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Abstract

optimization algorithm.

For complexity and efficiency of the multi-objective optimization, we proposed the mobile distance field-driven adaptive
crowd optimization algorithm. In space, we modify the surface parameters based on the corresponding changes of the
distance field to obtain the moving target's moving track and moving surface. When the curve of the moving
track is changed, the x axis and the y axis of the moving track are adjusted adaptively. In this paper, the moving process
is divided into three processes: the target dynamic crowd control, the crowd model algorithm, and the predictive control
of linear time domain based on the moving target prediction and crowd control algorithm. Then, the multi-objective
optimization algorithm of moving objects is proposed by using the crowd model to predict the status and the position
of the target. The experimental results show the high accuracy, low complexity, and high efficiency of the proposed
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1 Introduction

Multi-objective optimization can be applied to a large
number of practical applications [1]. The multi-objective
optimization of the practical problems requires [2] simple
architecture, easy implementation, low complexity, and
low [3] and high optimization efficiency. However, the
above features are often contradictory [4]. The search of a
compromise between multiple characteristics [5] becomes
the key to the development of multi-objective optimization
applications.

The new subspace clustering algorithm was proposed
by the authors of article [6], which segments the videos
into consistent spatial-temporal regions with multiple
classes. A novel algorithm was presented in article [7]
that exploits joint optimization of representation and
classification for robust tracking in which the goal is to
minimize the least-squares reconstruction errors and
discriminative penalties with regularized constraints. In
article [8], a multi-objective particle crowd optimization
technique is applied to a group of consecutive frames to
reduce the number of branches in each tracking tree.
The novel algorithm was presented in the article [9] for
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the removal of reflections generated by objects on
reflecting floors. The block-coordinate Gauss-Newton/
regression method was proposed by Kim D S et.al [10],
in order to conduct a correlation-based registration
considering the intensity difference between images in
the presence of outlier objects. The projection image
generation algorithm [11] was proposed to design and
fabricate a complex 3D scaffold, which automatically
and robustly generates 2D projection image data. The
author of article [12] proposed a repeated use of
screened Poisson to compute a part coding and extract-
ing distance field. A highly scalable method was pro-
posed in article [13] for computing 3D distance fields on
massively parallel distributed-memory machines.

In view of the above achievements and problems,
based on the multi-objective optimization model, we
proposed adaptive mobile crowd optimization based on
distance field. The rest of the paper is organized as
follows: Section 2 describes the moving target distance
field analysis model. Section 3 proposes the adaptive
mobile crowd optimization. The performance evaluation
is shown in Section 4. Finally, the conclusions are given
in Section 5.
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2 Moving target distance field analysis model
In space, the moving track and the moving surface of
the moving target have the following form:

x(m,n,t)
y(m, n,t)
z(m,n,t) (1)

T
1
TC: E §ﬂ2t+V0
t=1

Sc =

Here, Sc represents the surface formed by the moving
object. T represents the moving trajectory of a moving
target. The ¢ represents the moving time of the target. T
represents the total length of the moving target. Parame-
ters x, y, and z represent the three component of the
three-dimensional space of the moving target. Parameter
Vo represents the initial movement speed. Parameter a
indicates the acceleration. Symbols m and n are the
parameters of the moving surface. The moving surface is
usually determined by the range of parameters. Accord-
ing to the formula (1), the parameters of the moving
surface can be easily generated. In the form of moving
surface parameters, the dot sequence of the moving sur-
face is generated. We can get the moving surface by the
linear processing of the store sequence and take the
parameter value. Therefore, it is very convenient and ef-
ficient to form and update the moving surface. The time
linearized by the moving surface has the characteristics
of free rotation, fast state transition, and so on.

Moving surface has a good character of time and
space, but it is a difficult problem to obtain the moving
data parameters of a given object. Because the moving
object in the three-dimensional space must be consistent
with the curve of the moving surface. We consider the
distance field to avoid the curved surface distortion of
moving objects. The distance field is the moving surfaces
between two adjacent samples of the moving target.
When the shape of the curved surface changes, we
modify the surface parameterization based on the corre-
sponding changes in the distance field to keep the
matching relationship. When the structure of the
moving trajectory changes, we decompose the moving
trajectories in the x axis and the y axis according to the
formula (2).

T
1
Tc ={x(a,vo),y(vot,at +vo)} Ziazt +v
=1
Tc > € : Consistent = 1 (2)
Tc = e : Consistent = 0
Tc > € : Consistent = 2

Here, ¢ is the threshold value of the curved surface.
Parameter Consistent represents the degree of
consistency between the moving objects in the three-
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dimensional space and the curvature of the moving sur-
face. Number I indicates complete agreement. Number
0 is not consistent, can be adjusted according to the dis-
tance field. Number 2 indicates that it is not consistent
and cannot be adjusted.

The distance field function of the moving target is the
key to the optimization of the moving target. For the
moving surface, the distance field function defines the
direction of the moving point to the moving target. The
distance field function of the moving surface is given in
Eq. (3), which is shown in Fig. 1.

d(p,Sc), Consistent = 1
d(p,Sc), Consistent = 0 (3)
d(p,Sc)-F4, Consistent = 2

Here, d(p, Sc) = Uim(T¢(¢)Sc(p))

peSc
Surface treatment would be finished based on the

fld) =

moving target trajectory data P{p;}/ | with formula (1).
The distance field function defined on the partition can
make the matrix Sc in the zero level. The state is able to
approximate the distance field of the real-time data
points of the moving target. This process can make the
Consistent value of the data points of the moving target
to be 1. The Consistent value can be fitted by minimizing
the following function as shown in Eq. (4).

n
min E
i=1

In summary, Fig. 2 gives the moving target distance
field analysis structure for moving target data surfaces.

T &

[Isc)Tc()

t=0

(4)

3 Adaptive mobile crowd optimization

3.1 Crowd model of moving target

Crowd model of the moving target is a linear fusion
intelligent time domain mapping control model. The model

Linear progress

Mobile N

Fig. 1 Distance field function
.
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A

——

Moving surface

is based on the cooperation of moving target prediction
model and crowd control algorithm. The model includes
the dynamic control, the crowd control model and the
linear time domain predictive control. The crowd control
can predict the status and position of moving objects by
using crowd model. The crowd control model can design
the mobile constraints and crowd optimization objectives
based on the real-time mobile trajectory information. The
model can generate the target state matrix and the target
crowd information for the relationship mapping. The real-
time continuous optimization is realized by crowd control
with output information. The crowd algorithm can trans-
form the tracking problem of moving objects to the target
of the crowd optimization problem. This conversion is real-
ized by using the crowd information of each moving target
in the time domain to reset the optimization objective and
the real-time optimal control conditions.

As shown in Fig. 3, the moving target prediction,
optimization, and crowd optimization model can be
realized by the mobile location and crowd control

extended to the control problem of the moving
optimization of the mapping object according to the
prediction, optimization, and correction. The model
can be used to the trajectory control of moving objects
and be suitable for the real-time decision of the upper
control center.

The controller of moving target crowd model is com-
posed of crowd model and mapping model. The two
submodels can be used to predict the status and pos-
ition of moving targets in real time according to the
moving trajectory and the moving surface. The model
can provide the conditions for crowd optimization of
moving objects by the objective state of different time
domain.

The moving state of the moving object in the ¢
time and the control state of the crowd control are
shown in formula (5). Here, parameter L represents
the crowd state transition matrix of the moving ob-
ject. According to the linear feature in time domain,
the output of the moving target module is O((s, [)|£).

scheme. The moving target crowd models are The crowd optimization control weight is ¢.
N
———  trajectory
— crowd > state
v
Correction ~————p object —
A
mapping —> location
curved surface
S Crowd control optimization
Fig. 3 Architecture of moving target crowd model
J




Tang et al. EURASIP Journal on Embedded Systems (2016) 2016:23

LY of ()
O((s, 1)[t) = —F*

/ Sc(¢)

L > of(0)
o((1,D)[t) Z/t;iT()
c(t

According to the position of the moving target, the
crowd distribution of time domain objects is predicted.
The output state vector of the model is used to monitor
the trajectory of moving objects and the moving sur-
faces. The objective optimization condition is provided
according to the adjustment of crowd weight and change
of linear time domain.

3.2 Adaptive multi-objective optimization
The multi-objective optimization problem of moving
objects can be described as:

min £(0) = [£(0((0,0)1)
5.t.5:(0)_s11
Li(O)s 511

F(O((s;)lt)) ]

(6)

When Sc(t) =0 and T¢(i) =0, by crowd state transfer
and linear mapping, the optimization objective is
mapped to the moving trajectory and the moving sur-
face, such as formula (7).

St(o)sasylHLS(pSC(t)tHT
Lt(o)s—rs,l—% SgTVC (i)i—m

Thus, the multi-objective optimization formula is
equivalent to

minf(0) = [f(0((0,0)19) - F(O((s.)}6)]
st @Sc(t),r] (8)
rSTc(i) 1

(7)

i—n

Adaptive multi-objective optimization algorithm of
crowd process is shown in Fig. 4. Algorithm procedure
is described as follows:

Stepl. Select the appropriate sampling time. Determine
the moving target. Speed and location of sampling are
initialized randomly in an optimized range.

Step2. Get the surface by the moving objects in the
moving process. Track of moving target is obtained.
Tracing the time of moving targets. Get the total
length of the moving time. Construction of three-
dimensional spatial component of moving objects. Get
the initial movement speed. Obtain the acceleration of
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object

Fig. 4 Process of adaptive multi-objective crowd optimization algorithm

moving target according to the track and speed.
Initialize of the parameters of the moving surface.
Step3. Select the state and position of the moving
surface.

Step4. For each moment in the moving trajectory, the
distance field function is obtained according to the
formulas (2) and (3). According to this function, the
velocity and position of the moving target are updated,
and the new moving trajectory is obtained.

Step5. For each data point of the moving surface, the
optimization goal would be set according to the
method of distance field function shown in Fig. 1.
Step6. According to the method of Fig. 3, based on
mobile positioning and crowd control, crowd
optimization model is obtained for predicting and
optimizing the moving goal, as well as the crowd
acquisition.

Step7. The real-time decision of the upper control cen-
ter is supported by mobile target trajectory control
from mobile crowd multiple target optimization.
Step8. According to formula (6), the multi-objective
optimization model of moving objects is obtained.

According to Fig. 4 and formula (5), step 3 realizes the
adaptive multi-objective optimization.

4 Performance evaluation

The five optimization functions are selected to describe
the moving objectives. The functions F1, F2, and F3 are
as shown the formula (9). The test functions F4 and F5
are shown in the formula (10). Here, the functions F1,
F2, and F3 are the main points of the optimal control of
the moving crowd target. The functions F4 and F5 have



Tang et al. EURASIP Journal on Embedded Systems (2016) 2016:23

the characteristics of movement shown in Fig. 1. Differ-
ent parameters are selected for different functions. The
test parameters are shown in Table 1.

F1-F3
minf (0) = O(s.1),
5.t.5. = (pSC(t)tHT
TgC = (pTC(i)i—m

FA4-F5
minf(0) = O(s, 1),
T

minf (x,y,z) = Hox,y,z
s.£.0((1,0)]6) = Li->_of (¢)

O((0, 1)lt) =L0.Zﬂ

=T /Sc(t)

Figure 5 shows the ACO-DF (mobile adaptive crowd
optimization scheme based on distance field) algorithm
and the positioning error of the target optimization algo-
rithm based on mobile search denoted as OO-MS.
ACO-DF algorithm tracks the moving surface in the
time domain and spatial domain. ACO-DF algorithm
considers the distance field to avoid the distortion of the
curved surface of the moving target. The moving object
of the three-dimensional space is consistent with the arc
structure of the moving surface. Positioning error is ob-
viously less than OO-MS algorithm. In particular, the
ACO-DF algorithm can effectively reduce the influence
of the moving speed on the localization by modifying
the surface parameters based on the corresponding
change of the distance field.

Figure 6 shows the ACO-DF algorithm and OO-MS
algorithm to optimize the number of iterations. Based
on the cooperative control of the moving target predic-
tion and crowd control algorithm, the ACO-DF algo-
rithm can realize the intelligent time domain mapping
control based on linear fusion. In addition, the ACO-DF
algorithm obtains the state and the position of the
moving target by using the crowd to control the
dynamic and predictive control of the moving object. So,
the number of iterations of the ACO-DF algorithm is

(10)

Table 1 Testing parameters

Parameter Value Parameter Value
T 10m X 200 m
y 200 m z 100 m
a 5m/s Vo 2m/s
d 10m dry 20m

® 0.3 £ 0.01
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Fig. 5 Location error

significantly less than that of the OO-MS algorithm.
ACO-DF algorithm based on trajectory information to
design a real-time movement restriction and crowd
optimization goal is generated for mapping relationship
between target state matrix and the target group of
metal information. In this way, the area of the moving
surface is small, and it is helpful to improve the effi-
ciency and accuracy of multi-objective optimization,
which are shown as Fig. 7.

5 Conclusions

We present the distance field-driven adaptive mobile
goals in intelligent optimization algorithms to solve the
multi-objective optimization complexity and efficiency
issues. First, based on the corresponding changes in the
distance field, we modify the surface parameters in the
airspace. In this way, the moving track and surface of
the object can be obtained. Secondly, based on the curve

14
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Optimal iteration times

0 2 4 6 8 10
Moving speed (m/s)

Fig. 6 Optimal iteration times
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structure of the moving track, we adaptively adjust the x
axis and the y axis structure of the moving trajectory.
Then, we decompose the process into three processes,
which are target dynamic crowd control, crowd model
algorithm control and linear time domain predictive
control. The three processes are based on the coopera-
tive control of the moving target prediction and crowd
control algorithm to form a multi-objective optimization
framework. Finally, the multi-objective optimization
algorithm of moving objects is proposed by using the
crowd model to predict the status and the position of
the target. The results of the five test functions show
that the proposed algorithm has higher localization
accuracy, lesser iteration times, and smaller surface area
than the target optimization algorithm based on mobile
search.
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