
EURASIP Journal on
Embedded Systems

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24
DOI 10.1186/s13639-016-0060-8

RESEARCH Open Access

A low cost and fast controller architecture
for multimedia data storage and retrieval to
flash-based storage device
Samiran Banerjee* and Sumitra Mukhopadhyay

Abstract

Real-time multimedia data access plays an important role in electronic systems; as time goes by, with decrease in
data processing speed and increase in communication time, storage time, and retrieval time, the overall response
time increases for real-time applications. Therefore, in this paper, a novel real-time, fast, low-cost, system-on-chip
(SoC) controller has been proposed and implemented where large volume of data can be efficiently stored and
retrieved from flash memory cards. It is being implemented only using hardware description language (HDL) on a field
programmable gate array (FPGA) chip without using any other on-board or external hardware resources or high-level
languages. The entire controller architecture, in a single chip, contains five different modules and is designed using
finite state machine (FSM)-based approach. The modules are card initialization module (CINM), idle module (IM), card
read module (CRM), card write module (CWM), and decision module (DM). The architecture is completely synthesized
for Spartan 3E xc3s500e-4-fg320 FPGA with only 5% of the total logic utilization. The experimental results tested for
microSD, SD, and SDHC cards of different size, and these show that the architecture uses less hardware and clock
cycles for card initialization and single/multiblock read/write procedure.

Keywords: Flash memory read/write, Secure Digital High Capacity (SDHC) card, MicroSD card, Serial peripheral
interface (SPI), Finite state machine (FSM), Very high speed integrated circuit hardware description language (VHDL),
Field programmable gate array (FPGA)

1 Introduction
The flash-based memory storage device, introduced by
Toshiba in 1984, is basically a non-volatile electronic
memory and used whenever a shock resistance is the key
requirement of any application [1]. The Secured Digi-
tal High Capacity (SDHC) card, for example, is a flash-
based memory storage device and is mainly designed to
meet certain requirements such as security, capacity, per-
formance, and environmental issues inherent in newly
emerging audio and video consumer electronic devices.
The Secured Digital (SD) card standard is designed and
licensed by SD Card Association [2] and is a collabora-
tive effort of the three manufacturers, namely Toshiba,
SanDisk, and MEI [3].

*Correspondence: samiranbanerjee1991@gmail.com
Institute of Radio Physics and Electronics, University of Calcutta, 92, APC Road,
Kolkata, India

The SD card includes an on-card intelligent controller
tomanage the interface protocol, security algorithms, data
storage and retrieval, error handling and corresponding
error correction code (ECC) algorithms, defect handling
and diagnostics, power management, and clock control
[1]. However, to interface the SDHC card (slave unit)
with master unit (e.g., computer, host, or any application-
specific device), we need a system which can talk with
the on-card controller of the SDHC card for smooth
execution of single/multiblock data read/write.
Figure 1 represents a generic model of a data archival

system and it shows how the flash-based cards like
microSD, SD, or SDHC cards can be used as the plug
and play memory module for real-time application. Gen-
erally, the signal is received from the external world in a
buffer, converted into a serial bit stream and subsequently
stored into the memory card. The stored data at later
stage may be transmitted for further processing. Also,
the flash memory acts as a portable unit and it can be

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0060-8&domain=pdf
mailto: samiranbanerjee1991@gmail.com
http://creativecommons.org/licenses/by/4.0/

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 2 of 26

PISO SIPO

Flash Memory
Controller

SCLK

MISO MOSICS

Flash Based
Memory Device

Vcc

GND

Input

Buffer

Output

Buffer

Power Lines

Data
From

External
World

Data To

External
World

Fig. 1 Thematic model of a data archival system

removed from the system where it is presently housed in
and accessed by some other system to retrieve the desired
signal.
The flash memory is very much useful in fields where

data transportation and archival is a key requirement.
The memory can be used as a data concentrator (Fig. 2)
where the proposed controller architecture along with the
flash memory can be used as the removable memory of
any data concentrator network device. The flash mem-
ory has extensive application in database [4], networking
[5], biomedical application [6, 7], virtualized storage sys-
tem [8], cloud computing [9], geographic remote sensing
[10], mobile devices [11–13], etc. It can be used in a
router to store the routing table for further access. NAND-
based flash system is also widely employed as cache in
virtualized system [8]. In such application scenarios, the
efficiency of single and multiblock data transfer is very
important which consequently affects the input-output
operations per seconds (IOPS) measure of storage system.
Generally, we wish to maximize this metric with respect
to different types of flash as this indicates the measure
of flash utilization. As stated, flash-based system can be
used as a cache or a data concentrator or to cater any
such storage requirements. However, here in the paper,
we do not analyze the pros and cons of such utilization of
flash in detail as the work mainly concentrates on efficient
implementation of a controller for single or multiblock
data transfer with respect to flash memory. The imple-
mentation may be exploited in any kind of flash resource
utilization and will ultimately contribute in the calculation
of the metric of memory resource utilization. Therefore, it
is observed that the implementation of an efficient flash-
based data transfer is a fundamental driving factor in the
improvement of flash resource utilization and the paper is
focusing on that rudimentary aspect.

The flash based cards like microSD, SD or SDHC
cards work in two different bus modes. They are the
Secure Digital (SD) bus mode and the Serial Periph-
eral Interface (SPI) bus mode. The SPI mode is a
synchronous serial protocol with less complexity. It is
extremely popular for interfacing the peripheral devices
and no native-host interface is needed for this mode.
For its simplicity and usefulness in the low cost embed-
ded system application, we have considered designing an
entirely on-board hardware-based controller for smooth
realization of SPI bus mode-based data transfer pro-
tocol to communicate with the flash-based memory
card.
To date, we find that limited research work describes

the design of data archival system and subsequent imple-
mentation using HDL [1]. In some research work, SPI
mode-based data communication system has been imple-
mented. Another work was proposed in the literature
where the SDHC card had been used in SD mode (i.e.,
bulk data transfer mode) for video signal storage and
processing [14]. With the newly emerging technologies,
flash-based memory devices have been used as the effi-
cient storage unit and till now it accomplishes the need of
memory storage even on the modern era of technological
advancement [2, 3, 15–23].
In light of the above, this paper proposes a novel,

real-time, low-cost, system-on-chip application specific
controller for multimedia data storage and retrieval to
flash-based memory cards. The architecture of this real-
time controller has been designed using FSM-based
approach. The HDL used here is very high speed inte-
grated circuit hardware description language (VHDL).
Also, the design is such that there is no use of any on-
chip general purpose processor (GPP), external controller,
hardware resources, or any high-level languages during

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 3 of 26

Fig. 2 Block diagram of a real-time data concentrator system [37]

the operation. The prototype has been entirely imple-
mented in target FPGA board. The physical attribute of
an FPGA chip, being compact in size and low in power
consumption, makes it an ideal platform for the imple-
mentation. Also, we have tried to exploit the parallel
processing capability of FPGA during design and imple-
mentation of various modules. Till date to the authors’
knowledge, optimal-in-hardware implementation of such
an application-specific controller and the study of its
various modules were not explored in details by ear-
lier research. In this work, the proposed controller has
been examined for both the audio and video data stor-
age and retrieval separately. Also to test the importance
of the work with respect to practical workloads [24],
we have collected the dataset from MSR Cambridge
Traces [25], SNIA Iotta Repository [26], and UMass
Trace Repository [27] and tried to establish the impor-
tance of the controller with respect to flash read-write
procedure.
Again in nutshell, the objectives of this paper are as

follows:

1. To design a modular low-cost, system-on-chip,
application-specific controller for multimedia data
storage and retrieval to flash memory cards like SD,
SDHC, and microSD card in SPI mode with less
overhead.

2. The design is completely FSM based and the
controller has been primarily realized using five
different modules and a control unit. This five
different modules, along with the control unit, are
the different functional areas of the proposed system,
which is implemented completely in a single chip.

3. When the card is in idle state, the system has an
option of working in power saving mode.

4. The controller will work in real time, in modular
fashion and the implementation is on a single FPGA.
The proposed design tries to utilize the parallel
processing capability of FPGA. No other external
devices or on-card intelligent controller has been
used for this implementation. Here, the prototype
has been completely synthesized and tested for
Spartan 3E xc3s500e-4-fg320 FPGA.

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 4 of 26

5. The architecture has been designed using HDL only.
Here in this paper, we have considered VHDL for
implementing the controller. No high-level languages
were used for this design. This FSM-based design
using VHDL is one of the basic feature of this
proposed controller, which makes it faster than any
other controller.

6. It is completely a prototype design of the proposed
controller; the design can be implemented in any
other platform instead of Spartan 3E target device
(even using ASIC also) with a very minor
modification in configuration part of the
implementation. There will be no change in the
design phase.

The rest of the paper is organized as follows. Section 2
introduces the related works and highlights the novelty
of the proposed approach. Section 3 describes the pro-
posed FPGA-based controller, its architecture, execution
process, and overall operation of the controller. Section 4
presents the hardware-specific implementation and syn-
thesis details for the target Xilinx Spartan-3E (xc3s500e-4-
fg320) FPGA development platform. Experimental results
are described in Section 5 and Section 6 concludes the
paper.

2 Review of the related works
FPGAs have been used for prototype design in a range
of engineering application [1, 14–19]; however, till date
to the authors’ knowledge, the design of a complete
application-specific controller for different flash memory
card access with detailed description of the modules and
their operation is limited. Table 1 depicts some of the
earlier work in this domain.
Elkeelany et al. [1] proposed an FPGA-based data

archival system to SD card, using Verilog HDL and they
accessed the card in SPI mode. Scalability issues have not
been achieved in this design. They have partially applied
FSM based approach and the implementation issues of
different SD cards have not been discussed explicitly in
this paper.
Yang et al. [14] presented the SDHC card video player

based on SoPC technology. The IP core and two display
buffer SRAMs were alternately utilized for their proposed
design. They have accessed the SDHC card in SD mode
for bulk data transfer. The proposed design has been
implemented using high-level language.
In another work, Abdallah and Elkeelany [15] pro-

posed a FPGA-based simultaneous multi-channel data
acquisition system and they had verified the proposed
architecture for analog signals. The design includes
analog-to-digital converter to convert the analog signal to
digital data. The time-critical tasks were implemented in
hardware, while the other tasks were implemented using

Table 1 Existing papers on SD card controller design

Work Controller design Platform model

[1] Data archival to SD card
using HDL

Altera Cyclone II

[14] Design of SDHC card video
player on SoPC

NIOS II CPU with IDCT
hardware acceleration IP
core

[15] Simultaneous
multi-channel data
acquisition system

Altera Cyclone II

[16] NAND flash memory
controller for SD/MMC
card

Freescale DSP 56858
platform with UMC 0.18
μm CMOS process

[17] Portable analog data
capture using custom
processing

WOLFSON WM8731 ADC,
NIOS-II processor

[18] A high efficient flash
storage system for
two-way cable modem

TWCNP-OS

[
Proposed

]
FSM-based
application-specific
controller using HDL

Xilinx Spartan 3E
xc3s500e-4-fg320

embedded C. The use of the high-level language in this
paper makes the system slower with additional overhead.
Lin and Dung [16] proposed a novel NAND flash mem-

ory controller for SD/Multimedia Card (MMC). They
have designed Bose-Chaudhuri-Hocquenghan (BCH)
error correction code (ECC) [28] for correcting the ran-
dom bit errors of the flash memory chip. The UMC
0.18 μm CMOS process was used to implement the pro-
posed memory controller chip. This proposed controller
was verified for MMC only.
Elkeelany and Vince [17] proposed a portable analog

data capture system using custom processor. The SD card
had been used in 1-bit SDmode for their proposed system.
The SPI mode or 4-bit SD mode-based communication
were not discussed in their design.
The works, summarized in Table 1, have established

the concept of FPGA-based implementation for the SD
card data archival system either in SD mode or SPI
mode. Some researchers [15–18] have taken help of high-
level languages or external controllers, on-board proces-
sors, and other resources apart from only FPGA logic
resources during implementation of data access mech-
anism. In some paper [14, 15, 23, 29, 30], partially,
FSM-based approaches have been used for realization
of data transfer mechanism. The single/multiple blocks
read/write procedures were designed using FSM, and they
have been implemented those procedures using HDL for
target device. Also, the BCH code for NAND flash mem-
ory has been optimized in previous work [31] and the
data-intensive application using FPGA has been per-
formed in earlier researches [32, 33].
Flash-based storage system has other advantages also.

Many a time, it has been observed that the efficient data

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 5 of 26

communication of flash-based system plays a significant
role in the improvement of flash resource utilization in
many of the systems. Flash resource can be utilized as a
cache-based storage system or can be integrated with hard
disk drive (HDD) and can act as a hybrid system. Flash
resources are also utilized in virtualized storage system [8]
where efficient managers are designed to get more high
cost effectiveness than normal caching algorithm. Flash-
based multi-tiered systems are also studied presently in
the literature. Some of them are multi-tier SSD-based
solution [34], a hyper-visor-based design [35] etc. Most
of the works, however, emphasize on the improvement of
caching policies with respect to standard existing caching
algorithm like LRU and that analysis is out of scope of
this paper. Here we primarily analyzed onmultimedia data
storage and retrieval to flash-based storage system and
this in turn has profound effect on the improvement of
flash-based resource implementation.
In our work, we aim to design an application-

specific controller for efficient multimedia data commu-
nication with flash-based cards in SPI mode and the
controller architecture was entirely designed using FSM-
based approach. There are mainly five states present in
the proposed FSM and the states are named as initial-
ization state, idle state, card-read state, card-write state,
and decision-making state. During the realization of the
controller architecture, these states are mapped into the
modules of the controller. Now some of these modules
are used to accomplish card read/write procedures and
therefore internal architecture of those modules are again
implemented based on FSM format for the realization of
above procedures. Note that the proposed architecture
and implementation aims to minimize both the clock uti-
lization and on-board resource utilization of the FPGA
board. Also in this work, we have considered the required
clock cycles, workload, response time, etc. as performance
metric to compare the effectiveness of the proposed
approach with respect to other existing papers. However,
only in the initialization phase, we have represented the
performance with respect to “time” metric to compare the
achieved results with the reported values in the literature.

3 Proposed FPGA-based controller
This section initially describes the basic characteristics of
the SD/SDHC card andmicroSD card and then introduces
the proposed controller in rest of the section.

3.1 High capacity SD card
The SD/SDHC card communication is based on the
advanced nine pin interface, i.e., Clock, Command
line/Master Out Slave In (MOSI), 4xData lines/ Master
In Slave Out (MISO), and 3xPower lines. The card sup-
ports three communication protocols [21]. They are SD
1-bit mode, SD 4-bit mode, and SPI (Serial Peripheral

Interface) mode. Table 2 shows the pin configuration of
the SD/SDHC card and Fig. 3 shows the thematic repre-
sentation of electrical interface of the card (slave) in SPI
mode with the FPGA board (Master).
The SD/SDHC card communication protocol in SPI

mode is entirely a command-dependent protocol and
the card responds to every command with a pre-defined
response pattern. In the way of initialization, first the card
is initiated with CMD0 command. Then, the controller
validates the voltage range by generating the CMD8 com-
mand. It also identifies the version of the card (version
2 (SDHC) card or some other cards). Subsequently, the
controller generates the application-specific commands
such as (CMD55 + ACMD41) to complete the initializa-
tion process. The controller will continuously generate
(CMD55 + ACMD41) command until the card initializes
itself by giving a “00000000” response. The SDHC card
supports two types of addressing mode. They are block
addressing mode and byte addressing mode. The CMD58
command identifies the addressing mode of the version 2
SDHC card. Also, CMD16 command is issued to fix the
data block length to 512 bytes. After initialization process,
the card goes to the idle state until the next command is
being generated for single/multiblock read/write.
The speed class of the card denotes minimum writing

performance of the card to record a video normally [36].
Various speed classes defined by SD Association are 2,
4, 6, and 10. Throughout this work, we have used the
SDHC and SD card with speed classes 4 and 2, respec-
tively, which means that the SDHC and SD card, used in
this purpose, supports minimum 4 and 2 MB/s writing
speed, respectively, for video recording.

3.2 MicroSD card
The microSD card communication is much similar to the
SD card communication. The difference between these
two monsters in the present age data storage medium is
in their pin configuration. The microSD communication
is based on the 8-pin interface where all the pins from the
SD card are present except the second ground (Vss2) pin.

Table 2 SD/SDHC card pin details

Pin No. Name Function in SD mode Function in SPI mode

1 DAT3/(C̄S) Data line 3 Chip select/slave select (S̄S)

2 CMD/DI Command line MOSI

3 Vss1 Ground Ground

4 VDD Supply voltage Supply voltage

5 Clock Clock Clock (SCLK)

6 Vss2 Ground Ground

7 DAT0/DO Data line 0 MISO

8 DAT1/IRQ Data line 1 Unused/IRQ

9 Dat2/NC Data line 2 Unused

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 6 of 26

NC

NC

9 DAT2/NC

1 DAT3/CS

2 CMD/DI

3 VSS1

4 Vdd

5 CLK/SCLK

6 VSS2

SS

8 DAT1/IRQ

7 DAT0/DO

MOSI

GND

Vdd

SCLK

MISO

MASTER SLAVE

FPGA CHIP SDHC CARD

Fig. 3 SDHC card electrical interface

Table 3 shows the pin details of the microSD card, and
Fig. 4 shows the interfacing of the microSD card with the
Spartan3E target FPGA board.
The microSD card communication is also based on

command-dependent protocol, and it is almost similar to
the SD and SDHC card communication methods. The
capacity of the microSD card denotes how it works. If the
capacity is less than or equal to 2 GB (≤ 2 GB), then the
card works similar to the SD card; otherwise, the principle
of operation is the same as the SDHC card.
The definition of the speed class for microSD card is

the same as the SD card [36]. We have used the class
4 microSD card throughout the work, which means, the
card supports 4 MB/s writing speed for video recording in
a normal mode.

3.3 Architecture of the proposed controller
The workflow of the proposed host controller is based
on the initialization of the card followed by data transfer
(read/write) sequences. The overall external view of the
controller interfacing the SDHC/SD card is given in Fig. 5.
The same process can be used for interfacing the microSD
card also. The Vss2 pin remains unconnected when the
process is used for interfacing the microSD card as the
card contains only 8-pin interface, and the Vss2 pin is not
present in the physical architecture of the microSD card.

Table 3 MicroSD card pin details

Pin No. Name Function in SD mode Function in SPI mode

1 Dat2/NC Data line 2 Unused

2 DAT3/(C̄S) Data line 3 Chip select/slave select (S̄S)

3 CMD/DI Command line MOSI

4 VDD Supply voltage Supply voltage

5 Clock Clock Clock (SCLK)

6 GND Ground Ground

7 DAT0/DO Data line 0 MISO

8 DAT1/IRQ Data line 1 Unused/IRQ

NC

NC

DAT2/NC

DAT3/CS

CMD/DI

 VDD

 CLK/SCLK

GND

SS

DAT1/IRQ

DAT0/DO

MOSI

GND

VDD

SCLK

MISO

MASTER SLAVE

FPGA CHIP MICROSD CARD

Fig. 4MicroSD card electrical interface with FPGA board

The state diagram of the overall control flow of the con-
troller is shown in Fig. 6, and the internal architecture
is shown in Fig. 7. The state diagram of Fig. 6 is work-
ing as a backbone for the architecture of the controller.
The complete architecture has been implemented using
VHDL.

Fig. 5 Overall schematic of the proposed controller

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 7 of 26

Fig. 6 State diagram of the controller

As we observe from the above mentioned flow sequence
and the schematic of the internal architecture, the pro-
posed controller is divided into five different modules.
They are card initialization module (CINM), idle mod-
ule (IM), card read module (CRM), card write module
(CWM), and decisionmodule (DM). Along with the above
modules, a control unit (CU) is there to monitor and
control the activities of each module and the flow of
respective driving signals. The CU operates based on the
FSM shown in Fig. 6.
Each of the modules and CU contains several internal

and external data and control lines. The communication
with the external world is done by the controller either
using I/O interfacing units or a customized multiplexer.
The Reset, DTM (Data Transfer Mode), R/W̄ , DATA,
ACK, and BUSY signals are interfaced with the controller
via I/O interfacing unit. The Reset signal, connected with
CU, initiates the data storage or retrieval operation. DTM
signal selects the single/multiblock data transfer mode of
the controller, R/W̄ is used for read/write operation selec-
tion, and a 8-bit bidirectional DATA bus is used for com-
munication with external world. Also, other signals like
Clock, Chip Select (CS), MISO, andMOSI signals are con-
nected between SDHC card and the controller through a
(4×1) bi-directional customized multiplexer where each
input line of the multiplexer is a 4 bit width data bus.
Each data bus consists of Clock, Chip Select (C̄S), MISO,
and MOSI signals. These four input buses of the multi-
plexer connect the four modules, say, CINM, IM, CRM,

and CWM of the controller with the external card based
on the SELECT bus. The output bus from the multiplexer
communicates with the card. Only in the data bus from
the IM, the clock signal remains unconnected to realize
the power saving mode of the controller. Therefore as a
whole, the designed multiplexer has 2 bit SELECT bus (S1
and S0), 4 input bus lines (4×4 = 16 lines) and one output
bus line (1×4 = 4 lines). SELECT bus connected with the
multiplexer in sequence helps to communicate the indi-
vidual modules with the card, and CU controls the entire
selection process. The module selection activities of the
SELECT bus is described in Table 4.
BUSY and ACK are the two status signals present in the

controller and they are connected with CU. The BUSY sig-
nal represents the busy state of the controller and ACK
signal acknowledges any assigned work accomplished by
the controller. On completion, the module deactivates the
BUSY signal and activates the ACK signal to intimate the
user that the task has been completed successfully. Fail-
ure to complete any assigned task makes both the BUSY
and ACK signal de-asserted. The activity of the signals is
tabulated in Table 5.
The CU also internally communicates with every mod-

ule in sequence for efficient data transfer with the card.
The common signals for all themodules are Reset, CS, and
clock signal. The CS and clock signals are also supplied
to the card via multiplexer. Once Reset signal is received
by CU, it issues a START signal to the CINM along with
the clock signal. CU also issues START and clock signal

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 8 of 26

Fig. 7 Architecture of the proposed controller

for the other modules when they are about to initiate their
action. In idle state, no clock is received by the modules
and thus they work in power saving mode. Once a module
receives a START signal, it acknowledges so by issuing a
READY signal to the CU and starts working. After every
successful completion of the work, the module intimates
CU with DONE signal.
CU starts working with the card initialization module.

On receiving the Reset signal, CU activates the CINM and
it issues the initialization commands to the card in order
to initialize it in SPI mode. The card responds to every
command and on completion of initialization procedure,
the module receives the final response from the card.

Table 4 Table for SELECT bus activity

S1 S0 Selected module

0 0 CINM

0 1 IM

1 0 CRM

1 1 CWM

After successful initialization of the card, the control
transfers to IM with the START signal. The IM contin-
uously monitors the R/W̄ and DTM signal. R/W̄ signal
specifies whether the next operation will be card read or
card write. The DTM signal will intimate the IM regarding
the single/multiblock data transfer. Whenever it receives
the R/W̄ signal, it passes both the R/W̄ and DTM value
to CU and goes to the idle state by sending a DONE
signal. Depending on the R/W̄ signal, the CU transfers the
control either to CRM or to CWM.
The CU generates different command sequences for

either of these modules. In card read sequence, the CRM
reads the data block from the card along with the CRC
bits and publish it to the I/O interfacing unit. In card write

Table 5 Table for the status signal activity

BUSY ACK Controller status

0 0 Time out, controller failed to read/write

0 1 Task successfully accomplished

1 X Controller is busy

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 9 of 26

sequence, the CWM receives the data block as an input
from the I/O interfacing unit and writes the received block
along with CRC to the card and receives the CRC response
from the card. After read/write operation, CRM/CWM
issues a DONE signal and itself goes to the power sav-
ing mode. Finally after completion of entire data transfer,
controller generates the ACK signal to the external world
through the I/O interfacing unit to intimate that the work
is successfully completed.
The DM monitors the Reset signal received from the

I/O interfacing unit during operation. Assertion of Reset
signal means that CU will again reinitialize the process
by activating the CINM. If the Reset signal remains de-
asserted, then the CUwill activate the IM and again follow
the previous sequence of operation for continuous data
transfer. TheDMgives its decision to the CU by the DECI-
SION signal and goes to power saving mode by issuing a
DONE signal.

3.4 Overall system operation
The flow of execution and communication between the
individual units of the controller and SDHC card is now
described. The similar procedure is also applicable for SD
and microSD card-based data storage and retrieval. All
of them actually works in three different phases namely
card initialization phase, card read phase, and card write
phase. Previously stated five modules are the astringent of
these three phases. The controller communicates with the
external world through the I/O interfacing unit and the
customized multiplexer. The controller initiates its oper-
ation on reception of Reset, DTM, and R/W̄ signals and
sends the signals to CU. Then it intimates regarding its
status using the BUSY and ACK signal. When the con-
troller is busy in processing some task, it makes the BUSY
signal high until the task is accomplished. After every suc-
cessful completion of a process, the controller informs the
outer world by asserting the ACK signal and de-asserting
the BUSY signal. If the controller fails to complete the task
given, then it de-assert both the BUSY and ACK signal.
Table 5 describes the operation of the two status signals.
The pseudo-code for the data transmission process to

the card is given in Figs. 8, 9, 10, 11, 12 and 13, and
the FSM of the controller and the architecture are essen-
tially inspired form the activities described in the codes.
The rest of the section describes the operation of different
modules.
Card initialization module (CINM): The CINM initi-

ates the SDHC card in SPI mode. Figure 14 contains the
FSM of the initialization module. The START signal acti-
vates the CINM and it acknowledges the CU with READY
signal. The module first elapses 74 or more clock cycles
for initiating the card in SPI mode. Then, the commands
are generated to complete the initialization process. After
completion of the initialization process, the controller

Fig. 8 Psudo-code for power on sequence

validates the addressing type for the SDHC card (either
block addressing or byte addressing) by asking to publish
its card capacity status (CCS) bit in operational control
register (OCR). The high value of the CCS bit in OCR
register means that the card is a version 2 SDHC card
supporting block addressing mode, and the low value of
CCS bit refers the version 2 (SDHC) card supporting
byte addressing mode. If the result matches with byte
addressing mode, the controller then generates the next
command to forcefully make the block length to 512 bytes.
On completion of the initialization process CINM will
issue a DONE signal.
Idle module (IM): The idle module works in two modes.

They are pollingmode and control transfer mode. IM con-
tinuously polls the R/W̄ signal and DTM signal. Depend-
ing upon the status of these two controlling signals, CU
transfers the control either to CRM or to CWM. On com-
pletion of the operation, the DONE signal is asserted to
CU. On polling mode, the controller is in power saving
state as the card is in the idle state. The controller sends
a constant high value to the MOSI line, and the card also
responds with a constant high value via MISO line of the
controller.
Card read module (CRM): The SDHC and similar type

of cards support two types of data transfer, one is the
single block data transfer and another is the multiblock
data transfer. The left branch of the flow chart in Fig. 15
describes the read operation from the card. The CRM has
been designed to read the data blocks from the SDHC
card. The CU issues two different commands for CRM

Fig. 9 Psudo-code for initialization (card)

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 10 of 26

Fig. 10 Psudo-code for idle state

depending upon the DTM signal value. One is for sin-
gle block data transfer and another is for multiblock data
transfer. MOSI line of the controller is connected with
the CMD/DI line of the card, and similarly MISO line
of the controller is connected with DAT0/DO line of the
card. After successful transmission of the command via
MOSI line of the controller, CRM receives the command
response from the card through MISO and then starts
reading the data block(s) from the card along with the
CRC bits. The block transfer is preceded by a start block
token “11111110” along with a block of data, which is
followed by the CRC.
The multiple block transfer can be terminated by the

command CMD12, generated by the controller.
Card write module (CWM): The CWM has been

designed to write the data block to the SDHC card. The
right branch of the flow chart in Fig. 15 describes the write

Fig. 11 Psudo-code for card write process

Fig. 12 Psudo-code for card read process

operation. On the way of execution, CU transfers the con-
trol to CWM along with the DTM signal to ensure a single
block data write or a multiblock data write. In this imple-
mentation, both single and multiblock write operation
have been taken into consideration. For single block write
operation, the controller generates the command with the
starting address and then it starts writing 512 bytes of
data. For multiblock write, the controller writes the data
block until the CMD12 stop command is being issued.
The CRC bits are appended to each data byte for the entire
write operation. The card sends back the response pat-
tern in theMISO line of the controller, where “XXX00101”
means the data block is accepted, “XXX01011” means
the data block is rejected due to the CRC error, and
“XXX01111” indicates that the data block is rejected due
to the flash program error (in the pattern, “XXX” means
do not care bits). The multiple block write improves the

Fig. 13 Psudo-code for decision process

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 11 of 26

throughput as a single command is generated for bulk of
data blocks write procedure.
Decision module(DM): The DM has been designed to

decide the destination of the controller after completing
the data transfer operation viz. whether the control will
go to the IM or to the CINM. It is required for succes-
sive sequence of data transfer. After performing the data
transfer process, the control comes to the DM. The DM
constantly monitors the Reset signal and depending on
the status of the Reset signal, it decides whether the con-
trol will go to the IM for performing the next data transfer
operation or it will go to the CINM for initialization of the
card.
The ACK signal is finally issued by the controller

through the I/O interfacing unit, to intimate the user
that the work given to the controller has been com-
pleted successfully and it is ready to process next set of
operation.

Fig. 14 Flowchart for the initialization of SD/SDHC card

4 Hardware-specific implementation details
To explore the feasibility of the proposed architecture, the
FPGA-based controller was implemented with the help of
synthesizable VHDL. This actually reduces the processing
time of the proposed controller than any other high-level
languages. The target development platform is based on
Spartan-3E (xc3s500e-4-fg320) FPGA chip. The card has
been accessed through amulti-port card reader connected
with the target FPGA board using 6-pin cable. A SanDisk
8 GB SDHC card, a Cannon 16 MB SD card, and a 2 GB
microSD card, with speed classes 4, 2, and 4, respectively,
have been used for testing and verification of the proposed
controller.

4.1 Application-specific controller initialization
challenges

From the hardware point of view, traditionally, the per-
sonal computer accesses the flash memory through a
permanent device interface, which implies a fixed point
access of the memory. In this proposed design, the system
comes up with a detachable unit to be connected with the
memory card so that the card can be accessed anywhere.
Now from the designers’ point of view, synchroniza-

tion of clock throughout the design is a big challenge to
the designer as the flash memory card requires 100- to
400-KHz clock frequency for the application specific com-
mand execution during initialization [3] and maximum
25-MHz clock frequency for data transfer [1]; which ulti-
mately points to the decrement of clock frequency and
it implies sacrifice in performance in a single clock input
system. If the clock frequency does not match in initializa-
tion process, then the card uses to poll the command in a
50-ms time gap to complete the initialization process.

4.2 Synthesis details
The design was successfully synthesized using Xilinx ISE
version 14.1 for the Spartan-3E XC3S500C target device,
and then it was compiled and built for implementation.
This process consists of translating, mapping, placement,
and routing of the signals. For the design implementa-
tion process, no partition was specified and the design
was translated and mapped successfully. All signals were
placed and routed successfully as well; all the timing con-
straints were met. Five percent of the total logic slices
on the device was utilized for this implementation. Brief
description of the resource utilization during implemen-
tation is given in Table 6.
The number of logic slices utilized for the proposed

controller is 226 out of 4656 (5%).

5 Experiments and results
In this section, we have tested the working performance
and efficiency of the proposed controller extensively
for different synthetic dataset and practical work loads.
Initially, we have defined the metrics used to evaluate

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 12 of 26

Fig. 15 Flow chart for read and write operation of SD/SDHC card

the performance of the controller. Subsequently, different
synthetic and practical workloads were described as case
studies of the paper.

5.1 Performance metrics
In this paper, we have used following metrices to evalu-
ate the performance of the controller. They are defined as
follows.
Clock cycle taken per process (CCTPP): In order to make

the performance evaluation of the proposed controller
independent of system clock and other system specific
parameters, we have described the performance of the
controller in terms of clock cycles. Here, CCTPP describes
the clock cycle taken by an individual process to suc-
cessfully complete a process. If we navigate the proposed
design into multiple systems, then CCTPP parameter will
be system independent.

Table 6 Resource utilization during implementation

Logic blocks Number of
logics used

Number of
logics available

Utilization (%)

Logic slices 226 4656 5

Slice flip/flops 167 9312 2

Slice LUTs 421 9312 6

Clock buffer 1 24 4

Number of bonded IOBs 15 232 6

Time taken per process (TTPP): This is the time taken
by the individual process to accomplish the task assigned
successfully. We have used the conventional units of time
to define the TTPP.
Input/output operations per seconds (IOPS): IOPS is a

measurement process used to characterize the storage
devices like flash storagememory. The IOPS is not defined
independently and it is a combination of three metrics.
Along with IOPS other two metrics, say response time
and workload metrics are also defined to characterize the
performance of the memory module.

5.2 Simulation details
The proposed architecture was first simulated in the Xil-
inx ISE 14.1 virtual environment for initial verification.
In this phase, Fig. 16 gives the waveform representa-
tion of the initialization process completely. Figure 17
represents the timing diagram representation of the sin-
gle block write, and Fig. 18 gives the timing diagram
representation of the multiblock data write operation.
The simulation results are only feasible for data write
operation and the implementation section represents the
entire results for initialization and both the read/write
operation. Table 7 elaborates the different abbreviation
of the input and output ports used to simulate the
design.

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 13 of 26

Fig. 16 Simulation waveform for initialization process

5.3 Implementation details
The proposed controller has been tested using various
case studies with different type of input data pattern.

5.3.1 Case studies
Seven different case studies have been performed to verify
the effectiveness of the proposed controller for SD, SDHC,
and microSD cards with varying volume size of the data.
For first four cases, synthetically, text, audio, and video
patterns were generated. Other three datasets were taken
from practical workloads representing block I/O traces
from MSR Cambridge Traces [25], SNIA Iotta Repository
[26], and UMass Trace Repository [27].
Case I: pre-declared embedded data pattern: The first

case study uses a pre-declared embedded data pattern

Fig. 17 Simulation waveform for single block write process

with 8-bit data. The proposed controller tests the basic
read/write operation for a Cannon 16 MB SD card using
this data pattern. The same 8-bit data pattern has been
written repeatedly to the SD card for testing the single and
multiblock data write operation. Later on, the same data
pattern has been retrieved to validate the single as well as
multiblock data read operation from the same SD card.
Case II: pseudo-random number sequences: The second

case study has been performed for testing the proposed
controller for SDHC card. A pseudo-random number
(PRN) generator has been designed to generate 8-bit ran-
dom data pattern continuously to perform the single block
as well as the multiblock write operation for a SanDisk
8 GB SDHC card. The previously used Cannon 16 MB
SD card and a 2 GB microSD card have also been tested
for single andmultiblock read/write operation using those
PRN sequences.

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 14 of 26

Fig. 18 Simulation waveform for multiblock write process

Case III: audio signal transmission: The third case study
has been performed for testing the efficiency of the pro-
posed controller with continuous data transfer. An analog
signal in audio range is fed to an on-board LTC 1407A
analog-to-digital converter (ADC) [20]. The digital data
at the output of the converter is fed to the controller for
data storage and retrieval. The LTC6912-1 available in
the on-board ADC provides two independent inverting
amplifiers with programmable gain to maximize the con-
version range of the ADC to 1.65 ± 1.25 V. The gains
for both the channels are independently programmable
using a 3-wire SPI interface to select voltage gains among
“0,” “−1,” “−2,” “−5,” “−10,” “−20,” “−50,” and “−100”
V/V (LTC6912-1) [20]. The analog-to-digital conversion
formula is given below in Eq. 1:

D[13 : 0]= GAIN× [(VIN − 1.65 V) /1.25 V]× 8192 (1)

Table 7 Abbreviation of the ports in simulation waveform

Abbreviation Full name

miso Master in slave out

rd Read

wr Write

dm_in Data mode selection

reset Reset

din Data in

clk Clock

cs Chip select

mosi Master out slave in

sclk Slave clock

busy Busy signal

ack Acknowledgment

dout Data out

Here, D[13:0] represents the 14-bit 2’s complement
value of the analog input. The maximum sample rate for
the ADC is approximately 1.5MHz [20]. The 14-bit digital
output from the ADC has been compressed to 8-bit digital
data pattern, so that the proposed 8-bit controller can eas-
ily read the data byte for storing into the SDHC memory
card. On later phase, the retrieval of the stored data from
the same SDHC card indicates thememory read operation
for the analog signal.
Case IV: video signal transmission: The fourth case study

is performed with video signal storage and retrieval. The
on-board DB15 VGA connector port [20] has been used
to display the video frames in a CRT monitor. The VGA
signal timing is specified, published, copyrighted, and sold
by the Video Electronics Standards Association (VESA)
[20]. Thus in this paper, the detail specifications of the
processing video signals are not mentioned in depth.
The frames of the video signal have been generated and

then decoded in the binary-numbered matrix. Then, the
data from the generated matrix have been stored in the
card for testing the card write operation. Here, the multi-
block data write operation has been performed as the
volume of data is too high to perform the single block
write operation. On later phase, the previously written
data have been retrieved from the same card for validat-
ing themultiblock card read operation process. The FPGA
board was connected with a CRTmonitor through a VGA
cable for displaying the retrieved result (i.e., the video sig-
nal) from the card. The CRT monitor, used in this case
study, has the horizontal frequency of 90 kHz and the
screen resolution of 1024 × 768 pixels with color quality
of 16 bits. So, the refresh rate of the monitor is 72.
Case V: dataset from MSR Cambridge Traces: The

Microsoft Research (MSR) Cambridge traces [25] are
a commonly used data repository, built by Microsoft
research group. This repository was formed to advance

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 15 of 26

the state of the art computing and also to solve the prac-
tical world problems through technological innovation.
This is a collaboration of the academics with the gov-
ernment and industry researchers. There are 35 different
traces available for this MSR Cambridge Traces and they
represent 1-week block I/O traces of enterprise servers at
Microsoft Research Cambridge. The characteristics of the
traces are given along with file names, their attributes, file
size, etc. in Table 8. We have used those datasets to check
the performance of the proposed controller in multiblock

Table 8 Characteristics table for MSR Cambridge Repository [25]

Repository Abbre- File name File size Attributes
name -viation in KB

MSR M11 CAM-02-SRV-lvm0 227,577 Timestamps,

Cambridge M12 CAM-02-SRV-lvm1 1,576,883 Hostname,

1 M13 CAM-02-SRV-lvm2 117,104 Disk

M14 CAM-02-SRV-lvm3 1,274,935 Number,

M15 CAM-02-SRV-lvm4 1,274,935 Type,

M16 CAMRESHMSA01-lvm0 197,530 Offset,

M17 CAMRESHMSA01-lvm1 29,069 Size,

M18 CAMRESISAA02-lvm0 643,399 Response

M19 CAMRESISAA02-lvm1 8,832,021 Time

M110 CAMRESWMSA03-lvm0 62,457

M111 CAMRESWMSA03-lvm1 86,267

M112 CAM-USP-01-lvm0 284,762

MSR M21 CAM-01-SRV-lvm0 115,703 Timestamp,

Cambridge M22 CAM-01-SRV-lvm1 2,393,907 Hostname,

2 M23 CAM-01-SRV-lvm2 560,593 Disk

M24 CAMRESIRA01-lvm0 75,897 Number,

M25 CAMRESIRA01-lvm1 739 Type,

M26 CAMRESIRA01-lvm2 10,894 Offset,

M27 CAMRESSDPA01-lvm0 2,028,692 Size,

M28 CAMRESSDPA01-lvm1 2,476,675 Response

M29 CAMRESSDPA01-lvm2 98,864 Time

M210 CAMRESSDPA03-lvm0 80,578

M211 CAMRESSDPA03-lvm1 34,773

M212 CAMRESSDPA03-lvm2 61,550

M213 CAMRESSTGA01-lvm0 103,206

M214 CAMRESSTGA01-lvm1 113,632

M215 CAMRESTSA01-lvm0 91,123

M216 CAMRESWEBA03-lvm0 105,051

M217 CAMRESWEBA03-lvm1 8,308

M218 CAMRESWEBA03-lvm2 299,650

M219 CAMRESWEBA03-lvm3 1611

M220 CAMWEBDEV-lvm0 58,850

M221 CAMWEBDEV-lvm1 55

M222 CAMWEBDEV-lvm2 9369

M223 CAMWEBDEV-lvm3 35

KB kilobytes

data transfer procedure. The SanDisk 8 GB SDHC card
has been used as the flash storage in this case study.
Case VI: dataset from UMass Trace Repository: The

UMass Trace Repository [27] is a commonly used data
repository. It provides storage, network, and other traces
for analysis to the research community. This work is sup-
ported by the National Science Foundation. This reposi-
tory contains different traces namely CPU and memory,
network, Storage, weather, power, smart, and multime-
dia traces under two different categories, namely Financial
andWebSearch. The characteristics of the traces are given
in Table 9.We have used those datasets to verify themulti-
block data transfer process of the proposed controller and
the SanDisk 8 GB SDHC card has been used for this
purpose.
Case VII: dataset from SNIA Iotta Repository Historical

Section: Storage Networking Industry Association (SNIA)
Iotta Repository [26] is a commonly used repository,
used to store, manage, and distribute different traces or
datasets for storage. The historical section of this reposi-
tory includes all the traces which are older than 10 years.
The historical section contains five different traces namely
Block I/O Traces, Network File System Traces, Parallel
Traces, Static Snapshots, and System Call Traces. Each of
these traces are further divided into multiple sub-traces.
We have used some sub-traces from those available traces
to verify the multiblock data transfer process of the pro-
posed controller. The characteristics of the traces are
given in Table 10. The SanDisk 8 GB SDHC card has been
used as the storage device in this case study.
Different flash transition layer settings: The function-

ality and efficiency of the proposed controller have also
been tested using different volume of data. We have tested
the read-write operations of the controller for different
volume likely 4, 8, 10, and 512 MB and 1 GB.

5.3.2 Results
The implemented architecture of the proposed controller
works in three different modes; namely card initialization
mode, card read mode, and card write mode. After card
initialization, based on the external commands, controller
communicates with the card either for read or for write
operation.

Table 9 Characteristics table for UMass Repository [27]

Repository File name File size Attributes
name in KB

UMass Financial1 151165 ASU,

Financial2 102873 LBA,

WebSearch1 30744 Size,

WebSearch2 135948 Opcode,

WebSearch3 127520 Timestamps,

Optical fields

ASU application-specific unit, LBA logical block address

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 16 of 26

Table 10 Characteristics table for SNIA Historical Section
Repository [26]

Trace name Sub-traces Number
of files

Block I/O Traces Cello 1999 12

Cello 1996 12

Cello 1992 12

HP LAJW 12

Cello 1991 12

NFS Traces Animation dataset 140

Harvard SOS Traces 7

Parallel Traces Sprite Traces 1

Static Snapshots Multimedia file sizes 1

Microsoft Longitudinal Study 1

Microsoft 1998 Static Study 1

System Call Traces LASR Traces 13

Seer Traces (ASCII) 1

Seer Traces 1

CMU DFS Traces 14

To validate the read/write operation two types of test
unit has been considered. They are described as follows:
Test unit: on-board output unit (LED): The Spartan 3E

target FPGA board contains 8-bit output unit with 8 on-
board light emitting diodes (LEDs) [20]. In the testing
setup of the experiment, the MISO signal of the controller
has been mapped with a single LED of the on-board 8-
bit LED unit and the resultant command responses and
read/write data patterns were observed. Since the SPI
mode is a serial bus interface mode, the SD card gives
response serially through its output port to the mas-
ter. The MISO line signal is left shifted in every clock
cycle to observe a series of patterns in 8-bit LED unit
available in the FPGA board. Additionally, in the output
section, a clock down converter unit has been designed
and integrated to slow down the speed of response of
the controller for better perception. This is a little com-
promise with the speed of operation in testing and ver-
ification section. However, introduction of this section
is purely optional and while integration of the controller
with real-time high speed system this unit is to be omitted.
Test unit: DSO: A digital storage oscilloscope (DSO) has

been connected with the input (MOSI) and the output
(MISO) port of the controller. Both the output and input
data patterns have been observed in DSO for further ver-
ification. The clock down converter unit has also been
integrated here to slow down the response speed of the
card. But, it is introduced only for the card read section for

all the cards and initialization section for the SDHC card
only.
The results of the proposed controller have been

observed and verified in chronological order as per prob-
lem description stated above.
Case I: result: pre-declared embedded data pattern: The

first case study represents the complete three-state access
of a cannon 16 MB SD card. The steps in different phases
of data transfer are described below:
Initialization - Figures 19 and 20 show the initializa-

tion state output mapped in the on-board LEDs. The
driving signal for the initializationmodule is the Reset sig-
nal. Figure 19 shows the output response pattern of the
SD card after execution of the first command (CMD0).
Figure 20 shows the output pattern after completion of the
entire initialization step, when the card is in idle mode.
Card write operation - The pre-defined 8-bit embedded

data pattern has been written to the SD card. Figure 21
shows the CRC status response (viz. “00000101”) coming
from SD card to the output port. The card responds to
every successful write of an entire block. If the operation
performed is a single block write, then the card gives the
response once after the completion of the write operation
of the entire block. But if it is a multiblock write operation,
then the card responds after every block write comple-
tion, until the end block command (CMD12) has been
issued.
Card read operation - Here, we consider an arbitrary

data pattern, say e.g., “11010011” which has been read
from the SD card. Figure 22 shows that data pattern on
the LEDs. Both the single block and the multiblock write
and read operations have been verified with the data pat-
tern. This 8-bit data pattern has beenwritten repeatedly to
form the entire block (of 512 bytes) to perform the block
write operation.
Case II: result: pseudo-random number sequences: The

second case study represents the complete 3-state access
for a SanDisk 8 GB class 4 SDHC card. Both the input
and output ports are connected with the DSO. The study
shows the efficiency of the proposed controller for high
capacity SD card. Later on, the 16 MB Cannon SD card
and the 2 GB microSD card have also been verified for the
read/write process.

Fig. 19 CMD0 response pattern on the on-board LEDs for SD card

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 17 of 26

Fig. 20 Initialization process completion response on the on-board
LEDs for SD card

SDHC card - The results obtained for the 4 GB SanDisk
SDHC card are described in this section.
Initialization - Figures 23, 24, 25, 26 and 27 show the

complete initialization process of the SDHC card. The ini-
tialization command and corresponding response pattern
of the card have been recorded using DSO. In idle state,
the proposed controller gives a logic high signal through
the MOSI line and it also receives a logic high signal from
the SDHC card.
Card write operation - Figures 28 and 29 show the input

and output pattern for write operation. The input data
have been generated by a PRN generator. Both the sin-
gle block and the multiblock data transfer operation have
been performed. Figure 28 shows the input and output
sequence of a single block write operation whereas Fig. 29
shows the multiblock write operation.
Card read operation - Figures 30 and 31 show the read

operation of the card. The previously written data pat-
tern, generated by PRN generator, has been read to verify
the complete operational performance. Figure 30 shows
the single block read operation and Fig. 31 shows the
multiblock read operation.

SD card - The results obtained for the 16 MB Can-
non SD card are described in this section. Figure 32
describes the complete initialization process. The clock
divider section has not been introduced in this section.
So the process operates in full clock as provided for
the initialization of the SD card. To validate the data

Fig. 21 CRC response pattern for write operation

Fig. 22 Data pattern retrieved in read operation

transfer procedure, the multiblock write operation, shown
in Fig. 33, has been performed for the PRN sequences.
Later on, the data pattern has been retrieved from the
SD card by performing both the single block and multi-
block read operation. Figure 34 shows the single block
read operation and Fig. 35 describes the multiblock read
operation.

MicroSD card - The results obtained for the 2 GB
microSD card are described in this section. The opera-
tion method and response patterns are nearly the same
to the SD card. The microSD card initialization requires
100- to 400-KHz clock frequency. The clock divider
module has not been integrated during initialization
and block write phases. It has been used only for the
read operation to make the validation process realizable.
The multiblock read/write operation has been performed
only to validate the data transfer operation. Figure 36
describes the complete initialization process. Figure 37
describes the multiblock write process and Fig. 38
indicates the multiblock read operation for the 2 GB
microSD card.

Fig. 23 CMD0: input sequence and response pattern

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 18 of 26

Fig. 24 CMD8: input sequence and response pattern

Fig. 25 CMD55: input sequence and response pattern

Fig. 26 ACMD41: input sequence and response pattern with single
block read sequence

Fig. 27 Idle mode input and response sequence

Fig. 28 Input data with response pattern for single block write
operation on DSO

Fig. 29 Input data with response pattern for multiblock write
operation on DSO

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 19 of 26

Fig. 30 Single block read mode input command and data response
from SDHC

Fig. 31Multiblock read mode input command and data response
from SDHC

Fig. 32 Initialization: input sequences and response patterns

Fig. 33 Input data with response pattern for multiblock write
operation to SD card

Fig. 34 Single block read mode input command and data response
from SD

Fig. 35Multiblock read mode input command and data response
from SD

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 20 of 26

Fig. 36 Initialization: input sequences and response patterns for
microSD card

The third and the forth case study were to test and ver-
ify the efficiency of the proposed controller for real-time
audio and video signal storage and retrieval.
Case III: result - audio signal transmission: In this study

an analog signal is fed to the system in audio range. The
received signal has been converted and compressed into
8-bit digital data pattern and fed it to the input data bus
of the controller for the verification of multiblock data
write procedure in the SDHC card. The data stored in this
process is again accessed via multiblock card read proce-
dure of the controller. Both the input audio data and the
data accessed from the SDHC card were fed to the DSO.
Figure 39 shows the input data pattern and the read oper-
ation from the SDHC card. The read and write operations
are two different operations which cannot be performed
at same time instance. Therefore, initially the analog signal
was converted and stored into the SDHC card and during

Fig. 37 Input data with response pattern for multiblock write
operation to microSD card

Fig. 38Multiblock read mode input command and data response
from microSD

that phase different commands, responses and data pat-
terns were recorded using DSO. Later on, the same data
pattern has been retrieved from the SDHC card in read
mode and they were also recorded. We got the stored data
back along with the CRC bits and on DSO those CRC pat-
terns were present with the original data. For simplicity,
the result has been given in the form of bit pattern and the
parts of the stored data have been encircled to show the
same portion of the retrieved data.
Case IV: result - video signal transmission: The video sig-

nal has been stored and retrieved in this fourth case study.
A video signal of 20 frames/second was fed to the system
and subsequently stored into the card. The SanDisk 8 GB
class 4 SDHC card has been used to verify the video signal
transmission process. The card performs in 4 MB/s writ-
ing speed to store and retrieve the video signal. The entire
communication was governed under the control of the
proposed controller. To ensure the successful data stor-
age and retrieval, later those frames were retrieved from

Fig. 39 Audio signal processing: data stored and retrieval pattern

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 21 of 26

the card and they were displayed in CRT monitor. The
retrieved frames were compared with the original frames
which were stored in the card. Figure 40 shows a snapshot
of such video data storage and retrieval. The right hand
screen in Fig. 40 shows the actual frame that was written
in the card and the left hand side monitor shows the frame
retrieved from the card. Here the left hand side monitor,
the implemented controller along with the card work as a
standalone unit.
Case V: result - dataset from MSR Cambridge Traces:

The datasets were collected from MSR Cambridge traces
[24, 25], as explained in “Case studies” section where the
description of the datasets is illustrated. In our exper-
imental part, each file of three traces is considered as
separate dataset. The datasets were divided into multiple
blocks so that we can accomplish multiblock read-write
with respect to flash memory. In the performance com-
parison section, the metrics were computed for multi-
block data read write with respect to different I/O traces.
Results were tabulated for the datasets collected from the
repositories.
Case VI: result - dataset from UMass Trace Repository:

The datasets were collected from UMass Trace Reposi-
tory [24, 27], as explained in “Case studies” section. In
our experimental part, those datasets have been divided
into multiple blocks and the data has been stored in San-
Disk 8 GB class 4 SDHC card to accomplish multiblock
read-write. In the performance comparison section, the
metrics were computed for multiblock data read write
with respect to different I/O traces. Results were tabulated
for the dataset collected from the repositories.
Case VII: result - dataset from SNIA Iotta Reposi-

tory Historical Section: The datasets were collected from
the historical section SNIA Iotta Repository [24, 26], as
explained in “Case studies” section. In our experimental
part, those datasets have been divided intomultiple blocks
to accomplish the read write with respect to flash mem-
ory. Results were tabulated for the dataset collected from
the repositories.

Fig. 40 Snapshot of video processing

6 Performance comparison
This section describes the performance comparison of
the controller with reported results. The logic utilization
for the proposed controller is only 5% of the total logic
present in Spartan 3E FPGA board. This is evident from
Table 6.
The proposed controller has been tested for a single

block as well as for multiblock (5000 block) data read
and write operation for the SD, SDHC, and microSD
cards. Table 11 shows a summary of clock cycle elapsed
by SDHC card, and Table 12 shows a summary of clock
cycle elapsed by the microSD card during initialization,
single and multiblock reads, and single and multiblock
write operation. In the initialization phase, the proposed
system utilizes full bandwidth supported by SD card tech-
nology. Initially the SDHC card receives CMD0, CMD8,
CMD55, ACMD41, CMD58, and CMD16 commands and
the controller receives corresponding responses for each
of the commands. (CMD55 and ACMD41) pair of com-
mands may be required to send “n” times until the card
generates the response pattern x“00”. Therefore the total
number of clock cycles elapsed in initialization phase by
SDHC card is 112(2 + n). However in Table 11 we have
considered the ideal case of n = 1, and the initializa-
tion process takes the minimum of 336 clock cycles for
SanDisk 8 GB class 4 SDHC card in SPI bus mode. Sim-
ilarly, SD card initialization process requires 56(3 + 2n)
clock cycles and microSD card requires 56(1 + 2n) clock
cycles for initialization. The difference is due to the fact
that CMD58 command is not necessary for the initializa-
tion phase of SD card and CMD58, CMD16 commands
are not required for the microSD card initialization. Only
CMD0 and (CMD55+ACMD41) in place of CMD1 initi-
ates the microSD card in SPI mode. In the ideal case with
n = 1, the initialization process takes the minimum of
280 clock cycles for cannon 16 MB class 2 SD card and
168 clock cycles for microSD card in SPI bus mode. The
HCS bit should be high in ACMD41 command for initial-
ization of the SDHC card, whereas for SD card and the
microSD card with capacity ≤ 2 GB requires HCS bit to
be de-asserted at the time of initialization.
Tables 13 and 14 show a comparative study of the speed

of response for SD card. Also in Table 13, the initializa-
tion time for SDHC card and microSD card has been

Table 11 Clock cycles achieved for SDHC

Process CCTPP

Initialization 336

Single block read 4176

Single block write 4184

Multiblock (5000) read 20600056

Multiblock (5000) write 20640056

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 22 of 26

Table 12 Clock cycles achieved for microSD card

Process CCTPP

Initialization 168

Single block read 4176

Single block write 4184

Multiblock (5000) read 20600056

Multiblock (5000) write 20640056

reported. Here the comparison is only done with respect
to SD card initialization time available in the literature.
Also from Table 14, we find the percentage increase in
speed of response in read-write phase for SD card with the
proposed controller.
Table 15 shows the software speed-up for the proposed

controller. The SanDisk 8 GB class 4 SDHC card, Cannon
16 MB class 2 SD card, and the class 4 microSD card have
been used for multiblock data transfer using the proposed
controller, designed in VHDL. The similar data transfer
setup has been implemented based on two modern oper-
ating systems (Windows 7 andWindows XP (Service Pack
3)) to validate the speed up of the proposed controller
with respect to existing software based approaches. The
modern operating systems are mostly written in JAVA
or a high-level languages which ultimately makes the
system’s in-build controller slower than the proposed con-
troller, optimized using VHDL. The computer used for
this purpose contains Intel second-generation dual core
processor, 2 GB DDR3 RAM as the basic specifications.
Figure 41 shows the comparison chart of the initializa-

tion process performed in the SD card. The work has been
compared with the closest work reported in Elkeelany
et al.’s paper [1]. The chart in Fig. 41 clearly shows the
reduction in the initialization time. The proposed process
introduces 65.56% improvement in the initialization time.
Figure 42 describes the comparison in clock cycle required
for single block data transfer (single block read/write)
and Fig. 43 shows the corresponding improvements in
percentage. The proposed architecture introduces 65%
improvement of clock cycle for single block read and
44% improvement of clock cycle for single block write
operation. On the other hand, Fig. 44 explains the com-
parison in multiblock data transfer and Fig. 45 shows
corresponding improvement in percentage. Here, the pro-
posed system introduces 21.59% improvement in required
clock cycle for multiblock read and 2.87% improvement

Table 13 Speed comparison in initialization phase

TTPP

Process SD card O. Elkeelany SDHC MicroSD
achieved et al. [1] achieved achieved

Initialization 22 ms 63.88 ms 27 ms 20 ms

Table 14 Speed comparison in read/write phase

CCTPP

Process SD card Elkeelany % Reduction
achieved et al. [1]

Single Block Read 4176 12025 65

Multiblock Read (5000 Block) 20600056 26275000 21.59

Single Block Write 4184 7472 44

Multiblock Write (5000 Block) 20640056 21250000 2.87

in required clock cycle for multiblock write. The speed
of SD card data access in terms of clock cycles for single
block read/write is increasing to 65 and 44%, respectively,
and for multiblock read write it is increasing to 21.59 and
2.87%, respectively. The comparison chart of the software
speed-up of VHDLwith respect to the high-level language
is shown in Figs. 46, 47 and 48 for SDHC, SD andmicroSD
card, respectively.
The performance of the proposed controller has also

been tested for three different commonly used repos-
itoties. These three repositories are MSR Cambridge
Traces [25], UMass Trace Repository [27], and SNIA Iotta
Repository [26]. Tables 8, 9 and 10 represent the char-
acteristics of MSR Cambridge Traces [25], UMass Trace
Repository [27], and SNIA Iotta Repository [26], respec-
tively. The files in each repositories, the size of the file,
and the attributes of the files are given in the tables.
Tables 16, 17 and 18 show the performance of the con-
troller for both read and write process with respect to
repository datasets and workload, average CCTPP(read),
average CCTPP (write), and IOPSmetrics. All the datasets
of MSR cambridge and UMass repositories have been
used and only Harvard SOS subtraces of NFS trace of
SNIA Iotta repository has been used for experimental
section.

Table 15 Software speedup in multiblock data transfer phase

TTPP

Card used Process VHDL achieved Windows 7 Windows XP

SDHC Multiblock read
(5000 blocks)

60 μs 2.01 s 2.70 s

Multiblock write
(5000 blocks)

100 μs 10.26 s 11.10 s

SD Multiblock read
(5000 blocks)

57 μs 1.98 s 2.46 s

Multiblock write
(5000 blocks)

93 μs 9.89 s 10.71 s

MicroSD Multiblock read
(5000 blocks)

48 μs 1.53 s 1.99 s

Multiblock write
(5000 blocks)

75 μs 9.12 s 10.02 s

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 23 of 26

Fig. 41 Comparison chart for the initialization process of the SD card

Fig. 42 Comparison chart for the single block data transfer of SD card

Fig. 43 Improvement chart for single block data transfer of SD card

Fig. 44 Comparison chart for multiblock data transfer of SD card

Fig. 45 Improvement chart for multiblock data transfer of SD card

Fig. 46 Speed up comparison chart of SDHC card

Fig. 47 Speed up comparison chart of SD card

Fig. 48 Speed up comparison chart of microSD card

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 24 of 26

Table 16 Performance table for MSR Cambridge Repository [25]

Repository name File name
abbreviation

Workload in
blocks of data

Average response
CCTPP (Read)

Average response
CCTPP (Write)

IOPS
(operations/second)

MSR M11 144,741 87,980 59,568 957

Cambridge M12 453,996 43,481 228,544 957

1 M13 566,045 33,408 218,313 958

M14 929,401 79,007 118,519 958

M15 103,129 33,438 117,673 957

M16 233,319 108,512 51,613 958

M17 386,921 153,010 199,474 956

M18 59,242 149,141 20,467 957

M19 246,939 101,917 105,340 957

M110 123,427 36,811 52,927 957

M111 85,412 33,663 48,690 957

M112 127,229 165,980 50,863 957

MSR M21 189,660 154,168 72,762 957

Cambridge M22 229,310 162,438 60,576 957

2 M23 283,342 42,193 133,960 958

M24 196,382 172,309 81,244 957

M25 277,067 106,205 115,738 960

M26 83,360 33,408 35,466 958

M27 136,364 33,419 122,567 958

M28 570,197 317,922 107,067 956

M29 1,157,651 44,544 53,952 956

M210 117,600 34,965 51,319 958

M211 164,072 33,709 107,546 957

M212 148,760 33,408 95,238 958

M213 192,269 88,610 72,740 958

M214 154,498 48,024 64,521 957

M215 272,685 125,598 66,648 957

M216 145,708 119,592 59,161 954

M217 190,880 81,501 78,696 957

M218 1,227,759 84,665 36,812 957

M219 811,852 889,535 166,042 957

M220 215,659 112,999 78,539 957

M221 10,816 35,696 42,812 957

M222 162,960 32,609 68,052 957

M223 10,596 33,527 44,698 957

Table 17 Performance table for UMass Repository [27]

Repository name File name Workload in bytes
of data

Average response
CCTPP (Read)

Average response
CCTPP (Write)

IOPS
(operations/second)

UMass Financial1 107,967 50,889 41,093 957

Financial2 57,254 20,371 41,542 957

WebSearch1 306,500 128,006 66,816 957

WebSearch2 303,744 126,855 66,816 956

WebSearch3 289,776 121,032 66,816 957

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 25 of 26

Table 18 Performance table for SNIA Historical Section [26]

Trace name Sub-trace Workload in number Response CCTPP (Read) Response CCTPP (Write) IOPS (operations/second)

NFS Harvard 12357 38093 16343 956

Trace SOS Traces

(Deasna Week1)

We have also tested the efficiency, performance and
handling capacity of this proposed controller in different
FTL settings where volume of data is varied from 4 MB,
8 MB, 10 MB, 512 MB to 1 GB. Table 19 shows the per-
formance in terms of CCTPP for the above mentioned
volume of datasets.

7 Conclusions
An on-chip design and implementation of a controller
has been proposed for SDHC and similar family of cards.
The design has also been implemented for the microSD
card. In addition to that, the same controller can be used
for data communication with MMC also. The FSM-based
architecture design, its operation, FPGA-based imple-
mentation, control flow and execution, synthesis results,
and all other implementation related issues were dis-
cussed in details. Results were tabulated for different
problems specified above, and it is seen that the efficiency
is increasing in the proposed design. The speed of SD
card data access in terms of clock cycles for single block
read/write is increasing to 65 and 44% respectively, and for
multiblock read write it is increasing to 21.59 and 2.87%
respectively compared to the closest reported work [1].
Future work will involve the extension of the pro-

posed controller in more wide sense. This paper presently
focuses on SPI mode-based data communication for SD,
SDHC, and microSD cards. However, this approach can
be extended to other mode of data transfer supported by
similar family of cards. Regarding increase of speed in data
transfer between external system and the storage device,

Table 19 Performance in different FTL settings

Data volume Process CCTPP

4 MB Write block 33,472

Read block 33,408

8 MB Write block 66,944

Read block 66,816

10 MB Write block 83,680

Read block 83,520

512 MB Write block 4,284,416

Read block 4,276,224

1 GB Write block 8,368,000

Read block 8,352,000

further modification can be incorporated by changing the
proposed architecture as well as the design can be imple-
mented in other high-end target platform with a very
minor modification in configuration procedure.

Authors’ contributions
The work has been carried out as the M.Tech. final year project of the first
author, SB, under the supervision of the second author, SM. The selection and
setup of the project had been carried out by both the authors together. The
structuration and coding part was carried out by SB and the testing and
debugging part was done by both the authors. This manuscript had been
prepared and checked by both of the authors together. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 May 2016 Accepted: 31 October 2016

References
1. O Elkeelany, VS Todakar, Data archival to SD card via hardware description

language. IEEE Embed. Syst. Lett. 3(4), 105–108 (2011)
2. SD Card Association and Technical Committee and Specifications, SD, et

al., Part 1, physical layer, simplified specification, Version 2.00. (SD Card
Association, San Ramon, 2006). https://www.sdcard.org/downloads/pls/
simplified_specs/archive/part1_200.pdf

3. Part, SD Specifications, Physical Layer Simplified Specification Version
2.00. 31, 1 (2010). http://www.sdcard.org/developers/tech/sdcard/pls/

4. A Lakshman, P Malik, Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review. 44(2), 35–40 (2010)

5. C Border, in ACM SIGCSE Bulletin. The development and deployment of a
multi-user, remote access virtualization system for networking, security,
and system administration classes, vol. 39 (ACM, 2007), pp. 576–580

6. H Müller, N Michoux, D Bandon, A Geissbuhler, A review of content-based
image retrieval systems in medical applications–clinical benefits and
future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)

7. S-H Liao, Expert system methodologies and applications—a decade
review from 1995 to 2004. Expert Syst. Appl. 28(1), 93–103 (2005)

8. J Tai, D Liu, Z Yang, X Zhu, J Lo, N Mi, Improving flash resource utilization
at minimal management cost in virtualized flash based storage systems.
IEEE Trans. Cloud Comput. 99, 1–14 (2015)

9. C Wang, Q Wang, K Ren, N Cao, W Lou, Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2),
220–232 (2012)

10. H Nie, Q Xie, Y Zhang, M Li, Q Liu, H Liu, J Zhang, B Li, in Intelligent System
Design and Engineering Application (ISDEA), 2012 Second International
Conference On. Research on solid state storage based remote sensing
data storage (IEEE, 2012), pp. 1294–1297

11. H Chen, TN Cong, W Yang, C Tan, Y Li, Y Ding, Progress in electrical energy
storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

12. S Cohn, M Ross,Methods, systems, and devices for wireless delivery, storage,
and playback of multimedia content onmobile devices. (Google Patents,
2001). US Patent App. 10/040,617

13. H Qi, A Gani, in Digital Information and Communication Technology and It’s
Applications (DICTAP), 2012 Second International Conference On. Research
on mobile cloud computing: Review, trend and perspectives (IEEE, 2012),
pp. 195–202

14. Y Yang, Y Yang, L Niu, in 2012 Second International Conference on
Instrumentation, Measurement, Computer, Communication and Control.

https://www.sdcard.org/downloads/pls/simplified_specs/archive/part1_200.pdf
https://www.sdcard.org/downloads/pls/simplified_specs/archive/part1_200.pdf
http://www. sdcard. org/developers/tech/sdcard/pls/

Banerjee and Mukhopadhyay EURASIP Journal on Embedded Systems (2016) 2016:24 Page 26 of 26

Design of sdhc card video player based on sopc (IEEE Computer Society,
2012), pp. 900–904. doi:10.1109/IMCCC.2012.216

15. M Abdallah, O Elkeelany, in Computing, Engineering and Information, 2009.
ICC’09. International Conference On. Simultaneous multi-channel data
acquisition and storing system (IEEE, 2009), pp. 233–236.
doi:10.1109/ICC.2009.17

16. C-S Lin, K-Y Chen, Y-H Wang, L-R Dung, in 2006 13th IEEE International
Conference on Electronics, Circuits and Systems. A nand flash memory
controller for sd/mmc flash memory card (IEEE, 2006), pp. 1284–1287.
doi:10.1109/TMAG.2006.888520

17. O Elkeelany, G Vince, in 2007 Thirty-Ninth Southeastern Symposium on
System Theory. Portable analog data capture using custom processing
(IEEE, 2007), pp. 120–123

18. C Li, Q Wang, L Wang, in Computer and Information Technology
Workshops, 2008. CIT Workshops 2008. IEEE 8th International Conference On.
A high efficient flash storage system for two-way cable modem (IEEE,
2008), pp. 551–556. doi:10.1109/CIT.2008.Workshops.30

19. C-Y Lu, H Kuan, Nonvolatile semiconductor memory revolutionizing
information storage. IEEE Nanotechnol. Mag. 3(4), 4–9 (2009).
doi:10.1109/MNANO.2009.934861

20. S Xilinx, 3E starter kit board user guide. UG230 (v1. 0) March. 9 (2006).
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.
pdf

21. SanDisk, Secure Digital Card Product Manual. 1.9(80-13-00169) (2003)
22. Instruments, Texas,Msp430x1xx family user’s guide. (SLAU049B, 2006)
23. Y Deng, J Zhou, Architectures and optimization methods of flash memory

based storage systems. J. Syst. Archit. 57(2), 214–227 (2011)
24. D Narayanan, A Donnelly, A Rowstron, Write off- loading: practical power

management for enterprise storage. ACM Trans. Storage. 4(3), 10–11023
(2008)

25. Storage Networking Industry Association and others, MSR Cambridge
Traces (2010). http://iotta.snia.org/traces/388

26. Storage Networking Industry Association, et al, SNIA Iotta Repository.
Microsoft Enterprise Traces, Colorado Springs, Colorado (iotta. snia.
org/traces/130) (2011). http://iotta.snia.org/historical_section

27. Application, OLTP, I/O and search engine I/O. umass trace repository
(2007). http://traces.cs.umass.edu/index.php/Storage/Storage

28. S Chen, What types of ECC should be used on flash memory. Application
Note for SPANSION (2007). http://www.spansion.com/support/
application%20notes/types_of_ecc_used_on_flash_an.pdf

29. J No, Nand flash memory-based hybrid file system for high I/O
performance. J. Parallel Distrib. Comput. 72(12), 1680–1695 (2012)

30. R Wang, Z Mi, H Yu, W Yuan, The design of image processing system
based on SOPC and ov7670. Procedia Eng. 24, 237–241 (2011)

31. M Fabiano, M Indaco, S Di Carlo, P Prinetto, Design and optimization of
adaptable BCH codecs for nand flash memories. Microprocess. Microsyst.
37(4), 407–419 (2013)

32. M Baklouti, P Marquet, J Dekeyser, M Abid, FPGA-based many-core
system-on-chip design. Microprocessors and Microsystems. 39(4),
302–312 (2015)

33. F Thomas, M Nayak, S Udupa, J Kishore, V Agrawal, A hardware/software
codesign for improved data acquisition in a processor based embedded
system. Microprocess. Microsyst. 24(3), 129–134 (2000)

34. F Chen, DA Koufaty, X Zhang, in Proceedings of the International
Conference on Supercomputing. Hystor: Making the best use of solid state
drives in high performance storage systems (ACM, Tucson, Arizona, 2011),
pp. 22–32

35. J Guerra, H Pucha, JS Glider, W Belluomini, R Rangaswami, in FAST. Cost
effective storage using extent based dynamic tiering, vol. 11, (2011),
pp. 20–20

36. Technical Committee SD Card Association, et al., Speed Class Greater
Performance Choices, Online available and accessed. Onlineathttps://
www.sdcard.org/developers/overview/speed_class/

37. Editor - Metering, Minsen - your ideal supplier of wireless
water/gas/electricity meters (2013). https://www.metering.com/minsen-
your-ideal-supplier-of-wireless-water-gaselectricity-meters/

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/IMCCC.2012.216
http://dx.doi.org/10.1109/ICC.2009.17
http://dx.doi.org/10.1109/TMAG.2006.888520
http://dx.doi.org/10.1109/CIT.2008.Workshops.30
http://dx.doi.org/10.1109/MNANO.2009.934861
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf
http://iotta.snia.org/traces/388
http://iotta.snia.org/historical_section
http://traces.cs.umass.edu/index.php/Storage/Storage
http://www.spansion.com/support/application%20notes/types_of_ecc_used_on_flash_an.pdf
http://www.spansion.com/support/application%20notes/types_of_ecc_used_on_flash_an.pdf
Online at https://www.sdcard.org/developers/overview/speed_class/
Online at https://www.sdcard.org/developers/overview/speed_class/
https://www.metering.com/minsen-your-ideal-supplier-of-wireless-water-gaselectricity-meters/
https://www.metering.com/minsen-your-ideal-supplier-of-wireless-water-gaselectricity-meters/

	Abstract
	Keywords

	Introduction
	Review of the related works
	Proposed FPGA-based controller
	High capacity SD card
	MicroSD card
	Architecture of the proposed controller
	Overall system operation

	Hardware-specific implementation details
	Application-specific controller initialization challenges
	Synthesis details

	Experiments and results
	Performance metrics
	Simulation details
	Implementation details
	Case studies
	Results
	SDHC card
	SD card
	MicroSD card

	Performance comparison
	Conclusions
	Authors' contributions
	Competing interests
	References

