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This paper presents our work on PfeLib—a high performance software library for image processing and computer vision al-
gorithms for an embedded system. The main target platform for PfeLib is the TMS320C6000 series of digital signal processors
(DSPs) from Texas instruments. PfeLib contains several new approaches for problems that are typical when developing software
for embedded systems. We propose a method for image data transfer from a development host (PC) to an embedded system for
test and verification. This enables step-by-step performance optimizations directly on the target platform. An optimization pro-
cedure is described that illustrates our approach for obtaining the best possible DSP performance with a reasonable development
effort. Speedup improvement factors of up to 16 were achieved. Also, the problem of the limited on-chip memory on DSPs is
addressed by a novel double buffering method using direct memory access (DMA), called resource optimized slicing (ROS-DMA).
ROS-DMA is intended to be used instead of L2 cache and it is a core component of PfeLib—it achieves up to six times faster image
processing as compared to using L2 cache.
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1. INTRODUCTION

The field of computer vision (CV) offers a great variety of
useful applications. It is very important for the technical fea-
sibility and for the market acceptance to realize such appli-
cations on embedded systems like digital signal processors
(DSP). DSPs have very low power consumption which en-
ables small, portable, and even battery-driven devices with
no cooling fans. On the other hand a developer of a com-
puter vision application will face several additional difficul-
ties when using a DSP as the target platform instead of a
desktop personal computer. These difficulties arise from ar-
chitectural limitations of DSPs, for example, lack of operat-
ing system services, smaller memories, lower CPU clock fre-
quencies, fixed point architectures (no floating point units).
Another issue is that testing and debugging generally require
more time and effort when doing cross-platform develop-
ment. And finally there are very few performance-optimized
imaging libraries available that are suitable for a specific em-
bedded platform.

Our research group is engaged in developing innovative
computer vision systems in the automotive [1, 2] and intelli-
gent vehicles area [3, 4]. Our experience has shown that new

CV algorithms often require special image processing func-
tions as their basis which cannot be found in any currently
available imaging libraries.

Another motivation for creating PfeLib was that it was
soon clear that there exists an enormous potential for per-
formance optimization on the chosen DSP platform, which
is the TMS320C6000 DSP from Texas Instruments (TI) [5],
when beginning with an ordinary ANSI C code implementa-
tion.

This leads to several main requirements for PfeLib that
can be enumerated as follows.

(i) Optimal performance shall be achieved on the tar-
get platform despite the typical limitations of embed-
ded systems (memory, processor clock frequency, fixed
point architecture, . . . ).

(ii) Beside of the platform-specific implementation, an
additional generic ANSI C representation of the li-
brary functions shall provide both a unique defini-
tion of the functional behavior as well as the possi-
bility to compile PfeLib on any other platform with
the same functionality, although not performance
optimized.
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(iii) The library framework shall be an open architecture
that enables a programmer who uses PfeLib to extend
it with additional image processing functions.

(iv) The Intel Performance Primitives for Image Process-
ing (ippIP) [6] shall serve as a benchmark for Pfe-
Lib in terms of performance and partially in terms of
functionality. The ippIP are assembler optimized rou-
tines for image processing on a PC under Windows or
Linux.

(v) The environment for development, test, and verifica-
tion of PfeLib functions on an embedded system shall
be reliable and easy to use.

The rest of this paper is organized as follows. Section 2 de-
scribes in brief the target platform that was mainly in use
during development of PfeLib. Some properties are discussed
about the CPU architecture as well as about the memory
system. Section 3 introduces a tool for image data trans-
fer to and from the embedded system called PfeRtdxHost.
Section 4 gives an overview of the library framework of Pfe-
Lib. This section clarifies how several modules of PfeLib work
together and how a computer vision application uses them.
The task of adding a new algorithm to PfeLib is also described
there. Section 5 deals with some performance optimization
strategies applied on PfeLib functions. Two algorithms are
selected and optimized step by step. Section 6 presents the
method for double buffering with ROS-DMA, which is a vital
component of PfeLib. Section 7 contains various diagrams
with results of performance tests. The behavior on the DSP
platform under different memory configurations is analyzed.
The section concludes with a cross-platform comparison be-
tween PfeLib on a DSP and ippIP on a PC. Section 8 gives a
final conclusion and points out some topics for future work
on PfeLib.

2. TARGET PLATFORMANDDEVELOPMENT
ENVIRONMENT

Although PfeLib is intended to provide equivalent APIs
among various platforms (either embedded ones or not), the
first hardware platform that is considered to be a target for
the PfeLib to run on is the TMS320C6000 series of DSPs from
Texas Instruments.

2.1. Related literature

Some recommended reading will be referenced here to pro-
vide additional insight to the primary processor platform
used in this paper.

Selecting the optimal hardware platform for a CV appli-
cation is of great importance. A practical approach to proces-
sor selection is given by [7], where expected production vol-
umes and several other requirements are taken into account.
The same paper gives examples for low-level computer vision
for media chips similar to the main target platform of PfeLib.
Software optimization methods are also discussed.

The work [8] deals with embedded image processing on
the TMS320C6000 platform. After a description of the de-
velopment environment and tools, several examples of image

processing techniques are implemented in several ways: in a
MATLAB environment, as a Visual Studio .NET application
and finally on a C6416 DSP. Therefore, the differences be-
tween a PC platform and an embedded system in the image
processing domain are pointed out.

Another work [9] has a similar approach, with an even
more detailed introduction into the same DSP platform, but
it deals with digital signal processing in general, not focused
on image processing.

2.2. Target platform architecture

Two processor models from the TMS320C6000 series were
especially chosen for specific performance optimizations:

(i) C6416 fixed point DSP: up to 1GHz, 8000MIPS (2005),
(ii) C6713 floating point DSP: up to 300 MHz, 1350 MFL-

OPS (2005).

The C6416 is a fixed point processor. Floating point opera-
tions must either be emulated by software or the algorithm
must be designed to perform all time critical operations in
the integer or fixed point domain. Existing algorithms must
be ported to the fixed point data domain, which usually in-
volves a loss of computation precision.

Common to all members of the C6000 DSP platform is
that they have a very long instruction word (VLIW) architec-
ture. There are eight functional units in the CPU that can po-
tentially operate in parallel. One instruction for each of the
eight units can be packed into a long instruction word. This
means that on a VLIW processor the parallelism of execution
is already defined at compile time. It has a great influence on
the achievable performance whether the compiler is able to
employ all parallel units to a maximum extent.

A very important key technique to optimize loops on
VLIW machines is software pipelining. The work [10] is an
early introduction into software pipelining, and [11] dives
into its more theoretical backgrounds. Software pipelined
loops can be coded by hand in assembler, eventually sup-
ported by dedicated tools as described in [12]. Texas In-
struments’ optimizing C/C++ compiler [13] is also capa-
ble of this type of optimization. If one wants to write high-
performing programs in C, it is also important to know
about the basic principles of software pipelining.

Figure 1 illustrates the basic concept of software pipelin-
ing. We consider a loop body that consists of five stages called
A,B,C,D,E that must be performed one after the other. The
loop body must be executed n times. We assume that the
VLIW processor is equipped with enough functional units
to work on all these stages in parallel. But this is not possible,
because each stage needs the result of its predecessor as input
data. What can be done is to process different stages of differ-
ent loop iterations in parallel. This happens in the pipelined
kernel of the loop. Once the loop kernel is reached, a whole
iteration of the loop can be finished in the same time that
otherwise was needed for only one stage of a loop body. As a
prerequisite there must be a pipelined-loop prolog that initial-
izes the first few loop iterations. A similar procedure occurs at
the end of the loop when the pipelined-loop epilog finishes the
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Figure 1: Software pipelined loop.

remaining stages of the last loop iterations. In the example of
Figure 1, a speedup of factor 5 can be achieved compared to a
nonpipelined version. But it must be taken into account that
the code size also increases.1

As image processing is very data intensive, the memory
system of a target platform has great influence on the achiev-
able execution speed. The C6000 DSPs have a hierarchical
memory architecture with several different memory types
which trade off between speed and size. Only the L1 program
and data caches and the internal L2 SRAM (or IRAM) are in-
tegrated on-chip. Table 1 shows the relationship between ac-
cess speed and size of various types of memory. The latency
times are given in CPU cycles. Up to one quarter of the IRAM
can be configured to serve as L2 cache for the external mem-
ory. The best performance can only be achieved when both
code and data reside in the IRAM.

2.3. Development environment

TI provides an integrated development environment (IDE)
for the C6000 platform called Code Composer Studio (CCS).
The IDE runs under Windows. Various simulators for the
target devices are available. They are also driven through the
CCS, so it gives the same “look and feel” to test a program on
the simulator as well as on real target hardware.

In addition to using the simulators extensively during the
development of PfeLib, two different DSP Starter Kits (DSK)
from the company Spectrum Digital [15] are in use for de-
velopment and testing on real hardware. One test system is
a TMS320C6713 DSK which uses the C6713 processor with
225 MHz clock frequency and 8 MB SDRAM. The second test
system is a TMS320C6416 DSK with a C6416 DSP clocked at
1 GHz and 16 MB SDRAM. These boards are connected to
the development host via a USB/JTAG interface.

3. DATA EXCHANGE HOST—DSP

A common method of software development on DSPs is im-
plementing the programs on a PC platform and afterwards
porting the software to the embedded system. This approach

1 The newest C64x+ core introduces a so-called SPLOOP buffer that can
avoid this increase in code size [14].

has many disadvantages because platform-specific optimiza-
tion techniques cannot be employed from the beginning of
the development effort. The reason for using this method lies
often in the absence of a reasonable test and verification en-
vironment for the embedded system.

We wanted to have the ability to start creating high per-
formance image processing routines directly on the target
platform. A system for transferring image data from a host
computer to the DSP-target and vice versa is an essential pre-
condition. Creating images for input test data and verifying
the processed images can then be performed on the develop-
ment host. A procedure for measuring the processing time
for an operation completes the test environment. The de-
sired procedure is illustrated in Figure 2. For obtaining re-
liable time stamps on the DSP, one of the built-in timers of
the DSP is used that enables an accurate clocking of the pro-
cessing time.

We programmed a so-called RTDX host client that is able
to realize the workflow of Figure 2. TI’s RTDX (real-time data
exchange) [16] is a method for transferring data between
a signal processor and a development host. An RTDX con-
nection consists of a small software component on the DSP
target and a host-application on the PC. These components
communicate with each other via the JTAG interface and the
Code Composer Studio. The latter operates as a COM server
for the host client. No extra peripheral component is neces-
sary on the target side.

PfeRtdxHost is an application with a graphical user inter-
face (GUI) that runs under Windows. PfeRtdxHost is based
on the open source software library CxImage [17]. This ap-
plication provides a lot of functionality that is common to
image manipulation programs and that is quite useful for
creating, saving, loading, manipulating, or viewing test im-
ages. Hence, we could create a powerful development envi-
ronment with limited effort. Additional useful properties of
PfeRtdxHost are as follows.

(i) It works in the same manner for both the real DSP
hardware as well as the DSP simulator without modifications
of the target program.

(ii) It supports both standard- and high-speed-RTDX.
HSRTDX is available with XDS560-class [18] JTAG emu-
lation controllers and it offers a high data-rate of 2 MB/s.
HSRTDX is indeed real-time capable, because there are no
software-breakpoints necessary for the data transfer. Direct
memory access (DMA)-based, nonblocking data-transfers
are possible while the target application executes.

(iii) It supports both 16- bit and 32- bit image-data
(signed/unsigned) with special viewing modes for efficient
visual inspection and reliable functional verification.

(iv) It has a differential-viewing-mode that shows only
the differences between a processed and a reference image.
This proved to be very useful during the conversion of algo-
rithms from floating point to fixed point arithmetic, where
sometimes deviations in the range of a few LSBs have to be
taken into account.

Figure 3 shows a screenshot of PfeRtdxHost that demon-
strates an effective use-case of the differential image view.
The upper left image is connected to an RTDX input channel
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Table 1: Memory hierarchy overview for the used DSP platforms.

Platform
L1D cache Internal L2 SRAM External memory (SDRAM)

Capacity Latency Capacity Latency Capacity Latency

C6713 4 Kbyte 0 Cycles 256 Kbyte 4 Cycles up to 1 Gbyte Rd: ∼45/Wr: ∼20 Cycles

C6416 16 Kbyte 0 Cycles 1024 Kbyte 6 Cycles up to 1 Gbyte Rd: ∼110/Wr: ∼40 Cycles
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Figure 2: Desired host-to-DSP image transfer and verification pro-
cess.

and serves as input data for a PfeLib function running on
the DSP. The operation performed on the DSP is the PfeLib
function PfeWarpAffineBack 8u C1R() with certain val-
ues for the warping coefficients. The affine warping is per-
formed on the DSP and the result is sent back to PfeRtdx-
Host. It is visualized in the lower right image. The function-
ality of this image processing function is similar to the ip-
pIP function ippiWarpAffineBack 8u C1R() with linear
interpolation [6], but with the difference that the internal
coordinate transformations are calculated with fixed point
arithmetic instead of floating point operations. This enables
much faster processing on the C64x DSP—on the other hand
it introduces rounding errors. Therefore, the lower left im-
age in Figure 3 shows a reference result of the warping oper-
ation created with the ippIP function. The upper right im-
age is configured to receive the result of the PfeLib operation
and its viewing mode is set to display the difference to the
reference image. The difference image naturally has signed
pixel values and thus it is displayed in a color-coded mode
where positive values are represented by shades of blue and
negative pixels are colored in red tones. It can be seen that
∼50 percent of the differential image’s pixels have a value of

Figure 3: Screenshot of PfeRtdxHost.

−1 or less and are therefore red. This clearly indicates that
something is not correct with the fixed point implementa-
tion of that algorithm. And indeed, an implementation error
could be found and fixed. Figure 4 shows the differential im-
age with the correct implementation: most pixels are black
and are therefore identical to the reference image, and the
remaining pixels have a value of either +1 or −1, which are
the small deviations that can hardly be avoided when moving
from a floating point to a fixed point implementation.

4. LIBRARY FRAMEWORK

The requirements listed in Section 1 lead us, in addition to
some other considerations, to a structure of source code
modules, library components, and a test environment that
make up the library framework of PfeLib. Figure 5 shows a
typical workflow of developing an embedded CV application
using PfeLib and its associated tools. The figure gives an
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Figure 4: Differential image of the correct fixed point implemen-
tation-colored dots mark the remaining differences.

overview of the major components involved and the most
important relationships between them. In this section, the
components depicted in Figure 5 are referenced with Arabic
numbers enclosed in boxes like 1 , and the diagramed rela-
tions are referenced with uppercase letters, for example, A©.
A number of simplifications were made in this illustration;
any source code-like constructs inside the modules use very
simplified pseudocode.

4.1. Image data sources & application that uses PfeLib

We begin the description using Figure 5 in a top-down man-
ner and start with the application 1 that uses PfeLib. In
its final field of application this program will acquire im-
ages from a hardware device 2 , for example, a digital cam-
era over a data path A©. However, during development and
testing it is much more advantageous to use an alternative
image source that is able to “emulate” a camera and to de-
liver standardized test images. PfeRtdxHost 3 can overtake
this role of sending and receiving images B© during devel-
opment and test phases independently from external hard-
ware. PfeRtdxHost is described in Section 3. Our CV appli-
cation has now acquired an input image and it moves the
program flow to a function that actually does the image pro-
cessing C©. This function (we assume its name is CvAlgo())
calls various PfeLib routines, such as basic support routines
E© from the basic PfeLib library package 5 , or some of the

platform-specific performance-optimized image processing
routines in PfeImg xx.lib 7 via D©.

4.2. Existing library components

We will now discuss the core components of PfeLib in the
middle of Figure 5. The top level include file 4 provides (to-
gether with some of ancillary .h files) access to the basic
data structures, definitions, and function prototypes of Pfe-
Lib. The blocks 5 , 6 , and 7 are the main library modules.
The “xx” in the module name stands as a placeholder for

an identifier of the target platform for which the library is
compiled. As stated above the PfeBase xx.lib module 5 con-
tains basic support routines and the functions for communi-
cation with PfeRtdxHost. The performance-optimized image
processing and computer vision algorithms reside in module
7 , named PfeImg xx.lib. Almost all PfeLib algorithms can
be driven in the ROS-DMA double buffering mode that will
be described in Section 6. In this case, routines of module 6

will be invoked almost completely transparently to the appli-
cation program.

Every optimized image processing algorithm inside the
library module 7 is organized in a systematic manner. At
the current, quite early stage of the project (April 2006), ap-
proximately 30 image processing algorithms are realized this
way, but this number is rapidly increasing. The lower line of
blocks in Figure 5 shows the components that make up one
PfeLib algorithm. It is very important to give users of PfeLib
the opportunity to extend the library with additional func-
tions. So the methodology presented in Section 4.3 can be
applied in the same way for any of the following cases.

(a) The designer of an application that uses PfeLib and
who needs an additional function that is not yet inside
of PfeLib.

(b) A programmer who intentionally wants to add a new
algorithm into PfeLib.

(c) Anyone who wants to realize a performance-optimized
version of an algorithm for a certain hardware plat-
form that currently exists only in a nonoptimized,
generic version.

As an example, we will now create a new algorithm called
PfeFoo() that will be implemented using our library frame-
work. All components that belong to PfeFoo() are depicted
in the lower third of Figure 5.

4.3. Components of a new PfeLib algorithm
under development

Module 8 with the suffix “ t” is a test program that is ex-
clusively dedicated to this algorithm. It manages reading of
input and writing of result images from/to PfeRtdxHost. It
also includes a test driver that calls the algorithm via H©.
The number of CPU cycles that are needed for processing
PfeFoo() is tracked by a timing utility. Within the test pro-
gram it is also possible to perform the test runs under various
memory configurations to gain insight about the effective-
ness of, for example, L2 cache or the ROS-DMA method.

Module 9 , PfeFoo.c, contains two functions. Firstly a
so-called API-function and secondly a generic implementa-
tion of the so-called kernel function which is also called the
functional behavior. The API function is the one that is actu-
ally called from within an application and therefore it is the
only function that has to be visible from the application pro-
grammer’s point of view. It does not contain the implemen-
tation of the algorithm itself. In fact it provides a unique ap-
plication program interface (API) among several platform-
specific implementations of the algorithm. At first it makes
some validity checks of the passed function arguments. Then
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Figure 5: Framework of PfeLib.

it dispatches the program flow to the proper implementation
(this happens already at compile time) and furthermore it
decides whether to call the kernel function once directly or
repeatedly in a loop within a ROS-DMA sequence (this deci-
sion is done at runtime). In the latter case, ROS-DMA sup-
port routines are used ( L©). Generally, an API-function con-
sists only of few lines of code.

The second function in PfeFoo.c is the functional be-
havior. As it is an implementation of the kernel function
for this algorithm, it is suffixed with “−k.” It is a nonopti-
mized ANSI-C implementation of the algorithm that can be
compiled at any platform. The functional behavior is not in-
tended to run fast but it will provide a reference implemen-
tation of the algorithm in a correct and easy to read way. If
an optimized and platform-specific kernel function like 10

and 11 is not yet available, or if it is explicitly intended to use
the functional behavior, it is called from the API-function
via I©. At this stage the algorithm PfeFoo() can already
be tested for functional correctness and it can be used by
applications—in this case the runtime performance is not
important.

Finally, the remaining modules 10 and 11 are perform-
ance-optimized versions of the kernel function for specific

platforms. Our example in Figure 5 shows one for TI’s
TMS320C64x DSP platform and one for WIN32. They are
called from the API-function via J© or K©. The DSP version
10 contains code that resulted from a similar optimization
procedure as described in Section 5. We will see there that
the execution speed of the optimized version can be much
faster, when compared to the functional behavior code. But
usually such code uses constructs such as compiler intrinsics
or inline assembly that make it incompatible to other plat-
forms. An implementation completely in assembler is also
possible. A last item inside of PfeFoo C64x k.c has to be
explained, namely, the execution time estimation parameters
k0, k1, and k2. These parameters enable execution time esti-
mates of the kernel function and thus are vital information
for the ROS-DMA logic. Their exact meaning is described in
[1].

Block 11 in Figure 5 is an example for a kernel function
on the WIN32 platform when a corresponding function is
already available in the ippIP. In this case the kernel function
simply acts as wrapper to that ippIP function.

It has proved to be very practical to prepare a set of tem-
plate files for the modules 8 , 9 , 10 , and 11 , that contain
a code skeleton with dummy function names. This set of
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template files can additionally contain project- or makefiles
for the test programs. Creating a new PfeLib algorithm can
then be done by copying and renaming the files and re-
placing the dummy function name with the desired one.
This all can be automated, for example, by scripts. The re-
maining task is writing the functional behavior and mak-
ing some additional modifications if necessary. Therefore,
we conclude that adding new functionality to PfeLib can
be done rather quickly. Creating a highly performance op-
timized kernel function is more a matter of expertise about
a certain hardware platform, and that may take some more
effort.

5. PERFORMANCE OPTIMIZATIONS FOR
THE C6000 DSP PLATFORM

Although TI’s C compiler has sophisticated optimization ca-
pabilities [13], programs generated from ordinary C code
often suffer from poor performance. The goal of perfor-
mance optimizations in C is therefore either to reformu-
late algorithms in such a way that they have less computa-
tional strength or to remove constructs that are hindering
the compiler in performing better optimizations. We want
to find clues about how much difference in execution speed
may exist between an ordinary implementation and another
one that takes into consideration some specifics of the com-
piler and the hardware architecture. Therefore, we will de-
scribe typical optimization procedures for two image pro-
cessing functions. A nonoptimized, generic implementation
of an algorithm in ANSI-C, called functional behavior, is used
as a starting point for each function. Then, optimizations are
applied in several iterations and their impact is analyzed by
measuring the execution times.

Measurement of execution time is done by using one of
the hardware timers of the processors. These timers are also
modeled by TI’s Device Cycle Accurate Simulators and there-
fore we are able to obtain reliable cycle counts in the same
way on the simulator as well as on the hardware itself.

During the optimizations described in this section all
programs were run in a memory configuration with all the
code and data in internal RAM, which is the optimal setting
for highest performance.

5.1. Bayer filter demosaicing

The first algorithm to be optimized is a Bayer filter demosaic-
ing function with linear interpolation. Bayer filters are com-
monly used in single sensor color cameras to add color in-
formation to the raw pixel data produced by the sensor [19].
Figure 6 shows a typical filter pattern where every pixel is
covered with a filter that is permeable for light with one of
the base colors red, green, or blue. To get the RGB values for
a destination pixel out of the raw image, the color ID of the
current pixel has to be identified. The assignment of the color
ID to a pixel is done according to Figure 6.

Equations (1)–(4) (according to [20]) define the behavior
of the demosaicing algorithm. Missing color information is
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are sensitive for red, g green, and b blue light only.

interpolated from neighboring pixels depending on the col-
orID of the current pixel

colID = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Rx,y = px,y ,

Gx,y =
px−1,y + px+1,y + px,y−1 + px,y+1

4
,

Bx,y =
px−1,y−1 +px+1,y−1 +px−1,y+1 + px+1,y−1

4
,

(1)

colID = 1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Rx,y =
px,y−1 + px,y+1

2
,

Gx,y = px,y ,

Bx,y =
px−1,y + px+1,y

2
,

(2)

colID = 2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Rx,y =
px−1,y + px+1,y

2
,

Gx,y = px,y ,

Bx,y =
px,y−1 + px,y+1

2
,

(3)

colID = 3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Rx,y =
px−1,y−1 +px+1,y−1 +px−1,y+1 + px+1,y−1

4
,

Gx,y =
px−1,y + px+1,y + px,y−1 + px,y+1

4
,

Bx,y = px,y.

(4)

At first, a straight forward implementation of that al-
gorithm is written in C. Algorithm 1 outlines this using
of a very simplified, C-style pseudocode. It is important
to mention that the support functions PfeGetPixIndex()
for reading a raw pixel value from the source image and
PfeSetPixRGB() for assigning a color to a destination pixel
are used by this implementation.

Test runs yielded a performance value of 257 cycles
per pixel. Although the compiler options were set to −o2
(optimization at function level), and optimization setting to
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function PfeBayerLinear()

{
for y = 0 to image height // loop over rows

{
for x = 0 to image width // loop over pixels of row

{
colID = colorID according to current x and y

switch (colID)

{
case 0:

RGB = evaluation of (1) using

PfeGetPixIndex()

case 1:

RGB = evaluation of (2) using

PfeGetPixIndex()

case 2:

RGB = evaluation of (3) using

PfeGetPixIndex()

case 3:

RGB = evaluation of (4) using

PfeGetPixIndex()

}
// set RGB value to the destination pixel

PfeSetPixRGB(x, y,RGB);

}
}

}

Algorithm 1: Pseudocode of first implementation.

trade speed for code size was turned on (−ms), the result was
very disappointing. But it is a starting point for repeated an-
alyzing of the reasons for the poor execution speed and the
resulting improvements.

The following optimization steps for this function have
been applied for the TMS320C6713 DSP.

(1) Subfunction inlining

Analyzing the number of occurring calls to subfunctions
gives an average count of seven calls of PfeGetPixIndex()
and one call of PfeSetPixRGB() per pixel. Calling subfunc-
tions introduces a number of overheads that can be avoided if
function inlining is forced. The optimizing compiler is able
to perform an automatic function inlining, but there exist
several conditions that potentially disable function inlining.
During this optimization step the subfunctions were explic-
itly declared as inline and their implementation was moved
to a header file to enable function inlining across different
source modules. As expected, this measure significantly re-
duced the execution time. Achieved speedup: 3.82.

(2) Direct access to pixel buffers

During this step the subfunction calls are eliminated alto-
gether, especially because the repeated references to the now
inlined PfeGetPixIndex() cause a number of address cal-
culations to be performed redundantly. Now, for every it-
eration of the outer loop over the pixel rows, pointers to
the current pixel row and the adjacent rows above and be-
low that are calculated and repeatedly used while iterating
over the pixels of one row. Accessing pixel values can now
be done with a single de-referencing operation similar to
pixelval=pLine[x]. Achieved speedup: 1.84.

(3) Elimination of branches in inner loop

One of the most powerful optimization measures that a com-
piler can apply on VLIW architectures is software pipelining
of the inner loop. Unfortunately, there exist many reasons
why the compiler is prevented from converting a sequen-
tial loop code into a software pipelined one. In the current
example, the hindering element is the switch statement that
produces branches in the compiled code for the inner loop.
During this optimization step the switch statement was elim-
inated as follows. Figure 6 shows that there are two kinds of
pixel rows: the rows containing red-sensitive pixels (they have
even y-coordinates), and the rows with blue-sensitive pixels
which have odd y-coordinates. Within each row, if pixels are
traversed in an order of increasing x-coordinates, always the
same sequence of pixel-pairs occurs: either rg–rg–rg . . . , or
gb–gb–gb . . . , respectively. This pattern can be used to cre-
ate different inner loops for the even and the odd rows. Each
inner loop walks over pairs of pixels which are processed se-
quentially and therefore no conditional code appears any-
more within the inner loop. Achieved speedup: 1.46.

(4) The restrict keyword

The demosaicing algorithm must load a number of pixel val-
ues into registers in order to calculate the color of a pixel.
Many of them could be reused for calculating the next output
pixel if their values are kept in their registers. The reason why
the compiler does not work as expected is a problem called
pointer aliasing [13, pages 3–38]. The compiler must assume
that potentially more than one pointer variables reference the
same memory location. Between two reads of the content of
the same memory location it could have been changed due
to a write access over another (aliased) pointer. Compilers
must always be conservative, that is, they must assume the
worst cases to keep functional correctness. In our example
pointer aliasing need not to be considered, so the only thing
that must be done is to tell the compiler that specific point-
ers are definitely not aliased. This can be achieved explicitly
by declaring pointer variables with the restrict-keyword
like “UINT8 ∗ restrict pLine”. Achieved speedup: 1.97.

The reported test runs for this algorithm were made
on a C6713 DSP with 225 MHz. The achieved execution
time for the linear Bayer filter demosaicing of 6.3 cycles per
pixel yields a computation time for one full frame of our
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Figure 7: Optimization summary: linear Bayer filter demosaicing.

camera (656 × 490 pixel) of approximately 9 ms with the
C6713@225 MHz. The C6416@1 GHz (the cycle count per
pixel is again slightly lower on the C6416 as compared to the
C6713) would require about 2 ms. Of course, one could think
about making this implementation of the algorithm even
faster. It is always a question of the cost-benefit ratio. But
in this case it was decided to stop optimization at this stage.
Figure 7 illustrates the advances that were achieved in terms
of cycles per pixel. Smaller values mean faster execution.

5.2. General linear filter with rectangularmask

We will now show the impact of further optimization strate-
gies on a function that performs a general linear filtering with
a rectangular filter mask and a common divisor. A number of
commonly used operations can be realized with general lin-
ear filtering of images, like image smoothing and sharpening,
Sobel or Prewitt edge detection (first derivative operators),
Laplacian filters (2nd derivative operator) and many other
[21]. The filter mask size of this function and its coefficient
values are arbitrary at runtime. Source and destination data
are 8-bit grayscale pixel images. The function works accord-
ing to (5), where Sx,y and Dx,y are pixel values of the source
and destination image, respectively, and x and y are spatial
coordinates of a pixel. Mi, j are the filter mask coefficients,
and w and h denote the width and height of the filter mask

Dx,y = 1
divisor

h−1∑

j=0

w−1∑

i=0

(
Sx−xa+i,y−ya+ j ·Mi, j

)
. (5)

Again, a generic ANSI-C formulation of the algo-
rithm served as a starting point for performance optimiza-
tions. As a result of the former optimization procedure of
PfeBayerLinear() the Set/GetPix() functions are already
forced to be inlined. A test run on the TMS320C6416 DSP
with a filter mask size of 3 × 3 takes 242 cycles per pixel. So
we start a similar optimization procedure as before with the
following steps.

(1) Direct buffer access and branch elimination

As we learned from the previous example, calls into the
subfunctions for accessing to pixel values should be elimi-
nated. This was done here in a similar way. Additionally, the

saturating arithmetic was realized more efficiently without a
branch. Achieved speedup: 1.35.

(2) Loop coalescing

The innermost loop of this algorithm iterates over the width
of the filter mask—usually a rather small figure, in the cur-
rent example it is three. This is a situation where software
pipelining achieves almost no advantage. Furthermore, be-
cause software pipelining is only possible for the innermost
loop, this powerful instrument is almost useless. A possible
solution is loop coalescing. Instead of nested loops that iter-
ate hierarchically over the height and width of the filter mask,
only one loop iterates height · width times. Software pipelin-
ing this single loop yields much better efficiency. Achieved
speedup: 2.15.

(3) Division by reciprocal multiplication

For each destination pixel, a division by the common divi-
sor must be performed. The processor used has no dedicated
HW-unit for integer division. Thus, divisions are a costly op-
eration that take approximately 18 ∼ 42 cycles on C6000
DSPs. As many values have to be divided by the same di-
visor, a method of division by reciprocal multiplication can
be applied. The special task here is to calculate the quotient
of two signed 16-bit integers and to return the result sat-
urated to an unsigned 8-bit value. The fact that only the
saturated 8-bit result is needed can be exploited for a quite
fast implementation on the C64x. We evolved the procedure
shown in Algorithm 2 for calculating the reciprocal value.
This reciprocal value must be calculated only once in ad-
vance. Afterwards, every division with the same divisor in-
cluding a subsequent saturation to [0, 255] can be done by
the sequence shown in Algorithm 3. The C64x specific in-
trinsic mpylir() performs a signed 16- by 32-bit multiply
including a shift-right of the result by 15 bits. spacku4()
does the saturation. This method was proved to be correct
with exhaustive testing in the range of [−32738, 32737] for
both, dividend and divisor in any combination. Achieved
speedup: 1.38.

(4) Packed data processing and loop unrolling

TI’s C-compiler enables access to very specialized CPU in-
structions via compiler intrinsics. This opens possibilities that
are usually only available when programming assembler. The
advantages are that the programmer can stay within the high
level language and the optimization capabilities of the C
compiler are not affected. Among these intrinsics there are
many SIMD (single instruction-multiple data) instructions
that can process multiple small, for example, 8- bit wide, data
values within one cycle when they are packed into one 32-
bit register. This packed data processing additionally raises
the throughput of the CPU. Secondly, feedback generated by
the compiler was used to support its attempts on software
pipelining by applying some sort of loop unrolling. Achieved
speedup: 4.07.
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// prepare fast integer division: calc. reciprocal

if (i32Divisor == 1)

i32Recipr = INT MAX; // biggest signed int

else if (i32Divisor == −1)

i32Reciprocal = INT MIN; // smallest signed int

else if (i32Divisor > 0)

i32Recipr = ((UINT32)0× 1 << 31)/i32Divisor + 1;

else

i32Recipr = −(((UINT32)0× 1<<31)/-i32Divisor+1);

Algorithm 2

// =>(dividend ∗ reciprocal) >> 15

tmp = mpylir(dividend, i32Reciprocal);

// shift right and saturate to 8 u

quotient sat = spacku4 (0, tmp >> 16);

Algorithm 3

Figure 8 summarizes the optimization steps in terms of
consumed processor cycles per image pixel for a 512 pixel
wide test image with a 3× 3 filter mask. The overall achieved
enhancement from the functional behavior to the final ver-
sion is a factor of 16.33. This final version is still written in C,
but the code has become platform-dependent because of the
heavy use of compiler intrinsics.

6. DMA BUFFERING

In the field of embedded computer vision, problems will al-
most certainly arise from the limitations of on-chip memory.
Depending on the processor model, in many cases not even
one complete image frame fits into IRAM. What is needed
within PfeLib is a technique that provides the fastest process-
ing possible, even if image data resides in the much slower
external memory.

After an analysis of the problem, a method for DMA
(DMA—direct memory access) double buffering in the im-
age processing domain was developed. We call this technique
resource optimized slicing (ROS-DMA). It is intended to be a
replacement for using level 2 cache in order to gain better
performance. An in-depth presentation of this method was
published in [1], so we will give only a very brief overview
about it here.

The basic idea of ROS-DMA is that images are divided
into slices which are transferred from external to internal
memory by DMA. The processing in IRAM can be done in
parallel to the DMA transfers. Efficient timing is achieved by
considering processor-, as well as algorithm-specific param-
eters. Figure 9 illustrates the underlying concept.

The ROS-DMA method of double buffering within Pfe-
Lib has some special properties.

(i) It is a systematic approach for DMA double buffer-
ing in the image processing domain—the ROS support
routines can be reused for various image processing
functions.

(ii) The size of the image slices to be transferred is made
variable. A dedicated algorithm computes the optimal
height for the first slice (h f in Figure 9), the “middle”
slices hm, and for the last slice hl. Therefore, very good
performance can be achieved over a wide range of im-
age dimensions.

(iii) The method is superior in runtime performance com-
pared to using L2 cache in almost any case.

(iv) ROS-DMA is better suited for predicting execution
times, which is important for real-time applications.

(v) It is easy to use ROS-DMA within an application. It
takes not much more than one additional function ar-
gument for the call to the PfeLib algorithm.

A case study with the already known performance-optimized
PfeLib function PfeBayerLinearR() will give an insight
about the efficiency of this method. Various test runs have
been done on the C6416 device cycle accurate simulator with
this function. For each run, a different memory configura-
tion was selected and the number of used processor cycles
was counted. Table 2 summarizes the results.

The first configuration, IRAM, is the fastest one, but it is
often infeasible in practice because of the small size of on-
chip memories of embedded systems. The result of the sec-
ond configuration, ERAM, is very disappointing. At 860 cy-
cles per pixel the operation has become so slow that this con-
figuration is not applicable in practice. Thus, 64 Kbyte of in-
ternal RAM were configured to serve as L2 cache in the third
configuration of Table 2. Although the L2CACHE configu-
ration performs much better than the former ERAM config,
the achieved performance of 18.8 cycles per pixel is still more
than three times slower than the IRAM configuration. In the
final test run the ROS-DMA method was activated with an
intermediate IRAM buffer of 64 Kbyte. Although image data
still resided in ERAM, the operation could be performed al-
most as fast as in the first run in IRAM configuration.

The ROS-DMA mode of processing within PfeLib can
be easily employed for a certain class of image processing
operations. The most important thing is that the mapping
between source and destination pixels is trivial. If an image
processing function meets this requirement, the method is
relatively flexible and supports functions with the following
source and destination image configurations.

(1S) Operation takes one source image, where only read
accesses will occur. No destination image is gener-
ated (e.g., the result is a scalar value).

(2S) Two source images, no destination image. An exam-
ple for this type could be an SSD—(sum of squared
differences) function.

(IP) In-place operation. Source and destination images
are the same. The only operand image will face both
read and write accesses.

(1S1D) Operation with one source and one destination
image.
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Figure 8: Optimization summary: general linear filtering with common divisor and rectangular filter mask.

Table 2: Memory configuration case study.

Configuration Description Performance (cycles/pixela)

IRAM All framebuffers in internal memory. L2-cache is not activated. 6.96

ERAM Same as IRAM, despite that the framebuffers reside now in external memory. 847

L2 CACHE
Same as ERAM, but 64 Kbyte of internal memory are configured as
L2-cache. Cache was reset to a clean state before starting the test run.

19.2

ROS-DMA
Same as ERAM, but 64 Kbyte of internal memory are for an intermediate
buffer of the ROS-DMA double-buffering method within PfeLib

7.36

aPfeBayerLinearR(), 256× 256 pixels, 6416 dev. cyc. acc. simulator, CPU@1 GHz, EMIF@125 MHz.

h f

hm

hl

Source image
in ERAM

Intermediate buffer-
images in IRAM Dest. image

in ERAM

R-DMA W-DMA
A A’

B B’

Process
(kernel fct.)

Figure 9: Image slicing with a 1S1D operation.

(2S1D) Operation with two source and one destination
image(s).

For the cases listed above the pixel data types (bits per pixel)
may vary. Furthermore, operating on regions of interest
(ROI) as well as neighborhood operations, like filters, are
supported by ROS-DMA.

7. PERFORMANCE TEST RESULTS

This section presents several results of performance tests that
have been done with PfeLib. The first part shows diagrams
of execution times on a DSP platform over various image di-
mensions under several memory configurations.

The second part of this section provides a brief cross-
platform comparison between PfeLib routines on a C6416
DSP and corresponding routines of the ippIP on an Intel PC
platform.

7.1. Differentmemory configurations on C6416

We created a test application for the DSP that allows auto-
matic execution of PfeLib functions on various image dimen-
sions under several memory configurations. PfeLib features
switching between these configurations during runtime. The
metrics used are cycles per pixel, so a lower value means faster
execution. Three memory configurations are plotted.

IRAM with all data in on-chip memory. In this configu-
ration the image dimensions are restricted according to the
available on-chip memory.

L2CACHE with data in ERAM and 64 Kbyte of on-chip
memory configured as L2 cache. L2 cache is initialized to a
clean state by performing a write-back and invalidate com-
mand just before the image processing function was started.

ROS-DMA also with data in ERAM, but with DMA buff-
ering activated instead of L2 cache.

All tests were executed on the C6416 DSK board with
1 GHz running on real hardware. The tests assume a single
task environment, no interrupts and no concurrent memory
accesses. Figure 10 shows the performance diagrams of some
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configuration for L2CACHE, although ROS-DMA still has an advan-
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(e) A 1S operation, where ROS-DMA is again significantly faster than
L2CACHE. For very small image sizes ROS-DMA is even faster than
IRAM because it implicitly converts a 32 × 32 image into a 1024 × 1
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Figure 10: Commented performance test results on the C6416 DSK.
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Figure 11: Performance comparison PfeLib—ippIP.

algorithms of PfeLib. The caption texts of the subfigures give
some interpretation on the results.

7.2. Performance comparison PfeLib—ippIP

Finally, we want to compare the performance of PfeLib on
the DSP platform with the Intel Integrated Performance
Primitives (ippIP) library of version 4.1.2 [6], which is only
available on the PC platform. Algorithms have been chosen
that exist for both libraries. We wanted to compare platforms
with similar clock frequencies, therefore we chose an Intel
Pentium 3 PC at 1 GHz as a basis of comparison for the
C6416 DSK with 1 GHz. The program used on the PC for
testing is the demo program shipped with the ippIP called
ippiDemo.exe (V.4.1).

In some aspect it is problematic to compare a DSP plat-
form with desktop PC processors. Today there exist faster
PCs and a state of the art PC with > 3 GHz will probably
outperform PfeLib on a C6416 DSP for many situations. But
the power dissipation of such a desktop CPU is almost two
orders of magnitude higher than that of the DSP used. Ad-
ditionally, PC processors contain specific instruction set ex-
tensions such as SSE which also give them powerful signal
processing capabilities. Especially the ippIP routines are of-
ten hand-optimized assembly code that make heavy use of
SSE instructions.

Our intention was to give an overall comparison in terms
of the “cycle efficiency” of different image processing imple-
mentations on different hardware platforms. We will con-
sider the diagram in Figure 11 in this context. Figure 11 plots
the ratio between the achieved frame rates of various func-
tions. On the DSP, the fastest possible memory configuration
was used (mostly IRAM). On the PC, which relies on its data
caches, only average performance values are given, so in the
worst case an operation on the PC may take significantly
longer. It can be seen that the performance ratio varies much
among different functions. With very simple functions it can
have already a big influence whether a target platform offers
one single “good fitting” SIMD instruction for the given task.
This may explain the large interval of occurring performance
ratios in Figure 11 ranging from 0.12 to 9.65.

8. CONCLUSION AND FUTUREWORK

PfeLib is a software library that incorporates a number of
new concepts and developments which in sum make up the
novelty of the whole approach in the field of embedded im-
age processing and computer vision. The framework of the
library is designed to support multiple (embedded-) plat-
forms as well as it provides the possibility for user-specific
extensions. This kind of open architecture gives us hope that
PfeLib will find many applications among developers of em-
bedded computer vision solutions.

An early requirement was to supplement the develop-
ment environment with PfeRtdxHost in order to ease soft-
ware development on an embedded vision platform. We
gave an example where PfeRtdxHost is able to uncover an
implementation error with its visual viewing modes that
could hardly be found with bitwise comparison against a ref-
erence image.

The feasibility of innovative computer vision algorithms
often depends on whether they can be realized on small and
power-efficient embedded systems. CV is usually a very per-
formance critical field of application and it is of great im-
portance to exploit the potential of the target processor as
good as possible. We encountered situations where the cho-
sen DSP platform performed relatively poor when we exe-
cuted image processing functions coded in generic ANSI C.
On the other hand we could achieve very remarkable per-
formance enhancements when we stepped through an itera-
tive optimization procedure that addressed certain specifics
of the target platform. Therefore, we believe that it is one of
PfeLib’s strengths that its framework is designed to provide
both, a platform independent API as well as platform spe-
cific performance optimizations.

A solution for the problem of slow external memories
had to be found, because the successful optimization tech-
niques that were applied to a kernel routine would have
become useless in real-world applications when image data
must be stored in external memory. Therefore, the novel
ROS-DMA method for DMA double buffering was devel-
oped and integrated into PfeLib. The modularity of ROS-
DMA makes it possible that double buffering can easily be
used by newly created image processing functions, because
the concept separates code for the memory management
from the image processing code. It could be shown that the
ROS-DMA method enables faster image processing than us-
ing level 2 cache under almost any circumstances.

The challenging work on PfeLib offers many aspects that
are worth for further investigations and developments. We
want to give here only a selection of the most important
items.

(i) Integrating additional algorithms into PfeLib

We think that the currently available set of image process-
ing functions inside of PfeLib enabled a good proof of the
overall concept. It will be necessary to add many additional
functions to give an application developer a basic set of
high-performance functions. On the other hand, the variety
of possible image processing operations is so large that no
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library can cover everything. Therefore, PfeLib will always be
in a state of expansion and it will contain a mixture of algo-
rithms that exist only in a nonoptimized functional behav-
ior version while others are already extensively optimized for
certain target platforms.

(ii) Adding execution time estimation functionality

A possible addition to PfeLib would be a function that re-
turns an a priori estimation about the needed CPU cycles for
a certain image processing operation. This should be possible
with good accuracy when PfeLib is used in IRAM as well as in
ROS-DMA memory configuration. Such an extension would
be very helpful in realizing dependable embedded real-time
vision systems that use dynamic scheduling.

(iii) Extending PfeRtdxHost

Currently, PfeRtdxHost supports only TI DSPs via RTDX.
First activities have already been started to extend this tool
for other data transfer mechanisms for other target plat-
forms. For instance, TCP sockets could enable image data
transfer to embedded PC platforms.

(iv) Extension of ROS-DMA

We showed that the ROS-DMA method is very effective on
the TI DSP platform. But image processing operations with
a nontrivial mapping between source and destination pixels
are currently not supported by ROS-DMA. For example,
such operations are geometric transformations like warping
functions. For these cases it would be necessary to transfer
image tiles instead of slices between external and internal
memory. Another interesting task would be to port the ex-
isting ROS-DMA components to other embedded platforms
with a similar memory architecture.
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