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Abstract

Since human beings have limited perceptual abilities, in many digital signal processing (DSP) applications, e.g.,
image and video processing, the outputs do not need to be computed accurately. Instead, their computation can be
approximated so that the area, delay, and/or power dissipation of the design can be reduced. This paper presents an
approximation algorithm, called AURA, for the multiplierless design of the constant matrix vector multiplication
(CMVM) which is a ubiquitous operation in DSP systems. AURA aims to tune the constants such that the resulting
matrix leads to a CMVM design which requires the fewest adders/subtractors, satisfying the given error constraints.
This paper also introduces its modified version, called AURA-DC, which can reduce the delay of the CMVM operation
with a small increase in the number of adders/subtractors. Experimental results show that the proposed algorithms
yield significant reductions in the number of adders/subtractors with respect to the original realizations without
violating the error constraints, and consequently lead to CMVM designs with less area, delay, and power dissipation.
Moreover, they can generate alternative CMVM designs under different error constraints, enabling a designer to
choose the one that fits best in an application.

Keywords: Approximate computing, constant matrix vector multiplication, Multiplierless design, 0–1 integer linear
programming, Area and delay optimization, Discrete cosine transform

1 Introduction
The complexity of many digital signal processing (DSP)
algorithms is dominated by repeated multiplications of
input samples by constant values. In particular, the con-
stant matrix vector multiplication (CMVM) operation
realizes the multiplication of an m×n constant matrix C
by an n×1 variable vector X, i.e., yj = ∑

k cjkxk , with
0 ≤ j ≤ m − 1 and 0 ≤ k ≤ n − 1. It appears in
hybrid form finite impulse response filters [1] and lin-
ear DSP transforms, such as discrete cosine transforms
(DCTs) and Hadamard and Reed-Muller transforms [2].
Since the realization of a multiplier in hardware is

expensive in terms of area, delay, and power dissipation
and the constants of the matrix C are determined before-
hand, the CMVM operation is generally implemented
using only shifts and adders/subtractors [2]. Note that
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shifts by a constant value can be realized using only wires
which represent no hardware cost. Thus, the CMVM
problem is defined as finding a minimum number of
adders/subtractors which realize the CMVM operation.
Over the years, many efficient methods, whose main task
is to maximize the sharing of common subexpressions,
have been introduced for the CMVM problem [2–10].
Approximate computing refers to a class of methods

that relax the requirement of exact equivalence between
the specification and implementation of a computing sys-
tem [11]. This relaxation allows trading the accuracy
of numerical outputs for reductions in area, delay, or
power dissipation of the design [12]. Research activities on
approximate computing range from a transistor level to an
algorithmic level [13–22].
In this paper, we propose a new method, AURA, for the

approximate computation of the CMVM operation under
the shift-adds architecture. Given the original constant
matrix C and error constraints to be satisfied, AURA aims
to find an optimized matrix C′, where the total number
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of nonzero digits of constants is minimum. This objec-
tive is based on the observation that constants with fewer
nonzero digits lead to a CMVM design with a smaller
number of adders/subtractors [13]. The problem of find-
ing the optimum C′ matrix is formulated as a 0–1 integer
linear programming (ILP) problem. Since there may exist
many such matrices, each leading to a CMVM design
with a different number of adders/subtractors, in each
iteration, AURA finds one of them, computes the num-
ber of occurrences of all possible two-term subexpressions
in the corresponding CMVM operation, and assigns the
matrix with the highest value of this parameter to the opti-
mized matrix C′. Finally, the shift-adds realization of the
optimized CMVM operation based on C′ is found using
the state-of-the-art method of [10] which considers the
sharing of the most common two-term subexpressions.
This paper also presents a modified version of AURA,
AURA-DC, proposed to find a solution with the fewest
adders/subtractors under a delay constraint given in terms
of the number of adder-steps which denotes the maxi-
mum number of operations in series. Experimental results
indicate that significant reductions in the number of oper-
ations and adder-steps can be obtained without violating
the error constraint. It is shown on the 8× 8 DCT designs
that the solutions of the proposed methods lead to sig-
nificant reductions in area, delay, and power dissipation
according to the original 8 × 8 DCT design with a slight
decrease of performance in image compression.

2 Background
This section gives the background concepts related to
the proposed algorithms and presents an overview on
the algorithms used for the multiplierless design of the
CMVM operation.

2.1 Matrix norms
The errors in the constant matrix C are measured
using matrix norms. In AURA, both norm-one (maxi-
mum column sum) and norm-infinity (maximum row
sum), which are defined as ‖C‖1 = maxk

∑
j |cjk| and

‖C‖∞ = maxj
∑

k |cjk|, respectively, are used. Thus, the
norm-one and norm-infinity error constraints are, respec-
tively, formed as ‖C − C′‖1 ≤ ε1 and ‖C − C′‖∞ ≤ ε∞,
where ε1, ε∞ > 0 are tolerable error values. Other norms
can be also considered and easily adapted in the proposed
algorithms.

2.2 0-1 ILP problem
The 0–1 ILP problem is the optimization of a linear objec-
tive function subject to a set of linear constraints and is
generally defined as follows:

minimize wT · x (1)
subject to A · x ≥ b, x ∈ {0, 1}k (2)

In the objective function of the 0–1 ILP problem given
in Eq. 1, wi in w is a weight value associated with each
variable xi, where 1 ≤ i ≤ k andw ∈ Z

k . In Eq. 2,A ·x ≥ b
denotes a set of j linear constraints, where b ∈ Z

j and
A ∈ Z

j × Z
k .

The minimization objective can be converted to
a maximization objective by negating the objective
function. Less-than-or-equal and equality constraints
are respectively accommodated by the equivalences,
A · x ≤ b ⇔ −A · x ≥ −b and A · x = b ⇔ (A · x ≥
b) ∧ (A · x ≤ b).

2.3 Multiplierless design of the CMVM operation
The linear transforms, which represent the CMVMopera-
tion, are obtained by multiplying each row of the constant
matrix by the variable vector. A straightforward approach
for the shift-adds design of the CMVM operation, called
the digit-based recoding (DBR) technique [23], has two
steps: (i) define the constants under a number represen-
tation, e.g., binary or canonical signed digit (CSD) (An
integer can be written in CSD using j digits as

∑j−1
i=0 di2i,

where di ∈ {1, 0,−1}. Under CSD, nonzero digits are
not adjacent and a minimum number of nonzero digits is
used.); (ii) for the nonzero digits in the representations of
constants, shift the variables according to the digit posi-
tions and add/subtract the shifted variables with respect
to the digit values.
Consider as a running example the constant matrix

C = [ 23 37; 11 25] and the corresponding linear trans-
forms y0 = 23x0 + 37x1 and y1 = 11x0 + 25x1. Their
decompositions under CSD are given as follows:

y0 = 23x0 + 37x1 = 32x0 − 8x0 − x0 + 32x1 + 4x1 + x1
y1 = 11x0 + 25x1 = 16x0 − 4x0 − x0 + 32x1 − 8x1 + x1

requiring 10 operations, as shown in Fig. 1a.
The number of operations can be further reduced by

sharing the common subexpressions. The common subex-
pression elimination (CSE) method of [3] finds all possible
implementations of linear transforms by extracting only
the two-term subexpressions and formalizes the problem
of maximizing the sharing of subexpressions as a 0–1
ILP problem. The exact CSE algorithm of [9] follows a
similar approach but considers all possible realizations
of linear transforms. However, these methods can only
be applied to CMVM instances with a small size of con-
stant matrices due to the exponential growth in the size
of 0–1 ILP problems. The CSE heuristics of [4, 6] itera-
tively find the most common two-term subexpression and
replace it within the linear transforms. They differ in the
selection of subexpressions that have the same number of
occurrences. The CSE algorithm [2] iteratively searches
a subexpression with the maximal number of terms and
with at least two occurrences. The CSE heuristic of [8]
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Fig. 1 Shift-adds designs of y0 = 23x0 + 37x1 and y1 = 11x0 + 25x1. a DBR method [23]. b HCMVM [10]. c HCMVM-DC [10]. Shift-adds designs of the
solutions of the proposed approximation algorithms on these linear transforms: d AURA and e AURA-DC

chooses its subexpressions based on a cost value which
is computed as the product of the number of terms in
the subexpression and the number of its occurrences in
the linear transforms. In turn, the algorithm of [5] ini-
tially computes the differences between each two linear
transforms and determines their implementation cost val-
ues. Then, it uses a minimum spanning tree algorithm to
find the realizations of linear transforms with differences
that have the minimum cost and replaces the linear trans-
forms with the required differences. The hybrid algorithm
of [10] iteratively finds the most promising differences of
linear transforms and applies an improved CSE heuristic
to further reduce the complexity of the CMVM operation.
Returning to our example, the hybrid algorithm of [10],

HCMVM, finds a solution with six operations when the
CSD representation is used in its CSE algorithm, sharing
the common subexpressions x0+x1 and 3x0+3x1 (Fig. 1b).
In many DSP systems, performance is a crucial param-

eter and circuit area is generally expendable in order to
achieve a given performance target. Although the delay
parameter is dependent on several implementation issues,
such as placement and routing, the delay of a CMVM
operation is generally considered in terms of the num-
ber of adder-steps. The minimum adder-steps of a linear
transform yj is found in three steps: (i) decompose its con-
stants cjk under a given number representation; (ii) find
the total number of terms in its decomposed form T(yj),
determined as

∑
k S(cjk), where S(cjk) denotes the num-

ber of nonzero digits of the constant cjk under a given
number representation; and (iii) compute 
log2 T(yj)� as
if all its terms in the decomposed form were realized
in a binary tree. Thus, the minimum adder-step of the
CMVM operation, MASCMVM, is the maximum of the
minimum adder-step of its each linear transform, i.e.,

maxj{
log2 T(yj)�} [24]. The methods of [7, 10] aim to
find the fewest adders/subtractors realizing the CMVM
operation and satisfying a delay constraint less than or
equal to MASCMVM.
For our example, the minimum adder-steps for y0 and y1

under the CSD representation are 3, and thus, MASCMVM
is found as 3. The hybrid algorithm of [10], HCMVM-DC,
finds a solution with seven operations when the delay con-
straint is set to 3 and the CSD representation is used in its
CSE algorithm, sharing the common subexpressions 3x0
and x0 − 33x1 (Fig. 1c). Observe that its solution has one
more operation but two less adder-steps compared to the
solution of HCMVM (Fig. 1b).

2.4 Exploring alternative sets of constants
The CMVM problem as enunciated above starts from a
fixed set of constants in thematrix, and the best solution is
found that maximizes the sharing of partial terms for that
given input. There are problems however for which sev-
eral sets of constants represent valid equivalent solutions.
For these cases, we can run one CMVM minimization
algorithm on each set of constants and select the set based
on which one is more amenable for the sharing of partial
terms.
The design of a finite input response (FIR) digital fil-

ter is a good example of these types of systems. Different
algorithms can be used to determine the set of coefficients
that verify a desired transfer function. With all the other
filter characteristics the same, we can optimize the filter
implementation by selecting the set of coefficients that
maximize the sharing.
The work described in [25] goes one step further. Given

the FIR desired filter characteristics (pass and stop fre-
quencies, and allowed error for each band), the desired
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coefficients are determined so that the number of total
partial terms required for the multiplications is mini-
mized. The exact algorithm of [25] builds a search tree
with clever pruning techniques the checks all valid con-
stant combinations. To handle cases where the exact solu-
tion is not viable, a heuristic algorithm is also proposed
that only makes a search around predefined values for the
coefficients.
The technique we propose in the current paper follows

a similar line of research. However, not only do we con-
sider all possible accurate implementations, we also allow
inaccurate computations in order to further explore the
sharing of partial terms.

3 Approximate computingmethods for DSP
systems

Approximate computing has been motivated by the
large and growing class of applications that demon-
strate inherent error resilience, such as DSP, multimedia
(images/audio/video), graphics, wireless communications,
and emerging workloads such as recognition, mining, and
synthesis [11]. The requirement for an exact computation
is relaxed due to several factors: (1) the limited per-
ceptual capability of humans (e.g., audio, video, graphics
due to the ability of the human brain to “fill in” miss-
ing information and filter out high-frequency patterns),
(2) a golden result is difficult to define or does not exist
(e.g., web search, data analytics), (3) users are willing
to accept approximate but good-enough results, and (4)
noisy inputs [18].
The class of methods and techniques referred to as

approximate computing usually relax the requirement of
exact equivalence between the specification and imple-
mentation of a computing system [11]. This relaxation
allows trading the accuracy of numerical outputs for
reductions in area, delay, and/or power dissipation of the
design [12].
In the last two decades, many design techniques, cir-

cuits, and algorithms have been introduced for approx-
imate computing. The reader is referred to [18–20], for
detailed surveys on approximate, stochastic, and prob-
abilistic computing. The approaches for the design of
approximate DSP systems can generally be grouped in
three categories: (i) transistor level, (ii) gate level, and (iii)
algorithmic level.
At the transistor level, the stochastic behavior of a

binary switch under the influence of thermal noise is
exploited and probabilistic CMOS (PCMOS) transistors
are used to realize, first, the arithmetic circuits and then
the DSP systems [20]. Other approaches consider scal-
ing the voltage below the minimum voltage supply value
required, so as to trade accuracy for power [26]. How-
ever, the observation that errors in bits of higher order
affect the quality of the solutionmore than the lower order

bits do led to operating adders of more significant bits
with a higher voltage and downscale the voltages for lower
bits [27].
At the gate level, approximate adders and multipliers

are used to implement the DSP systems [21, 22]. In these
cases, the circuits are designed to be error prone even
in the absence of voltage over-scaling. The principle is
to accept errors in rare cases for significant reductions
in the logic complexity or length of the critical path.
Changing the circuit truth table on selected positions
results in a simplified implementation with lower power
consumption, lower area, and higher performance at the
cost of an approximation. Another kind of approxima-
tion technique is the reverse carry propagation [28] where
approximations are introduced only in the least significant
bits, which ensures that the error introduced is of small
magnitude.
At the algorithmic level, design methodologies

have been introduced for approximate DSP systems
[12–15, 17, 29]. In most of these algorithms, a multiplier-
free approximation of linear transforms was considered
but the constants were approximated to the nearest
integer power of 2 and the sharing of common subexpres-
sions were not considered. This top-down approach of
design, for approximating DSP systems, does not benefit
from the low-level information about sharing of common
subexpressions and how they are computed using approx-
imate circuits. A solution to this problem was taken on
a variant of the multiple constant multiplication (MCM)
problem called multiple tunable constant multiplications
(MTCM) problem, where each constant is not fixed as
in the MCM problem but can be selected from a set of
possible constants [30].
To the best of our knowledge, the algorithmswe propose

in this paper are the only methods that realize the approx-
imation of the CMVM operation under the shift-adds
architecture, considering the sharing of common subex-
pressions and satisfying the error constraints. Similar to
the proposed algorithms, multiplier-free approximation of
linear transforms was considered in [13, 14], but the con-
stants are approximated to the nearest integer power of
two without sharing of common subexpressions.

4 Proposed approximation algorithms
Under a tolerable error at the outputs of the CMVM oper-
ation, the constants of C can be changed such that the
resulting (optimized) matrix C′ leads to a CMVM design
with the fewest adders/subtractors or adders-steps. Note
that a matrix with constants including a small number of
nonzero digits yields a CMVM design with a small num-
ber of operations [13]. Hence, the proposed algorithms
find a constant matrix with the minimum total number
of nonzero digits of constants under the given num-
ber representation, denoted as N(C) which is computed
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as
∑

j
∑

k S(cjk), satisfying the error constraints. In both
AURA and AURA-DC, this problem is formulated as a
0–1 ILP problem. Note that there may exist many matri-
ces with the minimum N(C) value. Also, the hybrid
algorithms of [10], which consider the sharing of the
most common two-term subexpressions, are used to find
the shift-adds design of the optimized CMVM opera-
tion in the proposed algorithms. Hence, both AURA and
AURA-DC find more than one possible matrix with the
minimum N(C) value, for each matrix, compute the total
number of occurrences of all possible tow-term subex-
pressions, denoted as O(C), and return the one with the
maximum O(C) value as the optimized matrix C′. These
steps are described in detail in the following two subsec-
tions using the constant matrix C = [ 23 37; 11 25] as an
example when ε1 and ε∞ are 2.

4.1 Details of AURA
While generating the 0 − 1 ILP problem, possible values
of each entry of the constant matrix C, cjk , are determined
to be in between cjk − r and cjk + r and stored in an array
called Rjk , where 0 ≤ j ≤ m − 1, 0 ≤ k ≤ n − 1, and r
denotes the range considered on each constant ofC. Thus,
for each constant in each Rjk , Rjk

i with 1 ≤ i ≤ |Rjk|, a
variable, vRjk

i @jk, is generated (the “@jk” in the variable
vRjk

i @jk is used to differentiate the same value of Rjk
i in

different rows and columns of the constant matrix C). The
objective function of the 0− 1 ILP problem is formed as a
linear function of these variables whose weight values are
S(Rjk

i ) found under the given number representation, i.e.,
binary or CSD. The constraints of the 0 − 1 ILP problem
are obtained in three steps:

1. For each entry in C, the following constraint is
generated to ensure that only one constant is chosen
from Rjk .

∑
i
vRjk

i @jk = 1, ∀j, k

2. The norm-one error constraint is formulated by
generating the following constraint for each column
of C.

∑
j

∑
i

|cjk − Rjk
i |vRjk

i @jk ≤ ε1, ∀k

3. The norm-infinity error constraint is formulated by
generating the following constraint for each row of C.

∑
k

∑
i

|cjk − Rjk
i |vRjk

i @jk ≤ ε∞, ∀j

After the 0–1 ILP problem is generated, a generic 0–1
ILP solver is applied to find a solution. Each entry of the

new constant matrix is determined by finding the vari-
ables vRjk

i @jk set to 1 by the 0–1 ILP solver. For our
example, the constant matrix [24 36; 10 24] is found when
r is 4 and CSD representation is used. Note that while the
N(C) value of this matrix is 8, the N(C) value is 12 for the
original matrix.
Then, the corresponding linear transforms are obtained

and their decomposed forms are found when constants
are defined under a given number representation. The
occurrences of each possible two-term subexpression are
determined, considering its shifted and negative versions,
and if its number of occurrences is greater than 1, the
O(C) value is updated. For our example, the decomposed
forms of linear transforms under CSD are given as follows:

y0 = 24x0 + 36x1 = 32x0 − 8x0 + 32x1 + 4x1
y1 = 10x0 + 24x1 = 8x0 + 2x0 + 32x1 − 8x1

where only the two-term subexpression x0 − 4x1 appears
twice. Thus, O(C) is computed as 2.
In order to find another matrix with the minimumN(C)

value, the solution of the 0–1 ILP solver is turned into a
constraint, indicating that it should not be found again.
Suppose that the constants R11

i ,R12
i , . . . ,Rmn

i were cho-
sen for each entry of the matrix. Thus, the following
constraint is generated and added to the 0–1 ILP problem.

vR11
i @11 + vR12

i @12 + . . . + vRmn
i @mn ≤ m·n − 1

After the augmented 0–1 ILP problem is solved, a differ-
ent solution is obtained. For our example, [ 24 36; 12 24] is
found in the second iteration. The decomposed forms of
the corresponding linear transforms under CSD are found
as follows:

y0 = 24x0 + 36x1 = 32x0 − 8x0 + 32x1 + 4x1
y1 = 12x0 + 24x1 = 16x0 − 4x0 + 32x1 − 8x1

where only the two-term subexpressions 4x0 − x0 and
x0 + 2x1 occur twice. Thus, O(C) is 4.
This process iterates until a total of ni constant matrices

are considered, where ni denotes the number of iterations,
or a constant matrix with an N(C) value greater than the
minimum is obtained. The constant matrix with the maxi-
mumO(C) value is determined to be the optimizedmatrix
C′. For our example, C′ is found as [ 24 36; 12 24].
Finally, the shift-adds design of the CMVM operation

based on C′ is found using HCMVM. For our example, the
solution of AURA has four operations and three adder-
steps, as shown in Fig. 1d. We note that the solution of
HCMVM on [24 36; 10 24], i.e., the solution of AURA in the
first iteration, has five operations.

4.2 Details of AURA-DC

AURA-DC is introduced to approximate the CMVM oper-
ation to have the fewest number of operations under



Aksoy et al. EURASIP Journal on Embedded Systems  (2016) 2016:12 Page 6 of 11

the minimum number of adder-steps, satisfying the error
constraints. To do so, whenever a constant matrix is
found, its MASCMVM value is computed and the one with
the minimum MASCMVM value is favored. In case of
equality of the minimum MASCMVM values, the one with
the maximumO(C) value is preferred. Also, the shift-adds
design of the CMVM operation based on C′ is obtained
using HCMVM-DC [10] when the delay constraint is set to
its MASCMVM value. For our example, AURA-DC finds the
optimizedmatrix as AURA, i.e., [24 36; 12 24]. But, its mul-
tiplierless design has five operations and two adder-steps
as shown in Fig. 1e. Compared to the solution of AURA
(Fig. 1d), it has one more operation but one less adder-
step. Observe that AURA and AURA-DC may find the same
optimized matrix but exploit different realizations.

4.3 Complexity of the proposed algorithms
Given the parameter r, the range of possible constants
to be considered for each entry of the matrix is deter-
mined as [ cjk − r, cjk + r]. Thus, the 0–1 ILP problem has
(2r+1)mn variables. In the proposed algorithms, r is set to
4. In turn, the number of constraints in the 0–1 ILP prob-
lem generated in the first iteration is mn + m + n. Given
the number of iterations ni, the number of constraints
in the 0–1 ILP problem generated in the last iteration is
mn+m+ n+ ni− 1, if the proposed algorithms were not
terminated in an earlier iteration. In the proposed algo-
rithms, ni is set to m + n. Observe that r and ni have an
effect only on the number of variables and constraints,
respectively. However, the length of a constraint, i.e., the
number of terms, is directly proportional to r.
Table 1 presents the number of variables and constraints

of the 0–1 ILP problem generated in the proposed algo-
rithms for square matrices with different r and ni values.
Note that the sizes of 0–1 ILP problems in Table 1 are
in the reach of generic ILP solvers, and real-world DSP
systems generally have m and n values less than or equal
to 16.
Also, suppose that each linear transform yj has tj terms

in its decomposed form. Thus, the number of the two-
term subexpressions, to be searched for their occurrences,

is
∑

j tj(tj − 1)/2 with 0 ≤ j ≤ m − 1. For a two-
term subexpression extracted from the jth transform yj,
its occurrences are searched in yi with j ≤ i ≤ m − 1 and
the subexpressions, whose occurrences have already been
identified, do not need to be considered.

5 Experimental results
This section presents the optimized results of the pro-
posed algorithms on randomly generated constant matri-
ces under different error constraints and compares them
against the original results of these instances. It also intro-
duces the results of original and optimized 8 × 8 DCTs,
their results on image compression, and their synthesis
results on application specific integrated circuit (ASIC)
and field programmable gate arrays (FPGA) design plat-
forms. We note that AURA and AURA-DC were written in
MATLAB and run on a PC with Intel Xeon at 2.4 GHz.
Their solutions were found when the CSD representation
was considered and SCIP2.0 [31] was used as a 0–1 ILP
solver.
As the first experiment set, we used randomly generated

n×nmatrices with 8-b constants, where n ranges between
2 and 16, in steps of 2. For each group, there were 50matri-
ces, a total of 400. Figure 2 presents the results of HCMVM
(denoted as original) and AURA (denoted as optimized) on
these constant matrices when ε1 and ε∞ are 1

2n, n, and 2n.
Note that the CPU time of AURA includes the CPU time
of HCMVM to find the shift-adds design of the optimized
CMVM operation.
Observe from Fig. 2 that as the tolerance on the out-

put error increases, the number of adders/subtractors
required to realize the CMVM operation decreases, since
the number of alternative constants to be considered in
an entry of the matrix increases. Note that the highest
reduction in the number of operations between the origi-
nal and optimized results are found as 10.7 %, 18.7 %, and
28.2% when ε1 and ε∞ are 1

2n, n, and 2n, respectively. As
the tolerance on the output error increases, the adder-step
values of the CMVMoperations also decrease. This is sim-
ply because the optimized matrix has the minimum N(C)

value under the given error constraints. For example, on

Table 1 Complexity of the 0–1 ILP problem

m = n
Number of variables Number of constraints

r = 4 r = 8 r = 16 ni = m + n ni = 2(m + n) ni = 4(m + n)

2 36 68 132 11 15 23

4 144 272 528 31 39 55

8 576 1088 2112 95 111 143

16 2304 4352 8448 319 351 415

32 9216 17,408 33,792 1151 1215 1343

64 36,864 69,632 135,168 4351 4479 4735



Aksoy et al. EURASIP Journal on Embedded Systems  (2016) 2016:12 Page 7 of 11

(a) (b)

(c)
Fig. 2 Average results of HCMVM and AURA on n × nmatrices. a Number of operations. b Number of adder-steps. c CPU time in log scale

16×16 instances, while the averageN(C) value of the orig-
inal matrices is 877.9, this value for the optimizedmatrices
is 758.8, 691.3, and 671.4 when ε1 and ε∞ are .5n, n, and
2n, respectively.
Observe also that for small instances, the execution time

is much lower for the original matrices because the ILP
problem dominates over the run time of HCMVM. For
larger instances, it is the opposite, and since the problem
sent to HCMVM is larger than for the optimized matrices,
the original matrices actually take slightly longer to run.
Moreover, since the number of two-term subexpressions
to be considered in HCMVM decreases as the N(C) value
decreases, the run time of AURA decreases as the error
tolerance increases.
Figure 3 presents the results of HCMVM-DC (denoted

as original) and AURA-DC (denoted as optimized) on the
same constant matrices with the same error tolerances
used for HCMVM and AURA in Fig. 2. In HCVM-DC, the
delay constraint was set to MASCMVM. Note that the CPU
time of AURA-DC includes the CPU time of HCMVM-DC
to find the shift-adds design of the optimized CMVM
operation.
The observations given for the results in Fig. 2 are also

valid for the results in Fig. 3. However, the solutions of

HCMVM-DC and AURA-DC have adder-steps values signif-
icantly smaller than those of the solutions of HCMVM and
AURA. Still, this comes with a penalty in the number of
operations. Observe that the adder-step values of the orig-
inal and optimized solutions are very close to each other,
which is simply because both HCMVM-DC and AURA-DC
target finding a solution with the minimum adder-step
of the CMVM operation. It is also observed on 10 × 10
instances that some optimized matrices lead to designs
with a smaller number of adder-steps but with a larger
number of operations with respect to the designs found
based on the original matrix. This is the reason why there
is not-so-large reduction in the number of operations on
these instances with respect to others.
Table 2 presents the results of AURAobtained using dif-

ferent r and ni values on 8×8matrices when ε1 and ε∞ are
16. In this table, nzd denotes the average N(C′) value of
the optimized matrices, oper and step stand, respectively,
for the average number of operations and adder-steps of
the CMVM designs, and cpu is the average run time of
AURA in seconds.
Observe from Table 2 that as r increases, increasing

the range of possible constants to be considered for each
entry of the matrix, the number of required operations
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Fig. 3 Average results of HCMVM-DC and AURA-DC on n × nmatrices. a Number of operations. b Number of adder-steps. c CPU time in log scale

decreases, except when r and ni are 16. This is simply
because the number of alternative constants increases, as
r increases, reducing the N(C) value of the matrix. Note
that the case when r and ni are 16 may occur, because
there may exist many possible matrices with the mini-
mum N(C) value and all of them cannot be considered in
a given number of iterations, ni. Also, as ni increases, the
number of operations decreases, because more matrices

Table 2 Results of AURA on 8 × 8 matrices

r ni nzd oper step cpu

4 156.8 69.5 9.8 23.3

8 16 155.0 69.0 9.9 67.2

16 155.0 69.4 9.7 133.9

4 156.8 69.5 10.0 69.5

8 32 155.0 68.7 9.9 124.3

16 155.0 68.5 9.7 242.7

4 156.8 69.4 10.1 132.0

8 64 155.0 68.6 10.1 235.7

16 155.0 68.3 9.7 469.3

are considered. Observe that 1.2 operations on average are
saved when r is 16 and ni is 64 with respect to the case
when r is 4 and ni is 16, which are the actual parameters
of AURA for these 8 × 8 matrices. However, this reduc-
tion comes with an almost 20× increase in the run time
of AURA, which is due to the increase in ni and in the
complexity of 0–1 ILP problems generated by AURA as
shown in Table 1. Since AURA targets the optimization of
the number of operations, increasing the values of r and
ni does not have a significant impact on the adder-step
value of the CMVM design. Note that similar results were
obtained when AURA-DC was used on the same instances
with the same parameters.
As the second experiment set, we used the 8 × 8 DCT

matrix. Note that the n× n DCTmatrix D is an orthonor-
mal matrix, i.e., DDT = I, where I is the identity matrix,
and its entries djk with 0 ≤ k ≤ n − 1 are determined as
follows:

djk =
{ √

1/n j = 0
(
√
2/n) · cos(π(k + 0.5)j/n) 1 ≤ j ≤ n − 1

which leads to the following form [22]:
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D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g g g g g g g g
a b c d -d -c -b -a
e f -f -e -e -f f e
b -d -a -c c a d -b
g -g -g g g -g -g g
c -a d b -b -d a -c
f -e e -f -f e -e f
d -c b -a a -b c -d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The original DCT matrix was obtained when the
floating-point constants are converted to integers using
a quantization value of 8. Its coefficients are given in
Table 3. The proposed algorithms are applied to the origi-
nal DCT matrix when ε1 and ε∞ are 4, 8, 16. We note that
the proposed methods were modified to respect the same
change in the same constants of the DCT matrix to guar-
antee that the optimized DCT has the same matrix form
as the original DCT. Table 3 also presents the values of
optimized DCT coefficients. Note that AURA and AURA-
DC obtain the same constant matrices under the same
error constraint. However, their realizations vary since
they have different objectives and use different CMVM
methods as shown in Table 5.
These DCTs are applied to the compression of three

well-known gray-scale images, namely, cheese, camera-
man, and lena whose size is 128 × 128, 256 × 256, and
512 × 512, respectively. The peak signal to noise ratio
(PSNR) values of the compressed images are given in
Table 4. Observe from Table 4 that as the tolerable error is
increased, the PSNR value of the compressed image tends
to decrease. However, the PSNR values of the images com-
pressed by the optimized DCT matrix are very close to or
the same as the PSNR values of the images compressed by
the original DCT matrix. Figure 4 shows the cameraman
image and its compressed versions using the original and
optimized DCT matrices.

Table 5 presents the synthesis results of these DCT
matrices on ASIC and FPGA design platforms. The DCTs
were described in VHDL when the bitwidth of the input
variables was 8. For the ASIC design, the Synopsys Design
Compiler was used with the UMCLogic 0.18-μm Generic
II library. For the FPGAdesign, the Xilinx ISEDesign Suite

Table 3 Values of DCT coefficients

Constant Original
Optimized Optimized Optimized
ε1 = ε∞ = 4 ε1 = ε∞ = 8 ε1 = ε∞ = 16

a 126 126 128 128

b 106 106 106 104

c 71 72 72 68

d 25 24 24 24

e 118 118 118 120

f 49 48 48 48

g 91 91 92 92

Table 4 PSNR values of compressed images using original and
optimized DCTs

Image Original
Optimized Optimized Optimized
ε1 = ε∞ = 4 ε1 = ε∞ = 8 ε1 = ε∞ = 16

Cheese 25.5 25.5 24.7 24.7

Cameraman 25.12 25.12 23.77 23.77

Lena 30.92 30.92 27 27

13.1 was used with the Virtex 6 xc6vlx75T-2ff484 target
device. The functionality of linear transforms was verified
on 10,000 randomly generated input signals in simulation,
from which we obtained the switching activity informa-
tion that was used by the synthesis tool to compute the
power dissipation. In Table 5, A, D, and P stand for the
area in mm2, the delay of the critical path in ns, and the
total dynamic power dissipation inmW, respectively. Also,
LUTs and slices denote the number of look-up tables and
slices, respectively. Note that original shift-adds designs

Fig. 4 a Original cameraman image. Its compressed versions using:
b original DCT matrix, c optimized DCT matrix when ε1 = ε∞ = 4,
d optimized DCT matrix when ε1 = ε∞ = 8, and e optimized DCT
matrix when ε1 = ε∞ = 16
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Table 5 Summary of synthesis results of original and optimized DCTs

Objective Optimization of the number of operations

DCTs oper step
ASIC FPGA

A D P LUTs slices D P

Original 56 8 16.8 5.7 31.0 626 179 14.5 2201

Optimized
54 6 16.0 5.4 27.6 595 170 14.1 2149

ε1 = ε∞ = 4

Optimized
48 6 13.8 4.7 21.1 525 151 13.3 2107

ε1 = ε∞ = 8

Optimized
46 6 13.1 4.7 19.5 504 144 13.1 1988

ε1 = ε∞ = 16

Objective Optimization under a delay constraint

DCTs oper step
ASIC FPGA

A D P LUTs slices D P

Original 58 5 17.7 5.2 31.9 701 201 13.4 2079

Optimized
54 5 16.4 5.1 28.8 612 177 13.3 2058

ε1 = ε∞ = 4

Optimized
48 5 14.1 4.7 22.9 542 156 12.8 2088

ε1 = ε∞ = 8

Optimized
46 5 13.1 4.5 19.5 508 145 12.2 1874

ε1 = ε∞ = 16

were found by applying HCMVM and HCMVM-DC to the
original DCT matrix.
Observe from Table 5 that as the tolerable error

increases, the number of required operations decreases,
and thus, the CMVM designs require smaller area on the
ASIC design and smaller number of LUTs and slices on
the FPGA design than the DCT implementations based
on original coefficients. We note that the reduction in
area between the original and optimized synthesis results
obtained while targeting the optimization of the num-
ber of operations are found as 5.0 %, 18.1 %, and 22.0%
when ε1 and ε∞ are 4, 8, and 16, respectively. These
values are 7.4%, 20.0%, and 25.7% when the optimiza-
tion of the number of operations under a delay con-
straint is considered. Also, the reduction in the number of
slices between the original and optimized synthesis results
obtained while targeting the optimization of the number
of operations are found as 5.0%, 15.6%, and 19.6% when
ε1 and ε∞ are 4, 8, and 16, respectively. These values are
11.9 %, 22.4 %, and 27.9% when the optimization of the
number of operations under a delay constraint is consid-
ered. Moreover, the delay and power dissipation of the
design decrease as the tolerable error increases due to the
decrease in the hardware complexity of the DCT design.

For the ASIC design, the reduction in the delay and power
dissipation of the optimized DCT design with respect to
those of the original DCT design reaches up to 17.3%
(17.4%) and 37.4% (39.4%) obtained while targeting the
optimization of the number of operations (the optimiza-
tion of the number of operations under a delay constraint),
respectively. For the FPGA design, the reduction in the
delay and power dissipation of the optimized DCT design
with respect to those of the original DCT design reaches
up to 15.2% (9.0%) and 9.7% (10.2%) obtained while tar-
geting the optimization of the number of operations (the
optimization of the number of operations under a delay
constraint), respectively. However, the optimized DCT
design may consume more power than the original DCT
design as shown when ε1 and ε∞ are 8 and while target-
ing the optimization of the number of operations under
a delay constraint on FPGA, since the primary objective
of the proposed algorithms is not to optimize the power
consumption. Observe from the results of DCT designs
on FPGA that although finding a CMVM design with a
smaller number of adder-step may increase the number
of required operations and consequently the area and the
number of LUTs and slices, it yields a CMVM design that
has less delay and consume less power than that with a
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larger number of adder-steps. This fact is also valid for the
DCT designs on ASIC for the delay parameter.

6 Conclusions
An efficient approximation algorithm was introduced for
the multiplierless design of the CMVM operation, target-
ing the optimization of the number of operations without
violating the error constraints. Its modified version, which
can find an approximate CMVM design with a smaller
number of adder-steps, was also presented. Experimen-
tal results showed that the proposed methods can sig-
nificantly reduce the number of adders/subtractors and
adder-steps in the CMVM operation, satisfying the error
constraints. It was indicated that the solutions of the pro-
posed algorithms lead to significant reductions in area,
delay, and power dissipation of the CMVM designs. It
was shown that another advantage of the proposed tech-
niques is to offer a designer alternative CMVM circuits
with different complexity and performance values, which
can be found by changing the error constraints, so that
the designer can choose the one which fits perfectly in an
application.
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