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Abstract

The simultaneous localisation and mapping (SLAM) algorithm has drawn increasing interests in autonomous robotic
systems. However, SLAM has not been widely explored in embedded system design spaces yet due to the limitation of
processing recourses in embedded systems. Especially when landmarks are not identifiable, the amount of computer
processing will dramatically increase due to unknown data association. In this work, we propose an intelligible SLAM
solution for an embedded processing platform to reduce computer processing time using a low-variance resampling
technique. Our prototype includes a low-cost pixy camera, a Robot kit with L298N motor board and Raspberry Pi V2.0.
Our prototype is able to recognise artificial landmarks in a real environment with an average 75% of identified
landmarks in corner detection and corridor detection with only average 1.14 W.
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1 Introduction

The simultaneous localisation and mapping (SLAM)
algorithm has been developed to meet the challenge of
building and updating a map of the surroundings in
moving mobile robots, which includes mapping robots
poses without prior knowledge of their surroundings. It
has the advantage of providing knowledge about the ro-
bots’ own pose and representation of the environment
using extensive computational resources to map robots’
surroundings and simultaneously perform localisation
[4, 5]. To enable a robot to navigate through an environ-
ment autonomously, an estimation of its position within
a reference system or map could be obtained from
sensors, such as dead-reckoning sensors, laser sensors,
radar sensor or 3D camera sensors [6], GPS (Global
Positioning System) [1, 3, 10, 19, 30]. However, those
sensors are either expensive or unsuitable for small
robots because of size, weight or power efficiency. For
example, a GPS can be used to provide the solution for
the global localisation. However, at some places, GPS is
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not possible to use it, such as in caves, underwater or
places where no signal can be obtained [1].

Currently, researchers have moved into alternative af-
fordable solutions, such as ultrasonic sensors or infrared
sensors. However, those types of sensors do not provide
accurate odometry information due to the relatively low
signal-to-noise ratio in low-cost sensors compare with
expensive sensors [17]. Furthermore, most of the low-
cost sensors that were used to estimate the current
position of the mobile robot tend to accumulate errors
over time (known as statistically dependent) due to the
noise generated intrinsically in the sensors. Recently, the
SLAM community moves towards image sensors (refer
to Visual SLAM), as they are affordable and able to
provide a large amount of information compare with
other sensors such as laser range finders. In addition, it
can be applied to mobile robots that have smaller sizes,
lower weight and less power consumption [8, 24] than
industrial robots. At the same time, it presents great
challenges due to the computational resource needed for
the identification of landmarks in variable environments.
Hence, SLAM presents an emerging challenge to be imple-
mented with low-cost embedded systems, which are the
most common platform for pervasive computing products.
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In this work, we combined visual SLAM and visual
odometry algorithm on a low-cost embedded platform
to demonstrate how a mobile robot navigating using
artificial landmarks in an indoor environment. Our
proposed method can lead to fast landmark detection
with a reduced computational complexity using a low-
variance resampling, which result that the sensor data
measurement is kept outside of the main process loop
during estimating the locations of the landmark.

2 Related work

In order to implement a cheap and small SLAM system,
monocular visual SLAM solutions were invented to use
only single image sensor [24]. However, the algorithms
needed for monocular SLAM are much more complex
since depth information cannot be directly inferred from
a single frame captured from a single camera. Normally,
each frame needs to be processed, even when no rele-
vant information is provided by new frames. Further-
more, these solutions also present an accumulation error
over time due to nonlinear Kalman filter related models.

The best-known implementation of monocular SLAM
using a keyframe-based approach is PTAM [14]. The
keyframe-based technique is used to select some of the
frames with predefined features to save computational
power. In PTAM system, a parallel processing with
high-performance computing system was used for
obtaining robot’s pose and the location mapping, which
is unsuitable for low-cost and low-power embedded
systems due to power consumption issues.

Other implementations of monocular SLAM are also
based on obtaining abstract regions of an image in each
frame that are more useful for reconstruction of location
than robots navigation [7, 21, 27]. Some of the
algorithms for the detection of regions are SIFT, BRIEF,
FREAK, SURF and ORB [11]. However, all these feature
extraction approaches present the problem of data
association in SLAM [21].

Data association problem is how to decide which noisy
measurement corresponds to which feature of the map.
Noise and partial observability can make the relationship
between measurements and the model highly ambigu-
ous. This problem is further complicated by considering
the possible existence of previously unknown features in
the map and the possibility of spurious measurements.
For example, multiple measurements over time are
obtained by a sensor, it is needed to associate which
measurement belongs to a specific landmark. The
methods for the solution of data association are based
on statistical procedures such as Nearest Neighbor (NN)
[2] or Joint Compatibility Branch and Bound (JCBB)
[22, 25]. One way to solve associate measurements with
low computational complexity is using artificial landmarks
that consist the modification of environment features [26].

Page 2 of 11

Several other studies tackle the problem by minimising
the ambiguity of the measurements in a mapped environ-
ment [18, 25, 29, 32]. However, in these solutions, uncer-
tainty in the measurements is taken before classifying a
landmark, which results in the incorporation on specific
characteristics of the sensor implemented.

Other studies present the imposition of physical artificial
landmarks in an environment, such as QR codes or fiducial
markers, where uncertainties of both measurements and
data association reduced [15, 23, 31, 32]. Llofriu et al. dem-
onstrated an embedded solution of SLAM using artificial
landmarks [16], such as boxes with different colours. How-
ever, due to slow measurements presented by the image
sensor, it might not have enough updates of the particle,
adding uncertainty in the location. Another drawback is
that the identification of artificial landmarks used in this
study is based on a measurement likelihood that aggregates
to the possibility of introducing wrong data association.

3 Methods and materials

Based on FastSLAM2.0 method, we develop a low-variance
resampling method with a multimodal design style based
on embedded system platforms [20]. The multimodal
FastSLAM framework has been implemented in python,
and its source code is released for public use in an online
repository (see details in Appendix 3).

3.1 Adapted FastSLAM algorithm

FastSLAM?2.0 used a particle filter to model the uncer-
tainty of the robot pose [20]. It defines the posterior
SLAM as the product between the posterior of the robot
pose, and the posterior of the landmarks is conditioned
by the robot path, presented in Fig. 1. The posterior is
determined by a Dynamic Bayesian Networks (Eq. 1)
and a Rao-Blackwell particle filter [9, 12, 13]. The pos-
terior of robot path is obtained by the control vector
(u,), the data association (7,) and landmarks (z,) [20].

p(xt79t|nt;utazt) :P(xt|nt;ut,zt)P(ethUt;Zt,xt)

(1)

As we discussed in the last section about the data asso-
ciation issues in the SLAM algorithm, we adapted a sim-
ple data association approach into three main SLAM
steps: the prediction step for calculating the current state
of particles in motion model; the partial diversity updating
step for recalculating the possibility of particles; the
resampling step for deleting probable trajectories.

In prediction step, we replaced the probability of particle
with a given id. The associations between particles and ids
are made during the landmark detection. Then each par-
ticle stores its own belief of the landmarks, represented by
a Gaussian distribution, and the distribution is updated
using a Kalman filter on each particle independently. As



Jiménez Serrata et al. EURASIP Journal on Embedded Systems (2017) 2017:27

Page 3 of 11

Fig. 1 Dynamic Bayesian Network for SLAM

illustrated in Fig. 2, each particle information is repre-
sented with each landmark by ®,, with distribution (y, %),
characterised by a mean (y,) and covariance (Z,,).

The new sample of the robot path is represented by a pro-
posal distribution given the visual measurements and con-
trol vectors. Each particle obtained a new sample is based
on a prediction using a motion model, which is described in
Eq. (2). The control vector is composed of the linear

velocity v and the angular velocity w. The pose of the robot
is represented by the components of the position in x, y
and the orientation (6) of the robot after a movement.
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Fig. 2 Information of landmarks contains in particles
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After obtaining the new sample of the position and a
measurement, each particle must update their beliefs about
the landmarks. This is performed using the observation
model, defined in Eq. (3). In addition, the control vector
frequency is higher than the frequency of measurement in
order to increase the diversity of the particles.

0= (’ CF’“”) (3)
rsing

In this work, we used an inverse model to estimate the

Jacobian on the Kalman filter of each particle. The

inverse matrix model is presented in Eq. (4). The vari-

able V represents a vector to a landmark using the mea-
sured distance, represented by the variable r.

Vx Vy
P O,—x
— r r — x
G= -Vy Vx V= (@y_y) (4)
22

In the resampling step, original FastSLAM2.0 is based
on a Rao-Blackwell factorisation; therefore, it is
necessary to do a resample of the particles in order to
“keep alive” the particle with higher probabilities. To
reduce computational costs, we adopted a low-variance
resample method [28]. Based on the low-variance
resample, we select the most likely particle after applying
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a minimisation of the sum of the weights of the particles
with respect to a standard uniform distribution. The
adapted SLAM process using the low-variance resample
method can be found in Fig. 3.

3.2 Landmark detection

In order to represent the landmarks into a coordinate
plane in the observation model, we just measure the
distance and the angle from robot to landmark,
represented by the variable r (distance) and ¢ (angle). In
the monocular visual sensor scenario, we obtained a
relative distance from the camera to an object by know-
ing the dimensions of the object and calculate the
distance using the epipolar geometry.

In order to calculate the distance, we formulated a
relationship between the focal length (f) and the dis-
tance to a landmark (7). As illustrated in Fig. 4, the
height of the landmark is represented by h_r; the height
of the landmark in the frame of the camera is repre-
sented by h_s. The relationship between the heights is
shown in Eq. (5). This equation describes the relation-
ship between the height of the object and the height of
the sensor, using the total height of the image frame
(I_h), and the height of the sensor (S_h), being these
proportional to the relationship between the focal
length and the desired distance.

Algorithm SLAM(uy, x¢_1 z¢, ID, landmarks, particle_set):

If ID not in landmarks:

Add ID to landmarks

forp = 1to length(particle_set) do:
Sample(us, x¢—1)
end

forz = 1to length(Zt) do:

compute_weights(particle_set, €)
end
particle_set = n(particle_set)

If Zt:

return particle_set

// add ID to list of seen landmarks

Zt = < zy, landmarks.index(ID) > // getindex of landmark, data association

// Get new x; from motion model

€ = add_update(Zt, particle_set) // Add or update feature to map, return state

// assign sampling weight according to state

//Normalize particle weights

low_variance_resample(particle_set) // Create a new particle set from resample

Fig. 3 Pseudocode for our adapted SLAM Algorithm with low-variance resample
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Fig. 4 Landmark detection. a Relation of distance towards a landmark. b Relation of change in position of a camera
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Regarding the angle calculation, we assume that the
landmark is at the front of the camera, projecting a
horizontal line that forms an angle of n/2 with the object
surface, as illustrated in Fig. 4b. The camera is represented
by a three-dimensional plane (x,y,,z.) while the plane of
the image is represented by the two-dimensional coordin-
ate system (x;, ;). In a similar way, when the landmark is
out of the view field of the camera, an angle between the
distance and a delta x in the plane of the image is
estimated. As a result, due to the plane is represented as a
two-dimensional space, the change in z. of the camera
plane is not relevant, representing a point in Z plane as a
projection in the plane x.,y,. Hence, no matter the height
in the Z position at which this object is detected, the
projected point keeps on the angle described.

Moreover, the changing angle can be calculated with a
geometry relationship between the delta x and the
projection of the distance. Equation (6) is presented as
calculating of the desired angle towards a landmark. This
angle could also be calculated using vectors and finding
the angle between the vectors. The w; variable, repre-
sents the delta x, while the I,, variable is the value of the
total width of the image frame. The S,, corresponds to
the width in millimetres on the CMOS sensor in the

pixy camera. The upper bound of ration is Z— = 2.2; the

lower bound ratio is % = 2.0.

Wy

. WSSW
® aarz(f IW>,ws x| (6)

3.3 Hardware implementation

Our proposed multi-module SLAM implementation for
mobile robotic systems in embedded systems includes
three main modules: central computing node, odometry
node and image processing node for landmark detection,
as shown in Fig. 5 (Appendix 2 and 4). Our prototype
has installed two wheel encoders for the detection of
movement, a pixy camera to detect the landmarks and a

central unit, Raspberry Pj, for the execution of the SLAM
solution. The detailed schematic design can be found in
Appendix 1. The central computing node is used to calcu-
late the current state of the particle filter and estimate the
location of landmarks. The landmark node generates a
message to represent the measurement of the distance, the
direction of the distance and an ID that associate each
landmark. As a consequence, this node has the role of de-
tecting landmarks in the environment. The odometry node
sends a message to the central node every 100 ms to up-
date the position of the robot. This message contains the
linear velocity (v) and angular velocity (w) with 10 samples
per second. Both the linear velocity and the angular velocity
are calculated by the wheel encoders installed on the proto-
type. In addition, the central node can use that information
to reproduce a graphical representation of locations.

The prototype of this work uses the robot kit module with
an incremental encoder attached to each wheel. The robot
kit is controlled by an Arduino Uno, which has an output of
5 Vand can be powered directly by the robot kit and shared
with the odometry node. The DC motors have a separate
battery bank to power the HL29N driver controlled by the
Arduino. Meanwhile, pixy camera, as one of open source
and low-cost image sensor, is used for colour detection. Pixy
camera represents the Landmark Node of the system, as it
has its own memory and processor, which uses the raw
image data for the detection of coloured blocks. The reso-
lution of the images in the pixy camera is 320 x 200 (1, I},).
The artificial landmarks are detected using poles of different
colour combinations as the work presented by [16].

4 Evaluation methodology

In order to obtain empirical data from the prototype,
corner detection and corridor detection were performed
in a real-life scenario. Each experiment was repeated
three times, with the objective to assess the detection of
landmarks and obtain a location of the prototype, while
storing a map using our intelligible SLAM solution.

Due to the lack of rotational camera in our prototype,
we are unable to carry out loop-closing experiments
using our prototype. Instead, a loop-closing experiment
using our FastSLAM simulator can be viewed using the
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the prototype

Fig. 5 (a) The project prototype using a pixy camera and a rasberry Pi 2 (connection can be found in Appendix). (b) The connections for modular design in

Central Node
SLAM

Landmark Node

online link (https://youtu.be/cOghoHYNVuA). The
corridor and corner detection experiments are used to
demonstrate the robots’ pose uncertainty and the ability
to explore unknown terrain.

4.1 Corner detection
The first experiment involved the detection of a corner
using six landmarks as shown in Fig. 6. As shown in

Fig. 6a, we demonstrated the corner detection; the line in
the figure represents the path performed by the mobile
robot. Figure 6b shows the blue curve of the average tra-
jectory of particles and the red curve of the covariance of
landmarks detected. A pattern recognition was imple-
mented to detect a combination of colours in a cylinder as
a landmark. We choose a multiple colour floor in our ex-
periments to produce noise readings for the pixy camera,

Fig. 6 Corner detection experiment results. a Semi-circular path implemented to map a corner. b Simulation results
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Fig. 7 Landmark detection. a Single detection of landmark. b Parallel detection of landmark

with the purpose of evaluating how well our data associ-
ation scheme is performed. Landmarks are formed a
semi-circular path with no loop closure. In this way, it
produces an increase in the landmark’s uncertainty. As a
result, the noise produced by the floor plus the increment
in uncertainty at the trajectory, it can be detected how
well the SLAM solution discriminates the landmarks and
associates the measurements. The average processing time
for a single frame was 0.49 s. The landmarks are made of
a cylindrical shape with a diameter of 40 + 0.05 mm and a
height of 80+ 0.05 mm. In this first execution of experi-
ment I, only 66.6% of the landmarks located in the test
area were detected.

The performance of our prototype is limited by the
resolution of pixy camera and the low precision of L298
motor driver. Two landmarks were not detected since
the noise of the carpet had presented a greater influence

by colour combination with blue colour. Figure 7
highlighted the undetected landmark mixed with blue
colour and affected by the floor noise in a red rectangle.
The detected landmarks are represented by a white rect-
angle with an associated ID, indicated by the variable ‘s’
and an inclination angle represented by the variable ‘®’.

4.2 Corridor detection

In the corridor detection experiment, we used the land-
marks side by side in the trajectory of the prototype,
simulating a corridor, which serves the purpose of revi-
siting the landmarks every step and having multiple
loops for the solution of SLAM. In addition, this experi-
ment produces closeness between the landmarks viewed
from the frame of the camera. Due to a possible obstruc-
tion of detection, this experiment can evaluate how well
our data association scheme is affected. As illustrated in

1000
D
800
D
6 D
D
400
D
200
% 200 400 600 80 1000
X(mm)

Fig. 8 Corridor detection experiment results. a Prototype results. b Simulation results
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Table 1 The ground truth coordinates from pixy camera vs. estimate values from our SLAM

Coordinates Landmark Ground truth (cm) Estimated (cm)

X Y (€] X Y (€]

Corner detection LO1 123.01 10.01 4.7° 116.5 11.97 59°
L02 1189 55.19 24.9° 1228 52.02 23°
L03 1214 104.5 40.7° 1243 115 42.8°
L05 57.88 106.5 61.5° 65.45 1138 60.1°
L06 18.8 1038 79.7° 23.69 97.69 764°

Corridor detection LO1 64.63 19.95 17.2° 67.67 14.31 11.9°
L02 84.8 3232 20.9° 79.81 34.27 23.2°
L03 93.91 47.06 26.6° 98.03 5747 304°
L04 58.56 79.6 537° 68.75 88.92 523°
L05 44.68 65.06 55.5° 44.03 60.51 54°

Fig. 8a, this experiment has the same setup with excep-
tion of the relocation of the landmarks. The average pro-
cessing time of each frame was 0.56 s. The separation
between the top three landmarks on the right side
and the second three landmarks on the left side is
48 + 0.05 c¢m, as shown in Fig 8b.

The noise values for the solution of SLAM in the
motion model of the experiments were 3 cm for the
forward (v) motion and 2° for a turn in the movement (w)
of the prototype. Similarly, for the observation model, the
noise values were 70 mm for the distance measured and
0.027 rad for the angle in the camera frame. The distance
measurements from the camera are an approximation of
the object detected; as a consequence, these measure-
ments were not incorporated into the proposal distribu-
tion. Furthermore, due to this consequence, the filter is
overestimated in order to prevent the particle filter to

diverge. Likewise, the number of particles used also affects
the calculation of the weights assigned to the particles.
The overestimation of the distance was 1.2 metres and a
standard deviation of 2° for the angle measured. These
values tell the filter its belief about how far could be the
landmarks. In addition, in all the experiments, 100 parti-
cles were used due to the tests performed in a relatively
short distance.

4.3 System performance evaluation

Followed the experiments, we conducted in Section 4.2
and 4.1, the artificial landmarks were placed randomly
without prior knowledge. The ground truth 3D coordi-
nates of the pixy camera had been recorded and were
compared with estimated values from our SLAM solu-
tion, as shown in Table 1. Those figures show that on
these experiments our SLAM solution gives localisation

Vector Magnitude (mm)

A

Fig. 9 System preformation evaluation in corner detection. a The experiment using prototype for corner detection. b Experiment for corner
detection with distribution of vector magnitudes of the landmarks in the robot’s frame
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Fig. 10 System preformation evaluation in corridor detection. a The experiment using prototype for corner detection. b Experiment for corridor
detection with distribution of vector magnitudes of the landmarks in the robot's frame

results accurate to a 5 cm. In the corner detection ex-
periments, our central axis is moved due to the recorded
path was from the path described by the left wheel in
the mobile robots, thus resulting in a skewed trajectory.
Figures 9 and 10 shows the error and variance of meas-
urement of landmark’s grand truth in both experiments.
Figures 9b and 10b presents the distribution of the land-
marks for the three repetitions in experiments on corner de-
tection and corridor detection using our SLAM solution.
The graph is composed of the magnitude of the vectors to
the landmarks. The greatest variation presented at the land-
mark is 10 cm, showing precision at mapping. As a result,
83% of the landmarks were detected, generating a map of
the exposed landmarks. Being this percentage is sufficient to
locate the prototype and differentiate the described environ-
ment. During this experiment, the average CPU usage was
26.72%. The second experiment consisting of the parallel
detection of landmarks was executed three times. The first
run is presented in Figs. 9a and 10a. The prototype detected

-

83.33% of the landmarks for the first run and a minimum of
66.6% of the landmark detected in the other runs.

4.4 Energy profile

The power consumed by the prototype was measured
during above experiments using Tektronix oscilloscope
with 1.14 W of total power usage in Raspberry Pi V2.0.
Figure 11 illustrated our SLAM approach used an aver-
age of 45% ARM cortex-A7 processing time. A native
implementation of FastSLAM2.0 requires O(M log(K)),
where M is the number of particles in particle filter and
K is the number of landmarks. We develop an integrated
low-variance resample method to select the most likely
particle applying a minimization of the sum of the
weights of the particles with respect to a standard uni-
form distribution. Our approach makes it significantly
faster than existing FastSLAM2.0 that reduces the
running time of our intelligible SLAM approach to
O(M log(K/N)), where N is sample intervals.

w
w

20

Average CPU Usage (%)

0.1 11 21 31 4.1 5.1 6.1 71

Time (s)

A

Fig. 11 History of CPU usage during execution of SLAM. a Experiment for corner detection. b Experiment for corridor detection
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5 Conclusions

Monocular visual SLAM in low-power devices presents the
challenge of obtaining location information just using a sin-
gle camera. Using motion (visual odometry) as well as pin-
hole model or epipolar geometry presents a possibility of
implementation; however, researchers have not yet explored
a simplified data association solution from the algorithm
development into low-cost and low-power embedded
system design. This work demonstrates an intelligible
implementation of FastSLAM algorithm using low-cost
and low-power “on-shelf” devices. Our prototype is able to
detect landmark with 75% of success rates and 0.53 s pro-
cessing time using Raspberry Pi V2.0. Our experiment re-
sults demonstrate that our intelligible solution, based on
low-cost image sensors to an adequate architecture and a
simplified algorithm, is suitable to design embedded sys-
tems for SLAM applications in real time conditions.

In the future, with the selection of smart sensors for
obtaining the position of the robot, such as a higher reso-
lution encoder or multiple sensor fusion approaches in
the prototype, we can improve the landmark detection ac-
curacy and explore outdoor environments. Also, we plan
to increase the accuracy of landmark detection using Deep
Learning in embedded systems, where multiple objects in
the environment can be used to train and evolved the
neural network over time.

6 Appendix 1

Table 2 The specifications of pixy camera

Pixy camera specifications

Field of view 46° vertical, Processor NXP LPC4330, 204 MHz,
75° horizontal dual core
Focal length (f) 2.8 mm Image Omnivision OV9715, 1/4",
sensor 1280 x 800
Sensor height (S) 243 mm RAM 264 K bytes
Sensor width (S,) 243 mm

7 Appendix 2
Table 3 The specification of Raspberry Pi 2

Raspberry Pi 2

Processor 900 MHz 32-bit Quad-core ARM Cortex-A7
RAM 1 GB (shared with GPU)

USB ports 4 USB 20

GPU Broadcom VideoCore IV @ 250 MHz
Model B
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-

L298N

Encoders

Arduino Uno
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Fig. 12 Hardware schematic view. Raspberry Pi and motor control

are powered separately
& J

9 Appendix 4

A link to the most recent version of FastSLAM software
as well as a link to the archived version referenced in the
manuscript (https://github.com/WOLVS/VisualSLAM).
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