory space
associated to the task to be migrated. The first contribution
consists in our current implementation only of the kernel
stack of the processor. This is because the other data struc-
tures are already replicated in all the kernels in the other cores
(because of the replication strategy). Data, code sections, and
heap belong to the second contribution. It must be taken into
account that the minimum allocation of user space memory
for each processor is 64 KB, even if the process is smaller. In
our current implementation, we copy the whole memory ar-
eas because we exploit the presence of the memory pointers
in the process control block (PCB). With the help of some
additional information, optimized techniques can be imple-
mented to reduce the amount of data to be copied, that will



Andrea Acquaviva et al.

8E +07

7E+07

6E +07

5E+07

4E + 07

3E+07

Number of cycles

2E+07

1E + 07
/

0E + 00 +rrrrrrrrreree e e e T
0 128 256 384 512 640 768 896 1024

Task size (KB)

F1GURE 7: Task migration cost.

Qa1 Q31
BPF
Q1 Qxn Q3
LPF DEMOD BPF i
Qa3 Q33

} BPF

FiGure 8: FM radio.

be an object of future work. The linear behavior of the cy-
cle count shows that the only overhead added by the migra-
tion support is a constant amount of cycles that are needed
to copy the task kernel context and to perform the other mi-
gration control operations as described in Section 4. This is
visible as the intercept with the Y-axis is in the plot and its
value is 104986 cycles.

Finally, it must be noted that a hardware support for
data transfer, such as a DMA controller, that is currently not
present in our emulation platform, could greatly improve
migration efficiency.

6.3. Impact of migration on soft real-time
streaming applications

To evaluate the effectiveness of the proposed support on a
real test bed, we ported to our system a software FM radio
benchmark, that is a representative of a large class of stream-
ing multimedia applications following the split-join model
[29] with soft real-time requirements. It allows to evaluate
the tradeoff between the long-term performance improve-
ment given by migration-enabled run-time task remapping
and the short-term overhead and performance degradation
associated to migration.

As shown in Figure 8, the application is composed by
various tasks, graphically represented as blocks. Input data
represent samples of the digitalized PCM radio signal which
has to be processed in order to produce an equalized base-
band audio signal. In the first step, the radio signal passes
through a lowpass filter (LPF) to cut frequencies over the ra-
dio bandwidth. Then, it is demodulated by the demodulator
(DEMOD) to shift the signal at the baseband and produce

the audio signal. The audio signal is then equalized with a
number of bandpass filters (BPF) implemented with a paral-
lel split-join structure. Finally, the consumer (£) collects the
data provided by each BPF and makes the sum with different
weights (gains) in order to produce the final output.

To implement the communication between tasks,
we adopted the message passing paradigm discussed in
Section 4. Synchronization among the tasks is realized
through message queues, so that each task reads data from
its input queue and sends the processed results to the output
queue to be read by the next task in the software pipeline.
Since each BPF of the equalizer stage acts on the same data
flow, the demodulator has to replicate its output data flow
writing the same packet on every output queue.

Thanks to our platform, we could measure the workload
profile of the various tasks. We verified that the most compu-
tational intensive stage is the demodulator, imposing a CPU
utilization of 45% of the total, while for the other tasks we
observed, respectively, 5% for the LPF, 13% for each BPF and
5% for the consumer. This information will be used by the
implemented migration support to decide which task has to
be migrated.

To assess migration advantages and costs, we refer to mi-
gration represented in Figure 9. We start from a single pro-
cessor configuration providing a low frame rate. For each
frame rate we stored the best configuration in terms of en-
ergy efficiency that provides the required performance level.
Thus, as the frame rate imposed by the application increases,
we move first to a two processors configuration and then to
a three processors configuration. For each processor we also
predetermined the appropriate frequency level.

In the rest of this subsection, we first show how the
best configurations and the frame rate represent the cross-
ing points between configurations. Second, to show what is
the cost of transition from a configuration to another, we de-
tail migration costs in terms of performance (frame misses)
and energy.

Optimal task configurations

We use migration to perform run-time task remapping, driv-
ing the system from an unbalanced situation to a more bal-
anced one. The purpose of the migration policy we used in
this experiment is to split computational load between pro-
cessing cores. Each processor automatically scales its speed
depending on the value stored in a lookup table as a function
of the frame rate.

It must be noted that minimum allowed core frequency
is 100 MHz. As a consequence, there is no convenience in
moving tasks if the cumulative processor utilization leads to
a frequency lower than the minimum. Task load depends
on the frame rate specified by the user, which in turn de-
pends on the desired sound quality. After initial placement,
migration is needed to balance workload variations gener-
ated by run-time user requests. The migration is automati-
cally triggered by the master daemon integrated in our layer,
following an offline computed lookup table which gives the
best task/frequency mapping as a function of these run-time
events. It is worth noting that in this paper, we are not



10

EURASIP Journal on Embedded Systems

Processor 0

i

Processor 0

Processor 0

([ 11]

>| BPE-0 HII

|§ . DE
Processor 1 ~-2M

Processor 2

: | Processor 2

- Protessor 1
- Hion =
Processor 1 Tl o BPF-1 HIITJ
| - | Processor 2 BPF-2

1 processor configuration

2 processors configuration

3 processors configuration

F1GURE 9: Task migrations performed to support the required frame rate.

interested in evaluating task/frequency allocation policies but
the efficiency of the infrastructure. Rather, we are interested
in demonstrating how migration cost is compensated by the
execution time saved after migration when the system runs a
more balanced configuration.

Task reallocation allows to improve the energy efficiency
of the system at the various frame rates requested by the user.
We show the impact of task reallocation on energy efficiency
and we outline energetic cost of task migration. Energy-
efficient configurations are computed starting from energy
versus frame-rate curves. Each curve represents all the con-
figurations that are obtained by keeping the same number of
processors while increasing the frequency to match the de-
sired frame rate. Then we take the Pareto configurations that
minimize energy consumption for a given frame rate.

We considered two different energy behaviors of our sys-
tem. In the first configuration, called always on, we do not
use any built-in power-saving scheme, that is, the cores are
always running and consume power depending on their fre-
quency and voltage. In the second configuration, we emu-
late a shutdown-when-idle power-saving scheme in which the
cores are provided with an ideal low-power state in which
their power consumption is negligible.

In the always on case, the power consumed by the cores
as a function of the frame rate is shown in Figure 10. On the
left side of the figure, the plot shows three curves obtained
by computing the power consumed when mapping the FM
Radio tasks in one, two, or three cores. Following one of the
curves, it can be noted that, due to the frequency discretiza-
tion, power consumption is almost constant in frame rate in-
tervals where the cores run at the same frequency/voltage. In
each one of these intervals, the amount of idleness is maxi-
mum at the beginning and decreases until a frequency step
is needed to support the next frame rate value. On the right
side of the figure, the corresponding configurations are high-
lighted, as well as the task mapping and frequencies for each
core. Being the demodulator task, the more computational
intensive, it is the task that runs at the higher frequency than
others.

In order to determine the best power configuration for
each frame rate, we computed the Pareto points, as shown
in Figure 11. Intuitively, when the frame rate increases, a

higher number of cores are needed to get the desired QoS
in an energy-efficient way. However, due to the frequency
discretization, this is not true. There are cases in which en-
ergy efficiency is achieved using a lower number of cores for
a higher frame rate. In practice, the “Pareto path” shown on
the right side of Figure 11 is not monotonic on the number
of cores. Migrations needed to go from one configuration to
another are also highlighted as right-oriented arrows on the
left side of the figure.

Conversely, in the shutdown-when-idle case, power con-
sumption is no longer constant for a given frequency/voltage,
because the cores are more active as the frame rate increases
for a given frequency. This is shown in Figure 12, where
the same curves presented before for the always on case are
shown, representing static task mappings in one, two, and
three cores.

Frequency discretization has less impact in this case. In-
deed, by observing the Pareto curve shown in Figure 13, it is
evident that the number of cores of the Pareto configurations
is monotonically increasing as a function of the frame rate.
In Figure 13 migration costs are also detailed. Following the
Pareto curve from left to right, the various task mappings and
corresponding core frequencies are shown. In particular, core
configurations across migration points are shown as well as
migration costs in terms of energy. The cost of migration has
been evaluated in terms of cycles as described before. These
cycles lead to an energy cost, depending on the frequency
and voltage at which the core is executing the migration. In
Figure 13, this cost is computed considering that migration
is performed at the maximum frame rate sustainable at a
given configuration, that is, 3000 fps for the 1-processor con-
figuration and 4200 fps for the 2-processor configuration. In
general, however, migration cost for transitioning from one
configuration to another depends on the actual frame rate
which determines the processor frequency. To detail the cost
of migration at the various frequencies, we reported energy
spent on transitioning from each configuration to another in
Figure 14.

Migration energy cost depends on the frequency and
voltage. The first set of bars shows the cost of migration from
one-core configuration to two-cores configuration, which
implies moving only the demodulator task. The second set



Andrea Acquaviva et al.

11

Power (W)

Power (W)

1 core 2 cores

3 cores

2 cores

410 LPF,
BPF1 BPF2 BPF3 con 532 dem
i 1320 LPE, con,BPF3|

532 dem
320 LPF, con,BPF3
]320 BPF1,BPF2

532 dem —
1400 LPE,
BPF1,BPF2,BPF3,con

410 dem
200 LPF, con,BPF3
200 BPF1,BPF2

410 dem
320 LPE,
BPF1,BPF2,BPF3,con

320 dem
200 LPE, con,BPF3
200 BPF1,BPF2

100 BPF1,BPF2

200 dem

100 LPE,

320 dem

320 LPE,

BPF1,BPF2,BPF3,con
| 200 dem

320 dem “1'/|200 LPE con,BPF3
200 LPF, 200 BPF1,BPF2
BPF1,BPF2,BPF3,con

200 dem 1

200 LPF, j 200 dem

/ BPF1,BPF2,BPF3,con [ (100 LPE con,BPE3

BPF1 BPF2 BPF3 con 100 dem

100 LPE, con,BPF3
100 BPF1,BPF2

{1100 dem
100 LPE, wl,w2,w3,con

Configurations (MHz, tasks)

3 cores

532 dem

320 BPF1,BPF2

Pareto path

410 dem
320 dem 200 LPF, con,BPF3|
320 LPE 200 BPF1,BPF2
BPF1 BPF2 BPF3 con \
320 dem
200 LPE, 320 dem

BPFI BPF2 BPF3 con | | [500 P, con,BPF3

——7|200 BPF1,BPF2

200 dem
200 LPF,
100 LPE, con,BPF3
100 BPF1,BPF2
—\ 200 dem
100 LPE,

BPF1 BPF2 BPF3 con

Pareto configurations (MHz, tasks)

1.8 1
1.6
A
B---m
1.4 }
|
|
1.2 ;
|
|
1 l
|
|
A A
0.8 a
|
0.6 At A
0-5—0!.
0.4 -
B--- AN
A lfI_"
0.2 F—— ‘
o—I_“
0 T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Frame rate (fps)
—— 1 core
—~M- 2 cores
A 3 cores
FIGURE 10: Energy cost of static task mappings in the always on case.
12 132 3 2 3
1.8 1 e ! Lo
I 1] > e
| > 1> | o
16 S 3 : Co
I P ! L A
N i sy
1.4 — —H + —t
H b ! b
[ [N} I I I
1.2 B : o
H iy ! o
[ [N I I I
. N i P
T i
N iy ! 1
0.8 R ' A A
I P ! P
I L ! o
0.6 L LLL L -
' i m b
I P ! P
0.4 L i N L
) PE Al ! rot
| I I I I
02 L B S L
' s n ! P
* . N iy ! o
0 . 1 L 1
0 1000 2000 3000 4000 5000 6000 7000
Frame rate (fps)
® 1 core
B 2 cores
A 3 cores

FIGURE 11: Pareto optimal configurations in the always on case.



12 EURASIP Journal on Embedded Systems
1.8 Missed frames
12
1.6 "
1.4 7 10
— 1'2 /// 17 8 \
i
% 1 ’ g \\
;_‘ ;- <
/ . =
g 08 —— - 6
2 M 5
0.6 FECiaae 2 \\
0.4 i it = ¢
0.2 :7:;-— = 2
0 . . . o \\
0 2000 4000 6000 8000 0 > 3 p 5 To 12
Frame rate (fps) Queue size

—*— 1 core
—-m- 2 cores
4. 3 cores

FIGURE 12: Energy cost of static task mappings in the shutdown-
when-idle case.

1 core 2 cores 3 cores
dem dem
wl,w2,w3,LPEcon wlw2
1.8 § - -
| | LPEcon,w3
1.6 T 532 MHz dem ———
. - [320 MHz wi,w2
1.4 t +—320 MHz LPE.con,w3
: : B
— 1.2 ! L1320 MHz dem
g i —>|200MHz wi,w2
~ 11 320 MHz dem 200 MHz LPE,con,w3 j————
s:; 320 MHz wl,w2,w3,LPF,con
z — —
o
~

0.8
—,m:—|
0.6 - 200 MHz wl,w2,3,LPFcon |
RSN -
0.4 +—E2Mizallasdks}—L { Migration cost@320 MHz
N / 8.38mJ

100 MHz all tasks Migration cost@200 MHz
4.2mJ

4000 6000 8000

Frame rate (fps)

0 2000

— Pareto

FIGURE 13: Pareto optimal configurations in the shutdown-when-
idle case.

35
1-3
30
\f: 25
o0 2-3
S 20
o
g 15
] 1-2
&b 10
=
5 4
0 T T
DEMOD BPF1, BPF2 DEMOD, BPF1, BPF2
Migrating tasks
O 100 MHz ® 410 MHz
O 200 MHz B 532 MHz
O 320 MHz

FIGURE 14: Task migration cost as a function of the frequency.

14
12
o
S0} u
g
38
o -
g 6
3
& 4
2 L
0 L
1.48¢+06 1.5e+06 1.52¢+06 1.54e+ 06 1.56e+ 06 1.58¢+ 06
Time (us)
— Q — Q3
Qa1 — Qxn
— Qn Q33
— Qs — U
(b)

F1GURE 15: Impact of migration of communicating tasks: (a) Queue
size versus deadline misses; (b) Queue occupancy during migration.

of bars shows the cost of migration from two cores to three
cores, which implies moving the two BPF tasks from one core
to another. The third set of bars shows the cost of migration
from one core to three cores directly, which involves moving
4 tasks, the two BPFs, and the demodulator. It is worth noting
that energy cost is almost equal from 100 MHz to 320 MHz.
This is because in the power models we considered that volt-
age does not scale below 320 MHz, as reported in Figure 5. As
such, dynamic power consumption of the processor linearly
depends on the frequency and thus energy consumption is
almost constant.

In the shutdown-when-idle case, migration implies an in-
crease of the workload and thus less time in low-power state.
In the always on case, migration cost is hidden if there is
enough idleness. However, this depends on the relationship
between frame rate (required workload), discrete core fre-
quency and migration cost. In our experiment, migration
overhead is completely hidden by the idleness due to fre-
quency discretization. That is why migration costs are not
shown in Figure 11.



Andrea Acquaviva et al.

while(1) {
checkpoint();

infifo.get (&elem);
for(q=0; g < FM_FRAME_SIZE; g++) {
// demodulation
temp = (elem.d[q] * lastElem);
elem.d[q] = mGain *
arctan(elem.d|q], 1.0/lastElem);
lastElem = elem.d[q];

Overhead (%)
&

1 0.5 1
for(int w=0; w<n_workers; w++) {

outfifo[w]->put(&elem); 0
}

}
(a)

13
2.61
.81
135
. I
Producer  Demodulator Worker Consumer
FM radio tasks

(b)

FIGURE 16: Impact of migration of communicating tasks: (a) code of demodulator with checkpoints; (b) checkpointing overhead.

Migration overhead

Once energy-efficient configurations have been determined,
these can be used to achieve the wanted frame rate in an
energy-efficient way. However, when transitioning from a
configuration to another, a migration cost must be paid. To
assess the impact of this cost, in the following experiment
we imposed a run-time variation of the required frame rate,
leading to a variation in the optimal task/frequency mapping
of the application. We considered to have an offline calcu-
lated lookup table giving the optimal frequencies/tasks map-
ping as a function of the frame rate of the application. The
system starts with a frame rate of 450 fps. In this case, the sys-
tem satisfies frame-rate requirements mapping all the tasks
on a single processor running at the minimum frequency.
As mentioned, scattering task on different processors is not
profitable from an energy viewpoint in this case.

A frame rate of 900 fps is imposed at run time that al-
most doubles the overall workload. The corresponding op-
timal mapping consists of two processors each one running
at the minimum frequency. Due to the workload distribu-
tion among tasks, the demodulator will be moved in another
core where it can run alone while the other tasks will stay to
ensure a balanced condition. Also in this case, further split-
ting tasks does not pay off because we are already running at
the minimum frequency. As a consequence, the system reacts
to the frame-rate variation by powering on a new processor
and triggering the migration of the demodulator task from
the first processor to the newcomer. During migration, the
demodulator task is suspended, potentially causing a certain
number of deadline misses, and hence, potentially leading to
a quality of service degradation. This will be discussed later
in this section. Further increasing the frame rate requires the
migration of two workers on a third processor.

Whether or not the migration impacts QoS depends on
interprocessor queue size. If the system is designed prop-
erly, queues should contain a data reservoir to handle spo-
radic workload variations. In fact, during normal operations,
queue empty condition must be avoided and queue level
must be maintained to a certain set point. In a real-life sys-

tem this set point is hard to stabilize because of the discretiza-
tion and the variability of producer and consumer rates, thus
a practical condition is working with full queues (i.e., pro-
ducer rate larger than consumer rate). When the demodu-
lator task is suspended to be migrated, the queues between
the demodulator and the workers start to deplete. Depend-
ing on the queue size, this may lead or not to an empty queue
condition. This empty condition will propagate to the queue
between the workers and the final consumer. If this queue
becomes empty, deadline misses may occur.

In Figure 15(a), we show the results of the experiment
we performed to evaluate the tradeoff between the queue
size and the number of deadline misses due to task migra-
tion. The experiment has been carried on by measuring the
deadline misses during the whole benchmark execution. The
same measurement was performed by changing the size of
the queues between the demodulator and the workers and
the queue between the worker and the consumer (all having
the same size). It can be noted that a queue size of 14 frames
is sufficient to avoid deadline misses. Queue occupation dur-
ing migration is illustrated in Figure 15(b). In this plot, Q, is
the occupancy level of output queue of the first stage of the
pipe(LPF), Q,; is the output queue of worker 1, and so on.
It can be noted that the temporary depletion of intermediate
queues does not cause frame misses. Indeed, the last queue
of the pipeline (Q,), responsible of the frame misses, never
deplete.

In order to assess the overhead of migration support, we
performed an additional test to quantify the cost of pure code
checkpointing without migration. Since this overhead is paid
when the system is in a stable, well-balanced configuration,
its quantification is critical. It must be noted that checkpoint
overhead depends on the granularity of checkpoints that in
turn depends on the application code organization. For a
software FM Radio application, we inserted a single check-
point in each task, placed at the end of the processing of each
frame. The results are shown in Figure 16(b). In Figure 16(a),
we show as a reference the code of the part of the demodula-
tor task with checkpoints. From the plot, we can see that the
CPU overhead on the CPU utilization due to checkpoints in



14

EURASIP Journal on Embedded Systems

case where no migrations are triggered is negligible, that is
less than 1% also when for tasks that are checkpointed with
a fine grain as for the producer or the consumer.

7. CONCLUSION

In this paper, we presented the assessment of the impact of
task migration in embedded soft real-time multimedia appli-
cations. A software middleware/OS infrastructure was imple-
mented to this purpose, allowing run-time allocation of tasks
to face the dynamic variations of QoS requirements. Exten-
sive characterization of migration costs have been performed
both in terms of energy and deadline misses. Results show
that the overhead of the migration infrastructure in terms of
CPU utilization of master and slave daemons is negligible.
Finally, by means of a software FM Radio streaming multi-
media application, we demonstrated that the impact of mi-
gration overhead on the QoS can be hidden by properly se-
lecting the size of interprocess communication buffers. This
is because migration can be considered as a sporadic event
performed to recover from an unbalanced task allocation due
to the arrival of new tasks in the system or to the variation of
workload and throughput requirements.

As future work, we plan to implement and test more
complex task allocation policies, such as thermal and leak-
age aware. Moreover, we will test them with other multime-
dia and interactive benchmarks we are currently porting such
as an H.264 encoder-decoder and an interactive game. Fi-
nally, from a research perspective we are interested in eval-
uating the scalability of the proposed approach by extending
the current FPGA platform to allow the emulation of more
processors and finally to implement a heterogeneous archi-
tecture exploiting the on-board PowerPC as master.

REFERENCES

[1] K. Eshraghian, “SoC emerging technologies,” Proceedings of
the IEEE, vol. 94, no. 6, pp. 1197-1212, 2006.

[2] Cradle Technologies, “Multi-core DSPs for IP network surveil-
lance,” www.cradle.com.

[3] “STMicroelectronics Multimedia Processors,” www.st.com/
nomadik.

[4] ARM Ltd, “ARM11 MPCore,” www.arm.com/products/CPUs/
ARM11MPCoreMultiprocessor.html.

L. Friebe, H.-J. Stolberg, M. Berekovic, et al., “HiBRID-SoC:

a system-on-chip architecture with two multimedia DSPs and

a RISC core,” in Proceedings of the IEEE International Systems-

on-Chip (SOC’03), pp. 85-88, September 2003.

[6] P. D. Van Wolf, E. De Kock, T. Henriksson, W. Kruijtzer, and
G. Essink, “Design and programming of embedded multi-
processors: An interface-centric approach,” in Proceedings of
the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and Systems Synthesis, CODES+ISSS,
pp- 206-217, Stockholm, Sweden, September 2004.

[7] C. Sanz, M. Prieto, A. Papanikolaou, M. Miranda, and F.

Cathoor, “System-level process variability compensation on

memory organizations of dynamic applications: a case study,”

in Proceedings of the 7th International Symposium on Quality

Electronic Design (ISQED 06), p. 7, March 2006.

[5

[8] O. Ozturk, M. Kandemir, S. W. Son, and M. Karakoy, “Selec-
tive code/data migration for reducing communication energy
in embedded MpSoC architectures,” in Proceedings of the ACM
Great Lakes Symposium on VLSI, GLSVLSI, vol. 2006, pp. 386—
391, 2006.

F. Bellosa, S. Kellner, M. Waitz, and A. Weissel, “Event-driven
energy accounting for dynamic thermal management,” in Pro-
ceedings of the Workshop on Compilers and Operating Systems
for Low Power (COLP ’03), New Orleans, La, USA, September
2003.

[10] A.Barak, O. La’adan, and A. Shiloh, “Scalable cluster comput-
ing with MOSIX for linux,” in Proceedings of the 5th Annual
Linux (Expo °99), pp. 95-100, Raleigh, NC, USA, May 1999.

[11] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Sup-
porting task migration in multi-processor systems-on-chip: a
feasibility study,” in Proceedings of the Design, Automation and
Test in Europe (DATE °06), vol. 1, Munich, DeutSchland, 2006.

[12] S. Carta, M. Acquaviva, P. G. Del Valle, et al., “Multi-processor
operating system emulation framework with thermal feedback
for systems-on-chip,” in Proceedings of the 17th Great Lakes
Symposium on Great Lakes Symposium on VLSI (GLSVLSI 07),
pp. 311-316, Stresa-Lago Maggiore, Italy, 2007.

[13] A. A. Jerraya, H. Tenhunen, and W. Wolf, “Guest Editors’
introduction: multiprocessor systems-on-chips,” IEEE Com-
puter, vol. 38, no. 7, pp. 3640, 2005.

[14] M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini,
“Application-specific power-aware workload allocation for
voltage scalable MPSoC platforms,” in Proceedings of the IEEE
International Conference on Computer Design: VLSI in Com-
puters and Processors, vol. 2005, pp. 87-93, San Jose, Calif,
USA, October 2005.

[15] A. Kumar, B. Mesman, H. Corporaal, J. Van Meerbergen, and
Y. Ha, “Global analysis of resource arbitration for MPSoC,”
in Proceedings of the 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools (DSD ’06), pp.
71-78, 2006.

[16] Z. Ma and E. Catthoor, “Scalable performance-energy trade-
off exploration of embedded real-time systems on multipro-
cessor platforms,” in Proceedings of the Design, Automation
and Test in Europe (DATE ’06), vol. 1, Munich, DeutSchland,
March 2006.

[17] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin, “Thermal-aware allocation and scheduling for systems-
on-a-chip design,” in Proceedings of the Design, Automation
and Test in Europe (DATE °05), pp. 898-899, March 2005.

[18] E Li and M. Kandemir, “Locality-conscious workload assign-
ment for array-based computations in MPSOC architectures,”
in Proceedings of the 42nd Annual Conference on Design Au-
tomation, pp. 95-100, 2005.

[19] M. Kandemir and G. Chen, “Locality-aware process schedul-
ing for embedded MPSoCs,” in Proceedings of the Design, Au-
tomation and Test in Europe (DATE ’05), vol. II, pp. 870-875,
2005.

[20] E.Zayas, “Attacking the process migration bottleneck,” in Pro-
ceedings of the 11th ACM Symposium on Operating Systems
Principles, pp. 13—24, 1987.

[21] D. Milojicic, E Douglis, Y. Paindaveine, R. Wheeler, and S.
Zhou, “Process Migration Survey,” ACM Computing Surveys,
vol. 32, no. 3, pp. 241-299, 2000.

[22] D. Pham, “The design and implementation of a first genera-
tion CELL processor,” in IEEE/ACM ISSCC, pp. 184-186, July
2003.

5



Andrea Acquaviva et al.

15

(23]

[24]

(25]

[26]

(27]
(28]

(29]

J. Sakai, INOUE, and H. M. Edahiro, “Towards scalable and
secure execution platform for embedded systems,” in Proceed-
ings of the Design Automation Conference (DAC 07), pp. 350—
354, Yokohama, Japan, January 2007.

P. Francesco, P. Antonio, and P. Marchal, “Flexible hard-
ware/software support for message passing on a distributed
shared memory architecture,” in Proceedings of the Design, Au-
tomation and Test in Europe (DATE °05), vol. 11, pp. 736741,
2005.

S.-I. Han, A. Baghdadi, M. Bonaciu, S.-I. Chae, and A. A.
Jerraya, “An efficient scalable and flexible data transfer ar-
chitecture for multiprocessor SoC with massive distributed
memory,” in Proceedings of the Design Automation Conference
(DAC ’04), pp. 250-255, San Diego, Calif, USA, June 2004.

M. Monchiero, G. Palermo, C. Silvano, and O. Villa,
“Power/performance hardware optimization for synchroniza-
tion intensive applications in MPSoCs,” in Proceedings of the
Design, Automation and Test in Europe (DATE 06), vol. 1, Mu-
nich, DeutSchland, March 2006.

uClinux, “Embedded Linux Microcontroller Project,” 2007,
www.uclinux.org/.

Xilinx Inc, “Xilinx XUP Virtex II Pro Development System,”
http://www.xilinx.com/univ/xupv2p.html.

W. Thies, M. I. Gordon, M. Karczmarek, et al., “Language and
compiler design for streaming applications,” in Proceedings of
the International Parallel and Distributed Processing Sympo-
sium (IPDPS °04), vol. 18, pp. 2815-2822, 2004.



	1. INTRODUCTION
	2. BACKGROUNDWORK
	3. TARGET ARCHITECTURE ORGANIZATION
	4. SOFTWARE INFRASTRUCTURE
	4.1. Communication and synchronization support
	4.2. Task migration support

	5. MULTIMEDIA SOFT REAL-TIME APPLICATIONMAPPING
	6. EXPERIMENTAL RESULTS
	6.1. Emulation platform description and setup
	6.2. Migration support characterization
	6.3. Impact of migration on soft real-time streaming applications

	7. CONCLUSION
	REFERENCES

