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1. INTRODUCTION

Mobile embedded systems are the most challenging front of
real-time computing today. They run full-featured operat-
ing systems, complex multimedia applications, and multiple
communication protocols at the same time. As networked
systems, they are exposed to security threats; moreover, their
(inexperienced) users run untrusted code, like games, which
pose both security and real-time challenges. Therefore, com-
plete isolation from untrusted applications is indispensable
for user data confidentiality, proper system functioning, and
content-providers and manufacturer’s IP protection.

In practice, today’s mobile systems must provide func-
tionalities equivalent to desktop and server ones, but with
severely limited resources and strict real-time constraints.
Conventional RTOSes are not well suited to meet these re-
quirements: simpler ones are not secure, and even those
with memory protection are generally conceived as embed-
ded software platforms, not as operating system foundations.

L4-embedded [1] is an embedded variant of the general-
purpose microkernel L4Ka::Pistachio (L4Ka) [2] that meets
the above-mentioned requirements, and has been success-
fully deployed in mobile phones with soft real-time con-
straints. However, it is now facing the challenges of next-
generation mobile phones, where applications, user inter-

face, multimedia, OS, wireless protocols, and even software-
defined radios must run on a single CPU.

Can L4-embedded meet such strict real-time constraints?
It is thoroughly optimized and is certainly fast, but “real
fast is not real-time” [3]. Is an entirely new implementa-
tion necessary, or are small changes sufficient? What are these
changes, and what are the tradeoffs involved? In other words,
can L4-embedded be real fast and real-time?

The aim of this paper is to shed some light on these is-
sues with a thorough analysis of the L4Ka and L4-embedded
internals that determine their temporal behaviour, to assess
them as strengths or weaknesses with respect to real-time,
and finally to indicate where research and development are
currently focusing, or should probably focus, towards their
improvement.

We found that (i) general-purpose L4 microkernels con-
tain in their IPC path extreme optimisations which compli-
cate real-time scheduling; however these optimisations can
be removed with a minimal performance loss; (ii) aspects of
the L4 design provide clear advantages for real-time applica-
tions. For example, thanks to the unified user-level schedul-
ing for both interrupt and application threads, interrupt
handlers and device drivers cannot impact system timeliness.
Moreover, the interrupt subsystem provides a good founda-
tion for user-level real-time scheduling.
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Overall, although there is still work ahead, we believe that
with few well-thought-out changes, general-purpose L4 mi-
crokernels can be used successfully as the basis of a significant
class of real-time systems.

The rest of the paper is structured as follows. Section 2
introduces microkernels and the basic principles of their de-
sign, singling out the relevant ones for real-time systems.
Section 3 describes the design of L4 and its API. Section 4
analyses L4-embedded and L4Ka internals in detail, their im-
plications for real-time system design, and sketches future
work. Finally, Section 5 concludes the paper.

2. MICROKERNELS

Microkernels are minimalist operating system kernels struc-
tured according to specific design principles. They imple-
ment only the smallest set of abstractions and operations that
require privileges, typically address spaces, threads with basic
scheduling, and message-based interprocess communication
(IPC). All the other features which may be found in ordinary
monolithic kernels (such as drivers, filesystems, paging, net-
working, etc.) but can run in user mode are implemented in
user-level servers. Servers run in separate protected address
spaces and communicate via IPC and shared memory using
well-defined protocols.

The touted benefits of building an operating system on
top of a microkernel are better modularity, flexibility, re-
liability, trustworthiness, and viability for multimedia and
real-time applications than those possible with traditional
monolithic kernels [4]. Yet operating systems based on first-
generation microkernels like Mach [5] did not deliver the
promised benefits: they were significantly slower than their
monolithic counterparts, casting doubts on the whole ap-
proach. In order to regain some performance, Mach and
other microkernels brought back some critical servers and
drivers into the kernel protection domain, compromising the
benefits of microkernel-based design.

A careful analysis of the real causes of Mach’s lacklustre
performance showed that the fault was not in the micro-
kernel approach, but in its initial implementation [6]. The
first-generation microkernels were derived by scaling down
monolithic kernels, rather than from clean-slate designs. As
a consequence, they suffered from poorly performing IPC
and excessive footprint that thrashed CPU caches and trans-
lation lookaside buffers (TLBs). This led to a second gener-
ation of microkernels designed from scratch with a minimal
and clean architecture, and strong emphasis on performance.
Among them are Exokernels [7], L4 [6], and Nemesis [8].

Exokernels, developed at MIT in 1994-95, are based on
the idea that kernel abstractions restrict flexibility and per-
formance, and hence they must be eliminated [9]. The role of
the exokernel is to securely multiplex hardware, and export
primitives for applications to freely implement the abstrac-
tions that best satisfy their requirements.

L4, developed at GMD in 1995 as a successor of L3 [10],
is based on a design philosophy less extreme than exokernels,
but equally aggressive with respect to performance. L4 aims
to provide flexibility and performance to an operating system
via the least set of privileged abstractions.

Nemesis, developed at the University of Cambridge in
1993–95, has the aim of providing quality-of-service (QoS)
guarantees on resources like CPU, memory, disk, and net-
work bandwidth to multimedia applications.

Besides academic research, since the early 1980s the em-
bedded software industry developed and deployed a number
of microkernel-based RTOSes. Two prominent ones are QNX
and GreenHills Integrity. QNX was developed in the early
1980s for the 80x86 family of CPUs [11]. Since then it evolved
and has been ported to a number of different architectures.
GreenHills Integrity is a highly optimised commercial em-
bedded RTOS with a preemptable kernel and low-interrupt
latency, and is available for a number of architectures.

Like all microkernels, QNX and Integrity as well as many
other RTOSes rely on user-level servers to provide OS func-
tionality (filesystems, drivers, and communication stacks)
and are characterised by a small size.1 However, they are gen-
erally conceived as a basis to run embedded applications, not
as a foundation for operating systems.

2.1. Microkernels and real-time systems

On the one hand, microkernels are often associated with
real-time systems, probably due to the fact that multimedia
and embedded real-time applications running on resource-
constrained platforms benefit from their small footprint,
low-interrupt latency, and fast interprocess communication
compared to monolithic kernels. On the other hand, the
general-purpose microkernels designed to serve as a basis for
workstation and server Unices in the 1990s were apparently
meant to address real-time issues of a different nature and
a coarser scale, as real-time applications on general-purpose
systems (typically multimedia) had to compete with many
other processes and to deal with large kernel latency, mem-
ory protection, and swapping.

Being a microkernel, L4 has intrinsic provisions for
real-time. For example, user-level memory pagers enable
application-specific paging policies. A real-time application
can explicitly pin the logical pages that contain time-sensitive
code and data in physical memory, in order to avoid page
faults (also TLB entries should be pinned, though).

The microkernel design principle that is more helpful for
real-time is user-level device drivers [12]. In-kernel drivers
can disrupt time-critical scheduling by disabling interrupts
at arbitrary points in time for an arbitrary amount of time,
or create deferred workqueues that the kernel will execute
at unpredictable times. Both situations can easily occur, for
example, in the Linux kernel, and only very recently they
have started to be tackled [13]. Interrupt disabling is just
one of the many critical issues for real-time in monolithic
kernels. As we will see in Section 4.7, the user-level device
driver model of L4 avoids this and other problems. Two other
L4 features intended for real-time support are IPC timeouts,
used for time-based activation of threads (on timeouts see

1 Recall that the “micro” in microkernel refers to its economy of concepts
compared to monolithic kernels, not to its memory footprint.



Sergio Ruocco 3

Sections 3.5 and 4.1), and preempters, handlers for time faults
that receive preemption notification messages.

In general, however, it still remains unclear whether the
above-mentioned second-generation microkernels are well
suited for all types of real-time applications. A first exam-
ination of exokernel and Nemesis scheduling APIs reveals,
for example, that both hardwire scheduling policies that are
disastrous for at least some classes of real-time systems and
cannot be avoided from the user level. Exokernel’s primi-
tives for CPU sharing achieve “fairness [by having] applica-
tions pay for each excess time slice consumed by forfeiting a
subsequent time slice” (see [14], page 32). Similarly, Neme-
sis’ CPU allocation is based on a “simple QoS specification”
where applications “specify neither priorities nor deadlines”
but are provided with a “particular share of the processor
over some short time frame” according to a (replaceable)
scheduling algorithm. The standard Nemesis scheduling al-
gorithm, named Atropos, “internally uses an earliest deadline
first algorithm to provide this share guarantee. However, the
deadlines on which it operates are not available to or speci-
fied by the application” [8].

Like many RTOSes, L4 contains a priority-based sched-
uler hardwired in the kernel. While this limitation can be
circumvented with some ingenuity via user-level schedul-
ing [15] at the cost of additional context-switches, “all that
is wired in the kernel cannot be modified by higher levels”
[16]. As we will see in Section 4, this is exactly the problem
with some L4Ka optimisations inherited by L4-embedded,
which, while being functionally correct, trade predictability
and freedom from policies for performance and simplicity of
implementation, thus creating additional issues that design-
ers must be aware of, and which time-sensitive systems must
address.

3. THE L4MICROKERNEL

L4 is a second-generation microkernel that aims at high flex-
ibility and maximum performance, but without compromis-
ing security. In order to be fast, L4 strives to be small by de-
sign [16], and thus provides only the least set of fundamental
abstractions and the mechanisms to control them: address
spaces with memory-mapping operations, threads with ba-
sic scheduling, and synchronous IPC.

The emphasis of L4 design on smallness and flexibility is
apparent in the implementation of IPC and its use by the mi-
crokernel itself. The basic IPC mechanism is used not only to
transfer messages between user-level threads, but also to de-
liver interrupts, asynchronous notifications, memory map-
pings, thread startups, thread preemptions, exceptions and
page faults. Because of its pervasiveness, but especially its im-
pact on OS performance experienced with first-generation
microkernels, L4 IPC has received a great deal of attention
since the very first designs [17] and continues to be carefully
optimised today [18].

3.1. The L4microkernel specification

In high-performance implementations of system software
there is an inherent contrast between maximising the per-
formance of a feature on a specific implementation of an

architecture and its portability to other implementations or
across architectures. L4 faced these problems when transi-
tioning from 80486 to the Pentium, and then from Intel to
various RISC, CISC, and VLIW 32/64 bit architectures.

L4 addresses this problem by relying on a specification
of the microkernel. The specification is crafted to meet two
apparently conflicting objectives. The first is to guarantee full
compatibility and portability of user-level software across the
matrix of microkernel implementations and processor ar-
chitectures. The second is to leave to kernel engineers the
maximum leeway in the choice of architecture-specific opti-
misations and tradeoffs among performance, predictability,
memory footprint, and power consumption.

The specification is contained in a reference manual [19]
that details the hardware-independent L4 API and 32/64 bit
ABI, the layout of public kernel data structures such as the
user thread control block (UTCB) and the kernel informa-
tion page (KIP), CPU-specific extensions to control caches
and frequency, and the IPC protocols to handle, among other
things, memory mappings and interrupts at the user-level.

In principle, every L4 microkernel implementation
should adhere to its specification. In practice, however, some
deviations can occur. To avoid them, the L4-embedded spec-
ification is currently being used as the basis of a regression
test suite, and precisely defined in the context of a formal
verification of its implementation [20].

3.2. The L4 API and its implementations

L4 evolved over time from the original L4/x86 into a small
family of microkernels serving as vehicles for OS research
and industrial applications [19, 21]. In the late 1990s, be-
cause of licensing problems with then-current kernel, the L4
community started the Fiasco [22, 23] project, a variant of
L4 that, during its implementation, was made preemptable
via a combination of lock-free and wait-free synchronisation
techniques [24]. DROPS [25] (Dresden real-time operating
system) is an OS personality that runs on top of Fiasco and
provides further support for real-time besides the preempt-
ability of the kernel, namely a scheduling framework for pe-
riodic real-time tasks with known execution times distribu-
tions [26].

Via an entirely new kernel implementation Fiasco tackled
many of the issues that we will discuss in the rest of the paper:
timeslice donation, priority inversion, priority inheritance,
kernel preemptability, and so on [22, 27, 28]. Fiasco solu-
tions, however, come at the cost of higher kernel complex-
ity and an IPC overhead that has not been precisely quanti-
fied [28].

Unlike the Fiasco project, our goal is not to develop a new
real-time microkernel starting with a clean slate and freedom
from constraints, but to analyse and improve the real-time
properties of NICTA::Pistachio-embedded (L4-embedded),
an implementation of the N1 API specification [1] already
deployed in high-end embedded and mobile systems as a vir-
tualisation platform [29].

Both the L4-embedded specification and its implementa-
tion are largely based on L4Ka::Pistachio version 0.4 (L4Ka)
[2], with special provisions for embedded systems such as
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a reduced memory footprint of kernel data structures, and
some changes to the API that we will explain later. Another
key requirement is IPC performance, because it directly af-
fects virtualisation performance.

Our questions are the following ones: can L4-embedded
support “as it is” real-time applications? Is an entirely new
implementation necessary, or can we get away with only
small changes in the existing one? What are these changes,
and what are the tradeoffs involved?

In the rest of the paper, we try to give an answer to
these questions by discussing the features of L4Ka and L4-
embedded that affect the applications’ temporal behaviour
on uniprocessor systems (real-time on SMP/SMT systems
entails entirely different considerations, and its treatment is
outside the scope of this paper). They include scheduling,
synchronous IPC, timeouts, interrupts, and asynchronous
notifications.

Please note that this paper mainly focuses on
L4Ka::Pistachio version 0.4 and L4-embedded N1 mi-
crokernels. For the sake of brevity, we will refer to them as
simply L4, but the reader should be warned that much of
the following discussion applies only to these two versions of
the kernel. In particular, Fiasco makes completely different
design choices in many cases. For reasons of space, however,
we cannot go in depth. The reader should refer to the
above-mentioned literature for further information.

3.3. Scheduler

The L4 API specification defines a 256-level, fixed-priority,
time-sharing round-robin (RR) scheduler. The RR schedul-
ing policy runs threads in priority order until they block in
the kernel, are preempted by a higher priority thread, or ex-
haust their timeslice. The standard length of a timeslice is
10 ms but can be set between ε (the shortest possible times-
lice) and∞ with the Schedule() system call. If the timeslice
is different from ∞, it is rounded to the minimum granular-
ity allowed by the implementation that, like ε, ultimately de-
pends on the precision of the algorithm used to update it and
to verify its exhaustion (on timeslices see Sections 4.1, 4.4,
and 4.5). Once a thread exhausts its timeslice, it is enqueued
at the end of the list of the running threads of the same pri-
ority, to give other threads a chance to run. RR achieves a
simple form of fairness and, more importantly, guarantees
progress.

FIFO is a scheduling policy closely related to RR that does
not attempt to achieve fairness and thus is somewhat more
appropriate for real-time. As defined in the POSIX 1003.1b
real-time extensions [30], FIFO-scheduled threads run until
they relinquish control by yielding to another thread or by
blocking in the kernel. L4 can emulate FIFO with RR by set-
ting the threads’ priorities to the same level and their times-
lices to∞. However, a maximum of predictability is achieved
by assigning only one thread to each priority level.

3.4. Synchronous IPC

L4 IPC is a rendezvous in the kernel between two threads that
partner to exchange a message. To keep the kernel simple and

fast, L4 IPC is synchronous: there are no buffers or message
ports, nor double copies, in and out of the kernel. Each part-
ner performs an Ipc(dest,from spec, &from) syscall that
is composed of an optional send phase to the dest thread, fol-
lowed by an optional receive phase from a thread specified by
the from spec parameter. Each phase can be either blocking
or nonblocking. The parameters dest and from spec can take
values among all standard thread ids. There are some special
thread ids, among which there are nilthread and anythread.
The nilthread encodes “send-only” or “receive-only” IPCs.
The anythread encodes “receive from any thread” IPCs.

Under the assumptions that IPC syscalls issued by the
two threads cannot execute simultaneously, and that the first
invoker requests a blocking IPC, the thread blocks and the
scheduler runs to pick a thread from the ready queue. The
first invoker remains blocked in the kernel until a suitable
partner performs the corresponding IPC that transfers a
message and completes the communication. If the first in-
voker requests a nonblocking IPC and its partner is not ready
(i.e., not blocked in the kernel waiting for it), the IPC aborts
immediately and returns an error.

A convenience API prescribed by the L4 specification
provides wrappers for a number of common IPC patterns
encoding them in terms of the basic syscall. For example,
Call(dest), used by clients to perform a simple IPC to
servers, involves a blocking send to thread dest, followed by
a blocking receive from the same thread. Once the request
is performed, servers can reply and then block waiting for
the next message by using ReplyWait(dest, &from tid),
an IPC composed of a nonblocking send to dest followed by
a blocking receive from anythread (the send is nonblocking as
typically the caller is waiting, thus the server can avoid block-
ing trying to send replies to malicious or crashed clients). To
block waiting for an incoming message one can use Wait(),
a send to nilthread and a blocking receive from anythread.
As we will see in Section 4.4, for performance optimisations
the threads that interact in IPC according to some of these
patterns are scheduled in special (and sparsely documented)
ways.

L4Ka supports two types of IPC: standard IPC and long
IPC. Standard IPC transfers a small set of 32/64-bit mes-
sage registers (MRs) residing in the UTCB of the thread,
which is always mapped in the physical memory. Long IPC
transfers larger objects, like strings, which can reside in ar-
bitrary, potentially unmapped, places of memory. Long IPC
has been removed from L4-embedded because it can page-
fault and, on nonpreemptable kernels, block interrupts and
the execution of other threads for a large amount of time (see
Section 4.7). Data transfers larger than the set of MRs can be
performed via multiple IPCs or shared memory.

3.5. IPC timeouts

IPC with timeouts cause the invoker to block in the kernel
until either the specified amount of time has elapsed or the
partner completes the communication. Timeouts were orig-
inally intended for real-time support, and also as a way for
clients to recover safely from the failure of servers by abort-
ing a pending request after a few seconds (but a good way to
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determine suitable timeout values was never found). Time-
outs are also used by the Sleep() convenience function, im-
plemented by L4Ka as an IPC to the current thread that times
out after the specified amount of microseconds. Since time-
outs are a vulnerable point of IPC [31], they unnecessarily
complicate the kernel, and more accurate alternatives can be
implemented by a time server at user level, they have been
removed from L4-embedded (Fiasco still has them, though).

3.6. User-level interrupt handlers

L4 delivers a hardware interrupt as a synchronous IPC mes-
sage to a normal user-level thread which registered with the
kernel as the handler thread for that interrupt. The inter-
rupt messages appear to be sent by special in-kernel interrupt
threads set up by L4 at registration time, one per interrupt.
Each interrupt message is delivered to exactly one handler,
however a thread can be registered to handle different inter-
rupts. The timer tick interrupt is the only one managed in-
ternally by L4.

The kernel handles an interrupt by masking it in the in-
terrupt controller (IC), preempting the current thread, and
performing a sequence of steps equivalent to an IPC Call()
from the in-kernel interrupt thread to the user-level han-
dler thread. The handler runs in user-mode with its inter-
rupt disabled, but the other interrupts enabled, and thus it
can be preempted by higher-priority threads, which possibly,
but not necessarily, are associated with other interrupts. Fi-
nally, the handler signals that it finished servicing the request
with a Reply() to the interrupt thread, that will then unmask
the associated interrupt in the IC (see Section 4.7).

3.7. Asynchronous notification

Asynchronous notification is a new L4 feature introduced in
L4-embedded, not present in L4Ka. It is used by a sender
thread to notify a receiver thread of an event. It is imple-
mented via the IPC syscall because it needs to interact with
the standard synchronous IPC (e.g., applications can wait
with the same syscall for either an IPC or a notification).
However, notification is neither blocking for the sender, nor
requires the receiver to block waiting for the notification to
happen. Each thread has 32 (64 on 64-bit systems) notifica-
tion bits. The sender and the receiver must agree beforehand
on the semantics of the event, and which bit signals it. When
delivering asynchronous notification, L4 does not report the
identity of the notifying thread: unlike in synchronous IPC,
the receiver is only informed of the event.

4. L4 AND REAL-TIME SYSTEMS

The fundamental abstractions and mechanisms provided by
the L4 microkernel are implemented with data structures and
algorithms chosen to achieve speed, compactness, and sim-
plicity, but often disregarding other nonfunctional aspects,
such as timeliness and predictability, which are critical for
real-time systems.

In the following, we highlight the impact of some aspects
of the L4 design and its implementations (mainly L4Ka and

Table 1: Timer tick periods.

Version Architecture Timer tick (μs)

L4-embedded N1 StrongARM 10 000

L4-embedded N1 XScale 5000

L4::Ka Pistachio 0.4 Alpha 976

L4::Ka Pistachio 0.4 AMD64 1953

L4::Ka Pistachio 0.4 IA-32 1953

L4::Ka Pistachio 0.4 PowerPC32 1953

L4::Ka Pistachio 0.4 Sparc64 2000

L4::Ka Pistachio 0.4 PowerPC64 2000

L4::Ka Pistachio 0.4 MIPS64 2000

L4::Ka Pistachio 0.4 IA-64 2000

L4::Ka Pistachio 0.4 StrongARM/XScale 10 000

L4-embedded, but also their ancestors), on the temporal be-
haviour of L4-based systems, and the degree of control that
user-level software can exert over it in different cases.

4.1. Timer tick interrupt

The timer tick is a periodic timer interrupt that the ker-
nel uses to perform a number of time-dependent opera-
tions. On every tick, L4-embedded and L4Ka subtract the
tick length from the remaining timeslice of the current
thread and preempt it if the result is less than zero (see
Algorithm 1). In addition, L4Ka also inspects the wait queues
for threads whose timeout has expired, aborts the IPC they
were blocked on and marks them as runnable. On some plat-
forms L4Ka also updates the kernel internal time returned by
the SystemClock() syscall. Finally, if any thread with a pri-
ority higher than the current one was woken up by an expired
timeout, L4Ka will switch to it immediately.

Platform-specific code sets the timer tick at kernel ini-
tialisation time. Its value is observable (but not changeable)
from user space in the SchedulePrecision field of the
ClockInfo entry in the KIP. The current values for L4Ka
and L4-embedded are in Table 1 (note that the periods can be
trivially made uniform across platforms by editing the con-
stants in the platform-specific configuration files).

In principle the timer tick is a kernel implementation de-
tail that should be irrelevant for applications. In practice, be-
sides consuming energy each time it is handled, its granular-
ity influences in a number of observable ways the temporal
behaviour of applications.

For example, the real-time programmer should note that,
while the L4 API expresses the IPC timeouts, timeslices, and
Sleep() durations in microseconds, their actual accuracy de-
pends on the tick period. A timeslice of 2000 μs lasts 2 ms on
SPARC, PowerPC64, MIPS, and IA-64, nearly 3 ms on Alpha,
nearly 4 ms on IA-32, AMD64, and PowerPC32, and finally
10 ms on StrongARM (but 5 ms in L4-embedded running on
XScale). Similarly, the resolution of SystemClock() is equal
to the tick period (1–10 ms) on most architectures, except for
IA-32, where it is based on the time-stamp counter (TSC)
register that increments with CPU clock pulses. Section 4.5
discusses other consequences.
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void scheduler t :: handle timer interrupt(){
. . .

/∗ Check for not infinite timeslice and expired ∗/
if ((current->timeslice length != 0) &&
((get prio queue(current)->current timeslice

-= get timer tick length()) <= 0))

{
// We have end-of-timeslice.

end of timeslice (current);

}
. . .

Algorithm 1: L4 kernel/src/api/v4/schedule.cc.

Timing precision is an issue common to most operating
systems and programming languages, as timer tick resolu-
tion used to be “good enough” for most time-based oper-
ating systems functions, but clearly is not for real-time and
multimedia applications. In the case of L4Ka, a precise imple-
mentation would simply reprogram the timer for the earliest
timeout or end-of-timeslice, or read it when providing the
current time. However, if the timer I/O registers are located
outside the CPU core, accessing them is a costly operation
that would have to be performed in the IPC path each time
a thread blocks with a timeout shorter than the current one
(recent IA-32 processors have an on-core timer which is fast
to access, but it is disabled when they are put in deeper sleep
modes).

L4-embedded avoids most of these issues by removing
support for IPC timeouts and the SystemClock() syscall
from the kernel, and leaving the implementation of precise
timing services to user level. This also makes the kernel faster
by reducing the amount of work done in the IPC path and
on each tick. Timer ticks consume energy, thus will likely be
removed in future versions of L4-embedded, or made pro-
grammable based on the timeslice. Linux is recently evolving
in the same direction [32]. Finally, malicious code can exploit
easily-predictable timer ticks [33].

4.2. IPC and priority-driven scheduling

Being synchronous, IPC causes priority inversion in real-
time applications programmed incorrectly, as described in
the following scenario. A high-priority thread A performs
IPC to a lower-priority thread B, but B is busy, so A blocks
waiting for it to partner in IPC. Before B can perform the
IPC that unblocks A, a third thread C with priority between
A and B becomes ready, preempts B and runs. As the progress
of A is impeded by C, which runs in its place despite having a
lower priority, this is a case of priority inversion. Since prior-
ity inversion is a classic real-time bug, RTOSes contain spe-
cial provisions to alleviate its effects [34]. Among them are
priority inheritance (PI) and priority ceiling (PC), both dis-
cussed in detail by Liu [35]; note that the praise of PI is not
unanimous: Yodaiken [36] discusses some cons.

The L4 research community investigated various alterna-
tives to support PI. A naı̈ve implementation would extend

IPC and scheduling mechanisms to track temporary depen-
dencies established during blocking IPCs from higher- to
lower-priority threads, shuffle priorities accordingly, resume
execution, and restore them once IPC completes. Since an
L4-based system executes thousands of IPCs per second, the
introduction of systematic support for PI would also impose
a fixed cost on nonreal-time threads, possibly leading to a sig-
nificant impact on overall system performance. Fiasco sup-
ports PI by extending L4’s IPC and scheduling mechanisms
to donate priorities through scheduling contexts that migrate
between tasks that interact in IPC [28], but no quantitative
evaluation of the overhead that this approach introduces is
given.

Elphinstone [37] proposed an alternative solution based
on statically structuring the threads and their priorities in
such a way that a high-priority thread never performs a
potentially blocking IPC with a lower-priority busy thread.
While this solution fits better with the L4 static priority
scheduler, it requires a special arrangement of threads and
their priorities which may or may not be possible in all cases.
To work properly in some corner cases this solution also
requires keeping the messages on the incoming queue of a
thread sorted by the static priority of their senders. Green-
away [38] investigated, besides scheduling optimisations, the
costs of sorted IPC, finding that it is possible “...to implement
priority-based IPC queueing with little effect on the perfor-
mance of existing workloads.”

A better solution to the problem of priority inversion is
to encapsulate the code of each critical section in a server
thread, and run it at the priority of the highest thread which
may call it. Caveats for this solution are ordering of incom-
ing calls to the server thread and some of the issues discussed
in Section 4.4, but overall they require only a fraction of the
cost of implementing PI.

4.3. Scheduler

The main issue with the L4 scheduler is that it is hardwired
both in the specification and in the implementation. While
it is fine for most applications, sometimes it might be conve-
nient to perform scheduling decisions at the user level [39],
feed the scheduler with application hints, or replace it with
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different ones, for example, deadline-driven or time-driven.
Currently the API does not support any of them.

Yet, the basic idea of microkernels is to provide appli-
cations with mechanisms and abstractions which are suffi-
ciently expressive to build the required functionality at the
user level. Is it therefore possible, modulo the priority inher-
itance issues discussed in Section 4.2, to perform priority-
based real-time scheduling only relying on the standard L4
scheduler? Yes, but only if two optimisations common across
most L4 microkernel implementations are taken into con-
sideration: the short-circuiting of the scheduler by the IPC
path, and the simplistic implementation of timeslice dona-
tion. Both are discussed in the next two sections.

4.4. IPC and scheduling policies

L4 invokes the standard scheduler to determine which thread
to run next when, for example, the current thread performs
a yield with the ThreadSwitch(nilthread) syscall, ex-
hausts its timeslice, or blocks in the IPC path waiting for a
busy partner. But a scheduling decision is also required when
the partner is ready, and as a result at the end of the IPC more
than one thread can run. Which thread should be chosen? A
straightforward implementation would just change the state
of the threads to runnable, move them to the ready list, and
invoke the scheduler. The problem with this is that it incurs
a significant cost along the IPC critical path.

L4 minimises the amount of work done in the IPC path
with two complementary optimisations. First, the IPC path
makes scheduling decisions without running the scheduler.
Typically it switches directly to one of the ready threads ac-
cording to policies that possibly, but not necessarily, take
their priorities into account. Second, it marks as non-
runnable a thread that blocks in IPC, but defers its removal
from the ready list to save time. The assumption is that it will
soon resume, woken up by an IPC from its partner. When the
scheduler eventually runs and searches the ready list for the
highest-priority runnable thread, it also moves any blocked
thread it encounters into the waiting queue. The first optimi-
sation is called direct process switch, the second lazy schedul-
ing; Liedke [17] provides more details.

Lazy scheduling just makes some queue operations faster.
Except for some pathological cases analysed by Greenaway
[38], lazy scheduling has only second-order effects on real-
time behaviour, and as such we will not discuss it further.
Direct process switch, instead, has a significant influence on
scheduling of priority-based real-time threads, but since it
is seen primarily as an optimisation to avoid running the
scheduler, the actual policies are sparsely documented, and
missing from the L4 specification. We have therefore anal-
ysed the different policies employed in L4-embedded and
L4Ka, reconstructed the motivation for their existence (in
some cases the policy, the motivation, or both, changed as
L4 evolved), and summarised our findings in Table 2 and the
following paragraphs. In the descriptions, we adopt this con-
vention: “A” is the current thread, that sends to the dest thread
“B” and receives from the from thread “C.” The policy applied
depends on the type of IPC performed:

Send() at the end of a send-only IPC two threads can be
run: the sender A or the receiver B; the current policy
respects priorities and is cache-friendly, so it switches
to B only if it has higher priority, otherwise contin-
ues with A. Since asynchronous notifications in L4-
embedded are delivered via a send-only IPC, they fol-
low the same policy: a waiting thread B runs only if
it has higher priority than the notifier A, otherwise A
continues.

Receive() thread A that performs a receive-only IPC from
C results in a direct switch to C.

Call() client A which performs a call IPC to server B results
in a direct switch of control to B.

ReplyWait() server A that responds to client B, and at the
same time receives the next request from client C, re-
sults in a direct switch of control to B only if it has
a strictly higher priority than C, otherwise control
switches to C.

Each policy meets a different objective. In Send() it
strives to follow the scheduler policy: the highest priority
thread runs — in fact it only approximates it, as sometimes
A may not be the highest-priority runnable thread (a conse-
quence of timeslice donation: see Section 4.5). L4/MIPS [40]
was a MIPS-specific version of L4 now superseded by L4Ka
and L4-embedded. In its early versions the policy for Send()
was set to continue with the receiver B to optimise a specific
OS design pattern used at the time; in later versions the pol-
icy changed to always continue with the sender A to avoid
priority inversion.

In other cases, the policies at the two sides of the IPC
cooperate to favour brief IPC-based thread interactions over
the standard thread scheduling by running the ready IPC
partner on the timeslice of the current thread (also for this
see Section 4.5).

Complex behaviour

Complex behaviour can emerge from these policies and their
interaction. As the IPC path copies the message from sender
to receiver in the final part of the send phase, when B re-
ceives from an already blocked A, the IPC will first switch
to A’s context in the kernel. However, once it has copied the
message, the control may or may not immediately go back to
B. In fact, because of the IPC policies, what will actually hap-
pen depends on the type of IPC A is performing (send-only,
or send+receive), which of its partners are ready, and their
priorities.

A debate that periodically resurfaces in the L4 commu-
nity revolves around the policy used for the ReplyWait()
IPC (actually the policy applies to any IPC with a send phase
followed by a receive phase, of which ReplyWait() is a case
with special arguments). If both B and C can run at the end
of the IPC, and they have the same priority, the current pol-
icy arbitrarily privileges C. One effect of this policy is that
a loaded server, although it keeps servicing requests, it lim-
its the progress of the clients who were served and could
resume execution. A number of alternative solutions which
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Table 2: Scheduling policies in general-purpose L4 microkernels (∗ = see text).

Situation When/where applied Scheduling policy switch to(...)

ThreadSwitch (to) application syscall timeslice donation to

ThreadSwitch (nilthread) application syscall scheduler (highest pri. ready)

End of timeslice (typically 10 ms) timer tick handler runs scheduler scheduler (highest pri. ready)

send(dest) blocks (no partner) ipc send phase runs scheduler scheduler (highest pri. ready)

recv(from) blocks (no partner) ipc recv phase runs scheduler scheduler (highest pri. ready)

send(dest) [Send()] ipc send phase direct process switch maxpri(current, dest)

send(dest) [Send()] L4/MIPS ipc send phase timeslice donation dest

send(dest) [Send()] L4/MIPS∗ ipc send phase (arbitrary) current

recv(from) [Receive()] ipc recv phase timeslice donation from

send(dest)+recv(dest) [Call()] ipc send phase timeslice donation dest

send(dest)+recv(anythread) [ReplyWait()] ipc recv phase direct process switch maxpri (dest,anythread)∗

send(dest)+recv(from) ipc recv phase direct process switch maxpri (dest, from)

Kernel interrupt path handle interrupt() direct process switch maxpri(current, handler)

Kernel interrupt path handle interrupt()∗ timeslice donation handler

Kernel interrupt path irq thread() completes Send() timeslice donation handler

Kernel interrupt path irq thread(), irq after Receive() (as handle interrupt()) (as handle interrupt())

Kernel interrupt path L4-embedded irq thread(), no irq after Receive() scheduler (highest pri. ready)

Kernel interrupt path L4Ka irq thread(), no irq after Receive() direct process switch idle thread

meet different requirements are under evaluation to be im-
plemented in the next versions of L4-embedded.

Temporary priority inversion

In the Receive() and Call() cases, if A has higher priority
than C, the threads with intermediate priority between A and
C will not run until C blocks, or ends its timeslice. Similarly,
in the ReplyWait() case, if A has higher priority than the
thread that runs (either B or C, say X), other threads with in-
termediate priority between them will not run until X blocks,
or ends its timeslice. In all cases, if the intermediate threads
have a chance to run before IPC returns control to A, they
generate temporary priority inversion for A (this is the same
real-time application bug discussed in Section 4.2).

Direct switch in QNX

Notably, also the real-time OS QNX Neutrino performs a
direct switch in synchronous IPCs when data transfer is in-
volved [41]:

Synchronous message passing

This inherent blocking synchronises the execu-
tion of the sending thread, since the act of re-
questing that the data be sent also causes the
sending thread to be blocked and the receiv-
ing thread to be scheduled for execution. This
happens without requiring explicit work by the
kernel to determine which thread to run next
(as would be the case with most other forms
of IPC). Execution and data move directly from
one context to another.

IPC fastpath

Another optimisation of the L4 IPC is the fastpath, a hand-
optimised, architecture-specific version of the IPC path
which can very quickly perform the simplest and most com-
mon IPCs: transfer untyped data in registers to a specific
thread that is ready to receive (there are additional require-
ments to fulfill: for more details, Nourai [42] discusses in
depth a fastpath for the MIPS64 architecture). More com-
plex IPCs are routed to the standard IPC path (also called
the slowpath) which handles all the cases and is written in C.
The fastpath/slowpath combination does not affect real-time
scheduling, except for making most of the IPCs faster (more
on this in Section 4.6). However, for reasons of scheduling
consistency, it is important that if the fastpath performs a
scheduling decision, then it replicates the same policies em-
ployed in the slowpath discussed above and shown in Table 2.

4.5. Timeslice donation

An L4 thread can donate the rest of its timeslice to another
thread, performing the so-called timeslice donation [43]. The
thread receiving the donation (recipient) runs briefly: if it
does not block earlier, it runs ideally until the donor times-
lice ends. Then the scheduler runs and applies the standard
scheduling policy that may preempt the recipient and, for ex-
ample, run another thread of intermediate priority between
it and the donor which was ready to run since before the do-
nation.

L4 timeslice donations can be explicit or implicit. Ex-
plicit timeslice donations are performed by applications
with the ThreadSwitch(to tid) syscall. They were ini-
tially intended by Liedtke to support user-level schedulers,
but never used for that purpose. Another use is in mutexes
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Figure 1: Raw IPC costs versus optimisations.

that — when contended — explicitly donate timeslices to
their holder to speed-up the release of the mutex. Implicit
timeslice donations happen in the kernel when the IPC path
(or the interrupt path, see Section 4.7) transfers control to
a thread that is ready to rendezvous. Note, however, that al-
though implicit timeslice donation and direct process switch
conflate in IPC, they have very different purposes. Direct
process switch optimises scheduling in the IPC critical path.
Timeslice donation favours threads interacting via IPC over
standard scheduling. Table 2 summarises the instances of
timeslice donation found in L4Ka and L4-embedded.

This is the theory. In practice, both in L4Ka and
L4-embedded, a timeslice donation will not result in the re-
cipient running for the rest of the donor timeslice. Rather,
it will run at least until the next timer tick, and at most for
its own timeslice, before it is preempted and normal schedul-
ing is restored. The actual timeslice of the donor (including
a timeslice of ∞) is not considered at all in determining how
long the recipient runs.

This manifest deviation from what is stated both in the
L4Ka and L4-embedded specifications [19] (and implied by
the established term “timeslice donation”) is due to a simplis-
tic implementation of timeslice accounting. In fact, as dis-
cussed in Section 4.1 and shown in Algorithm 1, the sched-
uler function called by the timer tick handler simply decre-
ments the timeslice of the current thread. It neither keeps
track of the donation it may have received, nor does it propa-
gate them in case donations are nested. In other words, what
currently happens upon timeslice donation in L4Ka and L4-
embedded is better characterised as a limited timer tick dona-
tion. The current terminology could be explained by earlier
L4 versions which had timeslices and timerticks of coincid-
ing lengths. Fiasco correctly donates timeslices at the price
of a complex implementation [28] that we cannot discuss
here for space reasons. Finally, Liedtke [44] argued that ker-
nel fine-grained time measurement can be cheap.

The main consequence of timeslice donation is the tem-
porary change of scheduling semantics (i.e., priorities are

temporarily disregarded). The other consequences depend
on the relative length of donor timeslices and timer tick. If
both threads have a normal timeslice and the timer tick is
set to the same value, the net effect is just about the same. If
the timer tick is shorter than the donor timeslice, what gets
donated is statistically much less, and definitely platform-
dependent (see Table 1). The different lengths of the dona-
tions on different platforms can resonate with particular du-
rations of computations, and result in occasional large dif-
ferences in performance which are difficult to explain. For
example, the performance of I/O devices (that may deliver
time-sensitive data, e.g., multimedia) decreases dramatically
if the handlers of their interrupts are preempted before fin-
ishing and are resumed after a few timeslices. Whether this
will happen or not can depend on the duration of a dona-
tion from a higher priority interrupt dispatcher thread. Dif-
ferent lengths of the donations can also conceal or reveal
race conditions and priority inversions caused by IPC (see
Section 4.4).

4.6. IPC performance versus scheduling predictability

As discussed in Sections 4.4 and 4.5, general-purpose L4 mi-
crokernels contain optimisations that complicate priority-
driven real-time scheduling. A natural question arises: how
much performance is gained by these optimisations? Would
it make sense to remove these optimisations in favour of
priority-preserving scheduling? Elphinstone et al. [45], as a
follow-up to [46] (subsumed by this paper), investigated the
performance of L4-embedded (version 1.3.0) when both the
direct switch (DS) and lazy scheduling (LQ, lazy queue ma-
nipulation) optimisations are removed, thus yielding a ker-
nel which schedules threads strictly following their priorities.
For space reasons, here we briefly report the findings, invit-
ing the reader to refer to the paper for the rest of the details.
Benchmarks have been run on an Intel XScale (ARM) PXA
255 CPU at 400 MHz.

Figure 1 shows the results of ping-pong, a tight loop be-
tween a client thread and server thread which exchange a
fixed-length message. Unmod is the standard L4-embedded
kernel with all the optimisations enabled, including the fast-
path; the DS/LQ kernel has the same optimisations, except
that, as the experimental scheduling framework, it lacks a
fastpath implementation, in this and the subsequent kernels
all IPCs are routed through the slowpath; the DS/EQ ker-
nel performs direct switch and eager queuing (i.e., it disables
lazy queuing). The FS/LQ and FS/EQ kernels perform full
scheduling (i.e., respect priorities in IPC), and lazy and ea-
ger queuing, respectively. Application-level performance has
been evaluated using the Re-aim benchmark suite run in a
Wombat, Iguana/L4 system (see the paper for the full Re-Aim
results and their analysis).

Apparently, the IPC “de-optimisation” gains scheduling
predictability but reduces the raw IPC performance. How-
ever, its impact at the application level is limited. In fact, it
has been found that “...the performance gains [due to the two
optimisations] are modest. As expected, the overhead of IPC
depends on its frequency. Removing the optimisations re-
duced [Re-aim] system throughput by 2.5% on average, 5%
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in the worst case. Thus, the case for including the optimisa-
tions at the expense of real-time predictability is weak for the
cases we examined. For much higher IPC rate applications,
it might still be worthwhile.” Summarising [45], it is possible
to have a real-time friendly, general-purpose L4 microker-
nel without the issues caused by priority-unaware schedul-
ing in the IPC path discussed in Section 4.4, at the cost of a
moderate loss of IPC performance. Based on these findings,
scheduling in successors of L4-embedded will be revised.

4.7. Interrupts

In general, the causes of interrupt-related glitches are the
most problematic to find and are the most costly to solve.
Some of them result from subtle interactions between how
and when the hardware architecture generates interrupt re-
quests and how and when the kernel or a device driver de-
cides to mask, unmask or handle them. For these reasons,
in the following paragraphs we first briefly summarise the
aspects of interrupts critical for real-time systems. Then we
show how they influence real-time systems architectures. Fi-
nally, we discuss the ways in which L4Ka and L4-embedded
manage interrupts and their implications for real-time sys-
tems design.

Interrupts and real-time

In a real-time system, interrupts have two critical roles. First,
when triggered by timers, they mark the passage of real-time
and specific instants when time-critical operations should
be started or stopped. Second, when triggered by peripher-
als or sensors in the environment, they inform the CPU of
asynchronous events that require immediate consideration
for the correct functioning of the system. Delays in interrupt
handling can lead to jitter in time-based operations, missed
deadlines, and the lateness or loss of time-sensitive data.

Unfortunately, in many general-purpose systems (e.g.,
Linux) both drivers and the kernel itself can directly or in-
directly disable interrupts (or just pre-emption, which has a
similar effect on time-sensitive applications) at unpredictable
times, and for arbitrarily long times. Interrupts are disabled
not only to maintain the consistency of shared data struc-
tures, but also to avoid deadlocks when taking spin locks
and to avoid unbounded priority inversions in critical sec-
tions. Code that manipulates hardware registers according to
strictly timed protocols should disable interrupts to avoid in-
terferences.

Interrupts and system architecture

In Linux, interrupts and device drivers can easily interfere
with real-time applications. A radical solution to this prob-
lem is to interpose between the kernel and the hardware a
layer of privileged software that manages interrupts, timers
and scheduling. This layer, called “real-time executive” in
Figure 2, can range from a interrupt handler to a full-fledged
RTOS (see [47–50], among others) and typically provides
a real-time API to run real-time applications at a priority
higher than the Linux kernel, which runs, de-privileged, as a

Linux applications Real-time
applications

Linux

HardwareDisk, net, . . . . . . AD/DA, CAN, . . .

Real-time executive (irq, timers)IO IO

(a)

Linux applications Iguana
applications

Wombat (Linux)

Hardware

L4

Iguana embedded OS

(b)

Figure 2: (a) A typical real-time Linux system. (b) Wombat, Iguana
OS, and L4.

low-priority thread. For obvious reasons, this is known as the
dual-kernel approach. A disadvantage of some of these earlier
real-time Linux approaches like RT-Linux and RTAI is that
real-time applications seem (documentation is never very
clear) to share their protection domain and privileges among
themselves, with the real-time executive, or with Linux and
its device drivers, leading to a complex and vulnerable system
exposed to bugs in any of these subsystems.

L4-embedded, combined with the Iguana [51] embedded
OS and Wombat [29] (virtualised Linux for Iguana) leads
to a similar architecture (Figure 2(b)) but with full memory
protection and control of privileges for all components en-
forced by the embedded OS and the microkernel itself. Al-
though memory protection does not come for free, it has
been already proven that a microkernel-based RTOS can sup-
port real-time Linux applications in separate address spaces
at costs, in terms of interrupt delays and jitter, comparable
to those of blocked interrupts and caches, costs that seem
to be accepted by designers [27]. However the situation in
the Linux field is improving. XtratuM overcomes the pro-
tection issue by providing instead “a memory map per OS,
enabling memory isolation among different OSes” [48], thus
an approach more similar to Figure 2(b). In a different effort,
known as the single-kernel approach, the standard Linux ker-
nel is modified to improve its real-time capabilities [52].

L4 interrupts

As introduced in Section 3.6, L4 converts all interrupts (but
the timer tick) into IPC messages, which are sent to a user-
level thread which will handle them. The internal interrupt
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path comprises three routines: the generic irq thread(),
the generic handle interrupt(), and a low-level, platform-
specific handler that manages the IC.

When L4 receives an interrupt, the platform-specific
handler disables it in the IC and calls handle interrupt(),
which creates an interrupt IPC message and, if the user-
level handler is not waiting for it, enqueues the message in
the handler’s message queue, marks the in-kernel interrupt
thread as runnable (we will see its role shortly), and returns
to the current (interrupted) thread. If instead the handler is
waiting, and the current thread is an interrupt kernel thread
or the idle thread, handle interrupt() switches directly to
the handler, performing a timeslice donation. Finally, if the
handler is waiting and the current thread was neither an in-
terrupt thread nor the idle thread, it does direct process switch
and switches to the handler only if it has higher priority than
the current thread, otherwise it moves the interrupt thread
in the ready queue, and switches to the current thread, like
the IPC path does for a Send() (see Sections 4.4 and 4.5).

Each in-kernel interrupt thread (one for each IRQ line)
executes irq thread(), a simple endless loop that performs
two actions in sequence. It delivers a pending message to a
user-level interrupt handler which became ready to receive,
and then blocks waiting to receive its reply when it processed
the interrupt. When it arrives, irq thread() re-enables the
interrupt in the IC, marks itself halted and, if a new interrupt
is pending, calls handle interrupt() to deliver it (which
will suspend the interrupt thread and switch to the handler,
if it is waiting). Finally, it yields to another ready thread (L4-
embedded) or to the idle thread (L4Ka). In other words, the
interrupt path mimics a Call() IPC. The bottom part of
Table 2 summarises the scheduling actions taken by the in-
terrupt paths of the L4Ka and L4-embedded microkernels.

Advantages

In L4-based systems, only the microkernel has the neces-
sary privileges to enable and disable interrupts globally in the
CPU and selectively in the interrupt controller. All user-level
code, including drivers and handlers, has control only over
the interrupts it registered for, and can disable them only ei-
ther by simply not replying to an interrupt IPC message, or
by deregistering altogether, but cannot mask any other inter-
rupt or all of them globally (except by entering the kernel,
which, in some implementations, e.g., L4Ka, currently dis-
ables interrupts).

An important consequence of these facts is that L4-based
real-time systems do not need to trust drivers and handlers
time-wise, since they cannot programmatically disable all in-
terrupts or preemption. More importantly, at the user-level,
mutual exclusion between a device driver and its interrupt
handler can be done using concurrency-control mechanisms
that do not disable preemption or interrupts like spin locks
must do in the kernel. Therefore, user-level driver-handler
synchronisations only have a local effect, and thus neither
unpredictably perturb the timeliness of other components of
the system, nor contribute to its overall latency.

Another L4 advantage is the unification of the scheduling
of applications and interrupt handlers. Interrupts can nega-

tively impact the timeliness of a system in different ways, but
at least for the most common ones, L4 allows simple solu-
tions which we discuss in the following.

A typical issue is the long-running handler, either be-
cause it is malicious, or simply badly written as is often the
case. Even if it cannot disable interrupts, it can still starve
the system by running as the highest-priority ready thread. A
simple remedy to bound its effects is to have it scheduled at
the same priority as other threads, if necessary tune its times-
lice, and rely on L4’s round-robin scheduling policy which
ensures global progress (setting its priority lower than other
threads would unfairly starve the device).

A second issue is that critical real-time threads must not
be delayed by less important interrupts. In L4, low-priority
handlers cannot defer higher priority threads by more than
the time spent by the kernel to receive each user-registered
interrupt once and queue the IPC message. Also the periodic
timer tick interrupt contributes to delaying the thread, but
for a bounded and reasonably small amount of time.

Consider finally a third common issue: thrashing caused
by interrupt overload, where the CPU spends all its time han-
dling interrupts and nothing else. L4 prevents this by design,
since after an interrupt has been handled, it is the handler
which decides if and when to handle the next pending inter-
rupt, not the microkernel. In this case, even if the handler
runs for too long because it has no provision for overload, it
can still be throttled via scheduling as discussed above.

Notably, in all these cases it is not necessary to trust
drivers and handlers to guarantee that interrupts will not
disrupt in one way or another the timeliness of the system.
In summary, running at user-level makes interrupt handlers
and device drivers in L4-based systems positively constrained,
in the sense that their behaviour — as opposed to the in-
kernel ones — cannot affect the OS and applications beyond
what is allowed by the protection and scheduling policies set
for the system.

Disadvantages

Interrupt handling in L4 has two drawbacks: latency and, in
some implementations, a nonpreemptable kernel. The inter-
rupt latency is defined as the time between when the inter-
rupt is asserted by the peripheral and the first instruction of
its handler is executed. The latency is slightly higher for L4
user-level handlers than for traditional in-kernel ones since
even in the best-case scenario more code runs and an ad-
ditional context switch is performed. Besides, even if thor-
oughly optimised, L4 (like Linux and many RTOSes) does
not provide specific real-time guarantees (i.e., a firm upper
bound in cycles), neither for its API in general, nor for its IPC
in particular. That said, interrupt latency in L4 is bounded
and “smaller” than normal IPC (as the interrupt IPC path is
much simpler than the full IPC path).

Both kernel preemptability and latency in L4-embedded
are currently considered by researchers and developers. The
current implementation of L4Ka disables interrupts while in
kernel mode. Since in the vast majority of cases the time
spent in the kernel is very short, especially if compared to
monolithic kernels, and preempting the kernel has about
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the same cost as a fast system call, L4-embedded developers
maintain that the additional complexity of making it com-
pletely preemptable is not justified.

However, the L4Ka kernel takes a very long time to “un-
map” a set of deeply nested address spaces, and this increases
both the interrupt and the preemption worst-case latencies.
For this reason, in L4-embedded the virtual memory system
has been reworked to move part of the memory management
to user level, and introduce preemption points where inter-
rupts are enabled in long-running kernel operations. Inter-
estingly, also the Fiasco kernel implementation has a perfor-
mance/preemptability tradeoff. It is located in the registers-
only IPC path, which in fact runs with interrupts disabled
and has explicit preemption points [53].

A notable advantage of a nonpreemptable kernel, or one
with very few preemption points, is that it can be formally
verified to be correct [20].

With respect to latency, Mehnert et al. [27] investigate the
worst-case interrupt latency in Fiasco. An ongoing research
project [54] aims, among other things, at precisely character-
ising the L4-embedded interrupt latency via a detailed timing
analysis of the kernel. Finally, to give an idea of the interrupt
latencies achieved with L4-embedded, work on the interrupt
fast path (an optimised version of the interrupt IPC delivery
path) for a MIPS 2000/3000-like superscalar CPU reduced
the interrupt latency by a factor of 5, from 425 cycles for the
original C version down to 79 cycles for the hand-optimised
assembly version.

User-level real-time reflective scheduling

The L4 interrupt subsystem provides a solid foundation for
user-level real-time scheduling. For example, we exploited
the features and optimisations of L4-embedded described
in this paper to realise a reflective scheduler, a time-driven
scheduler based on reflective abstractions and mechanisms
that allow a system to perform temporal reflection, that is to
explicitly model and control its temporal behaviour as an ob-
ject of the system itself [55].

Since the reflective scheduler is time-driven, and to syn-
chronise uses mutexes and asynchronous notifications, its
correctness is not affected by direct process switch optimi-
sation in the IPC path. Our implementation does not re-
quire any changes to the microkernel itself, and thus does
not impact on its performance. On a 400 MHz XScale CPU
it performs time-critical operations with both accuracy and
precision of the order of microseconds [56]. To achieve this
performance we implemented the reflective scheduler using
a user-level thread always ready to receive the timer IPC, and
with a priority higher than normal applications. In this con-
figuration, L4 can receive the interrupt and perform a di-
rect process switch from kernel mode to the user level thread
without running the kernel scheduler. As a consequence, the
latency of the reflective scheduler is low and roughly con-
stant, and can be compensated. A simple closed-loop feed-
back calibration reduces it from 52–57 μs to −4 – +3 μs. For
space reasons we cannot provide more details. Please find in
Ruocco [56] the full source code of the scheduler and the

real-time video analysis application we developed to evalu-
ate it.

5. CONCLUSIONS

In this paper we discussed a number of aspects of L4 micro-
kernels, namely L4-embedded and its general-purpose an-
cestor L4::Ka Pistachio, that are relevant for the design of
real-time systems. In particular we showed why the opti-
misations performed in the IPC path complicate real-time
scheduling. Fortunately, these optimisations can be removed
with a small performance loss at application level, achiev-
ing real-time friendly scheduling in L4-embedded. Finally,
we highlighted the advantages of the L4 interrupt subsystem
for device drivers and real-time schedulers operating at the
user level. Overall, although there is still work ahead, we be-
lieve that with few well-thought-out changes microkernels
like L4-embedded can be used successfully as the basis of a
significant class of real-time systems, and their implementa-
tion is facilitated by a number of design features unique to
microkernels and the L4 family.
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teraction for real-time systems,” in Proceedings of the Euromi-
cro Conference on Real-Time Systems (ECRTS ’05), pp. 89–97,
Palma de Mallorca, Spain, July 2005.

[29] B. Leslie, C. van Schaik, and G. Heiser, “Wombat: a portable
user-mode Linux for embedded systems,” in Proceedings of the
6th Linux Conference, Canberra, Australia, April 2005.

[30] ISO/IEC, The POSIX 1003.1 Standard, 1996.
[31] J. S. Shapiro, “Vulnerabilities in synchronous IPC designs,” in

Proceedings of the IEEE Symposium on Security and Privacy, pp.
251–262, Oakland, California, USA, May 2003.

[32] S. Siddha, V. Pallipadi, and A. Van De Ven, “Getting maximum
mileage out of tickless,” in Proceedings of the Ottawa Linux
Symposium, Ottawa, Canada, June 2007.

[33] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Secretly monopo-
lizing the CPU without superuser privileges,” in Proceedings of
the 16th USENIX Security Symposium, Boston, Massachussets,
USA, April 2007.

[34] Mike Jones, “What really happened on Mars Rover
Pathfinder,” The Risks Digest, vol. 19, no. 49, 1997, based
on David Wilner’s keynote address of 18th IEEE Real-Time
Systems Symposium (RTSS ’97), December, 1997, San Fran-
cisco, California, USA. http://research.microsoft.com/∼mbj/
Mars Pathfinder/.

[35] J. W. S. Liu, Real-Time Systems, Prentice-Hall, Upper Saddle
River, New Jersey, USA, 2000.

[36] V. Yodaiken, “Against priority inheritance,” http://www
.yodaiken.com/papers/inherit.pdf.

[37] K. Elphinstone, “Resources and priorities,” in Proceedings of
the 2nd Workshop on Microkernels and Microkernel-Based Sys-
tems, K. Elphinstone, Ed., Lake Louise, Alta, Canada, October
2001.

[38] D. Greenaway, “From ‘real fast’ to real-time: quantifying the
effects of scheduling on IPC performance,” B. Sc. thesis, School
of Computer Science and Engineering, The University of New
South Wales, Sydney, Australia, 2007.

[39] J. Stoess, “Towards effective user-controlled scheduling for
microkernel-based systems,” Operating Systems Review, vol.
41, no. 4, pp. 59–68, 2007.

[40] G. Heiser, “Inside L4/MIPS anatomy of a high-performance
microkernel,” Tech. Rep. 2052, School of Computer Science
and Engineering, The University of New South Wales, Sydney,
Australia, 2001.

[41] QNX Neutrino IPC, http://www.qnx.com/developers/docs/
6.3.0SP3/neutrino/sys arch/kernel.html#NTOIPC.

[42] A. Nourai, “A physically-addressed L4 kernel,” B. Eng. the-
sis, School of Computer Science & Engineering, The Unive-
rsity of New South Wales, Sydney, Australia, 2005, http://www
.disy.cse.unsw.edu.au/.

[43] B. Ford and S. Susarla, “CPU inheritance scheduling,” in Pro-
ceedings of the 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’96), pp. 91–105, Seattle,
Washington, USA, October 1996.



14 EURASIP Journal on Embedded Systems

[44] J. Liedtke, “A short note on cheap fine-grained time measure-
ment,” Operating Systems Review, vol. 30, no. 2, pp. 92–94,
1996.

[45] K. Elphinstone, D. Greenaway, and S. Ruocco, “Lazy queueing
and direct process switch — merit or myths?” in Proceedings of
the 3rd Workshop on Operating System Platforms for Embedded
Real-Time Applications, Pisa, Italy, July 2007.

[46] S. Ruocco, “Real-time programming and L4 microkernels,” in
Proceedings of the 2ndWorkshop on Operating System Platforms
for Embedded Real-Time Applications, Dresden, Germany, July
2006.

[47] “Xenomai — implementing a RTOS emulation framework on
GNU/Linux,” 2004, http://www.xenomai.org/documentation/
branches/v2.3.x/pdf/xenomai.pdf.

[48] M. Masmano, I. Ripoll, and C. Crespo, “An overview of the
XtratuM nanokernel,” in Proceedings of the Workshop on Op-
erating System Platforms for Embedded Real-Time Applications,
Palma de Mallorca, Spain, July 2005.

[49] Politecnico di Milano — Dipartimento di Ingegneria Aeros-
paziale, “RTAI the real-time application interface for Linux,”
http://www.rtai.org/.

[50] V. Yodaiken and M. Barabanov, “A real-time Linux,” http://
citeseer.ist.psu.edu/article/yodaiken97realtime.html.

[51] Iguana OS, http://www.ertos.nicta.com.au/iguana/.
[52] S. Rostedt and D. V. Hart, “Internals of the RT Patch,” in Pro-

ceedings of the Ottawa Linux Symposium, Ottawa, Canada, Jan-
uary 2007.

[53] R. Reusner, “Implementierung eines echtzeit-IPC-Pfades mit
unterbrechungspunkten für L4/Fiasco,” Diplomarbeit Thesis,
Fakultät Informatik, Technische Universität Dresden, Dres-
den, Germany, 2006.

[54] S. M. Petters, P. Zadarnowski, and G. Heiser, “Measurements
or static analysis or both?” in Proceedings of the 7th Workshop
Worst-Case Execution-Time Analysis, Pisa, Italy, July 2007.

[55] S. Ruocco, Temporal reflection, Ph.D. thesis, Università degli
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