
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 98417, 13 pages
doi:10.1155/2007/98417

Research Article
Pseudorandom Recursions: Small and Fast Pseudorandom
Number Generators for Embedded Applications

Laszlo Hars1 and Gyorgy Petruska2

1 Seagate Research, 1251 Waterfront Place, Pittsburgh, PA 15222, USA
2Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA

Received 29 June 2006; Revised 2 November 2006; Accepted 19 November 2006

Recommended by Sandro Bartolini

Many new small and fast pseudorandom number generators are presented, which pass the most common randomness tests. They
perform only a few, nonmultiplicative operations for each generated number, use very little memory, therefore, they are ideal for
embedded applications. We present general methods to ensure very long cycles and show, how to create super fast, very small
ciphers and hash functions from them.

Copyright © 2007 L. Hars and G. Petruska. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

For simulations, software tests, communication protocol ver-
ifications, Monte-Carlo, and other randomized computa-
tions; noise generation, dithering for color reproduction,
nonces, keys and initial value generation in cryptography and
so forth, many random numbers are needed at high speed.
Below we list a large number of pseudorandom number gen-
erators. They are so fast and use such short codes that from
many applications hardware random number generators can
be left out, with all the supporting online tests, whitening and
debiasing circuits. If true randomness is needed, a small, slow
true random number generator would suffice, which only
occasionally provides seeds for the high-speed software gen-
erator. This way significant cost savings are possible due to
reduced power consumption, circuit size, clock rate, and so
forth.

Different applications require different level of random-
ness, that is, different sets of randomness tests have to pass.
For example, at verifying algorithms or generating noise,
less randomness is acceptable, for cryptographic applications
very complex sequences are needed. Most of the presented
pseudorandom number generators take less time for a gener-
ated 32-bit unsigned integer than one 32-bit multiplication
on most modern computational platforms, where multipli-
cation takes several clock cycles, while addition or logical op-
erations take just one. (There are exceptions, like DSPs and
the ARM10 microprocessor. However, their clock speed is

constrained by the large and power hungry single-cycle mul-
tiplication engine.)

Most of the presented pseudorandom number generators
pass the Diehard randomness test suite [1]. The ones which
fail a few tests can be combined with a very simple function,
making all the Diehard tests to pass. If more randomness is
needed (higher complexity sequences), a few of these gener-
ators can be cascaded, their output sequences can be com-
bined (by addition, exclusive or operation), or one sequence
can sample another, and so forth.

Only 32-bit unsigned integer arithmetic is used in this
paper (the results of additions or shift operations are always
taken modulo 232). It simplifies the discussions, and the re-
sults can easily be converted to signed integers, to long inte-
gers, or to floating-point numbers.

There are a large number of fast pseudorandom number
generators published, for example, [2–14]. Many of them do
not pass the Diehard randomness test suite; others need a lot
of computational time and/ormemory. Even the well known,
very simple, linear congruential generators are slower (see
[2]). There are other constructions with good mixing prop-
erties, like the RC6 mixer function x+2x2, [15], or the whole
class of invertible mappings, similar to x+(x2∨5) [16]. They
use squaring operations, which make them slower.

In the course of the last year, we coded several thousand
pseudorandom number generators and tested them with dif-
ferent seeds and parameters. We discuss here only the best
ones found.



2 EURASIP Journal on Embedded Systems

2. COMPUTATIONAL PLATFORMS

The presented algorithms use only a few 32-bit arithmetic
operations (addition, subtraction, XOR, shift and rotation),
which can be performed fast also with 8- or 16-bit micropro-
cessors supporting operations, like add-with-carry. No mul-
tiplication or division is used in the algorithms we deal with,
because they could take several clock cycles even in 32-bit
microprocessors, and/or require large, expensive, and power-
hungry hardware cores. We will look at some, more exotic
fast instructions, too, like bit or byte reversals. If they are
available as processor instructions, they could replace shift
or rotation operations.

3. RANDOMNESS TESTS

We used Diehard, the de facto standard randomness test
suite [1]. Of course, there are countless other tests one could
try, but the large number of tests in the Diehard suite al-
ready gives a good indication about the practical usability
of the generated sequence. If the randomness requirements
are higher, a few of the generators can be combined, with
one of the several standard procedures: by cascading, addi-
tion, exclusive OR, or one sequence sampling another, and
so forth.

The tested properties of the generated sequences do not
necessarily change uniformly with the seed (initial value of
the generator). In fact, some seeds for some generators are
not allowed at all (like 0, when most of the generated se-
quences are very regular), groups of seeds might provide se-
quences of similar structure. It would not restrict typical ap-
plications of random numbers: sequences resulted from dif-
ferent seeds still consist of very different entries. Therefore,
the results of the tests were only checked for pass/fail, we did
not test the distribution or independence of the results of the
randomness tests over different seeds. Each long sequence in
itself, resulted from a given seed, is shown to be indistin-
guishable from random by a large set of statistical tests, called
the Diehard test suite.

Computable sequences, of course, are not truly random.
With statistical tests, one can only implicate their suitability
to certain sets of applications. Sequences passing the Diehard
test suite proved to be adequate for most noncryptographic
purposes. Cryptographic applications are treated separately
in Sections 8 and 9.

The algorithms and their calling loops were coded in C,
compiled and run. In each run, 10MB of output were written
to a binary file, and then the Diehard test suite was executed
to analyze the data in the file. The results of the tests were
saved in another file, which was opened in an editor, where
failed tests (and near fails) were identified.

4. MIXING ITERATIONS

We consider sequences, generated by recursions of the form

xi = f
(
xi−1, xi−2, . . . , xi−k

)
. (1)

They are called k-stage recursions. We will only use functions
of simple structure, built with operations “+,” “⊕,” “�,”
“�,” “≪,” and constants. The operands could be in any or-
der, some could occur more than once or not at all, grouped
with parentheses. These kinds of iterations are similar to,
but more general than the so-called (lagged) Fibonacci re-
cursions. Note the absence of multiplications and divisions.

If the function f is chosen appropriately, the generated
sequence will be indistinguishable from true random with
commonly used statistical tests. The goals of the construc-
tions are good mixing properties, that is, flipping a bit in the
input, all output bits should be affected after a few recursive
calls. When we add or XOR shifted variants of an input word,
the flipped bit affects a few others in the result. Repeating this
with well-chosen shift lengths, all output bits will eventually
be affected. If also carry propagation gets into play, the end
result is a quite unpredictable mixing of the bits. This is ver-
ified with the randomness tests.

4.1. Multiple returned numbers

The random number generator function or the caller pro-
gram must remember the last k generated numbers (used in
the recursion). If we want to avoid the use of (ring) buffers,
assigning previously generated numbers to array elements,
we could generate k pseudorandom numbers at once. It sim-
plifies the code, but the caller must be able to handle several
return values at one call.

The functions are so simple that they can be directly in-
cluded, inline, in the calling program. If it is desired, a simple
wrapper function can be written around the generators, like
the following:

Rand123(uint32 *a, uint32 *b, uint32 *c)
{

uint32 x = *a, y = *b, z = *c;
x += rot(y^z,8);
y += rot(z^x,8);
z += rot(x^y,8);
*a = x; *b = y; *c = z;

}

Modern optimizing compilers do not generate code for the
instructions of type x = ∗a and ∗a = x, only the data reg-
isters are assigned appropriately. If the function is designated
as inline, no call-return instructions are generated, either, so
optimum speed could still be achieved.

4.2. Cycle length

In most applications it is very important that the generated
sequence does not fall into a short cycle. In embedded com-
puting, a cycle length in the order of 232 ≈ 4.3 · 109 is often
adequate, assuming that different initial values (seeds) yield
different sequences. In some applications, many “nonces”
are required, which are all different with high probability.
If the output domain of the random number generator is
n different elements (not necessarily generated in cycle, like
when different sequences are combined) and k values are



L. Hars and G. Petruska 3

generated, the probability of a collision (at least two equal
numbers) is 0.5 k2/n. (see the appendix). For example, the
probability of a collision among a thousand numbers gener-
ated by a 32-bit pseudorandom number generator is 0.01%.

4.2.1. Invertible recursion

If, from the recursive equation xi = f (xi−1, xi−2, . . . , xi−k), we
can compute xi−k, knowing the values of xi, xi−1, . . . , xi−k+1,
the generated sequence does not have “ρ” cycles, that is, any
long enough generated sequence will eventually return to the
initial value, forming an “O” cycle (otherwise there were two
inverses of the value, where a short cycle started). In this case,
it is easy to determine the cycle lengths empirically: run the
iteration in a fast computer and just watch for the initial value
to recur. In many applications invertibility is important, for
other reasons, too (see [16]).

Most of the multistage generators presented below are
easily invertible. One stage recursive generators are more in-
triguing. Special one stage recursions adding a constant to
the XOR of the results of rotations by different amounts are
the most common.

xi+1 = const +
(
xi ≪ k1

)⊕ (xi ≪ k2
)⊕ · · · ⊕ (xi ≪ km

)
.

(2)

They are invertible, if we can solve a system of linear equa-
tions for the individual bits of the previous recursion value xi,
with the right-hand side formed by the bits of (xi+1 − const).
Its coefficient matrix is the sum of powers of the unit circu-
lant matrix C: Ck1 + Ck2 + · · · + Ckm (here the unit circulant
matrix C is a 32 × 32 matrix containing 0′s except 1′s in the
upper-right corner and immediately below the main diago-
nal, like the 4× 4 matrix below).

⎛

⎜
⎜
⎜
⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎟
⎠
. (3)

If its determinant is odd, there is exactly one solution mod-
ulo 2 (XOR is bit-by-bit addition modulo 2). Below we prove
that a necessary condition for the invertibility of a one-stage
recursion of the above type (2) is that the number of rotations
is odd.

Lemma 1. The determinant of M, the sum of k powers of unit
circulant matrices is divisible by k.

Proof. Adding every row of M to the first row (except itself)
does not change the determinant. Since every column con-
tains only zeros, except k entries equal to 1 (which may over-
lap if there are equal powers), all the entries in the first row
become k.

Corollary 1. Even number of rotations XOR-ed together does
not define invertible recursions.

Proof. The determinant of the corresponding system of
linear equations is even, when there is an even number of

rotations, according to the lemma. It is 0 modulo 2, there-
fore the system of equations does not have a unique solution.

4.2.2. Compound generators

There is no nice theory behind most of the discussed gener-
ators, so we do not know the exact length of their cycles, in
general. To assure long enough cycles, we take a very differ-
ent other pseudorandom number generator (which need not
be very good), with a known long cycle, and add their output
together. The trivial one would be xi = i · const mod 232 (as-
suming 32-bit machine words), requiring just one addition
per iteration (implemented as x += const). It is not a good
generator by itself, but for odd constants, like 0x37798849,
its cycle is exactly 232 long.

Other very fast pseudorandom number iterations with
known long cycles are the Fibonacci generator and the mixed
Fibonacci generator (see the appendix). They, too, need only
one add or XOR operation for an output, but need two in-
ternal registers for storing previous values (or they have to
be provided via function parameters). With their least sig-
nificant bits forming a too regular sequence, they are only
suitable as components, when the other generator is of high
complexity in those bits.

4.2.3. Counter mode

Another alternative was to choose invertible recursions, and
reseed them before each call, with a counter. It guarantees
that there is no cycle shorter than the cycle of the counter,
which is 2160 for a 5-stage generator, far more than any net-
work of computers could ever exhaust. When generating a
sequence at 1GHz rate, even a 64-bit counter will not wrap
around for 585 years of continuous operation. There is sel-
dom a practical need for longer cycles than 264.

Unfortunately, consecutive counter values are very simi-
lar, (every odd one differs in just one bit from the previous
count) so the mixing properties of the recursion need to be
much stronger.

Seeding could be done by the initial counter value, but
it is better to use such mixing recursions, which depend on
other parameters, too, and seed them with a counter 0, be-
cause two sequences with overlapping counter values would
be strongly correlated. Furthermore, if this seed is consid-
ered a secret key, several of the mixing recursion algorithms
discussed below could be modified to provide super fast ci-
phers. With choosing the complexity of the mixing recursion
we could trade speed for security.

4.2.4. Hybrid counter mode

A part of the output of an invertible recursion is replaced
with a counter value, and it is used as a new seed for the
next call. The feedback values will be very different call by
call; thus much fewer recursion steps are enough to achieve
sufficient randomness than with pure counter mode. The in-
cluded counter guarantees different seeds, and so there is no
short cycle. It combines the best of two worlds: high speed
and guaranteed long cycle.



4 EURASIP Journal on Embedded Systems

5. FEEDBACKMODE PSEUDORANDOMRECURSIONS

At Fibonacci type recursions, the most- and least-significant
bits of the generated numbers are not very random, so we
have to mix in the left-, and right-shifted less regular middle
bits to break simple patterns. Somemicroprocessors perform
addition with bit rotation or shift as a combined operation,
in one parallel instruction.

It is advantageous to employ both logical and arithmetic
operations in the recursion so that the results do not remain
in a corresponding finite field (or ring). If they did, the re-
sulting sequences of few-stage generators would usually fail
almost all the Diehard tests.

The initial value (seed) of most of these generators must
not be all 0, to avoid a fix point.

The algorithms contain several constants. They were
found by systematic search procedures, stopped when the de-
sired property (passing all randomness tests in Diehard) was
achieved or after a certain number of trials the number of
(almost) failed tests did not improve. Below the generators
are presented in the order they were discovered. In the con-
clusions section they are listed in a more systematic order.

5.1. 3-stage generators

If extended precision floating-point numbers (of length
80 · · · 96 bit), or single precision triplets (like x, y, z spatial
coordinates) are needed, the following generators are very
good, giving three 32-bit unsigned integers in each call. For
a single-return value, some extra bookkeeping is necessary,
like using a ring buffer for the last 3 generated numbers,
or moving the newer values to designated variables temp ←
f (x, y, z), x ← y, y ← z, z ← temp, Return z.

(1) xi+1 = xi−2 + (xi−1 � 8⊕ xi � 8)

x += y<<8 ^ z>>8;
y += z<<8 ^ x>>8;
z += x<<8 ^ y>>8.

This algorithm takes 4 cycles per generated machine word. It
can be implemented without any shift operations, just load-
ing the operands from the appropriate byte offset. It is the
choice if rotation is not supported in hardware. The recur-
sion is invertible: xi−2 = xi+1 − (xi−1 � 8 ⊕ xi � 8). Note
that using shifts lengths 5 and 3 is slightly more random, but
8 is easier to implement.

(2) Its dual also works (+ and ⊕ swapped), with appro-
priate initial values (not all zeros):

x ^= (y<<8) + (z>>8);
y ^= (z<<8) + (x>>8);
z ^= (x<<8) + (y>>8).

(3) xi+1 = xi−2 + ((xi−1 ⊕ xi) ≪ 8),

x += rot(y^z,8);
y += rot(z^x,8);
z += rot(x^y,8).

This recursion takes 3 cycles/word. On 8-bit processors,
this algorithm, too, can be implemented without any shift
operations, just loading the operands from the appropriate
byte offset. It is also invertible: xi−2 = xi+1−((xi−1⊕xi) ≪ 8).

(4) Its dual also works (+ and ⊕ swapped), with appro-
priate initial values:

x ^= rot(y+z,8);
y ^= rot(z+x,8);
z ^= rot(x+y,8).

(5) xi+1 = xi−2 + (xi ≪ 9). Its inverse is xi−2 = xi+1 −
(xi ≪ 9):

x += rot(z,9);
y += rot(x,9);
z += rot(y,9).

This algorithm takes 2 cycles/word, but it cannot be imple-
mented without shift operations.

(6) xi+1 = xi−2 + (xi ≪ 24) (≈ rotate-right by 8 bits). Its
inverse is xi−2 = xi+1 − (xi ≪ 24):

x += rot(z,24);
y += rot(x,24);
z += rot(y,24).

It takes also 2 cycles/word. When the processor fetches indi-
vidual bytes, this algorithm, too, can be implemented with-
out shift operations.

(7) The order of the addition and rotation can be
swapped, creating the dual generator:

xi+1 = (xi−2 + xi) ≪ 24 (≈ rotate-right by 8 bits). Its
inverse is xi−2 = (xi+1 � 8)− xi:

x = rot(x+z,24);
y = rot(y+x,24);
z = rot(z+y,24).

This recursion, too, takes 2 cycles/word. With byte fetching,
this algorithm can be implemented without shift operations,
so, in some sense, these last couple are the best 3-stage gen-
erators.

5.2. 4 ormore stages

It is straightforward to extend the 3-stage generators to ones
of more stages. Here is an example:

(1) xi+1 = (xi−3 + xi) ≪ 8,

x = rot(x+w,8);
y = rot(y+x,8);
z = rot(z+y,8);
w = rot(w+z,8).

It still uses 2 operations for each generated 32-bit unsigned
integer. One could hope that using more stages (larger mem-
ory) and appropriate initialization, above a certain size one
pseudorandom number could be generated by just one op-
eration. It could be +, −, or ⊕. Unfortunately, their low-
order bits show very strong regularity. We are not aware of
any “small” recursive scheme (with less than a couple dozens
stages), which generates a sequence passing all the Diehard
tests, and uses only one operation per entry. (Using over 50
stages would make many randomness tests pass, because of
the stretched patterns of the low order bits, but the necessary
array handling, indexing is more expensive than the compu-
tation of the recursion itself.) However, as a component in a



L. Hars and G. Petruska 5

compound generator, a four-stage Fibonacci scheme can be
useful. We have to pair it with a recursion, which does not
exhibit simple patterns in the low-order bits, that is, which
uses shifts or rotations.

(2) On certain (16-bit) processors, swapping the most-
and least significant half of a word does not take time (the
halves of the operand are loaded in the appropriate order).
This would break the regularity of the low order bits, and we
can generate a sequence passing the Diehard test suite, with
only one addition per entry, in only k = 5 stages:

for (j = 0; j < k; ++j)
b[j] += rot(b[(j+2)%5],16).

In practice the loop would be unrolled and the rotation oper-
ation replaced by the appropriate operand load instruction.
We could not find any good 4-stage recursion, which used
only shifts or rotations by 16 bits.

5.3. 2-stage generators

In the other direction (using fewer stages), more and more
operations are necessary to generate one entry of the pseudo-
random sequence, because the internal memory (the num-
ber of previous values used in the recursion) is smaller. In
general, more computation is necessary to mix the available
fewer bits well enough.

The following generator fails only one or two Diehard
tests (so it is suitable as a component of a compound gen-
erator), with an initial pair of values of (x, 7), with arbitrary
seed x.

(1) xi+1 = xi−1 + (xi � 8⊕ xi−1 � 7),

x += y<<8 ^ x>>7;
y += x<<8 ^ y>>7.

(2) The following variant, using shifts only on byte
boundaries, fails a dozen Diehard tests, but as a component
generator, it is still usable (all tests passed when combined
with a linear sequence):

xi+1 = xi−1 + (xi � 8 ⊕ xi−1 � 8); ki+1 = ki +
0xAC6D9BB7 mod 232; ri = xi + ki,

x += y<<8 ^ x>>8;
y += x<<8 ^ y>>8;
r[0] = x+(k+=0xAC6D9BB7);
r[1] = y+(k+=0xAC6D9BB7);

the last two generators are not invertible, so their cycle
lengths are harder to determine experimentally. The last gen-
erator has a cycle length at least 232 (experiments show much
larger values), due to the addition of the linear sequence.

(3) xi+1 = xi−1 + (xi ⊕ xi−1 ≪ 25),

x += y ^ rot(x,25);
y += x ^ rot(y,25);

all tests passed. The complexity of the iteration is 3 cycles/32-
bit word. Shift lengths taken only from the set {0, 8, 16, 24}
do not lead to good pseudorandom sequences (even together
with a linear or a Fibonacci sequence), therefore, a true rotate
instruction proved to be essential.

(4) If we combine a rotate-by-8 version of this generator,
with a mixed two-stage Fibonacci generator, it will pass all
the Diehard tests (initialized with x = seed, y = 1234 (key);
r = 1, s = 2):

r += s;
s ^= r;

x += y ^ rot(x,8);
y += x ^ rot(y,8);

r[0] = r+x; r[1] = s+y;

themixed Fibonacci generator

x2i+1 = x2i−1 + x2i,

x2i+2 = x2i ⊕ x2i+1,
(4)

with initial values {1, 2} has a period of 3 · 230 ≈ 3.2 · 109
(see the appendix). It is easily invertible, and 6.5 · 109 values
are generated before they start to repeat. The low-order bits
are very regular, but it is still suitable as a component in a
compound generator, as above.

5.4. 1-stage generators

We have to apply some measures to avoid fix points or short
cycles at certain seeds. An additive constant works. Alterna-
tively, one could continuously check if a short cycle occurs,
but this check consumes more execution time than adding a
constant, which prevents short cycles.

(1) xi+1 = xi ⊕ (xi ≪ 5)⊕ (xi ≪ 24) + 0x37798849,

x = (x ^ rot(x,5) ^ rot(x,24)) + 0x37798849.

This generator takes 5 cycles/32-bit word, still less than
half of a single multiplication time on the Pentium micro-
processor. Unfortunately, shift lengths taken from the set
{0, 8, 16, 24} do not lead to good pseudorandom sequences,
therefore, for efficient implementation of this generator the
processor must be able to perform fast shift instructions. If
we add the linear sequence ki+1 = ki+0xAC6D9BB7 mod 232

to the result ri = xi + ki, it improves the randomness and
makes sure that the period is at least 232. The pure recursive
version is invertible, because the determinant of the system
of equations on the individual bits is odd (65535).

The last recursion can be written with shifts instead of
rotations:

x = (x ^ x<<5 ^ x>>27 ^ x<<24 ^ x>>8)
+ 0x37798849.

It takes 9 cycles/32-bit result, still faster than one multiplica-
tion.

(2) On certain microprocessors, shifts with 24 or 8 bits
can be implemented with just appropriately addressing the
data, so shifts on byte boundaries are advantageous:

x = (x ^ x<<8 ^ x>>27 ^ x<<24 ^ x>>8)
+ 0x37798849.



6 EURASIP Journal on Embedded Systems

It works, too, (passing all the Diehard tests) with one more
shift on byte boundaries, but the corresponding determinant
is even (256), so the recursion is not invertible.

(3) x = (x ^ x<<5 ^ x>>4 ^ x<<10 ^ x>>16)
+ 0x41010101.

With this generator, only one Diehard test fails. It takes 9
cycles/32-bit word. On 16-bit microprocessors, some work
can be saved, because x � 16 merely accesses the most
significant word of the operand. It is faster than one (Pen-
tium) multiplication and invertible, with odd determinant =
114717.

(4) With little loss of randomness, we can drop a shifted
term:

x = (x ^ x<<5 ^ x<<23 ^ x>>8) + 0x55555555.

Seven Diehard tests fail, but it is still suitable as a com-
ponent generator (even with the linear sequence xi = i ·
0x37798849 mod 232). It takes 7 cycles/32-bit word. One cy-
cle can be saved at 8-bit processors, because x � 8 just ac-
cesses the three most significant bytes of the operand. It is
invertible with odd determinant = 18271.

(5) If we want one more shift operation to be on byte
boundaries, we can use

x = (x ^ x<<5 ^ x<<24 ^ x>>8) + 0x6969F969.

Here nine Diehard tests fail, but it is still suitable as a
component RNG (even with the very simple xi = i ·
0xAC5532BB mod 232). It is not invertible, having an even
determinant = 16038.

5.5. Special CPU instructions

There are many other less frequently usedmicroprocessor in-
structions, like counting the 1-bits in a machine word (Ham-
ming weight), finding the number of trailing or leading 0-bits
(Intel Pentium: BSFL, BSRL instructions). They would allow
variable shift lengths in recursions, but in a random look-
ing sequence the number of leading or trailing 0 or 1 bits are
small, so there is no much variability in them. Also, it is easy
to make a mistake, like adding its Hamming weight to the
result, what actually makes the sequence less random.

Some microprocessors offer a bit-reversal instruction
(used with fast Fourier transforms) or byte-reversal (Intel
Pentium: BSWAP), to handle big- and little-endian-coded
numeric data. They can be utilized for pseudorandom num-
ber generation, although they do not seem to be better than
rotations. These instructions are most useful, if they do
not take extra time (like only the addressing mode of the
operands needs to be appropriately specified, or the address-
ing mode can be set separately for a block of data).

(1) An example is the following feedback mode pseudo-
random number generator:

x = RevBytes(x+z);
y = RevBytes(y+w);
z = RevBytes(z+r);
w = RevBytes(w+x);
r = RevBytes(r+y);

this 5-stage-lagged Fibonacci type generator is invertible,
passes all the Diehard tests, and needs only one addition per
iteration. The operands are stored in memory in one (little-
or big endian) coding, and loaded in different byte order.
This normally does not take an extra instruction, so this gen-
erator is the possible fastest for these platforms. (Note that no
such 4-stage generators are found, which pass all the Diehard
tests, and perform one operation per iteration together with
byte or bit reversals. Not even when bit and byte reversals are
intermixed.)

6. COUNTERMODE: MIXER RECURSIONS AND
PSEUDORANDOMPERMUTATIONS

Invertible recursions, reinitialized with a counter at each call,
yield a cycle as long as the period of the counter. For practical
embedded applications, 32-bit counters often provide long
enough periods, but we also present pseudorandom recur-
sions with 64-bit and 128-bit counters. The corresponding
cycle lengths are sufficient even for very demanding appli-
cations (like huge simulations used for weather forecast or
random search for cryptographic keys).

If the counter is not started from 0 but from a large seed,
these generators provide different sequences, without simple
correlations. Also, in some applications it is necessary to ac-
cess the pseudorandom numbers out of order, which is very
easy in counter mode, while hard with other modes.

6.1. 1-stage generators

(1) With the parameters (L,R,A) = (5, 3, 0x95955959),
the following recursion provides a pseudorandom sequence,
which passes all Diehard tests, without near fails (p =
0.999+):

x = k++;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R) + A;
x = (x ^ x<<L ^ x>>R);

(2) if shifts only on byte boundaries are used, we need
12 iterations (instead of the 7 above), the last one without
adding A. The parameters are (L,R,A) = (8, 8, 0x9E3779B9).
There is no p = 0.999+ in the Diehard tests, which gives some
assurances that any initial counter value works.

(3) With rotations, the parameters (L,R,A) = (5, 9,
0x49A8D5B3) give a faster generator, with only one p =
0.999+ in Diehard:

x = k++;
x = (x ^ rot(x,L) ^ rot(x,R)) + A;
x = (x ^ rot(x,L) ^ rot(x,R)) + A;
x = (x ^ rot(x,L) ^ rot(x,R)) + A;
x = (x ^ rot(x,L) ^ rot(x,R));
x = (x ^ rot(x,L) ^ rot(x,R));



L. Hars and G. Petruska 7

(4) if rotations only on byte boundaries are used, we need
9 iterations (instead of the 5 above), the last two without
adding A: (L,R,A) = (8, 16, 0x49A8D5B3) two p = 0.999+
in Diehard.

6.2. 2-stage generators

In this case, the longer counter (64-bit) makes the inputmore
correlated, and so more computation is needed to mix the
bits well enough, but we get two words at a time. Different
parameter sets lead to different pseudorandom sequences,
similar in randomness and speed (9 iterations):

(1) (L,R,A,B,C) = (5, 3, 0x22721DEA, 6, 3) no p = 0.999+
in Diehard.

(2) (L,R,A,B,C) = (5, 4, 0xDC00C2BB, 6, 3) one p =
0.999+ in Diehard.

(3) (L,R,A,B,C) = (5, 6, 0xDC00C2BB, 6, 3) no p = 0.999+
in Diehard.

(4) (L,R,A,B,C) = (5, 7, 0x95955959, 6, 3) no p = 0.999+
in Diehard.

x = k++; y = 0;
for (j = 0; j < B; j+=2) {

x += (y ^ y<<L ^ y>>R) + A;
y += (x ^ x<<L ^ x>>R) + A;

}
for (j = 0;;) {

if (++j > C) break;
x += y ^ y<<L ^ y>>R;
if (++j > C) break;
y += x ^ x<<L ^ x>>R;

}

If shifts only on byte boundaries are used, we needed
only slightly more, 11 iterations, the last three without
adding A.

(5) (L,R,A,B,C) = (8, 8, 0xDC00C2BB, 8, 3) one p =
0.999+ in Diehard.
Again, with rotations fewer iterations are enough. The
following recursions generate different pseudorandom
sequences, similar in randomness and in speed (7 iter-
ations).

(6) (L,R,A,B,C) = (5,24, 0x9E3779B9, 4, 3) no 0.999+ in
Diehard.

(7) (L,R,A,B,C) = (7,11, 0x9E3779B9, 4, 3) no 0.999+ in
Diehard.

(8) (L,R,A,B,C) = (5,11, 0x9E3779B9, 4, 3) no 0.999+ in
Diehard.

(9) (L,R,A,B,C) = (5, 9, 0x49A8D5B3, 4, 3) no 0.999+ in
Diehard.

(10) (L,R,A,B,C) = (5, 8, 0x22721DEA, 4, 3) no 0.999+ in
Diehard.

x = k++; y = 0;
for (j = 0; j < B; j+=2) {

x += (y ^ rot(y,L) ^ rot(y,R)) + A;
y += (x ^ rot(x,L) ^ rot(x,R)) + A;

}
for (j = 0;;) {

if (++j > C) break;
x += y ^ rot(y,L) ^ rot(y,R);
if (++j > C) break;
y += x ^ rot(x,L) ^ rot(x,R);

}

If rotations only on byte boundaries are used, we
needed 10 iterations (instead of the 7 above), the last
two without adding A.

(11) (L,R,A,B,C) = (8, 16, 0x55D19BF7, 8, 2) two 0.999+ in
Diehard.

Recursions with rotation by 8 and 24 need one more itera-
tion.

6.3. 4-stage generators

These generators mix even longer counters (128 bit) contain-
ing correlated values, so still more computation is needed to
mix the bits well enough, but 4 pseudorandom words are
generated at a time. Different parameter sets lead to differ-
ent pseudorandom sequences, similar in randomness and in
speed (11 iterations):

x = k++; y = 0; z = 0; w = 0;
for (j = 0; j < B; j+=4) {

x += ((y^z^w)<<L) + ((y^z^w)>>R) + A;
y += ((z^w^x)<<L) + ((z^w^x)>>R) + A;
z += ((w^x^y)<<L) + ((w^x^y)>>R) + A;
w += ((x^y^z)<<L) + ((x^y^z)>>R) + A;

}
for (j = 0;;) {

if (++j > C) break;
x += ((y^z^w)<<L) + ((y^z^w)>>R);
if (++j > C) break;
y += ((z^w^x)<<L) + ((z^w^x)>>R);
if (++j > C) break;
z += ((w^x^y)<<L) + ((w^x^y)>>R);
if (++j > C) break;
w += ((x^y^z)<<L) + ((x^y^z)>>R);

}

(This code is for experimenting only. In real-life implemen-
tations loops are unrolled.)

(1) (L,R,A,B,C) = (5, 3, 0x95A55AE9, 8, 3) no 0.999+ in
Diehard.

(2) (L,R,A,B,C) = (5, 4, 0x49A8D5B3, 8, 3) no 0.999+ in
Diehard, and several similar ones.

(3) (L,R,A,B,C) = (5, 7, 0xDC00C2BB,8, 3) no 0.999+ in
Diehard.

Common expressions could be saved and reused, done
automatically by optimizing compilers. If shifts only on byte
boundaries are used, we needed only slightly more, 13 steps
(instead of the 11 above), the last one without adding A.

(4) (L,R,A,B,C) = (8, 8, 0x49A8D5B3, 12, 1) no 0.999+ in
Diehard.

Here, also, rotations allow using simpler recursive expres-
sions. The following ones generate different pseudorandom
sequences, similar in randomness and in speed (13 steps):

(5) (L,R,A,B,C) = (5, -, 0x22721DEA, 12, 1) no 0.999+ in
Diehard.



8 EURASIP Journal on Embedded Systems

(6) (L,R,A,B,C) = (9, -, 0x49A8D5B3, 12, 1) no 0.999+ in
Diehard.

x = k++; y = 0; z = 0; w = 0;
for (j = 0; j < B; j+=4) {

x += rot(y^z^w,L) + A;
y += rot(z^w^x,L) + A;
z += rot(w^x^y,L) + A;
w += rot(x^y^z,L) + A;

}
for (j = 0;;) {

if (++j > C) break;
x += rot(y^z^w,L);
if (++j > C) break;
y += rot(z^w^x,L);
if (++j > C) break;
z += rot(w^x^y,L);
if (++j > C) break;
w += rot(x^y^z,L);

}

(This code is for experimenting only. In real-life implemen-
tations loops are unrolled.) If rotations only on byte bound-
aries are used, we needed 15 steps (instead of the 13 above),
the last three without adding A.

(7) (L,R,A,B,C) = (8, -, 0x95A55AE9, 12, 3) no 0.999+ in
Diehard.

The dual recursion (swap “+” and “⊕”) is very similar in
both running time and randomness:

x = k++; y = 0; z = 0; w = 0;
for (j = 0; j < B; j+=4) {

x ^= rot(y+z+w,L) ^ A;
y ^= rot(z+w+x,L) ^ A;
z ^= rot(w+x+y,L) ^ A;
w ^= rot(x+y+z,L) ^ A;

}
for (j = 0;;) {

if (++j > C) break;
x ^= rot(y+z+w,L);
if (++j > C) break;
y ^= rot(z+w+x,L);
if (++j > C) break;
z ^= rot(w+x+y,L);
if (++j > C) break;
w ^= rot(x+y+z,L);

}

(8) (L,R,A,B,C) = (5, -, 0x95955959, 12, 1) no 0.999+ in
Diehard.

(9) (L,R,A,B,C) = (6, -, 0x95955959, 12, 1) no 0.999+ in
Diehard.

(10) (L,R,A,B,C) = (7, -, 0x95955959, 12, 1) no 0.999+ in
Diehard.

(11) (L,R,A,B,C) = (9, -, 0x95955959, 12, 1) no 0.999+ in
Diehard.

If rotations only on byte boundaries are used, similar to
the dual recursions, we needed 15 steps (instead of the 13
above), the last three without adding A.

(12) (L,R,A,B,C) = (8, -, 0x95955959, 12, 3) no 0.999+ in
Diehard.

Other combinations of “+” and “⊕” are also similar, lead-
ing to different families of similar generators:

x += rot(y+z+w,L) ^ A;...
or x ^= rot(y+z+w,L) + A;...

However, when only “+” or only “⊕” operations are used, the
resulting sequences are poor.

7. HYBRID COUNTERMODE

If we split a machine word the recursion operates on, for
the counter and for the output feedback value, the guaran-
teed cycle length of the resulting sequence will be too short.
Therefore, one stage is not enough.

7.1. 2-stage generators

x = k++;
(1) x += ((x^y)<<11) + ((x^y)>>5) ^ y;

y += ((x^y)<<11) + ((x^y)>>5) ^ x;

it needs 6 cycles/word. All Diehard tests are passed, with only
one 0.999+. Other combinations of + and ⊕ give similar re-
sults, as long as both operations are used.

A slightly slower (8 cycles) and slightly better (no near
fail) 2-stage generator is the following:

x = k++;
(2) x += x<<5 ^ x>>7 ^ y<<10 ^ y>>5;

y += y<<5 ^ y>>7 ^ x<<10 ^ x>>5;

shift on byte boundaries with 8 cycles/word:

x = k++;
(3) x += (y<<8) ^ ((x^y)<<16) ^ ((x^y)>>8)+y;

y += (x<<8) ^ ((x^y)<<16) ^ ((x^y)>>8)+x;

with rotations only half as much work is needed (4 cy-
cles/word):

x = k++;
(4) x += rot(x,16) ^ rot(y,5);

y += rot(y,16) ^ rot(x,5);

its dual is equally good (no near fails in Diehard), but re-
quires a slightly different rotation length.

x = k++;
(5) x ^= rot(x,16) + rot(y,7);

y ^= rot(y,16) + rot(x,7);

the following recursion is the same for x, and for y, and uses
rotations only on byte boundaries. It uses 6 operations/word
(common subexpressions reused), 2 more than the recur-
sions above.

x = k++;
(6) x ^= rot(x+y,16) + rot(y+x,8) + y+x;

y ^= rot(y+x,16) + rot(x+y,8) + x+y;



L. Hars and G. Petruska 9

swapping some + and ⊕ operations the resulting recursion is
equally good (no Diehard test fails, no p = 0.999+):

x = k++;
(7) x += (rot(x^y,16) ^ rot(y^x,8)) + (y^x);

y += (rot(y^x,16) ^ rot(x^y,8)) + (x^y);

7.2. 3-stage generators

These generators are at most 1 instruction longer than the
corresponding pure feedback mode generators, but still there
is not even a near fail in the Diehard tests:

x = k++;
(1) x += z ^ y<<8 ^ z>>8;

y += x ^ z<<8 ^ x>>8;
z += y ^ x<<8 ^ y>>8;

Its dual is equally good:

x = k++;
(2) x ^= z + (y<<8) + (z>>8);

y ^= x + (z<<8) + (x>>8);
z ^= y + (x<<8) + (y>>8);

The following feedback mode generator with rotations works
unchanged in hybrid counter mode:

x = k++;
(3) x += rot(y^z,8);

y += rot(z^x,8);
z += rot(x^y,8);

like its dual

x = k++;
(4) x ^= rot(y+z,8);

y ^= rot(z+x,8);
z ^= rot(x+y,8);

The generator below is faster (2 cycles/word), but uses an
odd-length rotation and has one near fail in the Diehard
tests:

x = k++;
(5) x += rot(y,9);

y += rot(z,9);
z += rot(x,9);

7.3. 4-stage generator

A variant of the simplest feedback mode generator works in
hybrid counter mode, too, without near fails in Diehard (no
p = 0.999+). The rotations are on byte boundaries.

x = k++;
x = rot(x+y,8);

(1) y = rot(y+z,8);
z = rot(z+w,8);
w = rot(w+x,8);

7.4. 6-stage generator with byte reversal

With only one arithmetic instruction per iteration, 5 stages
are not enough to satisfy all the Diehard tests, but a vari-
ant of the feedback mode 6-stage generator works in the hy-
brid counter mode, too, without near fails in Diehard (p =
0.999+):

x = k++;
x = RevBytes(x+y);
y = RevBytes(y+z);

(1) z = RevBytes(z+w);
w = RevBytes(w+r);
r = RevBytes(r+s);
s = RevBytes(s+x);

8. CIPHERS

Counter-mode pseudorandom recursions can be used as very
simple, super fast ciphers, when the security requirements
are not high, like at RFID tags tracking merchandise in a
warehouse.

8.1. Four-way feistel network

We need to use many more rounds than the minimum listed
above, because they only guarantee a certain set of random-
ness tests (Diehard) to pass. Instead of adding a constant
in each round, we add a number derived from the encryp-
tion key by another pseudorandom recursion. These form a
small set of subkeys, called key schedule. They are computed
in an initialization phase, about the same complexity as the
encryption of one data block. At decryption, the same key
schedule is needed, and the inverse recursion is computed
backwards.

If the subkey used in a particular round is fixed, a cer-
tain type of attack is possible: match round data from differ-
ent rounds [17]. To prevent that, the subkeys are chosen data
dependently. It provides more variability than only assuring
that each round is different, which was a design decision,
among others, in the TEA cipher, and its improvements [18–
20]. However, many different subkeys require largermemory,
and could necessitate swapping subkeys in and out of the
processor cache, which poses security risks. To combat this
problem, one can recompute the subkeys on the fly, maybe,
with some precomputed data to speed up this subkey gener-
ation. Here is an example key schedule, continuing the initial
key sequence k0, . . . , k3:

for(j = 4; j<16; ++j)
k[j] = k[j-4] ^ rot(k[j-3]+k[j-2]+k[j-1],5)

^ 0x95A55AE9;

Block lengths can be chosen as any multiple of 32 bits, as de-
scribed in the Block-TEA and the XXTEA algorithms [20].
We present an example with 128-bit blocks {x, y, z,w} and
128-bit keys k0, . . . , k3. 16 subkeys are computed in advance.
(They are reused for encrypting other data.) One can use the
original keys only (2-bit index), or generate many subkeys, as
desired. The more subkeys, the less predictable the behavior



10 EURASIP Journal on Embedded Systems

of the encryption algorithm, but also themorememory used.
Subkey selection can be performed by the least significant, or
any other data bits like k[x&15] or k[x�28], and so forth.
Consecutive subkeys are strongly correlated, but the order in
which they are used is unpredictable. With more work, one
can make the subkeys less correlated: perform a few more it-
erations before they get stored, or the subkeys could be gen-
erated as sums of different pseudorandom sequences. Here is
a very simple cipher according to the design above:

for (j = 0; j < 8; ++j) {
x += rot(y^z^w,9) + k[y>>28];
y += rot(z^w^x,9) + k[z>>28];
z += rot(w^x^y,9) + k[w>>28];
w += rot(x^y^z,9) + k[x>>28]; }

A similar function wrapper could be used around the in-
structions, as described in the iterations section. The number
of rounds has to be large enough that a single input bitflip
has an affect on any output bit, and so differential cryptanal-
ysis would fail. A bitflip in w changes a bit in x, and after the
rotation y has already at least 2 affected bits. Similarly, z has
at least 3 bits changed in the first round, and when w is up-
dated at least 6 of its bits are affected. In the second round
it gets to 36, more than the 32, present in a machine word,
therefore, 2 rounds already mix the bits of w sufficiently. For
the same effect on x one more round is needed, so 3 rounds
perform a good enough mixing. It is consistent to the results
in the counter mode section above. For higher security (less
chance for some exploitable regularity) one should go with
more rounds, probably 16 or even 32. The example above
uses 8 rounds, which is very fast but somewhat risky.

Decryption goes backward in the recursion, the natural
way, after generating the same subkeys:

for (j = 8; j > 0; --j) {
w -= rot(x^y^z,9) + k[x>>28];
z -= rot(w^x^y,9) + k[w>>28];
y -= rot(z^w^x,9) + k[z>>28];
x -= rot(y^z^w,9) + k[y>>28]; }

8.2. Even-Mansour construction

In [21] a block cipher construction was presented, which
makes use of a publicly known permutation F, where it is
easy to compute F(X) and F−1(X) for any given input X ∈
{0; 1}n. The key consists of two n-bit subkeys K1 and K2. The
ciphertext C of the plaintext P is defined by

C = K2 ⊕ F
(
P ⊕ K1

)
. (5)

Decryption is done by solving the above equation for P:

P = K1 ⊕ F−1
(
C ⊕ K2

)
. (6)

This scheme is secure if F is a good mixing function (∼ pseu-
dorandom permutation). Here we can use a function defined
by any of our counter mode pseudorandom recursions.

9. MIXING ANDHASH FUNCTIONS

In a counter mode pseudorandom recursion, the counter
value could be replaced by arbitrary input. The result is a
good mix of the input bits. In the case of hash functions,
we do not want invertibility. The easiest to achieve nonin-
vertibility is to compute mix values of two or more different
blocks of data, and add them together. This provides a com-
pression function. Hash functions can be built from them by
well-known constructions, Merkle-Damgård (see [22, 23]),
Davies-Meyer, Double-Pipe hash construction (see [24, 25])
and their combinations. See also [26].

10. CONCLUSIONS

We presented many small and fast pseudorandom number
generators, which are suitable to most embedded applica-
tions, directly. For cryptography (ciphers, hash function),
they have to be applied via known secure constructions, like
the ones described in Sections 8 and 9. We list all the genera-
tors in Tables 1, 2, and 3 on their modes of operation, sorted
by the size of the used memory. The algorithms are refer-
enced by their number in the corresponding subsection (for
the appropriate number of stages).

A.1. Collision probability

Choose k elements randomly (repetition allowed) from n dif-
ferent ones. The probability of no collision (each element is
chosen only once), for any (n, k) pair:

P(n, k) = n(n− 1) · · · (n− k + 1)
nk

= n!
(n− k)! nk

≈ (n/e)n
√
2πn

((n−k)/e)n−k√2π(n−k) nk =
(

n

n−k
)n−k+1/2

e−k.

(A.1)

(Stirling’s approximation is applied to the factorials.)
To avoid computing huge powers, take the logarithm
of the last expression. The exponential of the result
is P ≈ e(n−k+(1/2))·log(n/(n−k))−k. A 2-term Taylor ex-
pansion log(1 + x) ≈ x − x2/2 with the small x =
k/(n− k), yields −k((2n(k − 1)− 2k2 + 3k)/4(n− k)2) in
the exponent. Keeping only the dominant terms (assuming
n� k� 1) we get the approximation P ≈ e−k2/2n, for the
probability that all items are different. If the exponent is
small (k2 � n), with applying a two-term Taylor expansion
ex ≈ 1 + x the probability of a collision is well approximated
by

1− P ≈ k2

2n
. (A.2)

A.2. Mixed Fibonacci generator

x2i+1 = x2i−1 + x2i,

x2i+2 = x2i ⊕ x2i+1.
(A.3)



L. Hars and G. Petruska 11

Table 1: Feedback mode generators (see Section 5). Experiments show longer cycles than 232, but it is not guaranteed. If a linear sequence is
added (+lin), the cycle length is at least 232.

Stages Generator# Cycles Byte Ops 16-bit Ops Special Ops Invertible Fails

1

(1) 5 1 — Rot Y —

(1)+lin 6 1 — Rot N —

(1)∗ 9 2 — — Y —

(2) 9 3 — — N —

(3) 9 — 1 — Y 1

(4) 7 1 — — Y 7

(4)+lin 8 1 — — N —

(5) 7 2 — — N 9

(5)+lin 8 2 — — N —

2

(1) 4 1 — — N 1 ∼ 2

(2) 4 All — — N 12

(2)+lin 5 All — N —

(3) 3 — — Rot Y —

(4,xFib) 4 All — Rot N —

3

(1) 4 All — — Y —

(1):[5,3] 4 — — — Y —

(2) 4 All — — Y —

(2):[5,3] 4 — — — Y —

(3) 3 All — Rot Y —

(4) 3 All — Rot Y —

(5) 2 — — Rot Y —

(6) 2 All — Rot Y —

(7) 2 All — Rot Y —

4 (1) 2 All — Rot Y —

5
(2) 1 — All Swap Y —

S6.5:(1) 1 All — BSWAP Y —

Table 2: Counter mode generators (see Section 6). The generators have the same cycle lengths as their internal counters: 232·Stages.

Stages Generator# Cycles Byte Ops 16-bit Ops Special Ops Fails Near fails

1

(1) 34 — — — — —

(2) 59 All — — — —

(3) 23 — — Rot — 1

(4) 43 5 5 Rot — 2

2

(1) 25.5 — — — — —

(2) 25.5 — — — — 1

(3) 25.5 — — — — —

(4) 25.5 — — — — —

(5) 31.5 11 — — — 1

(6) · · · (10) 19.5 — — Rot — —

(11) 29 10 10 Rot — 2

4

(1) · · · (3) 18.5 — — — — —

(4) 22.5 All — — — —

(5), (6) 16 — — Rot — —

(7) 18 All — Rot — —

(8) · · · (11) 16 — — Rot — —

(12) . . . 18 All — Rot — —



12 EURASIP Journal on Embedded Systems

Table 3: Hybrid feedback mode generators (see Section 7). These generators all use a 32-bit counter, thus their cycle lengths are at least 232,
but experiments show much larger values.

Stages Generator# Cycles Byte Ops 16-bit Ops Special Ops Fails Near fails

2

(1).. 6 — — — — 1

(2) 8 — — — — —

(3) 8 All 1 — — —

(4) 4 — 1 Rot — —

(5) 4 — 1 Rot — —

(6) 6 All 1 Rot — —

(7) 6 All 1 Rot — —

3
(1), (2) 5 All — — — —

(3), (4) 3 All — Rot — —

(5) 2 — — Rot — 1

4 (1) 2 All — Rot — —

6 (1) 1 All — BSWAP — —

The recursion above defines the mixed Fibonacci generator.
It provides another two-stage alternative to the Fibonacci
generator (xi+1 = xi + xi−1). The LS bits are still too regular,
so it is only good as a component in a compound genera-
tor. When started with small initial values, in each addition
step the operand length increases by one, therefore they reach
soon the full 32-bit length.

With initial values of {1, 2}, it provides 3 · 2m−1 pseu-
dorandom values (3 · 2m−2 long period) for word lengths
m > 4 bits. It can be easily verified up tom = 40, and above.

NOTATIONS

⊕ Exclusive or operation, XOR, the binary
addition without carry. It is the same as
binary polynomial addition, if the
coefficients are represented by the bits of a
machine word.

� Shift left of an unsigned binary word, entering
0′s at the least significant position, discarding
overflow bits. 3� 2 = 12.

� Shift right of an unsigned binary word,
entering 0′s at the most-significant position,
discarding shifted out least-significant bits.
15� 2 = 3.

≪ Rotate to the left. In program code we use
functional notations: rot(word,#bits),
which is the same as (word � #bits) +
(word �(32- #bits)) at 32-bit machine
words.

REFERENCES

[1] G. Marsaglia, “DIEHARD: a battery of tests of randomness,”
1996, http://stat.fsu.edu/pub/diehard/.

[2] D. E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, chapter 3, Addison-Wesley, Read-
ing, Mass, USA, 2nd edition, 1981.

[3] G. Fishmann and L. R. Moore III, “An exhaustive analysis of
multiplicative congruential random number generators with

modulus 231 − 1,” SIAM Journal of Scientific and Statistical
Computing, vol. 7, no. 1, pp. 24–45, 1985.

[4] P. L’Ecuyer, “Efficient and portable combined random number
generators,” Communications of the ACM, vol. 31, no. 6, pp.
742–751, 1988.

[5] F. James, “A review of pseudorandom number generators,” in
Computer Physics Communication, vol. 60, pp. 329–344, North
Holland, Amsterdam, The Netherlands, 1990.

[6] M. Richter, Ein Rauschgenerator zur Gewinnung von quasi-
idealen Zufallszahlen fuer die stochastische Simulation, Ph.D.
thesis, Aachen University of Technology, Aachen, Germany,
1992.

[7] R. C. Tausworthe, “Random numbers generated by linear re-
currence modulo two,” Mathematics of Computation, vol. 19,
no. 90, pp. 201–209, 1965.

[8] S. L. Anderson, “Random number generators on vector super-
computers and other advanced architectures,” SIAM Review,
vol. 32, no. 2, pp. 221–251, 1990.

[9] S. W. Golomb, Shift Register Sequences, Aegean Park Press,
Walnut Creek, Calif, USA, Revised edition, 1982.

[10] G. Marsaglia, “A current view of random number generators,”
inComputer Science and Statistics: The Interface, L. Billard, Ed.,
pp. 3–10, Elsevier Science B.V., (North-Holland), Amsterdam,
The Netherlands, 1985.

[11] M. Mascagni, S. Cuccaro, D. Pryor, and M. Robinson, “A fast,
high quality, reproducible, parallel, lagged-Fibonacci pseu-
dorandom number generator,” Tech. Rep. SRC-TR-94-115,
Supercomputing Research Center, 17100 Science Drive,
Bowie, Md, USA, 1994.

[12] S. K. Park and K. W. Miller, “Random number generators:
good ones are hard to find,” Communications of the ACM,
vol. 31, no. 10, pp. 1192–1201, 1988.

[13] D. Pryor, S. Cuccaro, M. Mascagni, and M. Robinson, “Im-
plementation and usage of a portable and reproducible paral-
lel pseudorandom number generator,” Tech. Rep. SRC-TR-94-
116, Supercomputing Research Center, 17100 Science Drive,
Bowie, Md, USA, 1994.

[14] P. L’Ecuyer, “Maximally equidistributed combined Taus-
worthe generators,” Mathematics of Computation, vol. 65,
no. 213, pp. 203–213, 1996.

[15] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L.
Yin, “The RC6 Block Cipher,” ftp://ftp.rsasecurity.com/pub/
rsalabs/rc6/rc6v11.pdf.

http://stat.fsu.edu/pub/diehard/
ftp://ftp.rsasecurity.com/pub/rsalabs/rc6/rc6v11.pdf
ftp://ftp.rsasecurity.com/pub/rsalabs/rc6/rc6v11.pdf


L. Hars and G. Petruska 13

[16] A. Klimov and A. Shamir, “A new class of invertible map-
pings,” in Proceedings of the 4th Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’02), vol. 2523 of Lec-
ture Notes in Computer Science, pp. 471–484, Redwood Shores,
Calif, USA, August 2002.

[17] A. Biryukov and D. Wagner, “Slide attacks,” in Proceedings
of the 6th International Workshop on Fast Software Encryption
(FSE ’99), L. Knudsen, Ed., vol. 1636 of Lecture Notes In Com-
puter Science, pp. 245–259, Rome, Italy, March 1999.

[18] M. D. Russell, “Tinyness: An Overview of TEA and Related
Ciphers,” http://www-users.cs.york.ac.uk/matthew/TEA/.

[19] D. J. Wheeler and R. M. Needham, “TEA, a tiny encryption
algorithm,” in Proceedings of the 6th International Workshop on
Fast Software Encryption (FSE ’94), B. Preneel, Ed., vol. 1008 of
Lecture Notes in Computer Science, pp. 363–366, Leuven, Bel-
gium, December 1994.

[20] D. J. Wheeler and R. M. Needham, “Correction to XTEA,”
Tech. Rep., Computer Laboratory, University of Cambridge,
Cambridge, UK, October 1998.

[21] S. Even and Y. Mansour, “A construction of a cipher from a
single pseudorandom permutation,” in Advances in Cryptology
- ASIACRYPT ’91, Proceedings of International Conference on
the Theory and Applications of Cryptology, vol. 739 of Lecture
Notes in Computer Science, pp. 210–224, Fujiyoshida, Japan,
November 1991.

[22] I. B. Damgård, “A design principle for hash functions,” in Ad-
vances in Cryptology - CRYPTO ’89, Proceedings of the 9th An-
nual International Cryptology Conference, vol. 435 of Lecture
Notes in Computer Science, pp. 416–427, Santa Barbara, Calif,
USA, August 1989.

[23] R. Merkle, “One-way hash functions and DES,” in Advances
in Cryptology - CRYPTO ’89, Proceedings of the 9th Annual In-
ternational Cryptology Conference, vol. 435 of Lecture Notes in
Computer Science, pp. 428–446, Santa Barbara, Calif, USA, Au-
gust 1989.

[24] Davies-Meyer, “Double-Pipe Hash construction and their
combinations”.

[25] S. Lucks, “Design Principles for Iterated Hash Functions,”
IACR eprint archive, September 2004, http://eprint.iacr.org/
2004/253.pdf.

[26] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, Boca Raton, Fla, USA, 1996.

http://www-users.cs.york.ac.uk/matthew/TEA/
http://eprint.iacr.org/2004/253.pdf
http://eprint.iacr.org/2004/253.pdf

	Introduction
	Computational platforms
	Randomness tests
	Mixing iterations
	Multiple returned numbers
	Cycle length
	Invertible recursion
	Compound generators
	Counter mode
	Hybrid counter mode


	Feedback Mode Pseudorandom Recursions
	3-stage generators
	4 or more stages
	2-stage generators
	1-stage generators
	Special CPU instructions

	Counter mode: mixer recursions and pseudorandom permutations
	1-stage generators
	2-stage generators
	4-stage generators

	Hybrid counter mode
	2-stage generators
	3-stage generators
	4-stage generator
	6-stage generator with byte reversal

	Ciphers
	Four-way feistel network
	Even-Mansour construction

	Mixing and hash functions
	Conclusions
	Collision probability
	Mixed Fibonacci generator

	Notations
	REFERENCES

