Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 54173, 14 pages
doi:10.1155/2007/54173

Research Article

Application-Specific Instruction Set Processor Implementation

of List Sphere Detector

Juho Antikainen,’ Perttu Salmela,? Olli Silvén," Markku Juntti,’ Jarmo Takala,? and Markus Myllyl&’

! Information Processing Laboratory and Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland
2 Institute of Digital and Computer Systems, Tampere University of Technology, 33101 Tampere, Finland

Received 8 June 2007; Revised 18 October 2007; Accepted 12 November 2007
Recommended by Marco Platzner

Multiple-input multiple-output (MIMO) technology enables higher transmission capacity without additional frequency spectrum
and is becoming a part of many wireless system standards. Sphere detection has been introduced in MIMO systems to achieve
maximum likelihood (ML) or near-ML estimation with reduced complexity. This paper reviews related work on sphere detector
implementations and presents an application-specific instruction set processor (ASIP) implementation of K-best list sphere detec-
tor (LSD) using transport triggered architecture (TTA). The implementation is based on using memory and heap data structure
for symbol vector sorting. The design space is explored by presenting several variations of the implementation and comparing
them with each other in terms of their latencies and hardware complexities. An early proposal for a parallelized architecture with
a decoding throughput of approximately 5.3 Mbps is presented

Copyright © 2007 Juho Antikainen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
based on multiple transmit and receive antennas will be ap-
plied in several wireless communication system standards to
increase the spectral efficiency and the data rates. Timely ex-
amples include the evolving third generation (3G) cellular
systems known as 3G long term evolution (LTE) and world-
wide interoperability for microwave access (WiMAX) sys-
tem. Multiple antennas can in general be utilized to imple-
ment either spatial transmit or receive diversity, beamform-
ing in smart antennas or spatial multiplexing (SM) some-
times called layering of multiple data streams. This poses
remarkable challenges for the MIMO detector and receiver
baseband design.

The theoretical capacity potential of MIMO communi-
cations has been analyzed in [1-3]. A practical SM scheme
called Bell Laboratories Layered Space-Time (BLAST) archi-
tecture [3, 4] has been proposed and shown to be able to real-
ize the theoretically predicted capacity gains at least to some
extent. For a more complete overview on the rich literature
on MIMO communications, see, for example, [5-7] and ref-
erences therein.

Transmission of independent data streams from different
antennas in SM-MIMO systems usually causes spatial multi-

plexing interference (SMI) or interantenna interference. This
calls for sophisticated receiver designs to cope with the in-
terference. The optimal detector would be the maximum a
posteriori (MAP) symbol detector providing soft outputs or
log-likelihood ratio (LLR) values to the forward error control
(FEC) decoder. Since the computational complexity of both
MAP and ML sequence detectors depends exponentially on
the number of spatial channels, several suboptimal solutions
have been proposed and studied.

Linear minimum mean square error (LMMSE) or zero
forcing (ZF) detection principles can be straightforwardly
applied in MIMO detection [8]. However, the linear de-
tectors can suffer a significant performance loss in fading
channels, in particular with spatial correlation between the
antenna elements [9]. Ordered serial interference canceller
(OSIC) was proposed already in the original papers consid-
ering the BLAST architecture [3, 4, 10].

An ML detector approximation based on the sphere de-
tector [11] for MIMO communications has been introduced
in [12]. Another research line has considered the concept
of lattice reduction to the MIMO detector problems [13—
16]. Other important detector techniques include the list
sphere detector (LSD) [17], iterative tree search detection
schemes [18] and layered structure maximum likelihood de-
tection scheme [19]. The sphere detectors are particularly

EURASIP Journal on Embedded Systems

00000000
O®@000000
O000000O0
O000000O0
O000000O0
00000000
00000000
Oo000000O0

O O O 0O O O O O

O 0O O 0O O 0 O O
O 0O O 0O O 0O O O
O O O O 0O 0 o0 o

FIGURE 1: The basic idea of sphere detection.

interesting, since their expected and worst case complexi-
ties have been found to be only polynomial and often cubic
in practically relevant signal-to-noise ratio (SNR) regimes
[20, 21]. Their practical feasibility is further supported re-
cently by practical implementations reported in the literature
[22-26]. Therefore, we focus on the LSD algorithms in our
treatment herein.

The LSD algorithm has several variants, see, for exam-
ple, [26] for a more complete discussion. In practical imple-
mentations, so called K-best list sphere detector [27] (K-best
LSD) has received significant attention. It belongs to the gen-
eral class of breadth-first trellis search algorithms [28] and is
actually a variant of the well known M algorithm [29, 30]. It
has numerous good implementation properties, like constant
throughput and pre-determined complexity.

Application-specific integrated circuits (ASICs) have
been conventionally used for tasks that demand high com-
putational resources and low power consumption. However,
their design can be very laborious and software-based algo-
rithm modifications are often very limited. General purpose
digital signal processor (DSP) solutions can typically provide
the flexibility, but do not often provide enough computation
power to satisfy the stringent requirements of high speed real
time communications with terminal level power consump-
tion constraints. Application-specific instruction set proces-
sor (ASIP) solutions can provide a possibility to reduce de-
sign and production costs and still enable meeting the high
performance requirements of MIMO receiver algorithms.

In this paper, we design an application-specific instruc-
tion set processor for K-best list sphere detector using the
TTA [31-33] computation paradigm. The work is based on
our previous conference publications [34, 35], compared to
which this paper presents a wider and more detailed pre-
sentation and includes a review of related work. Inspired
by the evolving 3G cellular systems [36], we use a 4 X 4
MIMO system with 16-quadrature amplitude modulation
(16-QAM) as our base line design target. We operate directly
on the complex-valued constellation points. As the design
work is done with real-life implementation in mind, fixed
point arithmetic is used. The goal is to try to achieve low en-
ergy consumption, so using memory is preferred extensively
over registers. The design space is investigated by comparing
the latency and complexity of the implementation to several
proposed variations of it.

The paper begins by defining the MIMO communica-
tion problem and the appropriate receiver algorithms in
Section 2. Related work on sphere detector implementa-
tions is discussed in Section 3. Section 4 describes the ASIP
LSD implementation in detail along with several variations

that could be used for improving the decoding throughput.
The latency and hardware complexity of the implementa-
tion and different alternatives are estimated and compared
in Section 5, and conclusions are drawn in Section 6.

2. MIMO RECEIVER ALGORITHMS

A MIMO communication system with M receive and N
transmit antennas can be modeled using the equation

x = Hs+n, (1)

where x € CM*! is the vector of received symbols, H € CM*N
is the channel matrix, s € CN*! is the vector of transmitted
symbols, and n € CM*! is the Gaussian noise vector with
zero mean and covariance matrix ¢2I;. A MIMO detector
refers to an algorithm that is used to find an estimate s of
the transmitted symbol vector s when vector x = Hs +n, as
in (1), is received. In practice, this estimate is a set of LLR
values to be fed to an outer decoder.

Maximum likelihood (ML) estimator is optimal in the
sense of minimizing the error probability [6]. The ML solu-
tion can be computed using the equation [6, 37]

SuL = argmin ||x — Hs||?,)
seC
where ||| denotes the Frobenius norm of a vector and € is

the set of complex constellation points. For a system with N
transmit antennas and constellation size ||, a total of |C|N
vector norms have to be calculated. As the number of trans-
mit antennas or the constellation size increases, the compu-
tational complexity of a brute force maximum likelihood so-
lution becomes quickly impractical [37].

Sphere detectors make it possible to find the ML or near-
ML solution with reduced computational complexity. The
basic idea is presented in Figure 1 using a demonstrative
single-input single-output system with 64-QAM. The orig-
inal constellation points are shown on the left as white cir-
cles, and the transmitted symbol is presented as a black circle.
The channel skews the constellation lattice and noise is added
to the received symbol (grey circle on the right) which now
lies somewhere between the constellation points. Instead of
a straightforward approach of computing the Euclidean dis-
tances between all possible symbols and the received symbol,
the search is restricted inside a circle, and Euclidean distances
are calculated only to those symbols that are inside the circle.
Depending on the radius of the circle, the used constellation
and the number of antennas, the approach can result in sig-
nificant savings in computational complexity.

A list sphere detector (LSD) [17] is a sphere detector vari-
ant which, instead of giving just one most likely symbol vec-
tor, outputs a list of the most likely symbol vectors and their
Euclidean distances. This modification makes the sphere de-
tector suitable for soft-decision decoding, as shown in [17].

The K-best LSD [27], implemented in this paper, is a so
called breadth-first algorithm which means that it processes
the symbol levels one at a time. The idea is that at each level
K best partial symbols with the smallest partial Euclidean
distances (PEDs) to the received symbol are chosen to be

Juho Antikainen et al.

ONONONONONONONONONGC OO0O0O0

FIGURE 2: Tree presentations of the K-best LSD algorithm.

Inputs: R, y = Q'x, K.

(1) Py =0

2Q)k=M-1

(3) Calculate PEDs for all admissible symbols at level k:
Py = P + e — S0 rsill 2.

(4) Choose K best symbols with the smallest PEDs.
Save the symbols and the corresponding PEDs to memory.
If k = 0, the solution is found, terminate the algorithm;
else k = k — 1, go to (3).

F1GURE 3: K-best LSD algorithm.

continued with. A graphical presentation of the K-best LSD
algorithm for a 4 X 4 system using binary phase-shift key-
ing (BPSK) modulation is shown in Figure 2. In BPSK, every
transmitted symbol has only two possible values, —1 and +1.
As this example is a real-valued 4 X 4 system, there are four
levels in the tree. The highest circle in the tree is called the
root node and it does not refer to any specific symbol. At the
next layer there are two nodes (marked with circles) which
represent the first symbol of the symbol vector s having the
possible values of —1 and +1. When proceeding to the next
levels, we can again choose between —1 and +1 until the bot-
tom level is reached. As this is a BPSK example, the number
of nodes at each level doubles every time we proceed to a
lower level. The nodes at the lowest level are called leaf nodes
and they correspond to all the 16 possible values of the sym-

bol vector s from [-1 -1 -1 —l]T to [+1 +1 +1 +1]T.

In Figure 2, K = 2 best nodes at each level are shown
as black circles. The nodes whose PEDs have been calculated
but that have been pruned because they did not succeed to
be among the two smallest distances are shown as grey cir-
cles. Those nodes that have not been processed in any way
are shown as white circles.

Mathematical foundations of sphere detection are pre-
sented in the following. The search can be limited inside a
sphere with radius d using the sphere constraint:

d* > ||x — Hs|% (3)

The channel matrix H can be broken into two parts by us-
ing the QR decomposition. If the number of receive antennas
equals the number of transmit antennas (M = N), the trans-
formation can be presented simply as H = QR, where R is an
M x M upper triangular matrix and Q is an M X M orthog-
onal matrix. Performing the QR decomposition we obtain

@ = |x - QRs|* = d* = ||Q"x — Rs||. (4)

The modified constraint can be further simplified by denot-
ingy = Qx to get

d> > |ly - Rs|%. (5)

Because of the upper triangular property of R, (5) can be pre-
sented as

2

M-1 M-1
d2 > Z (}/, — Z T,’)ij) . (6)
j=i

i=0

Now the symbol vector components can be considered sep-
arately. The K-best algorithm processes one vector compo-
nent first, chooses K best partial symbols and stores them.
Next, those K best partial symbols are expanded to the next
symbol level, and again K best partial symbols are chosen to
be continued with until the whole symbol vector has been
processed.

In our TTA implementation, the sphere radius was set to
infinity, d = oo, which guarantees a constant number of vis-
ited nodes in all cases. The K-best algorithm used in the im-
plementation, modified from [38], is presented in Figure 3.

It is simple to decompose the complex-valued system
model (1) into a real counterpart [23, 26, 27, 39]. This ap-
proach has some benefits, for example simple implementa-
tion of the Schnorr-Euchner enumeration (SEE), but it dou-
bles the depth of the search tree which can be infavourable
from the implementation point of view. In our work, we op-
erate directly on the complex constellation points.

3. RELATED WORK

This section reviews some earlier work on sphere detector
implementations including one field-programmable gate ar-
ray (FPGA), one very long instruction word (VLIW) and sev-
eral very-large-scale integration (VLSI) implementations.

The review is not limited to breadth-first or soft-output
architectures only. The solutions that have been found for
some specific sphere detector variant may be widely applica-
ble in other architectures as well. All sphere detectors include
PED calculation, and also some kind of a sorting algorithm
is applied in many variants.

3.1. Early K-best VLSI architecture

The VLSI (ASIC) design in [27] can be considered as the
starting point for sphere detector implementations. The de-
sign is based on using the real-valued decomposition of the
system model. The architecture consists of tightly pipelined
processing elements and is scalable to different numbers of
antennas. The decoding throughput was estimated for a 4 x4
system with 16-QAM and a list size of K = 10. The de-
coding order of symbols was assumed to be calculated be-
fore the detector for improved bit-error rate. The perfor-
mance degradation with K = 10 was announced to be less
than 0.5 dB at 20 dB SNR compared to the ML solution. The
PED calculation is highly optimized, and the utilization of
the functional units inside each processing element is said
to be close to 100%. The whole K-best architecture consists

EURASIP Journal on Embedded Systems

of approximately 52 000 gates, excluding the memory area of
about 8600 bits. With 4 X 4 system and 16-QAM, a decod-
ing throughput of 10 Mbps should be reached. The detector
supports hard outputs.

The decoding throughput seems fairly good and a rea-
sonable amount of gates is needed. However, the register-
based bubble sort method needs 2 x K — 1 registers for every
symbol stage where sorting is used. With long list lengths the
amount of registers and their energy consumption would be-
come impractical.

3.2. Two VLS| architectures for K -best
Schnorr-Euchner enumeration (KSE)

In [26], two VLSI architectures for K-best Schnorr-Euchner
enumeration are proposed. Both implementations decom-
pose the 4 X 4 16-QAM system into real values and assume
very efficient preprocessing before the decoding. The pre-
processing takes the channel noise into account and orders
the symbols for improved performance. In this way, the list
size can be reduced down to 5 without suffering from too
significant performance degradation. Bubble sort is used for
choosing the best K symbols. The first version supports only
hard outputs and is capable of a decoding throughput of
53.3 Mbps with approximately 91 000 gates. The second im-
plementation supports soft outputs and uses a so called mod-
ified K-best Schnorr-Euchner enumeration (MKSE). MKSE
tries to use the information contained in the discarded paths
that can be virtually augmented to full length based on the
assumptions about the remaining undetected symbols. One
of the simplest ways to implement this is to use the ZF es-
timate. In this way, also the discarded paths can contribute
to the soft-value generation. The soft-output MKSE achieves
106.6 Mbps decoding throughput with approximately 97 000
gates.

3.3. Two high-throughput complex-valued
depth-first VLSI architectures

Two VLSI architectures with very high decoding through-
puts are presented in [23]. Both implementations are based
on processing the tree depth-first instead of the breadth-first
approach used in the K-best algorithm. Both implementa-
tions, ASIC-I and ASIC-II, operate directly on the complex-
valued constellation points which, according to the authors,
leads to a more reasonable implementation. Both systems
are designed for 4 X 4 antenna scheme and 16-QAM. The
main differences between the two implementations are in
their preprocessing strategies and in the realization of the
Schnorr-Euchner enumeration. ASIC-II also uses a simpli-
fied Lo, norm instead of the more common L, norm and
thus cannot be considered an ML estimator any more. ASIC-
I achieves a decoding throughput of 73 Mbps with approxi-
mately 117000 gates. ASIC-II yields over doubled through-
put of 169 Mbps with only less than half (50 000) gates com-
pared to ASIC-I. Both throughputs are at 20 dB SNR. The
performance degradation between ASIC-I and ASIC-II is
told to be about 1.4 dB. Both implementations support hard
outputs only.

3.4. Parallelized depth-first architecture

In [24], the hardware complexity is first investigated for ex-
haustive search ML estimation with different constellations
and numbers of antennas. It is shown that up to 4 X 4 anten-
nas with QPSK modulation, the exhaustive ML estimation is
feasible. Beyond that, the complexity and power consump-
tion increase dramatically. For example, full ML-APP (a pos-
teriori probability) estimation for 4 X 4 16-QAM would yield
almost 270 mm? area with 32.7 W power consumption which
are obviously impractical values.

A depth-first list sphere detector is proposed as a more
reasonable approach and an architecture is described for
both the precomputation unit and the sphere detector. The
precomputation unit computes the upper triangular decom-
position of the channel matrix and the unconstrained ML
estimate for the search center. For a 4 X 4 system and 16-
QAM, a decoding throughput of 38.4 Mbps can be achieved
with one precomputation unit and five parallel search en-
gines and APP cost function units. The total area of the
whole implementation is roughly estimated to be around
10 mm?. The five parallel search engines take approximately
4.85 mm? X 1.3 =~ 6.3 mm? of this total area (30% implemen-
tation overhead is assumed to account for items such as addi-
tional memories, clock trees). Gate counts are not presented,
but assuming a gate density of 80 kgates/mm? that can be
achieved with modern 0.18 ym technologies, the number of
gates for five parallel search engines can be calculated as
6.3 mm? x 80 kgates/mm? =~ 500 kgates.

3.5. K-best VLSI architectures achieving
up to 424 Mbps

Two very-high-throughput VLSI architectures are presented
in [39]. Both architectures output hard decisions and oper-
ate in a parallel and pipelined fashion. The second variation
uses the simplified L; norm instead of the L, norm which is
shown to lead to a significant reduction in circuit complex-
ity but causing only a small bit-error rate (BER) performance
loss. Both architectures use the real-valued decomposition.

The detectors are pipelined so that one layer of the tree is
always processed in one pipeline stage. The architecture con-
sists of metric computation units (MCUs) for PED calcula-
tion and K-best units (KBUs) that determine the K smallest
PEDs and the corresponding symbol vectors. Register banks
are used to store the K best symbols from the previous lay-
ers of the tree. The overall architecture consists of 2 X N al-
most identical copies of pipeline stages, including the regis-
ter bank, MCU and KBU, where N represents the number of
transmit antennas.

After the real-valued decomposition is applied to a reg-
ular Y-QAM constellation, the /Y new constellation points
lie on the real axis. The MCU is used to compute PEDs for
all possible /Y children for some parent symbol. With very
simple logic, it is possible for the MCU to output these values
so that they are sorted. This feature is further exploited in the
actual sorting unit, the KBU, where a simpler design can be
used because of the presorted inputs.

Juho Antikainen et al.

The two proposed architectures are evaluated with two
K wvalues, 5 and 10, leading to four combinations. Using
the simplified L, norm with K = 5, the highest published
throughput to our knowledge, 424 Mbps, can be achieved.
The core area of this architecture is estimated as 93 000 gates.
If the channel can be assumed to remain the same for two
subsequent received vectors, requiring the storage of one
channel matrix only, the area can be reduced down to 68 000
gates.

3.6. FPGAimplementation

FPGA implementation issues are considered in [40, 41]. Ar-
chitectures were designed for a 2 x 2 system with QPSK and
16-QAM. The architectures are built of successive distance
calculation and sorting blocks, and the sorting is handled
with register-based sorting units. The 2 X 2 system running
in QPSK mode and implemented on FPGA could reach a de-
coding throughput of 4.6 Mbps. If the same detector could
be implemented as an ASIC, the throughput was estimated
to rise to around 10 Mbps.

The detector complexity was estimated also for a 4 X 4
system and 64-QAM. However, throughput and gate count
estimates are not available.

3.7. VLIWimplementation

The same algorithm that was used in the TTA LSD imple-
mentation in this paper was programmed in C language and
compiled for Texas Instruments C6711 digital signal proces-
sor in [42, 43]. The algorithm uses the complex-valued sys-
tem model with 4 X 4 16-QAM, and heap structure is used
to sort the symbol vectors with a list size of 63 items. The
preprocessing part (y = Qx) is not included in the TI im-
plementation. Even though the processor is designed specif-
ically for signal processing purposes, it is very understand-
able that it cannot achieve a reasonable decoding through-
put especially as the processor does not have direct support
for complex arithmetic. The processing time of one symbol
vector was 293 000 clock cycles which is obviously too long
for real-time applications as the maximum clock frequency
of the processor is 150 MHz. A rough estimate is that this
latency could be reduced with around 20% if the assembly
code was optimized by writing it manually instead of using
an optimizing compiler.

4. LSDIMPLEMENTATION ON ASIP

An ASIP was designed for K-best list sphere detector algo-
rithm using the TTA computation paradigm, and the algo-
rithm was implemented in TTA assembly.

In conventional architectures, data transports are conse-
quences of operations whereas in TTA [31-33], the situation
is reversed and operations are consequences of data trans-
ports. A TTA processor is programmed simply by defining
the sources and destinations of these transports. For exam-
ple, addition can be performed by moving the addends to the
input ports of an addition unit and, on one of the following
clock cycles, reading the result from the output port.

In this section, an overview of the processor implemen-
tation is given. The overall structure and operation, memory
usage, and the PED unit of the processor are described in
detail and several variations of the implementation are sug-
gested.

In the following, the terms symbol vector and partial Eu-
clidean distance (PED) may refer to either complete symbol
vectors with four elements or partial symbol vectors with one
to three elements, depending on the context. The symbol lev-
els are referred to as levels 3, 2, 1, and 0, corresponding to the

T
elements of the symbol vector, [so s1 s2 s3] .

4.1. Implementation overview

A TTA processor for running the K-best LSD algorithm was
designed for a 4 x 4 MIMO system. A complex-valued LSD
variant that uses fixed-point arithmetic was used. A relatively
long list size of 63 was chosen, and the storing and sorting of
the symbol vectors was based on memory rather than reg-
isters. The detector was designed for 16-QAM. The K-best
algorithm was implemented in TTA assembly so that it could
be run on the designed processor.

A word length of 32 bits (16 bits for the real and 16 bits
for the imaginary part) is used in computations including
the elements of Q, x, R, and y. 16 bits were allocated for the
PEDs.

The processor includes two load-store units (LSUs), two
addition and subtraction units (ADDSUBs), one compari-
son unit (CMP) and one global control unit (GCU). Special
function units (SFUs) were used for computing Fuclidean
distances and maintaining a list of the best candidate symbol
vectors. In addition to the aforementioned building blocks,
there is one general purpose register file that includes three
32-bit registers. The different parts of the processor are con-
nected with ten buses, allowing a highly parallel operation.
The processor architecture is presented in Figure 5.

4.2. Memory usage

The LSD algorithm processes combinations of symbol vec-
tors and corresponding PEDs. As the implementation uses
16-QAM, every transmitted symbol, s;, where i = {0, 1,2, 3},
can be chosen from 16 different constellation points.

The symbols can be represented with binary numbers,
0000 corresponding to symbol —3 — 37, 1111 corresponding
to symbol 3 + 3, and so forth. Four bits are needed for each
component of the symbol vector which adds up to 16 bits al-
together as the symbol vector consists of four symbols as the
complex-valued 4 x4 system model was used. 16 bits were left
for the Euclidean distance, resulting in 32 bits (one word) for
the combination of the symbol vector and the corresponding
Euclidean distance. This is illustrated in Figure 4.

The memory of the processor consists of 128 addresses
that can all contain one memory word, thus leading to a total
memory size of 4096 bits. Storing a list of 63 symbol candi-
dates would need only 63 addresses, but the LSD algorithm
needs to load previous level symbol vectors from the mem-
ory and use another memory area for sorting and storing the

EURASIP Journal on Embedded Systems

PED |So|51|52|53‘
16 bits 16 bits

FIGURE 4: Storage format of PED and the corresponding symbol
vector.

symbol vectors at the current level at the same time, so 2 X n
memory addresses are needed, where n equals the list size.

The memory can be thought to be divided in two equally
sized areas, A and B. The LSD algorithm starts with comput-
ing PED:s for all of the possible 16 symbols at the third sym-
bol level. Those symbol vectors and their PEDs are stored in
the beginning of memory area B. As there are only 16 sym-
bols, the symbols do not have to be sorted as 16 < 63 = K.
When the algorithm proceeds to the next level, there are
16 X 16 = 256 different symbol combinations, so sorting is
needed. Now the symbols are read from memory area B and
area A, after being reset, is used for sorting. Before proceed-
ing to the next level, area B is reset. After that the previous
level symbols are read from area A and B is used for sorting.
Before proceeding to the final level to process the last com-
ponent of the symbol vector, area A is reset, previous level
symbols are read from B and A is used for sorting.

4.3. Sorting of symbol vectors

The K-best LSD algorithm maintains a list of K best symbol
vectors that have the smallest Euclidean distances so far. If a
large list size is preferred, the sorting and storing of symbol
vectors quickly becomes the bottleneck of the algorithm. The
list maintenance could be made really fast by using registers
for sorting the list, but the register-based approaches tend to
have too high energy consumption when a large list size is
used even if the hardware is highly optimized.

Using memory instead of registers will provide a slower
but possibly more energy-efficient solution to the problem.
As the latency of inserting a new symbol to the list is very
crucial for the overall performance of the LSD algorithm, an
efficient data structure is needed for sorting and storing of
symbols.

Heap data structure has been suggested for LSD algo-
rithm already before [44, 45], but, according to our knowl-
edge, implementations with detailed explanation of the heap
utilization have not been published so far. Heap is an efficient
choice for long lists as the complexity of insertion is only of
order O(log,n) for binary tree-shaped heaps. Because of this
low-order insertion complexity, the heap data structure was
chosen for the implementation.

The heap is used with a custom-designed special func-
tion unit (SFU) that is used for address calculation and value
determination. The SFU itself is used with a software algo-
rithm so the list updating can be considered as an algorithm
implemented in software but accelerated by an SFU, the list
unit (LU).

The list unit for heap-based sorting is based on the unit
described in [46], where also the heap data structure is pre-
sented in detail. The unit takes five inputs: the address of the
current parent node, the data this address contains, the data

that the child nodes of the parent node contain and the sym-
bol level that is being processed. The unit decides whether
the nodes should be swapped and outputs data that should
be written to the current parent node and the child node that
the parent node was possibly swapped with. In addition, it
also gives the addresses of the new parent node and the new
child nodes. The last input, level, is used for defining which
memory area is used as a heap. The latency of the unit is one
clock cycle.

The list insertion routine used in the implementation is
able to insert a new symbol to the list in

Cinsertion = z[logz(n + 1)] -1 (7)

clock cycles, where n equals the list size and [-] denotes
rounding towards infinity (ceiling operation). With a list size
of 63, [2log,(63 +1)] = 1 = 11 clock cycles are needed for
each symbol insertion.

4.4. Pipelining of PED calculation and heap sorting

As presented above, inserting a new symbol in the heap takes
11 clock cycles. During this time, the PED of the next symbol
can be computed.

At those symbol levels (2, 1, 0) where the heap is used for
sorting the symbol vectors, one PED is calculated first. Then,
at the same time when this PED is being inserted into the
heap, the PED calculation starts for the next symbol in par-
allel with the insertion routine. This goes on until PEDs have
been computed for all of the symbols on that level. After fin-
ishing the last PED computation, the last symbol is inserted
in the heap.

4.5. The PED unit

An SFU was designed for the PED calculation also. The PEDs
are calculated completely by this SFU and assembly routine
is needed only for feeding the input values to the unit and
reading the output value (PED) from it.

As the heap insertion has a constant duration of 11 clock
cycles, the PED unit latency was constrained to be less than
or equal to that. A more powerful PED unit for faster compu-
tation would not have given any benefit, so a low-complexity
hardware unit with only one multiplication and one addi-
tion/subtraction unit could be designed.

The PED unit is capable of performing five different op-
erations: mmul, ped3, ped2, pedl, and ped0.

The operation mmul is used for computing

y = Q'x. (8)

Vector y is computed one element at a time, so matrix Q can
be fed to the PED unit row by row instead of inputting the
whole matrix (16 elements) at the same time. In this way, the
number of input ports can be reduced. The values of y and Q
are fed to the PED unit with 32 bit accuracy, using 16 bits for
the real part and 16 bits for the imaginary part of each vector
and matrix element.

Juho Antikainen et al.

F1GURE 5: Processor architecture.

; —L Ly y Accumulator
I — : capD/|_| &
L [Conj.] %Dﬁ csu [| 3
— CMUL ” ,
i9 H@% @
is e ig— B %
> 8 2 i — . . =) Result
= 8 é iy ip — S
ig« - -i10 —>| < L E_ 00— n
2 LUT 00—

0— =

FIGURE 6: Block diagram of the PED unit.

The operation ped3 is used for PED calculation at the
third level. Breaking the summation presented in Figure 3
into its components gives for the third level

2

P; =0+ =|ly; - 7’3,353“2- 9)

3
Vs — Z T’k,iSi'
i=3

The operation ped?2 is used for PED calculation at the second
level. Similarly to ped3, the summation now gives

3
Pz = P3 + ‘ Y2 — ka,'S'
= (10)
2
= Ps + ||y — r28 — rass|[”
The operation ped1I is used for calculating
; 2
Pl = Pz + ‘ Y1 - z?‘k,'S'H
= (11)
2
=Py +||y1 = riast — ripsa — risss|[
The operation ped0 is used for the last PED calculation:
5 2
Py =P, + Yo — Z Tk,iSi
= (12)

=P+ ||}’o — 10,050 — 10,151 — 10,252 — 7’0,353||2,

The squared magnitude of a complex number can be
computed using multiplication as

wll* = w-w*, (13)

where w* denotes the complex conjugate of w € C. The PED
unit is designed so that the internal complex multiplication
unit can perform both normal multiplications and multipli-
cations where one of the multiplicands is conjugated.

The unit has ten input ports whose purposes depend on
the operation that is executed. For mmul operation, the first
eight inputs are used for inputting the values of matrix Q
and vector x. For the PED operations, the first four inputs
are used for feeding the elements of the R matrix, and the
next four inputs are used for inputting the vector y. In addi-
tion, the symbol vector from the previous level with its corre-
sponding PED and the current level symbol are input to the
ninth and tenth input ports, respectively.

The internal functionality of the PED unit is described
with a simplified block diagram in Figure 6. The values of
the input registers of the PED SFU are denoted by iy, where
x = 1{1,2,3,...,10} and multiple input ports of multiplex-
ers with i, - - - ip, where a,b = {1,2,3,...,10}. The first
multiplexer before the look-up table (LUT) selects alterna-
tive bit slices of the inputs iy and 719, extracting the symbols
and the corresponding previous level PED from the inputs.
The look-up table is used for transforming the symbols from
the four-bit format to a format that is suitable for complex-
valued multiplications. Between the complex multiplier and
the complex addition/subtraction unit there is one register
stage. The PED unit contains an internal accumulator whose
initial value can be set according to the current operating
mode. The last adder before the last multiplexers is a real-
valued adder that is used for adding the contribution of the
current symbol to the previous level PED. The last five mul-
tiplexers compose the final result by combining the interme-
diate values bitwisely.

EURASIP Journal on Embedded Systems

In principle, the PED SFU multiplexes the same com-
puting resources to compute the desired results sequentially.
Such an approach requires accurate control of the computing
resources and intermediate results. Multicycle operations are
controlled with the aid of an internal counter which keeps
track of the operation steps. According to the operation code
and the value of the counter, a control word that controls all
the multiplexers and arithmetic operations is formed. The
generation of the control word is not shown in Figure 6.

4.6. Variations of the implemented version

To explore the possibilities for performance enhancements,
three different variations are proposed. Their effects to la-
tency and hardware complexity are estimated in Section 5.

4.6.1. Software-pipelined heap insertion

Another heap utilization strategy that reduces the clock cy-
cles to log,(n+1)+1 per insertion was presented in [46]. The
insertion latency approaches the theoretical limit of heap in-
sertion complexity (O(log,(n))) when n— oo. With a list size
of 63, the insertion latency can be dropped down from 11 to
log,(63+ 1)+ 1 = 7 clock cycles.

4.6.2. Conditional jump out of the insertion routine
Version A

As explained in Section 4.3, the insertion routine of the im-
plemented version always lasts for 11 cycles which allows
a low-complexity PED unit. However, the routine could be
modified for higher throughput by enabling a conditional
jump out of the insertion routine. By adding a simple com-
parator to the processor, the insertion routine could detect
on the first clock cycle of insertion whether the new candi-
date fits in the heap or not. If the candidate is larger than the
heap maximum, a jump instruction could be executed on the
first clock cycle already. Because of jump latency of four clock
cycles, there would still be four clock cycles executed in the
routine even if the candidate did not fit in the heap.

Now the PED would have to be computed in three clock
cycles for it to be ready before the possible jump. In the im-
plemented version, the insertion latency as well as the latency
of the whole LSD algorithm is constant, whereas enabling the
conditional jump would make the insertion and LSD laten-
cies variable.

Version B

Using conditional jump out of the insertion routine could be
implemented in another way also. An additional output port
could be included in the list unit, see [46]. If the new sym-
bol does not fit in the heap or the nodes are not swapped at
some point during the insertion routine, the unit could de-
tect this and generate an output value, continue. The con-
ditional jump could be made by using guarded execution,
and the jump could be executed on the second clock cycle of
the insertion routine. Also in this version the PED computa-
tion would have to be faster than in the implemented version.

However, the latency demands are not as strict as for Version
A, and a PED latency of five clock cycles could be accepted.

4.6.3. Parallel processing of five symbol vectors

As can be seen from summations (9)—(12), the complexity
of PED calculation varies from level to level. Using a condi-
tional jump out of the insertion routine asks for faster PED
computation as the computation has to be timed so that it is
ready even if the insertion routine is interrupted. This means
parallel multiplications and subtractions inside the PED unit
for all symbol levels except for the first one and, of course,
the need for parallel arithmetic operations requires more ro-
bust hardware. However, a hardware unit that is able to per-
form four multiplications and subtractions simultaneously
has purposeless resources when considering the PED calcula-
tion at easier levels. Also, using a highly parallel PED unit for
computing QP x is not efficient. This inefficiency that orig-
inates from using the same unit for operations that require
different amounts of hardware resources could be avoided by
implementing five different computation units: one for com-
puting Qx and four units for PED calculation on different
symbol levels. These units could be used to process five sym-
bol vectors parallelly, leading to higher throughput and more
efficient use of resources.

4.7. More efficient PED calculation

The partial Euclidean distance calculation that is needed
in the implemented sphere detector is a demanding pro-
cedure that includes complex multiplications, subtractions,
and squaring operations.

In the following, three simple modifications are pre-
sented that could be used to achieve more efficient PED cal-
culation at the expense of increased design complexity.

Breaking the PED unit into smaller parts

The possibility to map the PED calculation functionality to
one unit greatly simplifies the algorithm at assembly-level.
The whole computation with possibly several multiplications
and subtractions, bitwise operations and squared magnitude
calculations can be executed with one simple instruction,
which allows relatively straightforward assembly-level imple-
mentation. However, to utilize the hardware resources even
more efficiently than the implemented version does, the PED
unit could be broken into smaller parts that could be used in
a more pipelined way. However, the design complexity would
increase significantly what comes to assembly-level program-
ming, and some kind of custom-made function units would
still be necessary to accelerate the PED calculation.

Precomputing the PED partially for one common
parent symbol

The efficiency of the PED computation could be improved in
another way also. A closer look at the PED calculation (see
(9)—(12)) reveals that many of the multiplications could be
done at once for one parent symbol [39]. Precomputing a

Juho Antikainen et al. 9
TABLE 1: Processor building blocks and their estimated areas at 100 MHz clock frequency using 0.13 ym technology.
Unit Operation(s) Area/Gates
RF Register load, store 1600
ADDSUB Addition, subtraction 1100
CMP Equal, signed/unsigned greater 1100
LSU Memory load, store 600
PED PED computation 8900
LU List unit 2300
SWLU Software-pipelined list unit 2800

part of the PED in advance for one parent symbol would
leave simplified computation to be done for the children
symbols, leading to simpler hardware.

Simpler multiplications with constellation points

The fact that many of the multiplications in the LSD al-
gorithm have a constellation point as one multiplicand
could be used to reduce the hardware complexity. Full
complex-valued multiplications with two variable operands
and squaring operations have high circuit complexity while
multiplications with constellation points have negligible cir-
cuit complexity that is comparable to adders [23].

5. LATENCY AND HARDWARE COMPLEXITY
ESTIMATION

In this section, the latencies and data path complexities of
different possible designs are estimated and compared to
each other. Also the effects of reduced list size and paralleliza-
tion are investigated as possibilities for achieving higher de-
coding throughput.

The area estimates consider the data path complexity
first. The additional area requirements that come from, for
example, the control logic and interconnection network, are
first neglected but their effect is discussed later. Exact latency
is provided from simulation results for the implemented ver-
sion. The other variations are characterized by their total
heap insertion latencies which give fairly good estimates of
the overall latencies.

5.1. Theimplemented version

The latency of the implemented version is constant as the in-
sertion routine always takes exactly 11 clock cycles and also
the number of heap insertions is constant. The heap inser-
tion is used 16 X 16 + 16 X 63 + 16 X 63 = 2272 times. The
total insertion latency (clock cycles) can be calculated as

Cimpl = 2272 X 11 = 24992, (14)

However, some additional clock cycles will come from,
for example, controlling the program flow, performing the
matrix multiplication Q”x in the beginning of the algorithm,
computing PEDs for the third level symbols and resetting
the heap with maximum values during program execution.
The simulation results for the implementation show that the

complete execution of the algorithm takes 26400 clock cy-
cles. As (26400/24992 — 1) X 100% =~ 5.6%, the overhead
that comes from other operations than running the insertion
routine can be considered relatively small. This justifies using
the total insertion latencies of different variations as a good
starting point for comparing them with each other.
Different building blocks of the processor were mod-
eled in very-high-speed integrated circuit hardware descrip-
tion language (VHDL) and synthesized with Synopsys De-
sign Compiler for area estimates. Table 1 shows the estimated
areas (gate counts) of different basic building blocks and the
SFUs that were used in the implementation, synthesized with
0.13 ym technology at 100 MHz clock frequency. Also the list
unit for software-pipelined execution is included in the table,
and the operations that the different units support are pre-
sented for clearness. The register file is assumed to include
three 32-bit registers with two input and two output ports.
Considering that the implementation consists of two
ADDSUB units, two LSUs, a CMP unit, an RE a PED unit,
and an LU, the area (number of gates) can be estimated as

Gimpl = 2 X 1100 + 2 x 600 + 1100

+ 1600 + 8900 + 2300 = 17300. (15)

5.2. Software-pipelined heap insertion

The amount of heap insertions remains the same (2272 in-
sertions) if software-pipelined heap utilization is used. How-
ever, the time per insertion drops down from 11 clock cycles
to seven and the basic software-pipelined version would have
a constant insertion latency (clock cycles) of

Csw = 2272 X 7 = 15904. (16)

An area estimate can be calculated like for the implemented
version, taking into account that six LSUs are needed instead
of just two. The list unit for software-pipelined execution
(SWLU) is also slightly more complex than in the imple-
mented version, see Table 1. In addition, more performance
is required from the PED unit also as the computation has
to be finished a little earlier. The capability for simultaneous
subtractions is needed inside the PED unit which is taken
into account by adding the term 200 that approximates this
complexity increase. The gate count can be estimated as

Gsw = 2 x 1100 + 6 X 600 + 1100 + 1600

+ (8900 + 200) + 2800 = 20400. (17)

10

EURASIP Journal on Embedded Systems

x10%

2.6 1

2.4

22

1.8 |

1.6 *

Latency (clock cycles)

1.4

1.2}

1.5 2 2.5 3 3.5 4 4.5 5
Hardware complexity (gates) x10*

O Implemented version
SW-pipelined
x Jump B

o0 SW-pipelined + jump B
* Jump A
SW-pipelined + jump A

FIGURE 7: Latency and hardware complexity estimates of the imple-
mentation and the proposed variations.

5.3. Conditional jump out of the insertion routine
Version A

With the first version (Version A) of the conditional jump
out of the insertion routine, proposed in Section 4.6.2, the
insertion routine latency would be either four or 11 clock cy-
cles. If all of the PEDs of inserted symbols are assumed to
have equal probability distributions, simple simulations can
be made to estimate how many inserted symbols will fit in
the heap (leading to 11-cycle insertion) and how many will
not (leading to four-cycle insertion). On level 2 (256 inser-
tions, heap size 63 items), about 40% of the symbol candi-
dates will fit in the heap after it has been initially filled. At lev-
els 0 and 1 (1008 insertions, heap size 63 items), only about
18% of the symbols will fit in the heap after initial filling. Us-
ing these assumptions, the average latency can be estimated
as

Giumpa = 11 X (63 +63 + 63 + 0.4 X (256 — 63)
+0.18 X 2 X (1008 — 63))
+4 % (0.6 X (256 — 63) +2 x 0.82
X (1008 — 63)) = 13332.8.

(18)

The increase in hardware complexity is significant com-
pared to the implemented version. One comparator unit has
to be added, but that is not the main reason for higher com-
plexity. The fact that the PED calculation has to be done in
three clock cycles requires a highly parallel PED unit. The
unit has to be able to perform four complex multiplications
during one clock cycle. Also four subtractions have to be
computed simultaneously. Assuming that the size of the par-

allel PED unit is quadrupled from the basic PED unit used in
the implementation, the gate count of the architecture is

Gjumpa = 2 X 1100 +2 X 600 + 2 X 1100 + 1600 (19)
+4 % 8900 + 2300 = 45100.

Version B

Using the second jump strategy would lead to a slightly
longer latency than the first approach. However, the hard-
ware requirements are a lot more relaxed. For simplicity, we
assume that the insertion routine would last for either five or
11 clock cycles, depending on the situation as for version A.
Now the overall insertion latency can be estimated using the
same assumptions as for Version A as

Giumpp = 11 X (63 + 63 + 63 + 0.4 X (256 — 63)
+0.18 X 2 X (1008 — 63))
+5 % (0.6 X (256 — 63) +2 x 0.82
X (1008 — 83)) = 14998.4.

(20)

The reason for less strict hardware requirements is the
fact that additional CMP unit is not needed and that the PED
unit latency can be as large as five clock cycles now, leading
to a smaller PED unit. The gate count of the PED unit is ap-
proximated to double from the basic PED unit as two parallel
multiplications and subtractions are needed. The hardware
complexity of the list unit is assumed to be equal to that of
the list unit used in the implemented version. The complex-
ity increase from adding one new output port (continue)
is negligible as existing control signals can be used for deter-
mining the output value. The gate count can be estimated as

Giump s = 2 X 1100 +2 X 600 + 1 X 1100 + 1600

(21)
+2 X 8900 + 2300 = 26200.

5.4. Comparison of alternative TTA processors

The conditional jump out of the insertion routine can nat-
urally be applied to both the software-pipelined and non-
pipelined design. Combining different strategies, six different
schemes can be considered:

(i) implemented version,
(ii) jump A,
(iii) jump B,
(iv) software-pipelining,
(v) software-pipelining + jump A,
(vi) software-pipelining + jump B.

The latency and area estimates for the first four designs
were presented above. It is easy to estimate the last two laten-
cies using the same principles as before.

Figure 7 shows a graphical presentation of the differ-
ent alternatives. The data path hardware complexities (gate
counts) and total insertion latencies of different approaches
are compared. It can be seen immediately that utilizing the
first jump strategy (Version A) without software-pipelined
heap insertion is not a reasonable option in any case as

Juho Antikainen et al.

11

smaller latency can be achieved with simpler hardware with
software-pipelined insertion and jump version B. Also the
high latency of the implemented version is quite obvious,
and significant improvements can be achieved by utilizing
the proposed alternatives without too noticeable increases in
hardware complexity.

Figure 7 alone is not enough to put the proposed varia-
tions in order in terms of efficiency. As everything else except
the FUs and the register file is neglected in the area estimates,
a constant term has to be added to them. The efficiency or-
der of different designs depends on the area of the excluded
hardware including the GCU, interconnection network, con-
trol logic, memories, and so forth. The excluded area can be
thought of as an unavoidable cost that has to be added to
build a functional processor. Separating the data path com-
plexity from the rest of the hardware has some benefits. The
approach allows clear comparisons between different proces-
sor alternatives as the additional costs are only weakly depen-
dent on the data path complexity of the design. In addition,
comparison to pure hardware solutions is straightforward.
Also, if the designed functionality was to be added to an ex-
isting processor, the data path complexity would be the most
interesting part.

The whole processor, including the datapath, control
logic and interconnection network was synthesized with
0.13 ym technology at 100 MHz and it required approx-
imately 26600 gates, excluding the memory. The pro-
portional part of the datapath compared with the over-
all processor core area can be calculated approximately as
(17300/26600) X 100% ~ 63%.

5.5. Reducing the list size for higher throughput

The architecture was designed to enable long lists without
utilizing an impractical amount of registers that have high
power consumption. The basic design principle in this work
was to process and sort the symbol vectors sequentially. Even
with a highly optimized software-pipelined heap insertion
routine, the total latency of the algorithm will remain too
high to achieve a practical decoding throughput with reason-
able clock frequencies and processor areas if a list size as large
as 63 is used.

Assuming efficient preprocessing (e.g., optimal ordering
of the processed symbols) and high SNR, the list size could
be reduced. If a list size of seven items was used, the latency of
each insertion would be only log, (n+1)+1 = log,(7+1)+1 =
4 clock cycles. In addition to this, the amount of insertions
would be reduced to 16 +7 X 16 +7 X 16 +7 X 16 = 352. This
would lead to an insertion latency of 4 x 352 = 1408 clock
cycles. Compared with the overwhelming 15904 clock cycles
that is to be faced when software-pipelined insertion is used
with 63 items, the speedup is significant as the processing
time can be reduced with (1 —(1408/15904)) x 100% = 91%.
And still one has to notice that the 1408 clock cycles already
include the insertion of 16 symbol vectors at the third sym-
bol level which is excluded from the 15904 clock cycles as
with K > 16, sorting is not needed at the third symbol level.

However, some overhead has to be added to the number
of pure insertion cycles, and the latency of the whole algo-

rithm could be roughly approximated as 1500 clock cycles,
see Section 5.1 for overhead estimation. If the processing of
five symbol vectors was parallelized, the average time for pro-
cessing one symbol vector could be reduced down to about
1500/5 = 300 clock cycles. In a 4 X 4 system with 16-QAM,
16 coded bits are transmitted in every symbol vector as one
16-QAM symbol carries four bits and there are four transmit
antennas. At 100 MHz clock frequency, a throughput of ap-
proximately 16/(300/(100 x 10°)) Mbps ~ 5.3 Mbps could
be achieved.

Rough estimates can be made about the hardware com-
plexity of the proposed parallel architecture. We assume that
one symbol vector can be processed with the hardware for
software-pipelined heap utilization, see Section 5.2, but now
including a PED unit whose gate count is doubled from the
PED unit used in the implemented version so that the PEDs
can be computed in four clock cycles. Multiplying the re-
quired hardware by five, we may approximate the datapath
complexity of the parallelized architecture as around 145500
gates.

Additional gates would be needed for additional hard-
ware resources, including the control logic and interconnec-
tion network. In the implemented version, this area was es-
timated as about 9300 gates (see Section 5.4). Assuming that
this additional area would remain the same as for the imple-
mented version and adding 10% implementation overhead,
a rough estimate for the total gate count can be made as
(145500 + 9300) gates X 1.1 ~ 170 kgates.

5.6. Discussion

Precise comparisons between different sphere detector archi-
tectures is practically impossible as different designs may per-
form differently in different channels conditions, with differ-
ent antenna spacing, at different SNR, and so forth. Also the
design complexity and the flexibility of the design always af-
fects the usefulness of some specific idea. However, the basic
facts about the reviewed 4 x 4 16-QAM designs are summa-
rized in Table 2. The reference is given along with K (if used),
the system model (real-valued or complex-valued), decoding
throughput (T'), and gate equivalent (GE) number estimates.

Software-pipelined heap insertion and conditional jump
out of the insertion routine were shown to offer higher de-
coding throughput without increasing the hardware com-
plexity too significantly. A list size of 63 seems to be imprac-
tical, and a reduced list size is proposed to enable real-life
implementation.

It is obvious that even the parallelized TTA processor
proposal with reduced list size is not able to rival the fast
register-based ASIC implementations in terms of through-
put if the sequential processing strategy is used. However,
the ASIP design that was presented in this paper has sev-
eral advantages over the fixed ASIC implementations. The
detector could operate with a smaller number of antennas
just by modifying the program that is executed. Also the list
size could be reduced programmably to speed up and sim-
plify the processing in high SNR where it is possible to main-
tain a reasonable BER level with a shorter list. The possibil-
ity to adapt the list size would allow adjusting the amount

12 EURASIP Journal on Embedded Systems
TasLE 2: Comparison of different sphere detector architectures with 4 X 4 system and 16-QAM.

Architecture K System T/Mbps kGE
Parallel TTA processor 7 C 5.3 170
Early VLSI [27] 10 R 10 52
KSE, [26] 5 R 533 91
MKSE [26] 5 R 106.6 97
ASIC-I [23] — R 73 117
ASIC-IT [23] — R 169 50
Parallel depth-first [24] — C 38.4 500
424 Mbps [39] 5 R 424 93/68

of computation under different circumstances so that the
detection could be performed with a minimal energy con-
sumption.

If the values of the constellation points can be assumed
to remain the same when changing to a lower-order QAM
constellation, the detector would be applicable also to QPSK
and BPSK without any modifications. (By constant values
we mean that when changing from 16-QAM to QPSK or
BPSK, the constellation points that the detector operates on
are changed from {-3 —3j,...,3+3j}to {—-1—j,..., 1 +j}
or {—1, 1}, resp.) This kind of flexibility is something that, to
the best of our knowledge, has not been presented in any of
the ASIC publications.

The proposed design contains several individual, stan-
dard units (two addition-subtraction units, a comparator,
general-purpose registers, load-store units) that could be
used also for other applications than just list sphere detec-
tion. Also the sorting functionality could be suitable for other
applications where sorting is needed. The PED unit for dis-
tance calculation could be applied at least in some other
sphere detector variants. Naturally, the processor does not
share the general-purpose nature of a conventional DSP, but
compared to ASICs it would still allow lots of possibilities just
by modifying the executed program.

With very short lists, it is likely that a simple, purely
hardware-based sorting method can provide the best energy-
efficiency. However, the basic idea of our approach was to
design a processor that would be scalable to be used with
long or very long lists as well. In our design, the insertion
latency grows logarithmically with the list size, and the re-
quired hardware remains completely unchanged if the in-
creased, but still modest, memory size requirements are ne-
glected. In register-based ASICs, increasing the list size in-
creases the required hardware complexity, and with very long
lists, the solutions would become extremely impractical in
terms of hardware complexity and energy consumption. This
is probably why the ASIC implementations do not seem to
address solutions that would enable even intermediate list
sizes (the largest list size among the ASICs included in our
review was K = 10).

6. CONCLUSIONS

This paper began by giving an overview of MIMO detection
algorithms with most weight on K-best sphere detection.

The earlier work on sphere detector implementations was
presented, and a programmable ASIP design for K-best LSD
was presented and described in detail. The design space was
explored by presenting and evaluating several modifications
that could be used for improving the decoding throughput.

To the best of our knowledge, the presented K-best im-
plementation is the first published ASIP design for sphere
detection. In addition, the memory-based heap sort method
used in the implementation opens completely new perspec-
tives for low-power sphere detector design.

Future research topics could include a K-best LSD im-
plementation with software-pipelined heap insertion rou-
tine and even more fine-tuned PED calculation, where dif-
ferent symbol levels could be considered in parallel with
specially designed PED units. Also the possibility of reach-
ing a higher decoding throughput with register-based sort-
ing methods should be considered. Future work should con-
centrate also on investigating efficient methods for enabling
small list sizes. With the current technology, reaching real-
time performance with a list size of about 64 seems impracti-
cal with any implementation technique. The next implemen-
tation should be combined with performance simulations
including iterative channel coding, realistic channel models
and precise word length studies.

ACKNOWLEDGMENT

This work has been supported by the Finnish Funding
Agency for Technology and Innovation, Nokia Siemens Net-
works, Elektrobit, and Texas Instruments.

REFERENCES

[1] I E. Telatar, “Capacity of multi-antenna gaussian channels,”
Internal Technical Memorandum, pp. 1-28, Bell Laboratories,
Suffolk, UK, 1995.

[2] E. Telatar, “Capacity of multi-antenna gaussian channels,” Eu-
ropean Transactions Telecommunication, vol. 10, pp. 585-595,
1999.

[3] G.]J. Foschini and M. J. Gans, “On limits of wireless commu-
nications in a fading environment when using multiple an-
tennas,” Wireless Personal Communications, vol. 6, no. 3, pp.
311-335, 1998.

[4] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A.
Valenzuela, “V-BLAST: an architecture for realizing very high

Juho Antikainen et al.

13

data rates over the rich-scattering wireless channel,” in Pro-
ceedings of the International Symposium on Signals, Systems and
Electronics, (ISSSE *98), pp. 295-300, Pisa, Italy, 1998.

D. Gesbert, M. Shafi, D Shiu, P. J. Smith, and A. Naguib, “From
theory to practice: an overview of MIMO space-time coded
wireless systems,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 3, pp. 281-302, 2003.

A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bélcskei, “An
overview of MIMO communications—a key to gigabit wire-
less,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198-217, 2004.

H. Boelcskei, D. Gesbert, C. B. Papadias, and A. J. van der
Veen, Space-Time Wireless Systems: From Array Processing to
MIMO Communications, Cambridge University Press, Cam-
bridge, UK, 2006.

M. Myllyl4, J. M. Hintikka, J. Cavallaro, M. Juntti, M. Limin-
goja, and A. Byman, “Complexity analysis of MMSE detec-
tor architectures for MIMO OFDM systems,” in Conference
Record—Asilomar Conference on Signals, Systems and Comput-
ers, vol. 2005, pp. 75-81, Pacific Grove, Calif, USA, 2005.

H. Artés, D. Seethaler, and F. Hlawatsch, “Efficient detection
algorithms for MIMO channels: a geometrical approach to ap-
proximate ML detection,” IEEE Transactions on Signal Process-
ing, vol. 51, no. 11, pp. 2808-2820, 2003.

G. D. Golden, C.J. Foschini, R. A. Valenzuela, and P. W. Wolni-
ansky, “Detection algorithm and initial laboratory results us-
ing V-BLAST space-time communication architecture,” Elec-
tronics Letters, vol. 35, no. 1, pp. 14-16, 1999.

U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in alattice, including a complexity anal-
ysis,” Mathematics of Computation, vol. 44, pp. 463—471, 1985.

O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder

for space-time codes,” IEEE Communications Letters, vol. 4,
no. 5, pp. 161-163, 2000.

H. Yao and G. W. Wornell, “Lattice-reduction-aided detec-
tors for MIMO communication systems,” in Proceedings of the
IEEE Global Telecommunications Conference, vol. 1, pp. 424—
428, Taipei, Taiwan, 2002.

D. Wiibben, R. Bohnke, V. Kithn, and K. Kammeyer, “Near-
maximume-likelihood detection of MIMO systems using
MMSE-based lattice-reduction,” in Proceedings of the IEEE In-
ternational Conference on Communications, vol. 2, pp. 798
802, Paris, France, 2004.

M. O. Damen, H. El Gamal, and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 23892402, 2003.

P. Silvola, K. Hooli, and M. Juntti, “Sub-optimal soft-output
MAP detector with lattice reduction,” IEEE Signal Processing
Letter, vol. 13, pp. 321-324, 2006.

B. M. Hochwald and S. Ten Brink, “Achieving near-capacity on
a multiple-antenna channel,” IEEE Transactions on Communi-
cations, vol. 51, no. 3, pp. 389-399, 2003.

Y. L. C. de Jong and T. J. Willink, “Iterative tree search detec-
tion for MIMO wireless systems,” IEEE Transactions on Com-
munications, vol. 53, no. 6, pp. 930-935, 2005.

J. W. Kang and K. B. Lee, “Simplified ML detection scheme for
MIMO systems,” in Proceedings of the IEEE Vehicular Technol-
ogy Conference, vol. 2, pp. 824-827, Milan, Italy, 2004.

B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm
1. expected complexity,” IEEE Transactions Signal Processing,
vol. 53, pp. 2806-2818, 2005.

[21] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm

I1. generalizations, second-order statistics, and applications to
communications,” IEEE Transactions Signal Processing, vol. 53,
pp. 2819-2834, 2005.

D. C. Garrett, L. M. Davis, and G. K. Woodward, “19.2 Mbit/s
4 x 4 BLAST/MIMO detector with soft ML outputs,” Electron-
ics Letters, vol. 39, no. 2, pp. 233-235, 2003.

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,
and H. Bolcskei, “VLSI Implementation of MIMO detection
using the sphere decoding algorithm,” IEEE Journal of Solid-
State Circuits, vol. 40, no. 7, pp. 1566—1576, 2005.

D. Garrett, L. Davis, S. Ten Brink, B. Hochwald, and G.
Knagge, “Silicon complexity for maximum likelihood MIMO
detection using spherical decoding,” IEEE Journal of Solid-
State Circuits, vol. 39, no. 9, pp. 1544-1552, 2004.

D. Garrett, G. K. Woodward, L. Davis, and C. Nicol, “A 28.8
Mbit/s 4 x 4 MIMO 3G CDMA receiver for frequency selective
channels,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 320—
3302, 2005.

Z. Guo and P. Nilsson, “Algorithm and implementation of the
K-best sphere decoding for MIMO detection,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 3, pp. 491-503,
2006.

K. Wong, C. Tsui, R. K. Cheng, and W. Mow, “A VLSI ar-
chitecture of a K-best lattice decoding algorithm for MIMO
channels,” in Proceedings of the IEEE International Symposium
on Circuits and Systems, vol. 3, pp. 273-276, Scottsdale, Ariz,
USA, 2002.

C. Schlegel and L. Prez, Trellis and Turbo Coding, Wiley IEEE
Press, Piscataway, NJ, USA, 2004.

W. G. Jeon, K. H. Chang, and Y. S. Cho, “Instrumentable tree
encoding of information sources,” IEEE Transactions on Infor-
mation Theory, vol. 17, no. 1, pp. 118-119, 1971.

J. Anderson and S. Mohan, “Source and channel coding: an
algorithmic approach,” IEEE Transactions on Communications,
vol. 32, pp. 169-176, 1984.

H. Corporaal, Microprocessor Architectures: From VLIW to
TTA, John Wiley & Sons, New York, NY, USA, 1998.

H. Corporaal, “Design of transport triggered architectures,” in
Proceedings of the 4th Great Lakes Symposium on (VLSI °94),
pp- 130-135, Notre Dame, Ind, USA, 1994.

H. Corporaal, “A different approach to high performance
computing,” in Proceedings of the 4th International Conference
on High Performance Computing, pp. 22-27, Bangalore, India,
1997.

J. Antikainen, P. Salmela, O. Silvén, M. Juntti, J. Takala, and M.
Myllyld, “Transport triggered architecture implementation of
list sphere detector,” in Proceedings of the Finnish Signal Pro-
cessing Symposium, Oulu, Finland, August 2007.

J. Antikainen, P. Salmela, O. Silvén, M. Juntti, J. Takala, and M.
Myllyld, “Application-specific instruction set processor imple-
mentation of list sphere detector,” in Proceedings of the 39th
Annual Asilomar Conference on Signals, Systems Composition,

Pacific Grove, Calif, USA, 2007.

3rd Generation Partnership Project, “Group radio access net-
work requirements for evolved UTRA (E-UTRA) and evolved
UTRAN (E-UTRAN),” Technical Specification TR 25.913 ver-
sion 7.3.0 (release 7), 3rd Generation Partnership Project, Val-
bonne, France, 2006.

T. Fujita, T. Onizawa, W. Jiang, D. Uchida, T. Sugiyama, and
A. Ohta, “A new signal detection scheme combining ZF and

14

EURASIP Journal on Embedded Systems

(38

(39]

[41]

(42]

(43]

(44]

[45]

(46]

K-best algorithms for OFDM/SDM,” in Proceedings of the IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications, (PIMRC ’04), vol. 4, pp. 2387-2391, 2004.

M. Myllyl4, P. Silvola, M. Juntti, and J. R. Cavallaro, “Com-
parison of two novel list sphere detector algorithms for MI-
MOOFDM systems,” in Proceedings of the IEEE International
Symposium Personal, Indoor, Mobile Radio Communications,
pp- 12-16, Helsinki, Finland, September 2006.

M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner,
“K-best MIMO detection VLSI architectures achieving up to
424 Mbps,” in Proceedings of the IEEE International Symposium
on Circuits and Systems, pp. 1151-1154, Kos, Greece, 2006.

J. Kerttula, “Implementation of a K-best based multiple an-
tenna detector,” M.S. thesis, Department of Electrical and In-
formation Engineering, University of Oulu, Oulu, Finland,
2007.

J. Kerttula, M. Myllyld, and M. Juntti, “Implementation of a K-
best based MIMO-OFDM detector algorithm,” in Proceedings
of the European Signal Proccessing Conference, Poznan, Poland,
2007.

J. Janhunen, “Signal processor implementation of list sphere
detection,” ML.S. thesis, Department of Electrical and Informa-
tion Engineering, University of Oulu, Oulu, Finland, 2007.

J. Janhunen, O. Silven, M. Myllyld, and M. Juntti, “A DSP im-
plementation of a K-best list sphere detector algorithm,” in
Proceedings of the Finnish Signal Processing Symposium, p. 6,

Ouluy, Finland, 2007.

A. Wiesel, X. Mestre, A. Pags, and J. R. Fonollosa, “Efficient
implementation of sphere demodulation,” in Proceedings of the
IEEE Workshop on Signal Processing Advances in Wireless Com-
munications, pp. 36—40, Rome, Italy, June 2003.

B. Widdup, G. Woodward, and G. Knagge, “A highlyparal-
lel VLSI architecture for a list sphere detector,” in Proceedings
of the IEEE International Conference on Communications, pp.
2720-2725, Paris, France, June 2004.

P. Salmela, J. Antikainen, O. Silvén, and J. Takala, “Memory-
based list updating for list sphere decoders,” in Proceedings of
the IEEE Workshop on Signal Processing Systems (SiPS °07), pp.
633-638, Shanghai, China, 2007.

	INTRODUCTION
	MIMO RECEIVER ALGORITHMS
	RELATED WORK
	Early K-best VLSI architecture
	Two VLSI architectures for K-best Schnorr-Euchner enumeration (KSE)
	Two high-throughput complex-valueddepth-first VLSI architectures
	Parallelized depth-first architecture
	K-best VLSI architectures achievingup to 424Mbps
	FPGA implementation
	VLIW implementation

	LSD IMPLEMENTATION ON ASIP
	Implementation overview
	Memory usage
	Sorting of symbol vectors
	Pipelining of PED calculation and heap sorting
	The PED unit
	Variations of the implemented version
	Software-pipelined heap insertion
	Conditional jump out of the insertion routine
	Version A
	Version B
	Parallel processing of five symbol vectors

	More efficient PED calculation
	Breaking the PED unit into smaller parts
	Precomputing the PED partially for one commonparent symbol
	Simpler multiplications with constellation points

	LATENCY AND HARDWARE COMPLEXITYESTIMATION
	The implemented version
	Software-pipelined heap insertion
	Conditional jump out of the insertion routine
	Version A
	Version B

	Comparison of alternative TTA processors
	Reducing the list size for higher throughput
	Discussion

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

