
Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2
DOI 10.1186/s13639-015-0020-8

RESEARCH Open Access

Symbolic execution and timed automata
model checking for timing analysis of Java
real-time systems
Kasper S. Luckow1*, Corina S. Păsăreanu2† and Bent Thomsen1†

Abstract

This paper presents SYMRT, a tool based on a combination of symbolic execution and real-time model checking for
timing analysis of Java systems. Symbolic execution is used for the generation of a safe and tight timing model of the
analyzed system capturing the feasible execution paths. The model is combined with suitable execution environment
models capturing the timing behavior of the target host platform including the Java virtual machine and complex
hardware features such as caching. The complete timing model is a network of timed automata which directly
facilitates safe estimates of worst and best case execution time to be determined using the UPPAAL model checker.
Furthermore, the integration of the proposed techniques into the TETASARTS tool facilitates reasoning about additional
timing properties such as the schedulability of periodically and sporadically released Java real-time tasks (under specific
scheduling policies), worst case response time, and more.

Keywords: WCET analysis; Timing analysis; Symbolic execution; Timed automata; Model checking

1 Introduction
Rigorous verification is essential for safety critical embed-
ded hard real-time systems needing to comply with tight
timing constraints. This is especially so for systems need-
ing to comply with standards such as DO-178B, ISO-
26262, IEC-61508, and EN-50128 applying to systems
operating in safety-critical domains such as avionics and
automotive. Of special interest is the verification of the
system being schedulable, i.e., verifying that all real-time
tasks under the conditions of the employed scheduling
policy finish before their respective deadlines in all cir-
cumstances. The worst and best case execution time
(WCET and BCET) often play an integral role in this
relation—especially the former, which has applications
in traditional methods for verification of schedulability
such as response time analysis [1]. For systems written in
(a suitable subset of) C, there are now many such anal-
ysis tools, both academic and commercial [2–10]. Most
of these tools vary in the platforms they support, in the

*Correspondence: kasper.luckow@sv.cmu.edu
†Equal Contributors
1NASA Ames Research Center, Carnegie Mellon University, Silicon Valley, CA,
USA
Full list of author information is available at the end of the article

way they analyze programs and which restrictions they
place on the analyzed programs, but as stated in [11] “To
avoid having to solve the halting problem, all programs
under analysis must be known to terminate. Loops need
bounded iteration counts and recursion needs bounded
depth.” The amount of required annotations is reduced
by analysis, such as automatic loop-bound and array-call
recognition.

1.1 Java for real-time system development
The Java programming language has recently received
attention in the domain of real-time systems due to
desirable characteristics, such as reduced development
costs attributed to higher maintainability and productivity
when compared to the C programming language, which
for long has been the preferred choice in this domain.
However, Java in its traditional form is unsuitable for

real-time systems for many reasons notably due to the
inclusion of a (usually time unpredictable) garbage col-
lector. To address this, the Java community, through JSR
302, has made tremendous progress and an important

© 2015 Luckow et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-015-0020-8-x&domain=pdf
mailto: kasper.luckow@sv.cmu.edu
http://creativecommons.org/licenses/by/4.0/

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 2 of 16

step has been taken with the upcoming Safety Critical
Java (SCJ) profile [12] making Java a viable choice for
development of embedded real-time systems. The SCJ
profile introduces important real-time concepts such as
high-resolution clocks and timers, but it also affects the
programming model, e.g., by the introduction of a scoped
memory model to avoid the need for a garbage collector.
In addition, SCJ has a sufficiently tight thread seman-
tics and a programming model based on tasks grouped
in missions, all contributing to facilitating verification of
real-time properties.
There are now several academic implementations of

SCJ, including the OVM [13], HVM [14, 15], and Java
Optimized Processor (JOP) [16]. The potential is also
manifested in commercially available implementations
[17–19] that have been used in industrial applications
from the avionics domain, such as unmanned aircraft con-
trol systems [13], in the modernization of the Navy’s Aegis
defense system [20], and in robot control [21].
There is a need in the real-time Java community for

techniques and tools for temporal verification. Analyzing
timing properties for Java programs is challenging pri-
marily due to the fact that Java is usually translated to
Java Bytecode, which is then interpreted by a Java vir-
tual machine (JVM). This level of indirection complicates
formal analysis as both program and JVM have to be
taken into account for a given hardware platform; some of
this complexity can, however, be reduced by a hardware
implementation of the JVM such as JOP.
In recent years, several analysis tools for SCJ have been

put forward including WCA [22], SARTS [23], TetaJ [24],
and TETASARTS [25]. Characteristic for these is that they
rely on reconstruction of the control-flow graph (CFG),
which characterizes all possible execution paths of the
program. This representation over-approximates possible
program behavior since it also includes infeasible exe-
cution paths, i.e., execution paths for which there does
not exist inputs that lead to that path being exercised. In
turn, temporal behavior is over-approximated, thus likely
yielding very pessimistic results of execution times that
potentially affects the conclusions that can be made about
the temporal correctness of the system—a system may be
deemed unschedulable on a given platform although in
reality it is schedulable.

1.2 Contributions
In this paper, we present a combination of symbolic execu-
tion [26, 27] and real-time model checking that generates
a precise control-flow model from the symbolic execu-
tion trees obtained with a symbolic execution of the
program. Each tree characterizes the set of feasible execu-
tion paths (up to some bound) of the analyzed task and
yields a precise timing model. Both symbolic execution
and model checking have issues with scalability due to

the large number of paths respectively states to explore.
We address this by using a “per task” symbolic execu-
tion leveraging the SCJ programming model that groups
code into missions consisting of relatively short tasks.
We will show experimentally using representative exam-
ples of real-time systems that our analysis approach is
tractable.
The program model is built modularly. The timing

behavior of the execution environment is obtained from
environment models capturing the timing behavior of the
JVM and hardware of the target platform. Based on a con-
figuration, our technique generates the complete timing
model as a network of timed automata (NTA) amenable
to model checking using the UPPAAL [28] model checker.
The NTAmodel can readily be used for estimatingWCET
and BCET but also generalizes to verification of properties
expressible in timed computation tree logic (TCTL). In
contrast to previous tools [24, 25], which provide limited
feedback, our technique can also generate witness traces
that expose the reported behavior, useful for debugging
and program understanding.
Our technique is implemented as a tool, called JPF-

SYMBC-RT, which can be used standalone for above pur-
poses. The tool has also been integrated with the timing
analysis tool TETASARTS—we will refer to this combina-
tion as the SYMRT tool. SYMRT is used for automatically
constructing a complete timing model of Java real-time
systems written in a variant of the SCJ profile. This model
is similarly built on a per-task basis using JPF-SYMBC-RT,
taking into account possible interference from other tasks.
SYMRT allows to reason about additional timing proper-
ties such as the schedulability of periodically and sporad-
ically released task, worst case response time (WCRT),
worst case blocking time (WCBT), and processor uti-
lization under the specified scheduling policy. SYMRT
allows direct interaction with JPF-SYMBC-RT for conduct-
ing WCET and BCET analysis. To the best of our knowl-
edge, SYMRT, and more specifically, the JPF-SYMBC-RT
sub-component, is the first tool supporting BCET analysis
of Java Bytecode. Both tools are open source; the project
website http://people.cs.aau.dk/~luckow/symrt/ contains
details on how to obtain the source code and usage
instructions.
This paper presents SYMRT in terms of its design and

capabilities and is organized as follows: in Section 2, we
provide the preliminaries followed by Section 3, which
discusses related work. Section 4 presents the overall
design of SYMRT and its capabilities. We also show how
the timing model is constructed using symbolic execu-
tion and real-timemodel checking in a task local approach
and present optimizations for mitigating state space size.
In Section 5, we present the usage of the tool along
with experimental results. Section 6 contains conclusive
remarks.

http://people.cs.aau.dk/~luckow/symrt/

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 3 of 16

2 Background
2.1 Symbolic execution and SPF
Symbolic execution [26, 27] is a program analysis tech-
nique, which executes programs using symbolic inputs
instead of concrete data. For each executed program path,
a path condition is maintained, which represents the con-
dition on the inputs for the execution to follow that path.
The satisfiability of the path condition is checked using
decision procedures and only feasible program paths are
explored. A symbolic execution tree characterizes the
explored paths. A program and its corresponding sym-
bolic execution tree are shown in Fig. 1a, b; a and b are
symbolic values. We use this as a simple running exam-
ple in the paper. Note that the execution path to line 4
is not included in the tree since the path condition a >

b && a == b is unsatisfiable; hence, the correspond-
ing conditional instruction in the tree does not branch. In
contrast, a naïve CFG reconstruction would include this
path. This particular infeasible path is likely to be identi-
fied and corrected during a code review, but let us note
that for real-sized programs, they can bemuchmore com-
plex, e.g., due to semantic dependencies among several
decision predicates, excluding manual identification as a
viable technique.
Symbolic PathFinder (SPF) [29] is a symbolic exe-

cution framework built on top of the Java PathFinder
(JPF) [30] model checking toolset for Java Bytecode
analysis. SPF implements a Java Bytecode interpreter
that replaces the standard execution semantics of Java
Bytecodes with a non-standard symbolic execution. SPF
handles dynamic input data structures (e.g., lists and
trees) using lazy initialization [31]. Multi-threading

is handled systematically using a form of partial order
reduction from JPF. Symbolic execution of looping pro-
grams may result in an infinite symbolic execution tree;
for this reason, SPF is run with a user-specified bound
on the search depth. We will elaborate further on this in
Section 4.

2.2 Timed automata
A timed automaton (TA) is a finite statemachine extended
with real-valued clocks and constraints on clocks. All
clocks progress synchronously. A TA can be viewed as
a graph; vertices are called locations and the arcs are
called edges. Locations and edges have an associated set
of clock constraints called invariants and guards, respec-
tively. Invariants must hold when being in the location
and time elapses. Guards must be satisfied to proceed to
the next location. Edges are fired instantaneously and can
reset a set of clocks.
A network of timed automata (NTA) is the parallel com-

position of a set of TAs. The TAs of an NTA proceed
concurrently and communicate through synchronization
channels and shared variables. Actions and co-actions on
channels are denoted ! and ?, respectively.
In this paper, we will adopt an informal representation

of TA corresponding to the GUI of UPPAAL; Fig. 2 shows
an example and we use this to present informally the
semantics of TAs. For a formal exposition of the seman-
tics of TA and NTA, see, e.g., [32]. The TA contains three
locations S0, S1 and S2 with S0 being the initial loca-
tion. S0 has an invariant, y <= 10, with y denoting a
clock variable. The label, init(i), is a procedure, which
will be called when the outgoing edge of S0 is fired. Its

ba

Fig. 1 a Running example. b Symbolic execution tree

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 4 of 16

Fig. 2 UPPAAL timed automaton

implementation is found in the declaration part of the TA
definition. In S1, there are two outgoing edges labelled
with guards y >= 20 and y > 50—they must be satis-
fied to fire the respective edge. S1 is also decorated with
y′ == run[i], a stop-watch expression (note the use of
the apostrophe after the clock variable, here y), which
starts or stops the clock depending on whether the right-
hand side expression evaluates to true or false. run[i] is an
array and i is a parameter to the TA. S2 is a committed
location; delays cannot occur and the next edge that will
be fired must be an outgoing edge of a committed loca-
tion. The outgoing edge of S2 is labelled with the action
execute!; another TA is capable of synchronizing on it
using execute?. The label y = 0 is a clock reset.

3 Related work
3.1 WCET analysis tools
In recent years, a number of academic and commer-
cial tools for static WCET analysis have been put for-
ward; Ottawa [2], Chronos [3], Heptane [4], TuBound [5],
SWEET [6], METAMOC [7], Bound-T [8], RapiTime [9],
and the aiT WCET Analyzer [10]. Most of these tools
are based on a three-step approach where a flow analysis
provides information about possible execution paths, usu-
ally by constructing a CFG; a low-level analysis provides
information about atomic operations on a given hardware
platform; and a stage combining the flow analysis and tim-
ing of atomic operations is used to calculate the WCET.
Many tools use the Implicit Path Enumeration Technique
(IPET) (first introduced in [33]) which encodes the pro-
gram as an integer linear programming (ILP) problem.
The WCET can be estimated by solving the maximum
cost circulation problem of the set of constraints that
describes program behavior.
As C is the predominant programming language, most

tools target this or binaries produced from C, e.g., the aiT
WCET Analyzer. aiT is an abstract interpretation based
state-of-the art industrial strength tool. The tool performs
a per-taskWCET analysis of binaries for a given execution
platform taking the intrinsic cache and pipeline behavior
into account. aiT also takes into account user annotations
such as upper bounds on loop iteration counts, recursion

depth, targets of indirect function calls, etc. The resulting
WCET can be used as input for traditional schedulability
analysis, however, as the aiT tool assumes that a task is
executed sequentially and uninterrupted, it more or less
prescribes a cyclic-executive schedule, as the tool assumes
no interference.
Most of the mentioned tools analyze binaries, however,

the SWEET [34] tool distinguishes itself by translating
to ALF (Artist Flow Analysis language) and performs
flow analysis on this representation. The result of the
flow analysis is flow facts containing information about
loop bounds and infeasible paths in the program. Such
flow facts can be used as input for WCET tools such as
RapiTime and aiT WCET Analyzer or the legacy low-
sweet tool.
To compare WCET tools, the Mälardalen WCET

Benchmarks [35] suite has been put forward and now
includes a comprehensive overview of many of the above
mentioned tools and their properties.
Manymodel-based timing analysis tools such asMETA-

MOC [7] for executables, and WCA [22], TetaJ [24],
SARTS [23], and TETASARTS [25] for Java rely on pro-
cessing the program to build a CFG and enumerating the
execution paths over the CFG. The paths are then trans-
lated to a modeling formalism, e.g., timed automata, and
timing analysis is then formulated as a reachability prob-
lem using an appropriate logic such as TCTL. The tempo-
ral behavior of complex hardware features such as caches
and pipelines can be modelled accurately as well. While
these tools provide a safe approach, they are overly con-
servative, which is mostly a consequence of disregarding
data in the reconstruction process.

3.2 Symbolic execution for timing analysis
An alternative to approximating execution paths using a
CFG is symbolic execution [26, 27], which relies on a
constraint solver to explore feasible paths. Symbolic exe-
cution has been explored before in the context of WCET
analysis [36, 37], but neither presents a tool and the
timing models are not used for the analysis of other tem-
poral properties. However, [38] presents an integrated
path and timing analysis method for C programs based

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 5 of 16

on cycle-level symbolic execution using instruction-level
simulation techniques. In six out of seven benchmarks,
the method yields precise timings. Knoop et al. [39]
presents a tool for WCET squeezing, which combines
symbolic execution with IPET for computing a precise
WCET bound. WCET Squeezing is an iterative post-
process implemented in the r-TuBound [40] toolchain. It
works by mapping the result of the IPET analysis to an
execution trace in the program, which is then symboli-
cally executed for determining the feasibility of the path.
If it is infeasible, the ILP problem of IPET is extended with
additional constraints that exclude that path from being
considered again. The new ILP problem is then solved and
the process starts over again. Thus, on each iteration, the
WCET bound is made tighter.
The JPF toolset has been used before for the analysis of

real-time Java. The work in [41] extends JPF’s explicit-state
model checker to perform timing analysis. The approach
uses discrete event simulation as a basis for modeling
time. Another similar approach [42] is restricted for use
with the JOP.

3.3 Schedulability analysis
Response time analysis [1] is a traditional approach for
concluding on schedulability; the response times of the
real-time tasks are calculated using WCET and blocking
times, and the system is schedulable if the response times
are less than the task deadlines.
TIMES [43] is a schedulability analysis tool using the

NTA formalism. It is agnostic to the execution environ-
ment of the real-time system and relies on a specification
of the tasks. SYMRT follows the approach of SARTS [23]

and TETASARTS [25] relying on TIMES for its theoretical
framework but, as opposed to TIMES, maintains a corre-
spondence between the analyzed code and the model.

4 The SYMRT tool
SYMRT is built to accommodate the configuration of the
execution environment in terms of hardware and JVM
implementation. The latter can be a traditional, software
implementation, such as the HVM, or a hardware imple-
mentation, such as the JOP. Parameters related to the
temporal behavior of the system are configurable as well,
such as the clock frequency of the hardware. The enabling
technology for allowing timing analyses is model check-
ing using UPPAAL. SYMRT and JPF-SYMBC-RT are open
source and available from https://bitbucket.org/luckow/
symrt/ and https://bitbucket.org/luckow/jpf-symbc-rt.

4.1 Overview
A high-level overview of SYMRT is shown in Fig. 3. SYMRT
takes as input the Java class files constituting the real-time
system and a configuration which, among others, specifies
the analyses and the model generation technique. SYMRT
allows the generation of two different timing models. The
configuration specifies which model to generate, which
can either be a complete timing model or an execution time
analysis optimized model:

• A complete timing model of the real-time system,
which includes the real-time scheduling policy, all
real-time tasks of the system and controllers for
monitoring and controlling the state of the tasks.
This timing model can be used for reasoning on

Fig. 3 The architecture of SYMRT

https://bitbucket.org/luckow/symrt/
https://bitbucket.org/luckow/symrt/
https://bitbucket.org/luckow/jpf-symbc-rt

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 6 of 16

schedulability, and facilitates analysis of WCET and
BCET on task level, WCBT, and processor utilization
and idle time. TETASARTS is used with
JPF-SYMBC-RT for model extraction in this case.

• An execution time analysis optimized model which
needs not to reason on task interleavings and
interactions, etc. Specifically, this model applies to
the analysis of WCET and BCET, which by definition
pertain to the unit of interest in isolation, i.e., the
behavior of the remaining system is not taking into
account. In addition, this model allows execution
time analysis on method level. For generating this
model, SYMRT uses the Optimized Execution Time
Analyzer (OETA) module which essentially offers
direct interaction with JPF-SYMBC-RT through the
interface of SYMRT.

Common to both generation techniques is the RT Sys-
tem Analyzer, which identifies the real-time tasks and
extracts temporal scope information, e.g., release pattern,
relative release point, and deadline, or, in case method
level execution time analysis is specified, identification
of this method information. Based on the configura-
tion, the RT System Analyzer also forwards a specifica-
tion of the target analyses to the Query Specifier, which
constructs the UPPAAL queries accordingly. In sum-
mary, the target analyses for which SYMRT is currently
envisioned are:

• Schedulability analysis under the employed
scheduling policy taking into account periodic (with
offsets) and sporadic task releases, task interleavings,
shared resources, and task blocking.

• Analyzing the lowest possible clock frequency that
still guarantees schedulability. This analysis can be
used for improving the energy consumption of the
system.

• Processor utilization and idle time analysis (provided
that the system is schedulable).

• Worst case response time (WCRT) analysis similarly
taking into account aforementioned task interference
and blocking.

• WCET and BCET analysis on task and method level.

All analyses are expressed in the specification language
of UPPAAL, which extends TCTL. In essence, this means
that the timing analyses supported by SYMRT are viewed
as model checking problems. For example, the schedu-
lability analysis is expressed as a reachability problem:
the property of a non-schedulable system is expressed
in TCTL and if the model, which is derived from the
actual system, satisfies it, then we conclude also the sys-
tem non-schedulable. The details on how the analyses are
formulated are described later.

The model generator component in the TETASARTS
module constructs the Program NTA by using either the
original CFG NTA Generator or the Real-Time Symbolic
PathFinder component. The former is based on recon-
structing the CFG, while the latter is based on symbolic
execution and works on the symbolic execution tree. The
resulting Program NTA is then combined with the NTAs
of the execution environment, i.e., the JVM NTA and the
Hardware NTA, using the model combiner component.
During this process, optimizations are also performed,
e.g., for tailoring the JVM NTA to the hosting program.
For details on the execution environment NTAs and opti-
mizations, see [25, 44]. The product of the combiner is
the complete timing model, which is amenable to model
checking using UPPAAL, and the output will be the analy-
sis result: for schedulability, it will be a yes/no answer, and
for WCET a number. In addition, a witnessing trace, i.e., a
sequence of symbolic states leading to the violating state,
can be used for visualization and debugging.
The OETA module has similar major counterparts but

does not reason on system level when generating the Pro-
gram NTA. Using this module, it is possible to extract
a trace leading to the WCET (and BCET) and visualize
the respective execution paths. We will demonstrate this
facility later in the paper.

4.2 Symbolic execution vs CFG-based model generation
Inevitably, considering all execution paths characterized
by the CFG as in [7, 22, 24, 25] affects the analysis time,
but it may also severely over-approximate the temporal
behavior.
Virtual method invocations also complicate CFG-based

approaches since all possible callees must be consid-
ered unless the reconstruction is complemented with
additional analyses such as rapid type analysis [45] that
attempts to reduce the set of possible callees. When using
symbolic execution, SYMRT does not need to be comple-
mented with such analyses, since the stack is part of the
symbolic state, hence the callee is known at every call site
of every execution path.
Additionally, in traditional CFG-based approaches, loop

bounds are difficult to reason about and are usually either
dealt with using annotations in the source code or through
static analysis. Annotations are both prone to error and
difficult to maintain. A related issue is nested loop struc-
tures with loop bound interdependencies, which are dif-
ficult to precisely incorporate in the timing model. Sym-
bolic execution unrolls loops, hence, for most cases, nei-
ther loop bound annotations nor complementary loop
bound analyses are necessary (see Section 5 for exam-
ples) except when the bound is dependent on, for example,
I/O or the unrolling exceeds the specified analysis depth.
In cases where annotations are necessary, SYMRT offers
(simple) comment-based loop bound annotations on the

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 7 of 16

form //@loopbound = bound; SYMRT will unroll the loop
up to the specified bound and explicitly break it. To rep-
resent input values from, e.g., sensory equipment, we
introduce a symbolic variable. If the search depth limit of
symbolic execution is reached, the resulting timing model
will only be correct up to that bound, and hence SYMRT
issues a warning. The search depth can then be increased.

4.3 Model construction
The JPF-SYMBC-RT component of SYMRT conducts a
post-translation of the symbolic execution tree to the
NTA formalism using a newly developed symbolic execu-
tion tree capability available in JPF-SYMBC V7 [46].
Capturing the temporal behavior of the execution paths

of the real-time tasks is done at Java Bytecode instruction
level; for each Java Bytecode of the execution path, a loca-
tion is created in the TA and connected by outgoing edges
to successor locations corresponding to the control flow.
For branching instructions, such as IFEQ and FCMPL,
there can be up to two and three outgoing edges, respec-
tively, if the path conditions of the branches are satisfiable
(or if the decision procedure is inconclusive). For all other
instructions, there will be only one outgoing edge.
The translation process distinguishes between how the

execution environment timing model is provided:

1. The timing model can be provided as fixed execution
times or as intervals for all the (supported) Java
Bytecodes using a timing scheme. Elaborating on the
construction of timing schemes is beyond the scope
of this paper, but let us note here that they can either
be constructed by a careful measurement-based
method or by using static analysis of the
implementation as in our related work in [47].

2. The timing model is directly encoded as an NTA
itself, i.e., the temporal behavior of each Java
Bytecode is simulated including the hardware state as
determined by, e.g., caching and pipelining. This
approach has the potential of yielding a more precise
timing model than the translation approach 1,
because the temporal behavior of each Java Bytecode
is not regarded as an interval but actual simulations.
For example, this will more precisely capture the
effect of a shared pipeline and cache when tasks are

scheduled. The potential benefits of this approach
come at the expense of a bigger state space, and
currently only small, although realistic, applications,
such as the Minepump control system [1, 24], are
tractable for analysis.

Figures 4 and 5 show excerpts of the two modeling
approaches for an imaginary instruction instr1.
In Fig. 4, each location encodes as an invariant the

timing constraints of the corresponding instruction:
executionTime ≤ WCET_instr1 specifies that the system
can at most spend the WCET of instruction instr1 in that
location. The stop-watch expression executionTime′ ==
running[tID] ensures that the clock is only progressing
when the task to which this particular TA belongs is
running as governed by the scheduling policy. In case
the analysis is targeted solely at execution time anal-
ysis, the stop-watch expression is omitted. The guard
ensures that the execution time of instr1 is simulated for
at least its BCET. Both the WCET and the BCET are
obtained from a timing scheme describing the tempo-
ral behavior of all the supported Java Bytecodes on the
target execution environment (configuration of JVM and
hardware).
For this translation approach, JPF-SYMBC-RT employs

state reduction on non-breakable, sequentially executed
instructions in the NTA inspired by [25]. Sequentially
executed instructions are not branching and all instruc-
tions except monitor instructions and invocations yield-
ing the firing of a sporadic event are non-breakable.
Let El denote the execution time of the instruction
represented by location l. When the instruction exe-
cution times are known, the total execution time of n
sequentially executed instructions represented by loca-
tions l1, l2, . . . , ln, is E{l1,l2,...,ln} = ∑n

i=1 Eli . Thus, this
sequence can be replaced by a single location with exe-
cution time E{l1,l2,...,ln}. For a bubble sort algorithm, the
number of locations before and after the optimization is
163,549 and 1441, respectively, thus reducing 99.1 % of
the locations. Effectively, the optimization yields a con-
trol flow representation of the basic blocks constituting
the feasible paths as determined by symbolic execution.
Figure 6 shows the TA (after applying optimizations) of
the running example.

Fig. 4 Translation to TA corresponding to translation 1

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 8 of 16

Fig. 5 Translation to TA corresponding to translation 2

JPF-SYMBC-RT also uses progressmeasures; a variable in
the model that is incremented to describe progress in the
model. When all traces corresponding to a specific value
of the progress measure have been crossed, the memory
of previous states can be removed, thus reducing overall
memory consumption of the analysis.
The product of translation approach 2, shown in Fig. 5,

relies on simulating the execution time based on the state
of JVM and the hardware. Separate NTAs are used for
capturing the timing behavior of the program, the JVM
and the hardware, denoted the Program NTA, the JVM
NTA, and the Hardware NTA, respectively. The inter-
actions among them capture the dependencies between
the temporal behavior, e.g., the temporal properties of
an arbitrary Java Bytecode modelled in the JVM NTA is
dependent on the pipeline and cache state of the processor
in the Hardware NTA. The interactions are well-defined
using dedicated (co-)actions and shared variables, making
it possible to replace NTA components to configure the
analysis to the desired execution environment.

During the process of combining the Program NTA
generated by JPF-SYMBC-RT with the JVM NTA and the
Hardware NTA, optimizations are performed, e.g., for tai-
loring the JVM NTA to the hosting program. For details
on the execution environment NTAs and optimizations,
see [25, 44, 47].
In [47], we have shown how a JVM NTA can be derived

directly from the HVM executable. Here, it suffices to say
that the instruction is passed to the JVM NTA by the
jvm_instruction shared variable. jvm_execute!
initiates the simulation in the JVM NTA. For JOP, SYMRT
allows simulating exactly variable block FIFO, FIFO, and
LRU method cache replacement policies. The simulation
approach is similar to that used in WCA [22].
An example of a Hardware NTA is shown in Fig. 7.
Here, the combination of the fetch channel and

asm_inst establishes the communication link with
the JVM NTA. The JVM NTA synchronizes on the
channel whenever a machine code instruction (as pro-
vided by the asm_inst variable) is to be simulated

Fig. 6 TA after state reduction

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 9 of 16

a

b

Fig. 7 Hardware TA models from METAMOC [7]. a Pipeline fetch stage. b Pipeline execute stage

(in this case directly put into the fetch stage of the
pipeline). The machine instruction will be simulated for
[best_wait; worst_wait] time.
The product regardless of whether translation

approach 1 or 2 is used is the complete timing model with
the analyses specified as UPPAAL specifications. The out-
put of model checking is the analysis result, e.g., a yes/no
answer for TCTL properties, and a number for WCET
and BCET analysis. In addition, for execution time analy-
sis, a witnessing trace, i.e., a sequence of symbolic states
leading to the violating state, can be used for debugging,
visualization, and program understanding.

4.4 Per-task analysis
The timing model of a multi-tasking real-time system is
built modularly, based on the symbolic execution of each
individual task. Whenever an instance or a static vari-
able is read (via GETFIELD or GETSTATIC bytecodes),
the per-task analysis checks to see if the variable is pos-
sibly shared among multiple tasks. A variable is shared
if it is referenced in a chain of references from a static
field or from a task (thread) object. SYMRT also relies on
additional checks in JPF for determining sharedness, e.g.,

if the field is immutable. We have implemented a pro-
cedure that propagates the sharedness information along
reference chains whenever an update happens (via PUT-
FIELD and PUTSTATIC) to a variable that was marked as
shared. Furthermore, the lazy initialization used in han-
dling symbolic references has also been modified to mark
all the newly created objects as shared (if the symbolic
fields belong to a shared object).
If the variable is considered shared, a safe modular gen-

eration of the timing model for the task must account for
values written to that variable from other tasks. This is
necessary, because the values may alter the control flow
of the logic in the task and possibly make feasible other
execution paths that may yield a higher WCET (or lower
BCET) thus rendering the analysis unsafe if these are
not considered. To account for this, the per-task analysis
automatically introduces fresh symbolic variables for the
potentially shared variables. Hence, these accounts for all
possible values that can be assigned to the shared variables
and therefore captures all possible thread interferences.
This yields a safe local analysis of the tasks because the
symbolic variables over-approximate the values of shared
variables and thus the feasible execution paths.

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 10 of 16

Generating timing models for each task using this
per-task analysis significantly reduces the complexity of
symbolic execution because any behavior of the system
outside the local task needs not to be considered. The
composition of all timing models generated from the
tasks from the per-task analysis yields a complete system
model which is also safe, because the composed model
over-approximates the possible interference between the
tasks.

4.5 Model analysis
When JPF-SYMBC-RT is used directly for execution time
analysis, the TA shown in the screenshot in Fig. 8 of
the running example is generated. WCET and BCET can
be determined using the sup-query (inf-query) exten-
sions of UPPAAL, which determine the supremum (infi-
mum) value of the specified clock(s). WCET and BCET
can be formulated as sup{final} : executionTime and
inf {final} : executionTime, respectively. Note also that the
simulator is capable of visualizing the trace (i.e., sequence
of states) leading to the (in this case) WCET of the
program.
For a complete timing model, the NTA is further

extended with TAs from TETASARTS capturing the
scheduling policy and for controlling and monitoring the
state of associated real-time tasks. A controller for peri-
odic tasks is shown in Fig. 9. Controllers for sporadic tasks
are similar except that their eligibility for being scheduled

is determined by the previous firing of the associated
event. The task TAs are modified for making the asso-
ciation to a corresponding controller resulting in the TA
shown in Fig. 10 for our running example.
The connection is created using the run[tID] chan-

nel; tID is a task identifier. Note that the values of
offset, deadline, and period are extracted from
the task instantiations in the source code. Clock vari-
ables corresponding to the target analyses are generated
as part of the controller TA, hence enabling WCET,
WCRT, and WCBT analyses in this example using the
same timing model. The controller TA will enter the
ExecutingThread location when the associated task
is executing. The clock releasedTime is used to track
the relative time from the release point. If it exceeds the
deadline of the task, the DeadlineOverrun location is
entered, otherwise execDone is entered and the process
continues when the period is met.
The analyses are conducted by viewing them as

reachability problems expressible in temporal logic; we
can formulate schedulability analysis as: is it possible
to reach a state where a task misses its deadline? This
state is represented by the location DeadlineOverrun
previously mentioned. Assume a system composed of n
tasks Ti with corresponding DeadlineOverruni loca-
tions in the controllers for i ∈ {1, 2, . . . , n} and let φ =∨

i DeadlineOverruni denote the disjunctive state formula
of the DeadlineOverrun locations. Schedulability

Fig. 8 Screenshot of UPPAAL

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 11 of 16

Fig. 9 TA controlling a periodic task

analysis can then be expressed as A� not φ, i.e., in all
reachable states, φ is not satisfied.
For the other supported analyses, we use sup- and

inf-queries. WCET and BCET analysis can be con-
ducted using sup{TC.ExecutingThread} : TC.wcet and
inf {TC.Done} : TC.wcet, respectively, where TC is the
task controller of the real-time task. Note in Fig. 9,
that the wcet clock is only progressing when the task
is set for execution due to the stop-watch expres-
sion. WCRT and WCBT analysis can be conducted
using sup{TC.ExecutingThread} : TC.wcrt and sup{TC.
ExecutingThread} : TC.blockingTime, respectively. Note
that the blockingTime clock is only progressing when
the task is blocked. Processor utilization and idle time

analysis can be conducted by introducing a new TA
with a single location with the stop-watch expression
util′ == ! idling && idle′ == idling where util
and idle are two new clock variables and idling a
boolean variable that is set whenever a task is executing.
A sup-query on util and idle clocks is used for the
analyses.

5 Experimental results
We first introduce a comparison of the WCET and
BCET estimates obtained from SYMRT (using directly
JPF-SYMBC-RT) and the state-of-the-art in execution time
analysis for Java real-time systems. To the best of our
knowledge, WCA tool is the only tool that supports

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 12 of 16

Fig. 10 TA for the task when using a complete timing model

WCET analysis for Java Bytecode besides TETASARTS
and SYMRT. In addition, we do not know of any other tool
that supports automated schedulability analysis of Java
Bytecode, except TETASARTS and it predecessor, SARTS.
Furthermore, we are not aware of other tools for analy-
sis of additional temporal properties such as BCET and
WCRT of Java Bytecode. We have used as examples the
Java implementations (obtained from the JOP distribu-
tion1) of a subset of the algorithms from the Mälardalen
WCET benchmark suite [35]: binary search (54 LOC),
bubble sort (34 LOC), quick sort (109 LOC), insertion sort
(39 LOC), iterative Fibonacci (40 LOC), and select small-
est (137 LOC) which selects the nth smallest number in
an array. For the sorting algorithms, the array is initialized
with symbolic values. For binary search, the search key
is symbolic. For Fibonacci, the input value, n, is symbolic
and constrained such that 1 ≤ n ≤ 30. For select small-
est, an array of size 20 is filled with concrete values. The
search key is symbolic and bounded by the array length.
Note that we did not need to provide loop bound annota-
tions in any of the examples nor did we reach the default
search depth (corresponding to 100 branches) during
analysis.
We have used two configurations of the execution

environment; (1) JOP and (2) HVM2 [48] running on the
AVR ATmega2560. The timing model of the latter is a
generated Timing Scheme.We use the same configuration

of the execution environment across the tools, e.g., SYMRT
and WCA have been configured with read and write
wait cycles set to 1 and 2 (and cache configuration
is the same). Also, to give indications of the precision
of SYMRT, we compared with measurements of BCET
andWCET obtained by using inputs yielding the best and
worst case behavior (e.g., for bubble sort, a sorted and
unsorted list). We used the JOP simulator to read the
cycle count before the first instruction is executed of
the target method and after the return instruction. For
HVM+AVR, the measurements have been obtained in a
similar way by using the debugging facilities of Atmel
Studio 6. For this set of experiments, we used a laptop with
an Intel Core i7-2620M CPU @ 2.70 GHz with 8 GB of
RAM. The peak memory consumption for symbolic exe-
cution is 500–700 MB for all examples. UPPAAL peaks at
50–200 MB during model checking. Table 1 shows the
results for the comparison on JOP.
First note that all estimates indicate safety, that is

BCETsymrt ≤ BCETm and WCETsymrt ≥ WCETm and
that the precision of SYMRT is better (and in two cases
equally as good) as the other tools. The major contribu-
tor to the pessimistic results of TETASARTS andWCA are
that they over-approximate the iterations of nested loops
with interdependencies. The analysis time using SYMRT
is however longer, which is due to symbolic execution.
This is as expected, because WCA relies on analyzing

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 13 of 16

Table 1 Comparison of SYMRT, TETASARTS, and WCA

System

SYMRT(JPF-SYMBC-RT) TETASARTS WCA Measured

Analysis Analysis Analysis
BCET WCET Time WCET Time WCET Time BCETm WCETm
[cycles] [cycles] [seconds] [cycles] [seconds] [cycles] [seconds] [cycles] [cycles]

Binary search 136 818 1 927 1 818 1 138 722

Bubble sort 653 1253 51 1770 2 1553 1 653 1253

Quick sort 1425 2638 510 18,749 5375 20,275 1 1425 1895

Insertion sort 774 2586 21 4600 1 4296 1 774 2586

Fibonacci 310 1438 4 1822 10 1438 1 310 1396

Select smallest 4075 8011 3 85,584 1274 81,743 1 4080 8003

the static structure of the program as CFG, which can
relatively quickly be reconstructed. Model checking time
is negligible for SYMRT andWCA.
Also note that for quick sort, it is relatively difficult

to exercise and measure the path yielding the worst case
behavior since it depends on the pivot element selection.
Table 2 shows the comparison on HVM and AVR

ATmega2560. Again, all estimates produced by SYMRT are
safe and more precise than TETASARTS. For this first set
of experiments (including the results obtained for JOP),
the analysis time is largely attributed symbolic execution.
In all cases, model checking using UPPAAL takes less than
a second.
We compare the schedulability analysis of SYMRT with

TETASARTS using the Minepump control system [1, 24]
(0.5 KLOC), the real-time sorting machine (RTSM) [23]
(0.3 KLOC) and a variant of MD5SCJ [25] with multi-
ple tasks (0.4 KLOC). We also conducted the analysis on
the MER Arbiter (3.6 KLOC) that models a flight soft-
ware component for the Mars Exploration Rover (MER)
developed at NASA JPL [49]. It was not written for real-
time Java, but it features two users that use a number of
resources; we made a minor revision associating to each
user a periodic handler. Finally, we also analyzed a ver-
sion of the Lift real-time system from Jembench [50] with
18 tasks. TETASARTS has not been able to construct the

models for MER and Lift. Even though MER is relatively
simple, the dependency extent computed in TETASARTS
for generating the CFG is too large.
Clearly, there are systems for which analysis is

intractable. This is for instance the case when attempting
to do a full schedulability analysis for the MER on HVM
on the AVR processor when a precise execution environ-
ment model is used. However, note that the limitations
of the analysis are not determined by the number of lines
of code. It is rather the number of branches that need to
be exercised, along with the number of tasks, that deter-
mines the limitations as the size of the UPPAAL model
grows exponentially with the number of components in
the NTA. However, since schedulability is viewed as a
reachability problem, it may be possible to translate it into
the subset of the UPPAAL modeling language supported
by the opaal+LTSmin system [51]. In [52], opaal+LTSmin
demonstrates a speedup of 40 on a 48 core machine
compared to UPPAAL. Future work will investigate this
direction.
The TS subscript denotes that a timing scheme with

fixed execution times for all the Java Bytecodes has been
used instead of modeling their behavior as an NTA. For
this set of experiments, we used an application server with
an Intel Xeon X5670@ 2.93 GHz CPU and 32 GB of RAM.
The results are shown in Table 3.

Table 2 Using SYMRT and TETASARTS for systems on HVM and AVR

System

SYMRT(JPF-SYMBC-RT) TETASARTS Measured

Analysis Analysis
BCET WCET Time WCET Time BCET WCET
[cycles] [cycles] [seconds] [cycles] [seconds] [cycles] [cycles]

Binary search 3991 65,046 2 70,153 2 4140 23,262

Bubble sort 19,514 93,380 50 287,526 31 19,754 37,388

Quick sort 42,651 151,784 589 133,134 228 43,251 50,437

Insertion sort 20,351 182,099 21 244,680 4 22,625 70,028

Fibonacci 3470 68,726 2 142,764 6 5497 29,850

Select smallest 64,633 319,791 2 3,452,824 134 96,877 221,223

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 14 of 16

Table 3 Comparison of TETASARTS and SYMRT

System Exec. Env.
Analysis time

SYMRT TETASARTS

Minepump HVM+AVR 14 h 12 m 15 h 25 m

Minepump HVM+AVRTS < 1 s 2 s

Minepump JOP < 1 s 1 s

RTSM HVM+AVRTS < 1 s 1 m 2 s

RTSM JOP < 1 s 5 s

MD5SCJ HVM+AVRTS < 1 s 8 s

MD5SCJ JOP < 1 s 1 m 23 s

MER HVM+AVRTS < 1 s –

MER JOP < 1 s –

Lift HVM+AVRTS 33 m 6 s –

Lift JOP 15 m 43 s –

In all cases, the systems have been deemed schedulable,
and the results show that the analysis times and mem-
ory consumptions are lower when using SYMRT. We also
tried, e.g., RTSM with HVM+AVR, but the complexity of
the resulting models, regardless of the tool used is too
big, which can be attributed the JVM NTA, which largely
dominates the complexity. In this case, UPPAAL runs out
of memory.

6 Conclusions
Wehave presented SYMRT, a timing analysis tool that uses
a combination of symbolic execution and model checking
to achieve flexible and tight verification of timing prop-
erties of real-time Java systems. We have elaborated on
the translation of the symbolic execution tree to the NTA
modeling formalism of UPPAAL enabling a modular and
configurable system timing model.
We have shown that SYMRT can produce BCET and

WCET estimates that in most cases are more precise than
state-of-the-art in real-time Java. These results are in line
with findings for C-like programs [38]. A tight execution
time estimate is paramount for concluding on schedulabil-
ity and SYMRT facilitates schedulability analysis by using
the techniques from TETASARTS. As the interactions
between tasks are taken into account during schedulabil-
ity analysis, systems deemed unschedulable using tradi-
tional response time analysis may be deemed schedulable
using model checking as demonstrated in [23]. SYMRT
also allows the clock frequency of the target hardware to
be set prior to the analysis, thus making it possible to
determine the lowest clock frequency at which the system
is still schedulable as demonstrated in [44].
It is perhaps surprising that the combination of sym-

bolic execution and model checking works so well as both
have issues with scalability due to the large number of
paths respectively states to explore. However, by using a

“per task” symbolic execution leveraging the Safety Criti-
cal Java (SCJ) programming model that groups code into
missions consisting of relatively short tasks, the analysis
is tractable. Furthermore, when using timing models of
the target execution environment, the generated TA of the
program is at basic block level, which significantly reduces
the state space size.
We are working on applying SYMRT for the performance

analysis of different components of the NASA tactical
layer solution for planes, T-TSAFE, currently focusing on
the conflict detection and conflict resolution algorithms.

Endnotes
1Available for download at http://www.jopdesign.com/
2Available for download at http://icelab.dk/

Competing interests
The authors declare that they have no competing interests.

Author details
1NASA Ames Research Center, Carnegie Mellon University, Silicon Valley, CA,
USA. 2CMU/NASA Ames, Mountain View, USA.

Received: 2 November 2014 Accepted: 11 September 2015

References
1. A Burns, A Wellings, Real-time systems and programming languages: ADA

95, real-time Java, and real-time POSIX, 4th. (Addison-Wesley Educational
Publishers Inc., Boston, MA, USA, 2009)

2. C Ballabriga, H Cassé, C Rochange, P Sainrat, in Software Technologies for
Embedded and Ubiquitous Systems, ed. by S Min, R Pettit, P Puschner, and T
Ungerer. OTAWA: an open toolbox for adaptive WCET analysis (Springer
Berlin, Heidelberg, 2010), pp. 35–46. doi:10.1007/978-3-642-16256-5_6

3. X Li, Y Liang, T Mitra, A Roychoudhury, Chronos: a timing analyzer for
embedded software. Sci. Comput. Program. 69(1), 56–67 (2007)

4. A Colin, I Puaut, in Real-Time Systems, 13th Euromicro Conference On. A
modular and retargetable framework for tree-based WCET analysis (IEEE,
2001), pp. 37–44

5. A Prantl, M Schordan, J Knoop, in 8th International Workshop on
Worst-Case Execution Time Analysis (WCET’08),OpenAccess Series in
Informatics (OASIcs), ed. by R Kirner. TuBound - a conceptually new tool
for worst-case execution time analysis, vol. 8 (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik Dagstuhl, Germany, 2008).
doi:10.4230/OASIcs.WCET.2008.1661. also published in print by Austrian
Computer Society (OCG) with ISBN 978-3-85403-237-3. http://drops.
dagstuhl.de/opus/volltexte/2008/1661. Accessed 23 Sep 2015

6. MUR-TR Center, SWEET (SWEdish Execution Time tool). http://www.mrtc.
mdh.se/projects/wcet/sweet/. Accessed 23 Sep 2015

7. AE Dalsgaard, MC Olesen, M Toft, RR Hansen, KG Larsen, in 10th
International Workshop onWorst-Case Execution Time Analysis. METAMOC:
modular execution time analysis using model checking, (2010).
doi:10.4230/OASIcs.WCET.2010.113. http://drops.dagstuhl.de/opus/
volltexte/2010/2831. Accessed 23 Sep 2015

8. N Holsti, S Saarinen, in Space Syst. Finl. Ltd. Status of the Bound-T WCET
tool, (2002), pp. 25–30. Euromicro

9. RapiTime, RapiTime WCET tool homepage. Website. http://www.
rapitasystems.com. Accessed 23 Sep 2015

10. C Ferdinand, R Heckmann, B Franzen, in Proceedings of VVSS2007 - 3rd
European Symposium on Verification and Validation of Software Systems,
23rd of March 2007, Eindhoven, ed. by P Groot. Static memory and timing
analysis of embedded systems code, (2007). http://www-fp.cs.st-andrews.
ac.uk/embounded/pubs/papers/VVSS07.pdf. Accessed 23 Sep 2015

11. R Wilhelm, D Grund, Computation takes time, but how much? Commun.
ACM. 57(2), 94–103 (2014). doi:10.1145/2500886

http://www.jopdesign.com/
http://icelab.dk/
http://dx.doi.org/10.1007/978-3-642-16256-5_6
http://dx.doi.org/10.4230/OASIcs.WCET.2008.1661
http://drops.dagstuhl.de/opus/volltexte/2008/1661
http://drops.dagstuhl.de/opus/volltexte/2008/1661
http://www.mrtc.mdh.se/projects/wcet/sweet/
http://www.mrtc.mdh.se/projects/wcet/sweet/
http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://drops.dagstuhl.de/opus/volltexte/2010/2831
http://drops.dagstuhl.de/opus/volltexte/2010/2831
http://www.rapitasystems.com
http://www.rapitasystems.com
http://www-fp.cs.st-andrews.ac.uk/embounded/pubs/papers/VVSS07.pdf
http://www-fp.cs.st-andrews.ac.uk/embounded/pubs/papers/VVSS07.pdf
http://dx.doi.org/10.1145/2500886

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 15 of 16

12. D Locke, BS Andersen, B Brosgol, M Fulton, T Henties, JJ Hunt, JO Nielsen,
K Nilsen, M Schoeberl, J Tokar, J Vitek, A Wellings, Safety-Critical Java
Technology Specification, Public Draft, (2013). Java Community Process
http://www.jcp.org/en/jsr/detail?id=302. Accessed 23 Sep 2015

13. A Armbruster, J Baker, A Cunei, C Flack, D Holmes, F Pizlo, E Pla, M
Prochazka, J Vitek, A real-time Java virtual machine with applications in
Avionics. ACM Trans. Embed. Comput. Syst. (TECS). 7(1), 5–1549 (2007).
doi:10.1145/1324969.1324974

14. S Korsholm, Java for cost effective embedded real-time software.
(Department of Computer Science, Aalborg University, 2012)

15. KS Luckow, SE Korsholm, B Thomsen, in Proceedings of the 23rd Nordic
Workshop on Programming Theory.NWPT ’11. Towards a real-time, WCET
analysable JVM running in 256 kB of flash memory, (2011), pp. 68–88.
www.mrtc.mdh.se/nwpt2011/nwpt11-proceedings.pdf. Accessed 23 Sep
2015

16. M Schoeberl, JOP: A Java Optimized Processor for Embedded Real-Time
Systems, vol. ISBN 978-3-8364-8086-4. (VDM Verlag Dr. Müller, 2008),
p. 256. http://www.amazon.com/JOP-Optimized-Processor-Embedded-
Real-Time/dp/3836480867. Accessed 23 Sep 2015

17. F Pizlo, L Ziarek, J Vitek, in Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded Systems. JTRES ’09. Real
time Java on resource-constrained platforms with Fiji VM (ACM New York,
NY, USA, 2009), pp. 110–9. doi:10.1145/1620405.1620421. http://doi.acm.
org/10.1145/1620405.1620421. Accessed 23 Sep 2015

18. Aicas, JamaicaVM user manual: Java technology for critical embedded
systems (2010)

19. Atego, Atego home (2013). http://atego.com/. Accessed 23 Sep 2015
20. K Nilsen, in Proceedings of the 2012 ACM Conference on High Integrity

Language Technology.HILT ’12. Real-time Java in modernization of the
aegis weapon system (ACM New York, NY, USA, 2012), pp. 63–70.
doi:10.1145/2402676.2402699. http://doi.acm.org/10.1145/2402676.
2402699. Accessed 23 Sep 2015

21. SG Robertz, R Henriksson, K Nilsson, A Blomdell, I Tarasov, in Proceedings of
the 5th International Workshop on Java Technologies for Real-time and
Embedded Systems. JTRES ’07. Using real-time Java for industrial robot
control (ACM New York, NY, USA, 2007), pp. 104–110.
doi:10.1145/1288940.1288955. http://doi.acm.org/10.1145/1288940.
1288955. Accessed 23 Sep 2015

22. M Schoeberl, W Puffitsch, RU Pedersen, B Huber, Worst-case execution
time analysis for a Java processor. Softw. Pract. Experience. 40(6), 507–542
(2010). doi:10.1002/spe.968

23. T Bøgholm, H Kragh-Hansen, P Olsen, B Thomsen, KG Larsen,
Model-based schedulability analysis of safety critical hard real-time Java
programs (2008). doi:10.1145/1434790.1434807. http://doi.acm.org/10.
1145/1434790.1434807. Accessed 23 Sep 2015

24. C Frost, CS Jensen, KS Luckow, B Thomsen. 9th International Workshop on
Java Technologies for Real-Time and Embedded Systems, (2011).
doi:10.1145/2043910.2043916. http://doi.acm.org/10.1145/2043910.
2043916. Accessed 23 Sep 2015

25. KS Luckow, T Bøgholm, B Thomsen, KG Larsen, in Proceedings of the 11th
International Workshop on Java Technologies for Real-time and Embedded
Systems. JTRES ’13. TetaSARTS: a tool for modular timing analysis of safety
critical Java systems (ACM New York, NY, USA, 2013), pp. 11–20.
doi:10.1145/2512989.2512992. http://doi.acm.org/10.1145/2512989.
2512992. Accessed 23 Sep 2015

26. JC King, Symbolic execution and program testing. Commun. ACM. 19(7),
385–394 (1976)

27. LA Clarke, A system to generate test data and symbolically execute
programs. IEEE Trans. Softw. Eng. 2(3), 215–222 (1976)

28. J Bengtsson, K Larsen, F Larsson, P Pettersson, W Yi, in Proceedings of the
DIMACS/SYCONWorkshop on Hybrid Systems III : Verification and Control:
Verification and Control. Uppaal – a tool suite for automatic verification of
real-time systems (Springer Secaucus, NJ, USA, 1996), pp. 232–243.
http://dl.acm.org/citation.cfm?id=239587.239611. Accessed 23 Sep 2015

29. CS Păsăreanu, W Visser, D Bushnell, J Geldenhuys, P Mehlitz, N Rungta,
Symbolic PathFinder: integrating symbolic execution with model
checking for Java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425
(2013). doi:10.1007/s10515-013-0122-2

30. JPF, Java PathFinder tool-set (2014). http://babelfish.arc.nasa.gov/trac/jpf.
Accessed 23 Sep 2015

31. S Khurshid, CS Păsăreanu, W Visser, in Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems. TACAS’03. Generalized symbolic execution for model checking
and testing (Springer Berlin, Heidelberg, 2003), pp. 553–568. http://dl.
acm.org/citation.cfm?id=1765871.1765924. Accessed 23 Sep 2015

32. J Bengtsson, W Yi, in Lectures on Concurrency and Petri Nets, Lecture Notes
in Computer Science, ed. by J Desel, W Reisig, and G Rozenberg. Timed
automata: semantics, algorithms and tools, vol. 3098 (Springer,
pp. 87–124. doi:10.1007/978-3-540-27755-2_3. http://dx.doi.org/10.1007/
978-3-540-27755-2_3. Accessed 23 Sep 2015

33. Y-TS Li, S Malik, in Proceedings of the 32Nd Annual ACM/IEEE Design
Automation Conference.DAC ’95. Performance analysis of embedded
software using implicit path enumeration ACM New York, NY, USA, 1995),
pp. 456–461. doi:10.1145/217474.217570. http://doi.acm.org/10.1145/
217474.217570. Accessed 23 Sep 2015

34. J Gustafsson, A Ermedahl, C Sandberg, B Lisper, in Real-Time Systems
Symposium, 2006. RTSS’06. 27th IEEE International. Automatic derivation of
loop bounds and infeasible paths for wcet analysis using abstract
execution (IEEE Computer Society Washington, DC, USA, 2006),
pp. 57–66. doi:10.1109/RTSS.2006.12

35. J Gustafsson, A Betts, A Ermedahl, B Lisper, in Proceedings of the 10th
International Workshop onWorst-Case Execution Time Analysis. The
Mälardalen WCET benchmarks—past, present and future, (2010).
http://www.es.mdh.se/publications/1895-. Accessed 23 Sep 2015

36. D Kebbal, P Sainrat, in 6th International Workshop onWorst-Case Execution
Time Analysis (WCET’06),OpenAccess Series in informatics (OASIcs), ed. by
F Mueller. Combining symbolic execution and path enumeration in
worst-case execution time analysis, vol. 4 (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik Dagstuhl, Germany, 2006).
doi:10.4230/OASIcs.WCET.2006.675. http://drops.dagstuhl.de/opus/
volltexte/2006/675. Accessed 23 Sep 2015

37. B Benhamamouch, B Monsuez, F Védrine, in Proceedings of the Second
International Conference on Verification and Evaluation of Computer and
Communication Systems. VECoS’08. Computing WCET using symbolic
execution (British Computer Society Swinton, UK, UK, 2008), pp. 128–139.
http://dl.acm.org/citation.cfm?id=2227461.2227475. Accessed 23Sep2015

38. T Lundqvist, P Stenström, An integrated path and timing analysis method
based on cycle-level symbolic execution. Real-Time Syst. 17(2-3), 183–207
(1999). doi:10.1023/A:1008138407139

39. J Knoop, L Kovács, J Zwirchmayr, in Proceedings of the 21st International
Conference on Real-Time Networks and Systems. RTNS ’13. WCET squeezing:
on-demand feasibility refinement for proven precise wcet-bounds (ACM
New York, NY, USA, 2013), pp. 161–70. doi:10.1145/2516821.2516847.
http://doi.acm.org/10.1145/2516821.2516847. Accessed 23 Sep 2015

40. J Knoop, L Kovács, J Zwirchmayr, in Logic for Programming, Artificial
Intelligence, and Reasoning. r-TuBound: Loop bounds for WCET analysis
(Springer, 2012), pp. 435–444

41. G Lindstrom, PC Mehlitz, W Visser, in Proceedings of the Third International
Conference on Automated Technology for Verification and Analysis. ATVA’05.
Model checking real time Java using Java Pathfinder (Springer Berlin,
Heidelberg, 2005), pp. 444–56. doi:10.1007/11562948_33. http://dx.doi.
org/10.1007/11562948_33. Accessed 23 Sep 2015

42. T Kalibera, P Parizek, M Malohlava, M Schoeberl, in Proceedings of the 8th
International Workshop on Java Technologies for Real-Time and Embedded
Systems. JTRES ’10. Exhaustive testing of safety critical java (ACM New
York, NY, USA, 2010), pp. 164–74. doi:10.1145/1850771.1850794.
http://doi.acm.org/10.1145/1850771.1850794. Accessed 23 Sep 2015

43. T Amnell, E Fersman, L Mokrushin, P Pettersson, W Yi, in the 1st
International Workshop on Formal Modeling and Analysis of Timed Systems.
Times: a tool for schedulability analysis and code generation of real-time
systems, (2003). http://www.es.mdh.se/publications/2047-. Accessed 23
Sep 2015

44. KS Luckow, T Bøgholm, B Thomsen, inWiP Proceedings of the 19th
Real-Time and Embedded Technology and Application Symposium.
Supporting development of energy-optimised Java real-time systems
using TetaSARTS, (2013), pp. 41–4. http://www.cister.isep.ipp.pt/rtas2013/
WiP_Proceedings.pdf. Accessed 23 Sep 2015

45. DF Bacon, PF Sweeney, in Proceedings of the 11th ACM SIGPLAN Conference
onObject-oriented Programming, Systems, Languages, andApplications. Fast
static analysis of C++ virtual function calls. doi:10.1145/236337.236371.
http://doi.acm.org/10.1145/236337.236371. Accessed 23 Sep 2015

http://www.jcp.org/en/jsr/detail?id=302
http://dx.doi.org/10.1145/1324969.1324974
www.mrtc.mdh.se/nwpt2011/nwpt11-proceedings.pdf
http://www.amazon.com/JOP-Optimized-Processor-Embedded-Real-Time/dp/3836480867
http://www.amazon.com/JOP-Optimized-Processor-Embedded-Real-Time/dp/3836480867
http://dx.doi.org/10.1145/1620405.1620421
http://doi.acm.org/10.1145/1620405.1620421
http://doi.acm.org/10.1145/1620405.1620421
http://atego.com/
http://dx.doi.org/10.1145/2402676.2402699
http://doi.acm.org/10.1145/2402676.2402699
http://doi.acm.org/10.1145/2402676.2402699
http://dx.doi.org/10.1145/1288940.1288955
http://doi.acm.org/10.1145/1288940.1288955
http://doi.acm.org/10.1145/1288940.1288955
http://dx.doi.org/10.1002/spe.968
http://dx.doi.org/10.1145/1434790.1434807
http://doi.acm.org/10.1145/1434790.1434807
http://doi.acm.org/10.1145/1434790.1434807
http://dx.doi.org/10.1145/2043910.2043916
http://doi.acm.org/10.1145/2043910.2043916
http://doi.acm.org/10.1145/2043910.2043916
http://dx.doi.org/10.1145/2512989.2512992
http://doi.acm.org/10.1145/2512989.2512992
http://doi.acm.org/10.1145/2512989.2512992
http://dl.acm.org/citation.cfm?id=239587.239611
http://dx.doi.org/10.1007/s10515-013-0122-2
http://babelfish.arc.nasa.gov/trac/jpf
http://dl.acm.org/citation.cfm?id=1765871.1765924
http://dl.acm.org/citation.cfm?id=1765871.1765924
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1145/217474.217570
http://doi.acm.org/10.1145/217474.217570
http://doi.acm.org/10.1145/217474.217570
http://dx.doi.org/10.1109/RTSS.2006.12
http://www.es.mdh.se/publications/1895-
http://dx.doi.org/10.4230/OASIcs.WCET.2006.675
http://drops.dagstuhl.de/opus/volltexte/2006/675
http://drops.dagstuhl.de/opus/volltexte/2006/675
http://dl.acm.org/citation.cfm?id=2227461.2227475
http://dx.doi.org/10.1023/A:1008138407139
http://dx.doi.org/10.1145/2516821.2516847
http://doi.acm.org/10.1145/2516821.2516847
http://dx.doi.org/10.1007/11562948_33
http://dx.doi.org/10.1007/11562948_33
http://dx.doi.org/10.1007/11562948_33
http://dx.doi.org/10.1145/1850771.1850794
http://doi.acm.org/10.1145/1850771.1850794
http://www.es.mdh.se/publications/2047-
http://www.cister.isep.ipp.pt/rtas2013/WiP_Proceedings.pdf
http://www.cister.isep.ipp.pt/rtas2013/WiP_Proceedings.pdf
http://dx.doi.org/10.1145/236337.236371
http://doi.acm.org/10.1145/236337.236371

Luckow et al. EURASIP Journal on Embedded Systems (2015) 2015:2 Page 16 of 16

46. KS Luckow, C Păsăreanu, Symbolic pathfinder v7. SIGSOFT Softw. Eng.
Notes. 39(1), 1–5 (2014). doi:10.1145/2557833.2560571

47. KS Luckow, B Thomsen, SE Korsholm, in 12th International Workshop on
Java Technologies for Real-Time and Embedded Systems. HVM-TP: a time
predictable and portable Java virtual machine for hard real-time
embedded systems (ACM New York, 2014). To appear
doi:http://doi.acm.org/10.1145/2661020.2661022

48. H Søndergaard, SE Korsholm, AP Ravn, in Proceedings of the 10th
International Workshop on Java Technologies for Real-time and Embedded
Systems. JTRES ’12. Safety-critical Java for low-end embedded platforms
(ACM New York, NY, USA, 2012), pp. 44–53. doi:10.1145/2388936.2388945.
http://doi.acm.org/10.1145/2388936.2388945. Accessed 23 Sep 2015

49. D Balasubramanian, C Păsăreanu, G Karsai, M Lowry, in Tools and
Algorithms for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, ed. by N Piterman, S Smolka. Polyglot: systematic
analysis for multiple statechart formalisms, vol. 7795 (Springer Berlin,
Heidelberg, 2013), pp. 523–529. doi:10.1007/978-3-642-36742-7_36

50. M Schoeberl, TB Preusser, S Uhrig, in Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES
’10. The embedded Java benchmark suite JemBench (ACM New York, NY,
USA, 2010), pp. 120–7. doi:10.1145/1850771.1850789. http://doi.acm.org/
10.1145/1850771.1850789. Accessed 23 Sep 2015

51. AE Dalsgaard, RR Hansen, KY Jørgensen, KG Larsen, MC Olesen,
P Olsen, J Srba, K Havelund, G Holzmann, R Joshi, in NASA Formal
Methods. Lecture Notes in Computer Science, ed. by M Bobaru.
opaal: a lattice model checker, vol. 6617, pp. 487–93. Springer.
doi:10.1007/978-3-642-20398-5_37. http://dx.doi.org/10.1007/978-3-642-
20398-5_37. Accessed 23 Sep 2015

52. AE Dalsgaard, A Laarman, KG Larsen, MC Olesen, J Van De Pol, in
Proceedings of the 10th International Conference on Formal Modeling and
Analysis of Timed Systems. Multi-core reachability for timed automata
(Springer-Verlag Berlin, Heidelberg, 2012), pp. 91–106.
doi:10.1007/978-3-642-33365-1_8

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/2557833.2560571
http://doi.acm.org/10.1145/2661020.2661022
http://dx.doi.org/10.1145/2388936.2388945
http://doi.acm.org/10.1145/2388936.2388945
http://dx.doi.org/10.1007/978-3-642-36742-7_36
http://dx.doi.org/10.1145/1850771.1850789
http://doi.acm.org/10.1145/1850771.1850789
http://doi.acm.org/10.1145/1850771.1850789
http://dx.doi.org/10.1007/978-3-642-20398-5_37
http://dx.doi.org/10.1007/978-3-642-20398-5_37
http://dx.doi.org/10.1007/978-3-642-20398-5_37
http://dx.doi.org/10.1007/978-3-642-33365-1_8

	Abstract
	Keywords

	1 Introduction
	1.1 Java for real-time system development
	1.2 Contributions

	2 Background
	2.1 Symbolic execution and SPF
	2.2 Timed automata

	3 Related work
	3.1 WCET analysis tools
	3.2 Symbolic execution for timing analysis
	3.3 Schedulability analysis

	4 The SymRT tool
	4.1 Overview
	4.2 Symbolic execution vs CFG-based model generation
	4.3 Model construction
	4.4 Per-task analysis
	4.5 Model analysis

	5 Experimental results
	6 Conclusions
	Endnotes
	Competing interests
	Author details
	References

