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digital FPGA). We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost
in the view of its performance and accuracy restrictions.
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1. INTRODUCTION

Face recognition is easy for humans but extremely difficult
to perform with computer systems reliably in varying en-
vironmental conditions. Traditionally, the development of
computer-based face recognition systems has concentrated
on algorithm design, while the implementation cost in the
hardware level in the form of, for example, speed and power
consumption has been on a lower priority.

Methods such as PCA (principal component analysis)
[1], also called as the eigenface method, and LDA (linear dis-
criminant analysis) [2] aim at a more compact face represen-
tation (feature vector). This is performed by minimizing the
mutual dependencies between the samples producing more
uncorrelated and compact features. A variant of the PCA,
two-dimensional PCA (2DPCA), was presented in [3]. As a
consequence, the length of a face feature vector was increased
with the overall recognition rate. After the computation of
the feature vectors, a classifier, such as an SVM (a support
vector machine) [4], is used to determine a distance mea-
sure between certain faces. This is performed by maximizing
the margin between the different sample classes. In elastic
bunch graph matching (EBGM) [5], the face is represented
as a graph consisting of nodes which are represented by jets
and edges describing the facial features. The jet is a descrip-
tor of a local image region and it can be constructed using
a wavelet approach. Some variants of the above-mentioned
methods are not well suitable for high-speed implementa-
tions with large facial databases [6].

Nonparametric features called local binary patterns
(LBPs) have recently shown high discriminative performance
in many applications, for example, in face recognition [7].
The results in face recognition were achieved in compari-
son to state-of-the-art recognition methods including PCA,
LDA, Bayesian classifier, and EBGM using a standard CSU
(Colorado State University) [8] and FERET (the facial recog-
nition technology) [9] environment.

The term nonparametric refers primarily to the fact that
no assumptions are made on the local probability distribu-
tions of the image pixel intensities. The main advantages of
nonparametric LBP features are invariances against various
transformations, such as lighting bias and rotation. The ad-
vantages of massively parallel processing include high image
processing performance, since the operations are performed
simultaneously for a large number of processing units con-
nected together into an array. We intend to use massively
parallel processing to accelerate the performance of the LBP-
based face recognition, allowing a compact implementation,
including the imaging device (CMOS image sensors). Many
real world applications can be predicted for this embedded
face recognition system, for example, biometric face authen-
tication in security applications.

The cellular nonlinear network (CNN) technology [10]
is a powerful tool for high-speed massively parallel image
processing. The concept of a programmable massively paral-
lel CNN-UM (CNN-universal machine) processor was pro-
posed in [11] where programming capabilities and mem-
ory were to be integrated to the same chip. Several chip
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implementations have been made to show that extremely
high computation power can be included in a single chip [12]
and a QCIF (176 × 144 pixels) resolution binary I/O CNN-
UM [13].

This paper describes a massively parallel face recogni-
tion system. The system consists of three parts, which are
mixed-mode or CNN-UM-based LBP sampling method-
ology [14], a LBP-based massively parallel face recogni-
tion algorithm [15], and a dedicated mixed-mode hard-
ware for the proposed algorithm (partly described in [16]).
The sampling method which we present has the advantage
of a speed increase up to 5 times compared to a mod-
ern standard computer, with on the other hand, some de-
crease in sampling accuracy and flexibility in the LBP sam-
pling neighborhood size. In addition to face recognition,
where the sampling speed is not critical, other high-speed
LBP applications are likely to benefit from this sampling
concept.

The presented algorithm is very competitive against the
previous LBP-based face recognition algorithms in the recog-
nition accuracy, while a trade-off between the face descrip-
tion length and recognition accuracy remains. The algorithm
is flexible in that it can be applied beyond mixed-mode im-
plementations for a massively parallel digital FPGA which
does not introduce a significant decrease in the sampling ac-
curacy. The dedicated mixed-mode hardware implementa-
tion for the proposed face recognition algorithm is presented
in detail in schematic level with simulations considering mis-
match and A/D conversion accuracy restrictions. This infor-
mation can be used for determining whether it is appropri-
ate for certain specific applications to use a fully digital or
a mixed-mode implementation. At this point, the dedicated
hardware is not fabricated, instead its performance is esti-
mated using simulation tools.

2. THE LOCAL BINARY PATTERNMETHODOLOGY

Local binary pattern (LBP) methodology was presented in
[17] as a texture measure. It is based on comparing each
grayscale pixel to its nearby samples and producing unique
binary patterns based on the relative intensities of the pix-
els. The neighborhood is defined to be circular allowing in-
variance against rotation. First versions of the LBP were im-
plemented using an eight pixel nearest neighborhood, but
later circular neighborhoods with an arbitrary radius have
been used. Also neighborhoods with multiple radiuses have
been suggested in [18]. As a texture descriptor, the LBPs have
shown to be very efficient in the view of computational com-
plexity and recognition accuracy (see [18, 19]).

Recently, the LBP methodology has been applied also on
several other computer vision tasks beyond the face recogni-
tion and the texture analysis. The LBP was used in [20] for
modeling the image background and detecting moving ob-
jects. A combined face detection and recognition system was
implemented in [21]. Also, many other computer vision ap-
plications for the LBP have been implemented, such as pose
detection, context-based image retrieval, and industrial pa-
per quality inspection.

r = 1, S = 8

r = 2, S = 8

Local binary pattern: 11010101
Decimal: 213

Figure 1: Local binary patterns with radiuses r of 1 and 2 and sam-
ple number S of 8.

2.1. Deriving the LBP feature vectors

Figure 1 represents the derivation (sampling) of an LBP.
Comparison of the contour pixel intensities with the cen-
ter pixel is started from a certain predetermined angle and
proceeded in a certain direction, for example, clockwise. The
LBP is generated by going through the whole local circle con-
tour. If a circle contour sample is located between two pix-
els, the actual value of the sample is found out by interpo-
lation (e.g., the average). As a result, each original pixel is
replaced by its LBP representation, which is invariant with
respect to monotonic grayscale changes and, in certain cir-
cumstances, rotation [19]. A histogram of length 2S, where S
is the number of local contour samples, is generated to de-
scribe an image or a region in an image. Several methods ex-
ist for histogram comparison, such as the chi-square statistics
employed in [7].

The number of bins in the histogram can be reduced
from 2S using uniform [22] patterns which consist of at most
two circular 0-1 and 1-0 transitions. For example, patterns
11000011 and 00011100 are uniform patterns (the leftmost
and rightmost bits are considered neighbors), and patterns
01010100 and 01101101 are not uniform patterns. Further
reduction on the number of histogram bins can be achieved
by using a discrimination concept called symmetry [23].

The level of symmetry is the minimum between the total
number of zeros |Bi =′ 0′|, | · | being the cardinality of the
set and the total number of ones |Bi =′ 1′| in an LBP (1),
where index i goes through all bit locations

Lsym = min
{∣∣Bi =′ 1′

∣
∣,
∣
∣Bi =′ 0′

∣
∣}. (1)

By using uniform patterns with a high level of symme-
try (e.g., 00111100 and 11110000), the number of histogram
bins can be reduced significantly (for S of 8, the reduction is
88%) from 2S.

In [19] rotation invariant categories for the local binary
patterns were defined. Certain local binary patterns can be
rotated from each other to a minimum value so that each
of the patterns in a certain class produces the same deci-
mal value. For example, patterns 01100000, 00110000, and
00011000 belong to the same rotation invariance class since
the minimum value that can be extracted by shifting all these
patterns is 00000011.
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3. LBP-BASED FACE RECOGNITION

In general, the process of recognizing, whether a specific
input face (e.g., sensed by a camera or integrated sensors)
matches one of the N reference faces stored into the mem-
ory, consists of many separate comparison steps. Two faces,
the input face and the stored reference face, are compared
with each other in each step. A distance measure (e.g., an
integer number) is derived based on the comparison result
according to (2),

dmatch = argmin
d

d
(
faceinput, facestored,1:N

)
. (2)

Depending on the value of the distance measure d, the
probability of the individuals to be matched can be deter-
mined. In the LBP face recognition, the face is usually divided
into regions that can be used with or without weighting to
enhance the spatial accuracy.

3.1. The histogram-basedmethod

In [7] the face recognition was based on dividing face images
into several spatially neighboring (e.g., 7× 7 with 130× 150
8-bit grayscale images) histogram regions, and an LBP his-
togram was constructed to represent each of these regions.
A face descriptor was then a concatenated histogram of all
the regions. A weighted chi-square distance (3) between the
concatenated histograms was used with w denoting weights
and S and M denoting the sample and model distributions,
respectively. Index j is specific to a block and index i to a his-
togram bin,

χ2w(S,M) =
∑

i, j

wj

(
Si, j −Mi, j

)2

Si, j +Mi, j
. (3)

Not all the regions were considered equally important,
but when comparing the feature vectors (concatenated his-
tograms) themore informative face areas such as the eyes and
the mouth were weighted (multiplied) by a factor that was
considered to be optimal for the overall recognition results.
In practice, the weighting factors were determined from the
effect of that specific region on the overall recognition rate
by neglecting all the other regions at a time.

3.2. The occurrencemapmethod

A problem with the histogram approach [7] is related to the
block division, since the borders between the blocks may
lose information in the face comparison. If an LBP is slightly
moved near the border of two blocks, it can move from one
block into another. This causes a relatively large effect on the
histograms of specific blocks. If the number of blocks is large,
the occurrence probability of this block mismatch increases.
More importantly, the spatial relations of the LBPs inside a
block are not preserved by the histogram representation.

To improve the recognition accuracy of the LBP, we
presented the occurrence map method for face recognition
in [15]. Since each pixel can be replaced by a unique pattern

Face 1 Face 2

Dilation

Comparison

Storage M directions

Maximum
selection

Occurrence map Occurrence map

Figure 2: The matching algorithm.

in the LBP methodology, we chose to represent the occur-
rences of a certain pattern in an image (or an image region)
by a binary occurrence map. For each histogram bin (LBP),
a separate binary occurrence map is generated (with the size
of the original image), that represents the locations for which
that specific pattern occurs. The occurrence maps are com-
pared with each other so that the other map is first dilated
into certain directions. With D LBPs there will be an equal
number of occurrence maps for describing their locations.
The representation with D occurrence maps is possible with
a tolerable feature vector length due to the two LBP compres-
sion methods, uniformity and symmetry.

4. FACE RECOGNITIONWITH THE OCCURRENCE
MAPMETHOD

The flow diagram for comparing two faces using the pro-
posed algorithm is shown in Figure 2. The two collections
of occurrence maps, one representing the input face and the
other representing the stored reference face, are given as the
inputs to the matching process. A certain LBP is chosen to be
processed. As a consequence, one occurrence map is chosen
at a time, from both occurrence map collections (for face one
and face two). Also, the image has been divided into blocks
so that a spatially corresponding block is selected from both,
the input face and the stored reference face.

The binary occurrence map of the face number two is
dilated in a predetermined direction (e.g., N, W, S, E, etc.)
a predetermined number of times. The dilated occurrence
map is compared to the corresponding block of the other
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SELECT the input face,

FOR each N stored faces,

FOR all occurrence map pairs (total of D),

FOR each block,

FOR each directionM,

K times Dilations,

ADD (AND (occurrence maps)),

STORE (add),

END FOR,

END FOR,

ADD (block specific sums),

END FOR,

SELECT overall block direction

ADD (block and direction specific sums)

END FOR,

MAX(add)

Algorithm 1

Input face Reference face

Figure 3: Examples of block matching vectors for matching two
faces.

occurrence map (of face number one) by using a (local)
AND operator for the whole array simultaneously. The di-
lation is repeated for M directions. Comparison results rep-
resenting the similarities between the occurrence maps for
specific dilation directions are stored into memory storage.
Block specific occurrence map matching results are summed
together, so that an optimal dilation direction is searched for
each block. This means that the matching direction is spe-
cific for the whole block consisting of D occurrence maps.
The dilation is performed only for either one of the faces un-
der comparison. Following pseudocode illustrates the steps
within each other performed during the comparison algo-
rithm, see Algorithm 4.

Figure 3 represents an example of determining the block
matching vectors, indicating the optimal dilation direction.
Our method allows tolerance against slight changes in rota-
tion and scaling adaptively between the images. In the case
of comparing face images which represent different individ-
uals, the optimal dilation direction is used to match the most
informative regions (e.g., the eyes) into corresponding loca-
tions. In the case of comparing different images taken from

the same individual, the optimal dilation direction is able
also to match the features specific to that individual.

4.1. Simulation environment

The performance of the proposed algorithm was simulated
in Matlab environment. Face images (130 × 150 × 8 bit)
normalized by the CSU (Colorado State University) face
recognition evaluation system were used [8]. In [7] the same
systemwas used since it allows comparison to the other exist-
ing state-of-the-art face recognitionmethods. FERET (the fa-
cial recognition technology) [9] database is used by the CSU
system. The FERET database is divided into five image sets.
The gallery set contains frontal images from 1196 people and
it is compared against four probe sets. The f b probe set con-
tains 1195 face images with alternative expressions. The f c
set contains 194 photos taken in different lightning condi-
tions. The dup1 set is taken later in time and it contains 722
images. The dup2 set contains 234 face images taken at least a
year after the corresponding gallery image. The CSU system
uses the eye coordinates of images for normalization. After
that, the actual recognition process is performed for the dif-
ferent methods.

4.2. Feature vector generation

Sample number S of eight was used in [7] with the radius
of two to obtain the best recognition accuracy. This resulted
in the initial length of the histogram representing a certain
region (block), of 256. This could be reduced to 59 by us-
ing only uniform patterns. By taking the advantage of the
symmetry, the number of bins of a region could further be
reduced to 30 with a negligible effect on the average recogni-
tion rate [23].

A total of 30 binary occurrence maps (of size 130× 150)
can be used to describe the locations of each LBP (or a group
of LBPs) in an image uniquely. In a certain location (array
cell) there is only a single unique LBP at a time. These 30
occurrence maps can therefore be encoded losslessly using
5 bits of accuracy, resulting into the initial length of the face
feature vector of 126× 146× 5 bits. The total length (includ-
ing all face regions) of the histogram representation in [7]
with S of eight was 2301 8-bit bins. Compared to this, the
feature vector generated by using the binary occurrencemaps
and the proposed algorithm will be approximately four times
larger.

One alternative for generating more compact feature vec-
tors would be to subsample the images or the LBP images
into a lower vertical and/or horizontal resolution, since the
feature vector length is reduced quadratically with respect
to the sampling ratio. However, eventually, there will exist
a trade-off between the recognition accuracy and the resolu-
tion.

A suitable amount of consecutive dilation operations was
experimentally found to be three. The images were sized ac-
cording to the CSU normalization procedure as in [7] and 30
histogram bins (or equivalently 30 occurrence maps) were
used. Using more dilations caused the dilated occurrence
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Figure 4: Division into 3× 2 blocks and the respective weights.

map of the face number two to cover an unnecessarily large
portion of the other occurrence map and the occurrence
probability of false matches during the comparison opera-
tion was increased. The normalized face images were divided
in the simulations to a total of six blocks as shown in Figures
3 and 4.

We performed simulations with and without block
weighting. The weighting was applied for each specific block
according to values shown in Figure 4. The optimal compar-
ison results for the blocks were multiplied by the weights
to enhance the effect of face areas which are considered as
the most significant in the view of the recognition (e.g., the
eyes) and decrease the effect of less significant areas on the
final result. The weights chosen are close to that used in [7].
A proper size for the regions was determined from iterative
simulations. The sizes of the blocks that resulted in the best
recognition accuracy were much larger (total of 6) compared
to that of [7] where 49 blocks were used for the same sized
images. Effect of slight displacement in face images to the
weighted recognition accuracy should therefore be less in our
method than in [7]. Furthermore, the number of block di-
lations can be tuned in our algorithm in order to take into
account larger displacements, if needed.

As the amount of dilation directions was increased from
four to eight, also the recognition accuracy was improved,
since the adaptivity of the algorithm was increased. There-
fore, eight directions were used in the implementation of the
algorithm (N, NE, E, SE, etc.).

4.3. Simulation results

The results of the simulations for LBP(S, radius) are shown
in Table 1. They consist of rank one recognition rates, which
means that the exact match of the input image and the ref-
erence individual is required. The LBP-AM (adaptive match-
ing) is used to denote the proposed occurrence map algo-
rithm. The reference results are the same as in [7, 23], since
the same CSU normalization procedure has been used, al-
lowing an objective comparison. The LDA, PCA, EBGM, and
Bayesian recognition rates are the standard implementations
of the CSU system.

Table 1 shows that the proposed algorithm outperforms
the previous LBP-based algorithms, [7, 23] in the recogni-
tion accuracy and also the other standard CSU implemen-

Table 1: FERET results with the occurrence map algorithm.

Method fb fc dup1 dup2 Average

LBP-AM(8,2)
97% 86% 71% 67% 80%

weighted

LBP(8,2) [7]
97% 79% 66% 64% 76%

weighted

LBP(12,2) [23]
95% 85% 64% 66% 77%

weighted

LBP-AM(8,2)
95% 85% 69% 63% 78%

nonweighted

LBP(8,2) [7]
93% 51% 61% 50% 64%

nonweighted

PCA MahCosine 85% 65% 44% 22% 54%

Bayesian MAP 82% 37% 52% 32% 51%

EBGM optimal 90% 42% 46% 24% 51%

LDA ldasoft 73% 47% 45% 18% 46%

tations of PCA, LDA, Bayesian MAP, and EBGM for each
FERET set. The increase in recognition rate with weighting
is approximately 4% compared to [7] and 3% compared to
[23]. The improvement in the recognition accuracy without
weighting is as much as 14.0% compared to [7]. If the al-
gorithm is to be implemented as an embedded FPGA (digi-
tal sampling applied) the recognition rates are not expected
to decrease, since mismatch is not present. However, analog
sampling exposes the recognition rates for a slight decrease
as demonstrated in the later sections.

5. HARDWARE ALGORITHM CODESIGN

For the LBP extraction and face recognition, two different
mixed-mode massively parallel hardware architectures are
considered. First, a standard CNN-UM can be used which
has the advantage of being a flexible general-purpose system
allowing larger manufacturing volumes with a lower cost.
On the other hand, the performance of the face recogni-
tion system in the terms of silicon area, power consumption
and speed can be optimized by a dedicated massively paral-
lel hardware implementation. The dedicated implementation
requires simultaneous hardware algorithm codesign. Both
implementationsmentioned above consist of an array of pro-
cessing cells which operate in mixed mode, that is, carrying
out computations based on both digital and analog process-
ings. Some issues in mixed-mode processing have to be care-
fully taken into account, to ensure that the system functions
properly.

5.1. Internal accuracy

Mixed-mode processing is well suitable, for example, for in-
tegrated near-sensor processing, where the sensed phenom-
ena are continuously valued. Then there is no need for time-
consuming A/D conversion in the data acquisition phase.
In practice, the limited internal accuracy of semiconduc-
tor devices affects the results of continuously valued array
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operations. A main source of internal inaccuracy is device
mismatch, which affects even basic current thresholding and
multiplication operations. The effect of mismatch can be re-
duced, roughly speaking, by increasing the size of the devices.
Therefore, there exists a design trade-off between the pro-
cessing accuracy and the array resolution, since the number
of cells in an array depends on the size of a single cell (as-
suming a fixed array size). In a dedicated massively parallel
implementation, mismatch is used as a design constraint. It
should be small enough to ensure correct (enough) opera-
tion, but on the other hand, oversizing the cells should be
avoided to achieve a proper array resolution.

5.2. Read-out of results

Massively parallel mixed-mode systems can gain extremely
high computation power, but in addition to the internal ac-
curacy, the read-out of results is usually a performance bot-
tleneck. One alternative is to use embedded A/D convert-
ers inside each array cell, but this has the disadvantage of
increasing the area of the cells. Another approach is to use a
limited number of A/D converters so that the read-out from
the cells is performed sequentially. On the other hand, this
decreases the overall computation speed. In certain applica-
tions, we are not interested in the exact results among each
cell, but, for example, the sum of the results among a cer-
tain subset of cells. In this case it is possible to use a read-
out scheme such as proposed in [24], where a unit current
switch is placed into each cell and these are wired together
into a common output. The output current is then A/D con-
verted. This functionality is not embedded into a traditional
CNN-UM, since it requires, for example, extra wiring, but
can relatively easily be implemented on a dedicated massively
parallel array.

5.3. Architectural issues

The architecture of the massively parallel platform assesses
strict limitations on the types of algorithms that can be rea-
sonably mapped on it. Most importantly, since the array con-
sists of identical cells connected usually only on each other
in the local 8 neighborhood (e.g., in the case of CNN-UM),
only operations that can be defined by a template describing
this kind of neighborhood can be executed. In image pro-
cessing, most of the operations needed can be mapped into
a local form. It would be helpful in many applications, if the
size of the neighborhood could be increased. However, this
causes a need for excessive wiring in the layout of a massively
parallel array, and is therefore difficult. Also, a large num-
ber of inputs into each cell would increase the cell size and
might affect the internal accuracy of the computations. The
LBP methodology is relatively well suited on massively par-
allel processing, since in most applications, neighborhoods
with eight to twelve neighbor connections are enough for op-
timal performance [7].

Sizes of CNN arrays currently in use are sufficient for a
large variety of image processing applications, for example,
face recognition (a common size of the arrays is becoming to

be at least 128×128). If resolution is limited or larger images
need to be processed, it is possible to read image data one or a
few blocks at a time and process these blocks separately with
the CNN or a dedicated array processor. The speed and the
complexity of the implemented algorithm, however, are de-
pendent on howmany processing cells are available assuming
a certain input frame resolution.

6. CNN-UM TEMPLATE ALGORITHMS FOR
LBP PROCESSING

In the following, we show either how the CNN-UM can be
used only for LBP sampling with a large variety of different
potential applications or how it can be used for face recog-
nition with either the histogramming or with the occurrence
map method. A sample number of eight is a practical maxi-
mum for radius one LBP transform. Consequently, eight log-
ical memories (LLMs) must be allocated for LBPs, since a
standard CNN operates in 8 nearest neighborhood.

6.1. Obtaining the local binary pattern

In order to extract the local binary patterns, the input im-
age is written to cell input and the state is initialized to zero.
S threshold operations are used to generate the S-bit local bi-
nary pattern (one bit per direction) and the result of each
comparison is stored in an LLM (local logic memory). As a
result, LLMs of individual cells contain the LBP pattern in
that specific location. The LBP process of comparing sample
points one by one to the center point can be modeled with
[10],

ẋi j = −xi j + a · ykl +
∑

kl∈Nr

Bi j,klukl, (4)

where a is the center element of the A-template. The cell in-
puts are denoted with ukl which are multiplied and summed
with the B-template. The xi j and ẋi j are the cell state and the
rate of change of the cell state, respectively. The center ele-
ment equals unity and all other elements of A are zero. The
output nonlinearity here is the threshold function

yi j = ϕ
(
xi j
) =

∣
∣xi j + 1

∣
∣− ∣∣xi j − 1

∣
∣

2
. (5)

The comparison is applied circularly for S different direc-
tions.

The bias I is zero for all the following comparison tem-
plates. The templates in Table 2 are constructed according to
(6) and are used to implement the LBP transform with the
radius of one. With the CNN-UM, the LBP radius can be one
(or in some cases two) covering most of the practical pur-
poses. Increasing the sample number increases the amount
of comparison templates so that the number of comparison
template operations is equal to the number of samples S, for
one input frame. For example, using a neighborhood of one
with a sample number of four, only templates T2, T4, T6, and
T8 are used with a certain input image. Interpolation between
two adjacent pixels is shown in the template of (7) with the
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Table 2: Threshold templates for LBP with r of one and S of eight.

Template b0 b1 b2 b3 b4 b5 b6 b7 b8

T1 1 −1 0 0 0 0 0 0 0

T2 1 0 −1 0 0 0 0 0 0

T3 1 0 0 −1 0 0 0 0 0

T4 1 0 0 0 −1 0 0 0 0

T5 1 0 0 0 0 −1 0 0 0

T6 1 0 0 0 0 0 −1 0 0

T7 1 0 0 0 0 0 0 −1 0

T8 1 0 0 0 0 0 0 0 −1

radius of two and sample point direction of threshold tem-
plate T3. In this equation, the average of the two pixels with
weights of a half is thresholded against the center pixel. Also,
a larger area can be used for the interpolating neighborhood
in a similar manner. If the radius is two, the algorithm works
exactly the same way, with a radius of one, except that the
center pixel is now thresholded against a circle with a larger
radius,

Br=1 =

⎡

⎢
⎢
⎣

b1 b2 b3
b8 b0 b4
b7 b6 b5

⎤

⎥
⎥
⎦ , (6)

Br=2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 −1/2 0

0 0 0 0 −1/2
0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

6.2. LBP occurrencemap generation
and histogramming

The LBP occurrence maps are directly extracted from the
results of the thresholding operations. The operations such
as dilation and the AND operation are readily available in
the CNN-UM.

Pattern matching can be used to construct a histogram of
the LBP patterns of an image or a region of an image. One
option of creating the histogram of LBPs is to match them
using the local logic unit (LLU) of a CNN-UM. In the be-
ginning of the comparison operation, LBPs are stored in S
local memories. A logic OR operation is applied bit-serially
for the contents of those LLMs that are required to be LO.
The result of this is inverted and written into a vacant LLM.
Furthermore, a logic AND operation is applied bit-serially
for the result of the inversion and the contents of those LLMs
that are required to be HI. The result is HI when the LBP
matches the required pattern. This operation requires a rel-
atively large number of bit-serial logic operations for each
bin of the histogram. For example, if S is 8, and the num-
ber of ones in the desired pattern is 3, we need 4 LLU OR-
operations (for the bits that are to be zeros), one LLU inver-
sion operation (for the result), and 3 LLU AND-operations
(for the bits that are to be ones).

The sum of the ones (one indicating an LBP match) in
the binary occurrence maps that result after the subsequent
pattern matchings equals the amplitude of the histogram bin
of a certain local binary pattern. If the input image fed to
the CNN contains only a certain block or blocks of the ac-
tual input image, the pattern matching has to be performed
for each block or a subset of blocks separately. Then, the
decrease in parallelism increases the overall execution time.
Assuming that the input frame is processed by P blocks at
a time and the image is divided into total of R blocks, the
amount of pattern matching and comparison operations is
multiplied by R/P. The ratio of R and P can be decided
based on the input resolution and speed requirements of the
application.

6.3. Selecting symmetrical and uniform patterns

The selection of uniform and symmetrical patterns can be
carried out by applying the pattern matching only for these
specific patterns. A category of LBPs can be unified into a
single occurrence map by using a cell specific AND operator
applied for the whole array simultaneously. The patterns that
are neither uniform nor symmetrical can be concatenated
into the same occurrence map by a similar approach, using
“do not care” conditions in patternmatching, or by summing
the A/D converted results outside the array for these spe-
cific LBPs. A similar approach can be used for the dedicated
mixed-mode hardware implementation for unifying the oc-
currence maps, by using AND operator implemented in the
neighborhood logic unit.

6.4. Amodified CNN-UM cell for LBP sampling

A slightly modified CNN cell can perform the patternmatch-
ing using a CNN pattern matching template [25]. Figure 5
shows the modified part of a CNN cell with S = 8. The
first modification is that S LLMs need to be accessible simul-
taneously so that they can act as multiplier inputs instead
of cell input. Whether the inputs to the multipliers come
from the memories or from the cell input is programmable
via switches. Moreover, the outputs of the multipliers can
be programed to be redirected either to neighbors (normal
CNN operation) or to the state node of the cell itself. In other
words, the multipliers normally used for neighborhood op-
erations are utilized in pattern matching operations.

A 3× 3 pattern matching template for second-order uni-
form LBP of 00111000 is shown in the template of (8). The B
template consists of the pattern to be matched so that a mi-
nus one corresponds to a white pixel, a plus one to a black
pixel, and a zero to a “do not care” condition. The bias z is
defined as 0.5-N where N is the number of pixels required to
be either black or white,

A =

⎡

⎢
⎢
⎣

0 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

−1 −1 −1
1 0 −1
1 1 −1

⎤

⎥
⎥
⎦ , z = −7.5.

(8)
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Figure 5: CNN cell modifications.

6.5. Effect ofmismatch on histogram-based
face recognition

Determination of the LBP of a pixel requires a comparison
of the pixel value to its neighbors. Comparison can be per-
formed easily in the analog domain by subtracting two cur-
rents from each other. However, since the comparison is per-
formed in the analog domain, the mismatch of the analog
devices corrupts the result. We chose to simulate the effect of
mismatch in the face recognition with histogramming.

We carried out simulations as to how much analog mis-
match is tolerated in the comparison operation. The stan-
dard FERET database [9] of different sets of facial images
normalized by the CSU system [8] was used. The simulations
were carried out so that prior to determining the feature vec-
tor of an image, normally distributed noise generated with
Matlab was added to the image so that a noisy pixel value
becomes

Pi, j;noisy = Pi, j + ni, j · %
100

· 255, (9)

where ni, j is an element of a zero mean, standard devi-
ation one, normally distributed noise matrix, and 255 is
the maximum pixel intensity. Table 3 shows the results of
the face recognition simulation with different percentages of
mismatch. A radius of two withM = 8 was used. The results
show that themismatch affects mostly those images that were
taken in different illumination conditions. The results shown
in Table 3 were simulated so that all images, both the refer-
ence images and the probe images in fb, fc, dup1, and dup2,
were corrupted by noise. If noise was only added to the probe
images, the degradation in the average recognition accuracy
was about half of that shown in Table 3.

6.6. Effect of quantization in analog read-out

We also examined the effect of quantization in the analog
read-out on the recognition accuracy in Table 4. We chose
to use feature extraction without weighting and used the

Table 3: Mismatch effects for histogramming with weighting.

Mismatch % fb fc dup1 dup2 Average

0 97% 80% 66% 64% 77%

1% 96% 73% 66% 65% 75%

2% 95% 69% 64% 58% 71%

3% 94% 63% 62% 57% 69%

5% 92% 55% 57% 49% 63%

Table 4: FERET histogram-based face recognition results with
quantization.

Method fb fc dup1 dup2 Average

LBP optimal
93% 52% 61% 49% 63.8%nonweighted

r = 2,M = 8

LBP 6 bits
93% 49% 61% 50% 63.3%nonweighted

r = 2,M = 8

LBP 5 bits
92% 47% 56% 47% 60.5%nonweighted

r = 2,M = 8

histogram method [7]. With the block size that we used,
the maximum dynamic range was between zero and 378
(21 ∗ 18). With the occurrence map algorithm, the block
size is larger, but also the magnitude of the sum of ones af-
ter the comparison phase is much smaller due to the coding
into occurrence maps. We noticed that the bin amplitudes
of more than 255 corresponding to eight-bit accuracy had
no effect on the recognition accuracy. The upper limit of the
dynamic range was then divided by a scaling factor, for ex-
ample, four when six-bit accuracy was used. In practice the
recognition rate did not decrease even with seven-bit accu-
racy.With six-bit accuracy, the average recognition result was
decreased only by 0.5%. Six- or seven-bit accuracy can rather
easily be reached by the ADC. With five-bit accuracy, the ef-
fect on recognition rate was larger resulting in a total decrease
of 3.3%. This means that summing up the currents from all
cells in a block and converting with a 7-bit A/D converted
give practically an unaltered performance.

7. A DEDICATED LBP HARDWARE

A dedicated hardware architecture for the adaptive occur-
rence map matching algorithm consists of external mem-
ory, a massively parallel processor array (including integrated
current-mode imaging sensors), a control unit, and a mem-
ory interface which includes a cache. The organization of
these units is illustrated in Figure 6.

The size of the external memory depends on the number
of stored face feature vectors. With reference face database
of 100 images, the size of the external memory becomes ap-
proximately 9.76Mbits or 1.22Mbytes (100 images ∗ 150 ∗
130 pixels∗ 5 bit/pixel). The memory interface performs the
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Figure 6: Architecture of the recognition system.

decoding of LBP images to binary occurrence maps which
are used by the array processor. We propose using a cache
of one feature vector (reference face) which results the size
of approximately 97.5 kbits or 12.2 kbytes. The cache is in-
tegrated on the same chip with the array. The array pro-
cessor itself performs only binary operations, in addition
to the LBP feature extraction (sampling). The control unit
is integrated on the same chip and sends instructions and
receives data to/from the array processor and to/from the
memory interface. The control unit also processes the (A/D
converted) results from the array.

7.1. A dedicated LBP processing cell

The dedicated LBP processing cell in Figure 7 can be used
only for LBP sampling and possibly histogram generation,
or it can be used for the dedicated occurrence map algo-
rithm. The parts of the LBP cell which are targeted for LBP
sampling are highlighted with gray. The full LBP cell for the
face matching algorithm based on the occurrence maps in-
cludes CMOS image sensor, instruction code/decode unit,
neighborhood comparison unit, LBP matching unit, mem-
ory decode/code unit, SRAM memory, and neighborhood
logic unit. The neighborhood comparison unit, image sen-
sor, and the LBP matching unit form the architecture of the
general dedicated LBP processing hardware. Therefore, they
are discussed in more detail in the later sections.

The neighborhood comparison unit performs the LBP
sampling with a radius of two using eight samples (four of
which are interpolated from their neighbors’ values). The
functionality and implementation of this unit are explained
later in this section. The matching unit performs compar-
ison of an LBP stored into the cell with a certain specific

Image sensor
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Neighborhood logic
unit1-bit
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Neighborhood comparison
unit

LBP matching unit

SRAM Unit
current
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code/decode

Block interface

Figure 7: LBP processing cell for the adaptive matching algorithm.

globally selected 8-bit LBP. If an exact match is recorded,
the matching unit activates the current source specific to that
cell, which is routed to the block interface. The block denotes
a certain subset of LBP cells for which the weighting and A/D
conversion are applied later. The memory code/decode unit
performs coding of the LBP occurrence maps into a binary
weighted form. For example, the binary weighted represen-
tation for a maximum of 32 occurrence maps consists of 5
bits which are needed for the local memories to store the in-
put face. For each cell, the occurrence map indicates whether
a specific LBP occurs in that cell or not. This unit also de-
codes the occurrence maps from the 5-bit SRAM memory
into a total of 30 occurrence maps. The neighborhood logic
unit is used for the directional dilation operation for specific
directions. A 1-bit SRAM is included into the neighborhood
logic unit for storing one occurrence map of the other face
image under comparison. This occurrence map is read from
the on-chip memory interface, as the full LBP image stored
into the 5-bit SRAM (the input image) can be read using the
on-chip sensors.

7.2. Implementation of the neighborhood
comparison unit

Figure 8 shows the neighborhood comparison unit. The cur-
rent I cell feeds the input current of the pixel. It could be
obtained, for example, from an in-cell image sensor or a D/A
converter. TransistorsM1–M6 are analog transistors and the
rest of the transistors shown are minimum-sized switches.
The neighborhood comparison unit has 12 connections to
neighbors on the circle of radius 2. The neighbors are cou-
pled so that when, for example, control signalN is active, the
unit receives input current from a cell two rows above and
conveys its current to the cell two rows below (see the in-
dexes in the figure). Notice that the current of transistorM4
is mirrored to transistors M5 and M6 at a ratio of 0.5. This
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Figure 8: Neighborhood comparison unit.

is because when processing directions NE, NW, SE, and SW
the cell should receive inputs from two different neighbors,
the currents of which are interpolated. An inverter serves as a
comparator and the comparison result is available at CMPR.

7.3. Implementation of the LBPmatching unit

Figure 9 shows the proposed circuit for matching LBPs
within the pixels in order to generate the occurrence map
representation. The comparator output CMPR is fed to eight
SRAMs. All these are read out simultaneously and they pro-
vide either an inverted or noninverted output. After the
comparison circuit has written the LBP into the SRAMs,
the matching using the programmable multi-input NOR is
started. Notice that the SRAM and the NOR share eight con-
trol signals (N, NE, E, SE, S, SW,W, andNW)with the neigh-
borhood comparison unit. These control signals can be used
to program which pull-down paths of the NOR are possible.
The weak pull-up transistor is turned on with BIAS during
evaluation.

The matching is a two-phase process with the proposed
circuit. First, the SRAMs provide the NOR with the inverted
LBP. The control bits associated with LBP bits that are re-
quired to be HI are taken HI. In other words, only selected
pull-down paths are enabled. Now, if all inverted LBP bits
that are connected to activated pull-down paths in the NOR
are LO, the result is HI. This is written to an SRAM in the out-
put unit through an inverter. Second, the noninverted LBPs
are fed to the NOR, the control bits enable the pull-down
paths associated with those LBP bits that are required to be
LO and the result is fed to the lower NOR input in the output

unit. If the LBP matches the pattern under search, both in-
puts of the NOR in the output unit are zero and the gate
voltage of analog output transistorM OUT is HI.

7.4. Optimizing the performance of the LBP cell

In order to get an idea of how large the transistors M1–M6
of the neighborhood comparison unit should be, simulations
were performed. The simulations were carried out with Eldo
level 53 parameters of a 0.13 um CMOS process. Ideally, the
standard deviation of the difference current would be zero.
Figure 10 shows the standard deviation of the difference cur-
rent divided by 2.5μA (in percents) for two different combi-
nations of the sizes of the analog transistors. The upper curve
was simulated with the transistorM4 and the combination of
M5 andM6 sized to 0.75/6, while the PMOS transistors were
sized to 1/4 (sizes are in micrometers). The corresponding
transistor sizes for the lower curve were 1/8 and 1.5/6, re-
spectively. The standard deviations were determined from 50
Monte Carlo iterations. If the intensity of the pixel would be
represented with currents ranging from zero to 2.5μA, the
standard deviation would be around one percent with the
larger transistors (see Table 3).

8. LBP PROCESSING PERFORMANCE

Embedding the LBP sampling with the recognition system al-
lows a compact integrated solution for face recognition, with
either a CNN-UM or a dedicated massively parallel hard-
ware. The sampling of LBPs is relatively fast even without a
massively parallel hardware [7] and, in a practical view, the
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accuracy improvements in the occurrence map-based face
matching are more significant than the improvement in the
sampling phase, which however, could be taken as an advan-
tage in other applications.

8.1. Performance of the CNN-UMhistogramming

Using the template analyzer [26] the estimated execution
time for each of the comparison templates is 2.00τ and 2.88τ
for pattern matching templates (τ being the CNN time con-
stant). Excluding the memory delays and template program-

ming delays, the total time used by the threshold templates is
16τ (assuming a sample number of eight). If all the 256 pat-
terns are to be extracted, the total time for pattern matching
operations will become 737.3τ (2.88 ∗ 256τ) assuming that
all the blocks are processed in a single frame. However, it was
mentioned that it is possible to use a “do not care” condition
to reduce the amount of pattern matching operations when,
for example, only uniform and symmetrical patterns are used
which will further reduce this time.

If the input image is read directly from in-cell sensors,
early A/D conversion can be avoided. Assuming that there is
a total of 30 symmetrical uniform patterns corresponding to
bins and that the image is divided into blocks as proposed,
the total amount of successive A/D conversions will be 30 if
it is assumed that there is a peripheral A/D converter for each
block. The D/A conversion is implemented automatically by
summing of binary unit currents from the cells. The integra-
tion of the A/D converters will not cause problems since we
have shown that the accuracy requirements for the converters
are not severe (see Table 4). If the time for a single A/D con-
version is 0.5μs, the total time for conversion will be 15 μs.

By using τ of 1 μs, the total time for LBP sampling be-
comes 768.3μs (1302 faces/s). As a reference, for the same
images that we used in the simulations, the LBP feature
vector extraction time for one face image for AMD Athlon
1800MHz was 3.49ms (285 faces/s) with weighting (blocks
outside face are ignored) and 4.14ms (240 faces/s) without
weighting [7].

8.2. Performance of the dedicated
mixed-mode algorithm

Using the read-out scheme proposed in [24], there will be a
need for executing D ∗ M A/D conversions (in parallel for
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each block) at each comparison where D is the number of
occurrence maps and M is the number of search directions.
Let us assume the elapsed time for the parallel A/D conver-
sions being approximately 0.5microseond. With a reference
image database of 100 images, this results the elapsed time of
12ms for comparing a single input image with all the stored
reference images (assuming D of 30 and M of 8). The total
comparison time for one stored reference image would be
about 120 μs. This could be further improved by searching
the block specific optimal dilation direction only for certain
patterns and calculating the comparison result then for the
best direction estimate. In [27] it was demonstrated that with
the binary programmable CNN, the measured propagation
time (for dilation) was short, only 16.3 ns with 3.3μA being
unit current and 0.7V being operating voltage.

When estimating the overall performance of the system,
the external (off-chip) memory speed and bandwidth need
to be considered. We propose using 40 data pins from the
chip to interface with the memory. The on-chip memory in-
terface encodes this data to a total of 130 lines which are
routed to the cell array. The memory structure of the cell ar-
ray consists of row and column decoders, which are used to
select one row at a time from the 130 × 150 array for writ-
ing. If the external memory would operate with a 7MHz off-
chip clock, the total bandwidth through the 40 pins becomes
280Mbits/s. With a 100 image, database, this would result
0.035 s (29 fps) elapsed when scanning through the whole
memory. For a single image the reading time from the off-
chip memory would become about 348 μs. Since a cache is
used, the occurrence map matching can be performed si-
multaneously with the memory read operations. The on-
chip clock of 15MHz is enough for synchronizing the 130
lines routed to a certain array row through the column de-
coder. This would result an elapsed time of 0.03 s for pro-
cessing through the whole external memory of 100 faces. For
a single face the reading time from cache would be about
300 μs. As a conclusion, the system could operate beyond
25 recognized faces per second with a 100 image reference
database. If the database was larger, say 1000 faces, it can be
estimated that the time used for recognizing a face would be
about 0.35 s.

9. DISCUSSION

Power supply, clock generation, and user interface as well as
possible camera and camera interface are needed for the ded-
icated face recognition system to function. Integrating the
image sensors will reduce power consumption, since direct
A/D conversion is not needed in the imager. Furthermore,
the read-out of face matching results can be performed in
parallel with a dedicated hardware for each block with small
unit currents, which should be more efficient compared to,
for example, an FPGA implementation. Whether an FPGA,
a CNN-UM, or a dedicated hardware gives the best perfor-
mance depends on the targeted application and it depends on
the final application whether the improvement on the recog-
nition accuracy is worth implementing a special hardware, or
whether to use a general purpose computer hardware with

standard LBP histogramming. For applying the occurrence
map algorithm, a massively parallel hardware seems the only
practical alternative.

The occurrence map representation of LBPs with the ca-
pability for adaptive block search could also be benefited
in other applications beyond face recognition. In LBP-based
motion analysis [20], the occurrence maps would be an ele-
gant way to search, for example, motion specific to a certain
direction from the image scene.

In the following, we address two different scenarios
where the system could be used as such or with some external
hardware and software. First, controlling of people transpass-
ing through a security check. In this scenario the recognition
time for one face could be while waiting, say seconds, and
the database of stored faces would be larger, say 1000 images.
A separate face detection and normalization system would
not necessarily be required. In another scenario, an individ-
ual among a mass of people would be searched without nec-
essarily informing the individual of the surveillance. Then a
separate face detection and normalization system would be
needed.

10. CONCLUSIONS

This paper described a framework for implementing a mas-
sively parallel face recognition system. The system consists
of three parts, which are mixed-mode or CNN-UM-based
LBP sampling method, a massively parallel face recognition
algorithm, and a dedicated mixed-mode hardware for the
proposed algorithm. The LBP sampling process of CNN-UM
or a dedicated hardware utilizing current-mode operation
can be generalized also for other high-speed LBP applications
beyond the face recognition. An example of a potential appli-
cation where the sampling speed would be important is in-
dustrial paper quality inspection using computer vision and
local binary patterns [28].

The adaptive face matching algorithm could also be
implemented as an embedded FPGA implementation. The
implementation of the neighborhood logic unit, memory
code/decode unit, and instruction code/decode unit, which
has been so far considered only in the architectural level,
would then be relatively straightforward since digital logic
design could be used. Also, the mismatch would not cause
any significant decrease to the recognition accuracy if the
LBP sampling was performed digitally.

The dedicated massively parallel face recognition al-
gorithm was shown to perform accurate face recognition,
with a maximum increase in the recognition accuracy with
weighting of 4% compared to [7] and 3% compared to
[23]. The improvement in the recognition accuracy with-
out weighting was as much as 14.0% compared to [7].
Furthermore, the face recognition algorithm is adaptively
tolerant to slight changes in face orientation and scaling.
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