
Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9
http://jes.eurasipjournals.com/content/2013/1/9

RESEARCH Open Access

Use of compiler optimization of software
bypassing as a method to improve energy
efficiency of exposed data path architectures
Vladimír Guzma*, Teemu Pitkänen and Jarmo Takala

Abstract

In the design of embedded systems, hardware and software need to be co-explored together to meet targets of
performance and energy. With the use of application-specific instruction-set processors, as a stand-alone solution or
as a part of a system on chip, the customization of processors for a particular application is a known method to reduce
energy requirements and provide performance. In particular, processor designs with exposed data paths trade
compile time complexity for simplified control hardware and lower running costs. An exposed data path also allows
the removal of unused components of interconnection network, once the application is compiled.
In this paper, we propose the use of a compiler technique for processors with exposed data paths, called software
bypassing. Software bypassing allows the compiler to schedule data transfers between execution units directly,
bypassing the use of a general-purpose register file, increasing scheduling freedom, with reduced dependencies
induced by the reuse of registers, decreasing the number of read and write accesses to register files, and allowing the
use of register files with less read and write ports while maintaining or improving performance and maintaining
reprogrammability. We compare our proposal against an architecture exploration technique, connectivity reduction,
which finds in compiled application all interconnection network components that are used and removes those which
are not, leading to an energy-efficient application-specific instruction-set processor.
We observe that the use of software bypassing leads to improvements in application speed, with architectures having
the smallest number of register file ports consistently outperforming architectures with larger number of ports, and
reduction in energy consumption. In contrast, connectivity reduction maintains the same application speed, reduces
energy consumption, and allows for increase in processor frequency; however, with the clock frequency increased to
match the performance of software bypassing, energy consumption grows. We also observe that in case
reprogrammability is not an issue, the most energy-efficient solution is a combination of software bypassing and
connectivity reduction.

1 Introduction
In an embedded domain, unlike in more traditional high-
performance computing, performance closely relates
to energy. Efficient solutions utilize the knowledge of
application or application domain to explore hard-
ware and software techniques, eventually leading to
application-specific instruction-set processors, and to
provide enough performance for a particular task, or
set of tasks, while minimizing energy requirements.
The exploration of available instruction-level parallelism

*Correspondence: vladimir.guzma@tut.fi
Department of Computer Systems, Tampere University of Technology,
Tampere 33720, Finland

(ILP) and the use of instruction-set extensions are com-
mon ways to improve clock cycle performance, lead-
ing to lower operation frequencies and lower energy
requirements.
When exploring ILP in computation, large number of

general-purpose registers contributes to the increase in
performance. Having program variables in independent
registers allows data-independent computation paths to
be scheduled in parallel, on different execution units.
However, in terms of algorithm computation, the time
and energy spent on transferring values between func-
tion units and register files are wasted, not contributing
to actual computation directly, since only the energy spent

© 2013 Guzma et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 2 of 30
http://jes.eurasipjournals.com/content/2013/1/9

while computing in function units is actually useful to
compute results.
In addition, when parallel execution requires access to

several general-purpose registers in the same cycle, reg-
ister files need to provide enough read and write ports
to allow such access, leading to increased complexity and
higher energy requirements of register files.
Another method on how to increase the performance

of embedded processors is the customization of instruc-
tion set [1,2]. Complex computation patterns can be
implemented as custom function units, providing bet-
ter performance and freeing other processor resources
for independent computation paths. This customization,
however, often leads to implementation with higher num-
ber of input values and produces several results, further
elevating the problem of the number of register file ports
and necessary data transports between function units and
register files.
Yet another method to reduce energy requirements

of a custom processor is the optimization of the data
path. To maintain the best programmability and allow
maximum ILP exploitation, processor interconnection
networks tend to be designed for the worst case sce-
nario. However, once the application schedule is set, we
can simply remove all the unused components of the
interconnection network, eventually maintaining only the
required connections (connectivity reduction). This has an
effect on reduction in interconnection network complex-
ity, instruction fetch and decode energy requirements, and
can allow for increase in processor clock frequency. An
unfortunate effect of connectivity reduction, however, is
limitation to reprogrammability, or no reprogrammability
at all, of such a processor. In case the application is mod-
ified and needs to be recompiled for the reduced archi-
tecture, the compiler may produce inefficient schedule
working around missing connections or fail to schedule
completely.
In this paper, we propose the use of a compiler opti-

mization technique called software bypassing, suitable
for architectures with exposed data paths, as a tool for
improving energy efficiency. By allowing the compiler to
schedule data transfers directly between function unit
outputs and inputs, reading the value of previous com-
putation from the register file becomes unnecessary. This
helps reduce unnecessary energy costs of register files. In
addition, in the case where all of the uses of produced val-
ues can be bypassed directly, the actual write of value to
general-purpose register can be discarded during compi-
lation (dead result move elimination), reducing the total
number of data transfers on the interconnection network
and further contributing to reduction in processor energy
consumption.
Additional benefit of this optimization is the reduction

of false data dependencies created by register allocation

when several program variables reuse the same register
to store the data, effectively allowing the scheduler more
scheduling freedom and increases available ILP to explore
during instruction scheduling.
We reason that the combined benefits of software

bypassing (reduction in register file reads and writes,
reduction in the number of data transfers on the inter-
connection network, and improved cycle count) match
those of connectivity reduction when it comes to energy
efficiency while maintaining full reprogrammability.
In situations where reprogrammability is not an issue,

we propose the use of a combination of software bypassing
and connectivity reduction. We reason that the benefits
of these two complement each other, providing for large
energy savings. In particular, in order to match the clock
cycle improvements gained by the use of software bypass-
ing, a processor with only reduced connectivity needs to
run with higher clock frequency, eventually leading to
an increase in energy requirements, possibly exceeding
energy budget.
In our previous work [3], we considered a conservative

approach to software bypassing and investigated its effect
on clock cycle performance and reduction in register files
reads and writes depending on the heuristic parameter
guiding bypassing decisions.We also discussed the impact
of heuristic when to bypass on register file and inter-
connection network energy consumption, however, using
only a hardware estimator [4] and single architecture.
In this paper, we propose a novel bypassing algorithm

and use an extensive set of register file architecture types
to investigate the effect of bypassing and connectivity
reduction on the energy of various processor core compo-
nents directly influenced by one or both of the methods.
In addition, we investigate the cost of matching the perfor-
mance improvements brought by bypassing via synthesis
for higher clock frequency when only connectivity reduc-
tion is available. We evaluate our approach using com-
mercially available tools for processor synthesis, gate level
simulation, and power analysis.
The rest of this paper is organized as follows: Section 2

discusses previous work. Section 3 gives a short intro-
duction to architectures with exposed data paths and
describes our choice, transport-triggered architectures.
Section 4 gives an overview of our novel software bypass-
ing algorithm with integrated dead result move elimina-
tion, as well as connectivity reduction. Section 5 outlines
our experimental setup, and Section 6 provides a discus-
sion of the results of our experiments. Finally, Section 7
concludes this paper.

2 Related work
Effects of bypassing register files are known and appre-
ciated in processor design [5,6], with reported register
file power reduction of 12% on average for Intel XScale

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 3 of 30
http://jes.eurasipjournals.com/content/2013/1/9

processor and performance loss of 2% in [5] and up to
80% register file energy reduction compared to Reduced
Instruction Set Computer (RISC)/Very Long Instruction
Word (VLIW) counterparts in [6]. More and more effort
is spent in focusing on computation and distancing from
the temporary data storage.
The traditional use of register files for storing data

becomes a problem with monolithic register files (RF)
in VLIW processors with a large number of function
units. The requirement of a large number of RF ports in
such case makes the use of monolithic RF prohibitively
expensive. Common solutions involve the clustering of RF
into a number of smaller ones. Intercluster communica-
tion can then be implemented using RF to RF copying
and/or read/write between dedicated function units and
RF across clusters. However, as shown in [7,8], using
only register to register copies between clusters reduces
achievable ILP when compared to monolithic RF. Results
closer to a monolithic RF file can be achieved with the
use of direct reads and writes from a dedicated func-
tion unit to RF in different clusters, suggesting that the
RF to RF copies between clusters should be avoided
when possible.
Another step towards better performance and more

achievable ILP is bypassing data directly from func-
tion unit to function unit, avoiding the use of RF
altogether. Such a solution improves performance and
reduces the energy required by RF but can be also used to
reduce the number of required RF ports while retaining
performance.
The effective use of RF bypassing is dependent on the

architecture’s division of work between the software and
the hardware. In order to bypass the RF, the compiler
or hardware logic must be able to determine what the
consumers of the bypassed value are, effectively requir-
ing data flow information, and how the direct operand
transfer can be performed in the hardware.
While hardware implementations of RF bypassing may

be transparent to a programmer, they also require addi-
tional logic and wiring in the processor and can only
analyze a limited instruction window for the required data
flow information. Hardware implementations of bypass-
ing cannot get the benefit of reduced register pressure
since the registers are already allocated to the variables
when the program is executing. However, the benefits
from the reduced number of RF accesses are achieved.
Register renaming [9] also increases available ILP by
the removal of false dependencies. Dynamic strands pre-
sented in [10] are an example of an alternative hardware
implementation of RF bypassing. Strands are dynamically
detected atomic units of execution where registers can
be replaced by direct data transports between operations.
In Explicit Data Graph Execution (EDGE) architectures
[11], operations are statically assigned to execution units,

but they are scheduled dynamically in a data-flow fash-
ion. Instructions are organized in blocks, and each block
specifies its register and memory inputs and outputs. Exe-
cution units are arranged in a matrix, and each unit in
the matrix is assigned a sequence of operations from the
block to be executed. Each operation is annotated with the
address of the execution unit to which the result should be
sent. Intermediate results are thus transported directly to
their destinations.
Static strands in [12] follow an earlier work [10] to

decrease hardware costs. Strands are found statically dur-
ing compilation and annotated to pass the information to
the hardware. As a result, the number of required regis-
ters is reduced already in the compile time. This method
was, however, applied only to transient operands with a
single definition and single use, effectively up to 72% of
dynamic integer operands, bypassing about half of them
[12]. The authors reported 16% to 24% savings in issue
energy, 17% to 20% savings in bypass energy, 13% to
14% savings in register file energy, and 15% improvement
in instruction per cycle, using a cycle-accurate simula-
tor for two hardware models: Renesas (formerly Hitachi)
SuperH SH4a and IBM PowerPC 750FX embedded
microprocessor.
Dataflow mini-graphs [13] are treated as atomic units

by a processor. They have the interface of a single instruc-
tion, with intermediate variables alive only in the bypass
network. In [14], architecturally visible ‘virtual registers’
are used to reduce register pressure through bypassing. In
this method, a virtual register is only a tag marking data
dependence between operations without having physical
storage location in the RF.
Software implementations of bypassing analyze codes

during compile time and pass to the processor the
exact information about the sources and the destina-
tions of bypassed data transports, thus avoiding any
additional bypassing and analyzing logic in the hard-
ware. This requires an architecture with an exposed
data path that allows such direct programming, like
the transport-triggered architectures (TTA) [15,16], syn-
chronous transfer architecture [17], FlexCore [18], no-
instruction-set-computer [19], or static pipelining [20].
A commercial application of the TTA paradigm is
the Maxim MAXQ general-purpose microcontroller
family [21].
The assignment of destination addresses in an EDGE

architecture corresponds to software bypassing in a
transport-triggered setting. Software-only bypassing was
previously implemented for a TTA architecture using the
experimental MOVE framework [22,23] and MOVE-Pro
[6]. TTAs are a special type of VLIW architectures. They
allow programs to define explicitly the operations exe-
cuted in each function unit (FU) as well as to define
how (with position in instruction defining bus) and when

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 4 of 30
http://jes.eurasipjournals.com/content/2013/1/9

data are transferred (moved) to each particular port of
each unit. With the option of having registers in input
and output ports of FUs, TTA allows the scheduler to
move operands to FUs in different cycles and read results
several cycles after they are computed. Therefore, the
limiting factor for bypassing is the availability of connec-
tions between the source FU and destination FUs. In our
previous work [3], we introduced a simple, conservative
software bypassing implementation. We, however, only
focused on the improvements in cycle counts and reg-
ister file read and write accesses when changing bypass
aggressiveness heuristics. In [24], we discussed the men-
tioned simple bypassing algorithm in terms of energy only
using a hardware cost estimation model [4] and single
architecture.

3 Exposing data paths: transport triggering
approach

TTA [15] is an exposed data path architecture which
allows the number of architectural resources to be
selected, e.g., selection of the number and size of regis-
ter files, number of read and write ports for each register
file individually. Similarly, the number of function units
as well as the operation set of each function unit can
be defined by an architecture designer. To connect them
together, the interconnection network is designed, with
choice of the number of buses and sockets to be used.
Each socket provides connection between the function
unit or register file port and one or more buses. This
allows for fully connected architectures, with most com-
piler freedom to choose how to transport data between
the source and destination, as well as heavily reduced
connectivity, with buses connecting only a small number
of components. It is necessary to point out that a com-
plex fully connected interconnection network is expensive
and limits themaximum clock frequency. Alternatively, an
optimized connectivity could allow for higher frequency;
however, it reduces scheduling freedom. With less alter-
natives for transport, potentially parallel data transports
often need to be serialized.
Figure 1 shows an example of TTA. There are two func-

tion units in Figure 1, denoted as FU: one serving as an
arithmetic and logic unit (ALU) and the other as LSU.
GCU: denotes global control unit, which is responsible for
branching operations, and RF: denotes a single register file
with two read and two write ports. Figure 1 also shows
five transport buses and 13 sockets connected to units and
buses. It can be seen in Figure 1 that not all the sockets
are connected to all the buses (as the black dot denotes
connection).
Another interesting aspect of TTA comes from VLIW

inheritance. An instruction defines what data transports
are to be performed on each bus, which leads to wide
instruction words. As a matter of fact, for each bus in the

system, the instruction word encodes the source field of
transport as well as destination field of transport. While
increasing number of buses leads to more freedom for
the compiler to schedule, it also increases the instruction
width. Reducing the connectivity between sockets and
buses typically leads to a lower number of bits required
to encode data transport for individual bus and nar-
rows the instruction width. However, in order to signifi-
cantly reduce the negative impact of the instruction width,
instruction compression can be applied. Using dictionary
compression [25,26], for example, the code density can
be improved significantly with a decrease in spent energy
as well.

4 Software bypassing and connectivity reduction
algorithms

In this section, we first discuss our two implementations
of software bypassing: First is a conservative approach,
previously published in [3], while the second one is an
opportunistic approach, which has not been published
previously.

4.1 Software bypassing and dead result move elimination
Software bypassing and dead result move elimination
on TTA processors can be illustrated with an example.
Let us consider the following code excerpt on RISC-type
architecture:

add R3,r1,r2
add R5,r4,R3
mul r1,R3,R5

The same code in a typical TTA syntax on a machine
with two buses could be the following:

r2 -> add.t; r1 -> add.o;
add.r -> R3; r4 -> add.o;
R3 -> mul.o; R3 -> add.t;
add.r -> R5; ...;
R5 -> mul.t; ...;
mul.r -> r1; ...;

We can see that individual data transport to operand
(denoted with .o suffix) registers and trigger registers (.t)
from the general-purpose registers (rX or RX) are explic-
itly defined. In the same manner, the data transport from
the result register (.r) to general-purpose registers are
explicit. It is worth noting that the timing of data trans-
port is not fixed. For instance, register r4 is written to
the operand register of add one cycle before register R3
is written to the trigger register of add, starting actual
computation. Similarly, the operand write of mul is two
cycles before the trigger write of the same operation starts
execution.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 5 of 30
http://jes.eurasipjournals.com/content/2013/1/9

FU:

ALU

{ add, and, gtu }

FU:

LSU

{ ldw, stw }

RF:

RF

42x32

GCU:

gcu

{ jump, call }

0

1

2

3

4

Function units

Buses

Sockets

Register File Control Unit

Connections

Trigger
port

Figure 1 An example of TTA with five buses and reduced connectivity. A TTA architecture with reduced connections between sockets and
buses. A fully connected architecture would have connection to all buses in each socket.

The same code with software bypassing and dead result
move elimination applied could be the following:

r2 -> add.t; r1 -> add.o;
add.r -> mul.o; r4 -> add.o;
add.r -> add.t; ...;
add.r -> mul.t; ...;
mul.r -> r1; ...;

We can observe direct data transports from the result
to operand or trigger registers. Data transports from the
result register to the general-purpose register are com-
pletely scraped for both additions (dead result move elim-
ination), as the results are used just once inmultiplication,
where they are transported directly from the result regis-
ter of the adder. Compared to the first RISC-like example,
we can observe that all the registers denoted with capital
RX have disappeared, while the amount of work function
units performed remains the same.
As the number of registers available in the architec-

ture is limited, the compiler reuses the same registers
to store different variables through the execution of the
program. This leads to false dependencies when instruc-
tion scheduling as reordering of the data transport can
be limited by not real data dependence, such as producer
consumer, but false dependence such as write-after-read
or write-after-write. The removal of the uses of registers
reduces this problem induced by register allocation.
Our first bypassing algorithm is based on a data depen-

dence graph as a part of list scheduling, previously pub-
lished in [3]. In order to prevent possible deadlocks, the
algorithm uses conservative implementation, which first

schedules data transports of all operands before attempt-
ing to bypass operands directly from the result registers
of other function units which produced required values.
Redundant result writes to the register file can be removed
only once all the uses of the value written to the register
file get bypassed and the value is not used outside the cur-
rent basic block. As a heuristic when not to bypass, simple
distance in cycles between the original write to the reg-
ister, where the producer produces a value, and the cycle
where the value is scheduled to be read from the register
to the operand of the consumer is used (lookBackDis-
tance). It is notable that this implementation works with
top-down scheduling algorithms [27].
Our second bypassing algorithm is also based on a

data dependence graph. However, while in the first case
we used a top-down scheduling algorithm, in this case,
we reversed the direction and implemented bypassing
during bottom-up scheduling. Due to the nature of
bottom-up scheduling, we start the scheduling of oper-
ation by scheduling all result moves of operation. This
has an advantage of immediate availability of information
whether or not all of the uses of the result value become
bypassed and an unnecessary write to the register file can
be removed immediately.
In addition, our implementation starts with scheduling

of result moves with an attempt to find all bypass desti-
nations and create direct bypass moves - early bypassing.
Only in case some of the destinations cannot be bypassed,
or the result value needs to be used outside the scope
of the current basic block, the result move to register in
the register file is scheduled. Afterwards, the bypassing is
attempted once again for the destinations that did not get

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 6 of 30
http://jes.eurasipjournals.com/content/2013/1/9

bypassed during early bypassing. While this late bypass-
ing does not contribute to improvement in cycle counts of
the current operation anymore, it still removes unneces-
sary read from the register file and frees register file read
port.
Only once all of the result moves of the operation

are scheduled, with or without bypasses, the algorithm
attempts to schedule input operand moves as well. In
case the schedule of operand moves fails, the result
moves are unscheduled and a reschedule is attempted,
with only early bypassing enabled. If the scheduling of
operands still fails, result moves are unscheduled again
and a reschedule is attempted, with only late bypassing
enabled. Once again, if the schedule of operands still fails,
scheduled moves are unscheduled and a reschedule is
attempted, without any bypassing enabled. Only if all pre-
vious attempts fail, the starting cycle of the scheduling is
decreased and a reschedule is attempted.
The outline of our scheduling algorithm is presented

in Algorithm 1, with inputs denoting the set of the input
operands of the operation being scheduled and with out-
puts denoting the possibly empty set of the results the
operation produces. The ScheduleOperandWritesmethod
simply tries to schedule input operands of the operation as
late as possible once the results of the operation are suc-
cessfully scheduled, taking into account the latency and
pipeline characteristics of the operation on the selected
function unit. The method UnscheduleResultReads sim-
ply unschedules all the previously scheduled results of the
operation and undo possible bypasses.
Actual bypassing of result moves is presented in Algo-

rithm 2, with cycle denoting the starting cycle from which
the scheduling starts, outputs denoting the possibly empty
set of results the operation being scheduled produces,
and the two flags bypassEarly and bypassLate indicating
if bypassing should be attempted early or late or both.
The method ScheduleCandidateALAP tries to schedule
the original result move to register as late as possible,
starting from cycle, in case not all of the result reads were
successfully bypassed or if the result is used in a different
basic block.
Other bypassing strategies are possible, including pre-

register allocation bypassing [28], recursively bypassing
chain of operations on critical path, bypassing after the
block is fully scheduled without changing schedule to
reduce only register file accesses, etc.

4.2 Simple connectivity reduction
With the freedom of design choices offered by transport-
triggered architectures, the process of manually optimiz-
ing the connectivity of actual processor can become rather
difficult. We start by manually selecting a register file con-
figuration, as will be described in Section 5, and fully
connected interconnection network.

We used simple connectivity reduction. The idea behind
the algorithm is to schedule an application for fully con-
nected TTA and then simply remove the connections
of function units and register files to the buses that
were never used in the existing schedule. In addition,
whole function units and their respective sockets could
be removed, if unused by the application. The reduction
in the number of socket-to-bus connection should lead to
less bits required to encode source and destination fields
of data transports for buses and possibly allow for higher
clock frequency to be achieved.

5 Experimental setup
We selected open-source TTA-based Co-design Environ-
ment [29,30] as the platform for our experiments.
To evaluate the effect of software bypassing and connec-

tivity reduction, we selected an integer subset of CHStone
v1.7 [31] benchmark, as described in Table 1. The selected
designs were identical except for their register file con-
figurations. The number of interconnection buses and
function units remain the same for all the tested architec-
tures as well as the total number of registers. We selected
the number of interconnection buses in such a way that
they do not limit the maximum achievable instruction-
level parallelism available in the selected benchmarks.
Selected register file configurations could be split into
three categories:

1. Architectures with a single multi-ported (SM)
register file

• SM 1× 4× 4 - 1 RF - 4 read 4 write ports (42
registers; Figure 2a)

• SM 1× 3× 3 - 1 RF - 3 read 3 write ports (42
registers; Figure 2b)

• SM 1× 2× 2 - 1 RF - 2 read 2 write ports (42
registers; Figure 2c)

• SM 1× 4× 2 - 1 RF - 4 read 2 write ports (42
registers; Figure 2d)

Table 1 Integer subset of CHStone benchmark used in our
experiments

Benchmark Origin

adpcm CHStone/SNU

aes CHStone/AILab

blowfish CHStone/MiBench

gsm CHStone/MediaBench

jpeg CHStone/The Portable Video Research Group

mips CHStone

motion CHStone/MediaBench

sha CHStone/MiBench

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 7 of 30
http://jes.eurasipjournals.com/content/2013/1/9

Algorithm 1 Scheduling moves of single operation in bottom-up fashion
1: ScheduleOperation(inputs, outputs)
2: resultsFailed := true
3: operandsFailed := true
4: bypassEarly := true
5: bypassLate := true
6: cycle := DDGLatestCycle(outputs)
7: while cycle > 0 or resultsFailed or operandsFailed do
8: resultsFailed := ScheduleResultReads(cycle, outputs, bypassEarly, bypassLate)
9: if not resultsFailed then
10: {Result moves scheduled}
11: else if bypassEarly and bypassLate then
12: bypassLate := false
13: continue {Retry with the same start cycle without late bypassing}
14: else if bypassEarly and not bypassLate then
15: bypassEarly := false
16: bypassLate := true
17: continue {Retry with the same start cycle without early bypassing}
18: else if not bypassEarly and bypassLate then
19: bypassLate := false
20: continue {Retry with the same start cycle without any bypassing}
21: else
22: bypassEarly := true
23: bypassLate := true
24: cycle := cycle− 1
25: continue {Retry with earlier start cycle and both bypassing methods}
26: end if
27: operandsFailed := ScheduleOperandWrites(cycle, inputs)
28: if not operandsFailed then
29: {Both, results and operands of operation, successfully scheduled}
30: return true
31: else
32: {Operand moves cannot be scheduled}
33: {with current position of result moves.}
34: UnscheduleResultReads(outputs)
35: if bypassEarly and bypassLate then
36: bypassLate := false
37: else if bypassEarly and not bypassLate then
38: bypassEarly := false
39: bypassLate := true
40: else if not bypassEarly and bypassLate then
41: bypassLate := false
42: else
43: bypassEarly := true
44: bypassLate := true
45: cycle := cycle− 1
46: end if
47: end if
48: end while

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 8 of 30
http://jes.eurasipjournals.com/content/2013/1/9

Algorithm 2 Schedule and bypass result reads
1: ScheduleResultReads(cycle, outputs, bypassEarly, bypassLate)
2: for all result in outputs do
3: bypassSuccess := false
4: if bypassEarly then
5: Try to bypass all uses of the result move
6: bypassSuccess := BypassMove(result, cycle)
7: if bypassSuccess and result not used outside the current block then
8: All moves that use result were bypassed
9: continue

10: end if
11: end if
12: {Not all uses of result were bypassed}
13: {or the result is used in different block.}
14: ScheduleCandidateALAP(result, cycle)
15: if not result is scheduled then
16: UndoBypass(result)
17: return false
18: end if
19: if bypassLate then
20: {Still try to bypass result uses to reduce antidependencies}
21: BypassMove(result, cycle)
22: end if
23: end for
24: return true

RF:

RF

42x32

0

a

RF:

RF

42x32

0

b

RF:

RF

42x32

0

c

RF:

RF

42x32

0

d
Figure 2 Register file with multiple read and write ports. An example of a single register file with multiple write ports, connected to the
interconnection bus. (a) SM 1× 4× 4. (b) SM 1× 3× 3. (c) SM 1× 2× 2. (d) SM 1× 4× 2.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 9 of 30
http://jes.eurasipjournals.com/content/2013/1/9

2. Architectures with a single register file with a single
read and single write port (SS) or multiple register
files with a single read and single write port (MS)

• SS 1× 1× 1 - 1 RF - 1 read 1 write port (42
registers; Figure 3a)

• MS 2× 1× 1 - 2 RFs - 1 read 1 write port in
each (2× 21 registers; Figure 3b)

• MS 3× 1× 1 - 3 RFs - 1 read 1 write port in
each (3× 14 registers; Figure 3c)

3. Architectures with multiple register files with
multiple read and write ports (MM)

• MM 2× 2× 1 - 2 RFs - 2 read 1 write port in
each (2× 21 registers; Figure 4a)

• MM 2× 2× 2 - 2 RFs - 2 read 2 write port in
each (2× 21 registers; Figure 4b)

Examples of register file implementations are shown
in Figure 5a,b. The structure of the register file can be
divided into three parts:

• input control
• register bank
• output control

For each data input port, the register file contains an
input opcode, which specifies the register ought to be
written in the register bank, and an input trigger, which
describes when the data are ought to be written to the
register described in the corresponding opcode.
For each data output port, the register file contains an

output opcode, which describes which register is fed to
the output port.
When using the register file with single input and out-

put ports, the complexity of the write and read control

RF:

RF

42x32

0

a

RF:

RF

21x32

RF:

RF_1

21x32

0

b

RF:

RF

14x32

RF:

RF_1

14x32

RF:

RF_2

14x32

0

c
Figure 3 Register file with one read and one write port. An example of a register file with one read and one write port, connected to the
interconnection bus. (a) SS 1× 1× 1. (b)MS 2× 1× 1. (c)MS 3× 1× 1.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 10 of 30
http://jes.eurasipjournals.com/content/2013/1/9

RF:

RF

21x32

RF:

RF_1

21x32

0

a

RF:

RF

21x32

RF:

RF_1

21x32

0

b
Figure 4 Two register files with two read and one or two write ports each. An example of two register files with two read and one or two write
ports in each, connected to the interconnection bus. (a)MM 2× 2× 1. (b)MM 2× 2× 2.

is transferred to the interconnection network and, while
being visible in the data path, can be optimized more
effectively by compiler techniques and in the design space
exploration. Usually, the register file tends to be the end
point of the critical path of the processors. Increasing
the input control capacitance and delay by adding a write
port has an effect not only on the input control logic
of the register file, but also in the interconnection net-
work. The addition of read port to the register file has
minor effects to the capacitance and the delay of the
control logic.
Remaining parts of our processor stay the same, with

three-integer ALUs, one multiplier, a load store unit, and
eighteen buses to accommodate for ILP available across
our set of benchmarks.
We schedule our selected benchmarks for the set of pre-

selected TTA designs four times. First, we use our previ-
ously published top-down scheduling algorithm [3], with
actual software bypassing disabled, and collect resulting
data, such as the number of clock cycles the benchmarked
application needs to end and the number of reads and
writes of the registers in all available register files. We
also collect information about instruction width and the
number of socket-to-bus connections.
Afterwards, we enable software bypassing with a top-

down scheduler and recompile our set of benchmark
applications for all the selected architectures again, col-
lecting the same data as above.
Collecting information from more conservative soft-

ware bypassing implementation, we repeat the steps
above using our new, early software bypassing dur-
ing the bottom-up scheduling algorithm, presented in
Section 4.1. We collect data without software bypassing
enabled and again with software bypassing enabled. This
will allow us to consider differences that scheduling and
bypassing strategies have.
For second test, for each combination of benchmark and

architecture, we remove unused connections. This has no

effect on actual cycle counts, or the number of register file
reads and writes, but reduces the number of socket-to-bus
connections and in some cases narrows the instruction
word width as the number of bits required to address all
sockets connected to any bus can drop. The application
of bypassing of course changes the schedule, so in some
cases, the number of removed connections can be higher
for the case without bypassing and vice versa.
Taking those eight sets of data, we synthesize each archi-

tecture to 130-nm CMOS standard cell ASIC technology
with Synopsys Design Compiler and a run gate-level sim-
ulation with Mentor ModelSim. From the results of the
gate-level simulation, we acquire gate activity for the Syn-
opsys Power compiler. From the Synopsys Power compiler,
we acquire power used by individual architectural compo-
nents of the processor core, such as interconnection net-
work, individual register files, function units, instruction
fetch, and instruction decode.
The processors were synthesized to a 250-MHz clock

frequency (4-ns clock period) since for this value, archi-
tectures with a larger number of read and write ports can
still be synthesized and meet timing constraints.
In addition, after collecting the results from the

experiments as described above, we select the archi-
tecture configuration that showed the best energy
efficiency with software bypassing across our set of
benchmarks and take the benchmark’s cycle counts as
a measure of real-time performance at a 250-MHz
frequency. Connectivity reduction does not improve
clock cycle performance; therefore, to achieve the same
real-time performance, we compute the required fre-
quency as follows: Required frequency = 250 MHz ×
(Reduced connectivity cycles/Bypassed cycles). We then
attempt to synthesize each of the benchmarks for it’s
required frequency, run gate-level simulation, and collect
power data, as described above.
Results of our experiments are discussed in detail in

Section 6.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 11 of 30
http://jes.eurasipjournals.com/content/2013/1/9

D Q

CLK

D Q

CLK

Port 1 D

in 1 opc

out 1 opc

CLK

Port 1 Q

D Q

CLK

D Q

CLK

Port 2 D

in 2 opc

out 2 opc

CLK

Port 2 Q

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Port 1 D

Port 2 D

in 1 opc

in 2 opc

out 2 opc

out 1 opc

CLK

Port 1 Q

Port 2 Q

a

b
Figure 5 Examples of implementations of register files. In this figure, we display the implementation of (a) two register files, each with one read
and one write port and (b) a single register file with two read and two write ports.

6 Results
In the following, we first present results collected dur-
ing setting up our experiment in Subsection 6.1. After-
wards, we discuss energy results obtained by synthesis

and simulation in Subsection 6.2. In addition, we discuss
results collected when trying to match real-time perfor-
mance obtained by the use of software bypassing via
synthesizing for higher frequency in Subsection 6.3.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 12 of 30
http://jes.eurasipjournals.com/content/2013/1/9

6.1 Data collected before synthesis and simulation
Figure 6a shows results we collected when scheduling
our set of benchmarks for the selected architectures with
and without software bypassing. The cycle counts do not
change with connectivity reduction applied as reduction
is done after the schedule is generated. All the results
are normalized to the worst case of top-down sched-
uler (TD), which is the single register file with a single
read and single write port. It is clear from the figure
that the bypassing has a dramatic effect on the clock
cycles. Additional scheduling freedom and direct read of
result from the result register to the operand saves a sig-
nificant number of clock cycles. This is a factor we expect
to hugely contribute to total energy reduction when using
software bypassing. The difference between our conser-
vative top-down scheduling and bypassing compared to
the more opportunistic bottom-up scheduling (BU) and
bypassing is also visible on this figure. The use of the

top-down scheduling algorithm translates to slightly bet-
ter results in terms of clock cycle counts compared to
the bottom-up scheduler, in particular for an architec-
ture with a single read and single write port in the
single register file. This is mainly caused by the use
of another optimization, the delay slot filling. Our imple-
mentation of delay slot filling takes advantage of pred-
icated execution, allowing to fill in more than delay
slots after the branch operation. Practically, as soon as
the predicate used by branch instruction is computed,
the operations from the following basic blocks, includ-
ing the top of the loop body, can be scheduled, guarded
by the same predicate. When scheduling the loop body,
the top-down scheduler schedules operations not on the
critical path, such as loop counter increment and loop
repeat condition evaluation, as early as possible, while
the bottom-up scheduler schedules them as late as pos-
sible, virtually just before the branch takes place. In case

Figure 6 Statistics collected from software bypassing and reduced connectivity for each architecture. In this figure, we present (a) the
number of clock cycles normalized to the worst case of no bypassing and top-down scheduler, (b) the number of register reads and writes
normalized to the case with no bypassing and top-down scheduler, (c) reduction in instruction width normalized to the case without connectivity
reduction with top-down scheduler, (d) the number of connections left after connectivity reduction normalized to the case without connectivity
reduction with top-down scheduler.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 13 of 30
http://jes.eurasipjournals.com/content/2013/1/9

loop counter increment is used immediately at the begin-
ning of the basic block, in the case of the top-down
scheduler, it is therefore possible to schedule the con-
ditional execution of the operations from the top of
the basic block even before the branch operation, and
the branch operation then changes the control flow to
the later part of the basic block after those filled oper-
ations, eventually creating a smaller loop body. In the
case of the bottom-up scheduler, the late computation
of the loop counter and loop predicate prevents this
from happening. Further optimization of identifying such
dependencies and taking a mixed approach of bottom-
up and top-down scheduling would bring the best of
both worlds.
However, once the bypassing is enabled, the cycle count

differences become much smaller, removing the penalty
of worse starting point of the bottom-up scheduler. More
detailed results of the achieved clock cycles of the two

typical cases of our benchmarks, gsm andmotion, are pre-
sented in Figure 7a,b respectively. Here, we observe that
the effects of using bypassing as well as different register
file configurations varies between individual benchmarks.
The addition of read and write ports improves the cycle
count to a lesser extent than software bypassing, with
exception of the gsm benchmark, where bypassing with
a single register file with a single read and single write
port does not improve performance as much as the addi-
tion of read and write ports or more register files. On the
contrary, for the case of the motion benchmark, bypass-
ing leads to rather uniform clock cycle counts through the
range of architectures.
In Figure 6b, we can see reduction in the number of

reads and writes of the register files for each of the selected
architectures when software bypassing is applied. Results
are normalized to the number of reads and writes with-
out bypassing with TD. It is clear from this figure that

40

60

80

100

120

cl
oc

k
cy

cl
es

 (
no

rm
al

iz
ed

)

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

No bypassing TD
With bypassing TD
No bypassing BU
With bypassing BU

40

60

80

100

120

cl
oc

k
cy

cl
es

 (
no

rm
al

iz
ed

)

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

Figure 7 The number of clock cycles with and without software bypassing for each architecture. In this figure, we display the number of
clock cycles normalized to the worst case without software bypassing with top-down scheduler for (a) gsm and (b)motion.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 14 of 30
http://jes.eurasipjournals.com/content/2013/1/9

the use of bottom-up scheduling and bypassing leads to
a significant decrease in the number of register reads and
writes compared to more conservative bypassing using
top-down scheduling. As previously described, a more
detailed analysis of two individual benchmarks, mips and
motion, is shown in Figure 8a,b, respectively. We observe
that in the case of themips benchmark, about 45% of reg-
ister reads and writes are eliminated when using software
bypassing, which represents the worst result from our set

of benchmarks. On the other hand, themotion benchmark
shows a dramatic difference in reduction of register file
reads between the top-down and bottom-up schedulers,
reducing over 80% of register writes and 60% of register
reads.
In Figure 6c, we can see reduction in instruction width

when connectivity reduction is applied, and Figure 6d
shows the number of socket-to-bus connections left after
connectivity reduction. It can be seen from Figure 6c,d

0

10

20

30

40

50

60

70

80

90

%
 o

f m
ax

im
um

 r
ea

ds
/w

rit
es

w
ith

ou
t b

yp
as

si
ng

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

Register reads TD

Register writes TD

Register reads BU

Register writes BU

0

10

20

30

40

50

60

70

80

90

%
 o

f m
ax

im
um

 r
ea

ds
/w

rit
es

w
ith

ou
t b

yp
as

si
ng

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

Figure 8 The number of register file reads and writes left after bypassing for each architecture. In this figure, we display the number of
dynamic register file reads and writes after the application of software bypassing normalized to the worst case without software bypassing with
top-down scheduler for (a)mips and (b)motion.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 15 of 30
http://jes.eurasipjournals.com/content/2013/1/9

that there is variation when applying connectivity reduc-
tion for cases without bypassing and with bypassing. Since
bypassing causes changes to the schedule, there are added
direct data transports between function units and the
schedule is more compact, leading to more activity per
cycle. On the other hand, the number of data transports
between function units and register file decreases with
software bypassing; therefore, connectivity to the register
file can be reduced. It can be seen from those two figures
that once again bottom-up scheduling and early bypassing
leads to more reduction of instruction width and a lower
number of connections left; variation is however only
about 5%.
A detailed view of the reduction of instruction width

with software bypassing of benchmarks adpcm and

blowfish is presented in Figure 9a,b, respectively. Here, we
observe that for three of the architectures with a single
register file, the removal of unused connection did not
lead to a decrease in instruction width at all. For other
architectures, we observe that reduction for architectures
with several register files varies, following a very similar
pattern as seen in Figure 6c, with variations of only few
percentage points.
A detailed view of the number of socket-to-bus con-

nections left after connectivity reduction for adpcm and
blowfish is shown in Figure 10a,b, respectively.We observe
a clear general pattern that actually spread through all the
benchmarks. The least number of connections left is gen-
erally present with several simple register files, while a
single multi-ported register file requires a larger number

0

5

10

15

re
la

tiv
e

in
st

ru
ct

io
n

w
id

th
 r

ed
uc

tio
n

in
 %

 o
f f

ul
ly

 c
on

ne
ct

ed

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

No bypassing TD

With bypassing TD

No bypassing BU

With bypassing BU

0

5

10

15

re
la

tiv
e

in
st

ru
ct

io
n

w
id

th
 r

ed
uc

tio
n

in
 %

 o
f f

ul
ly

 c
on

ne
ct

ed

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

Figure 9 Reduction in instruction width after removing connections for each architecture. In this figure, we display reduction in instruction
width after connectivity reduction compared to the case without reduced connections and software bypassing with top-down scheduler for (a)
adpcm and (b) blowfish.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 16 of 30
http://jes.eurasipjournals.com/content/2013/1/9

0

10

20

30

40

50

60

70

80

re
la

tiv
e

nu
m

be
r

of
 c

on
ne

ct
io

ns
 le

ft
in

 %
 o

f f
ul

ly
 c

on
ne

ct
ed

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

10

20

30

40

50

60

70

80

re
la

tiv
e

nu
m

be
r

of
 c

on
ne

ct
io

ns
 le

ft
in

 %
 o

f f
ul

ly
 c

on
ne

ct
ed

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

No bypassing TD

With bypassing TD

No bypassing BU

With bypassing BU

a

b

Figure 10 The normalized number of connections left after connectivity reduction for each architecture. In this figure, we display the
number of connections left after connectivity reduction normalized to the case without connectivity reduction and software bypassing applied
with top-down scheduler for (a) adpcm and (b) blowfish.

of connections to remain. It can also be seen from this
figure that software bypassing has a little effect on the
number of connections removed, with the largest differ-
ence of only about 5% and variation between the top-down
and bottom-up schedules of only about 10%.
Overall, Figure 6 shows that the connectivity reduc-

tion indeed leads to reduction in instruction width and

successfully removes a large number of socket-to-bus con-
nections and that the software bypassing produces large
reduction in dynamic register reads and writes as well
as large drop in cycle counts, with eventually simpler
architectures with a single read and single write port
in the register file outperforming much larger architec-
tures with multi-ported register files without bypassing.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 17 of 30
http://jes.eurasipjournals.com/content/2013/1/9

The combination of these reductions has an effect on the
power of individual processor components and results in
energy reduction.
However, we can also observe that the effect of soft-

ware bypassing on the successful removal of connections
is clearly limited. There is typically at most 5% vari-
ation in the number of connections removed between
using software bypassing or not and similarly a small
variation in instruction width reduction. A larger vari-
ation is visible between top-down scheduling with con-
servative bypassing and bottom-up scheduling with early
bypassing. We observe that while the older top-down
scheduler provides a better starting point in terms of
clock cycles than new bottom-up scheduler implementa-
tion, the difference narrows when bypassing is enabled,
and overall, in terms of register file accesses, connectiv-
ity removal, and instruction width, the novel algorithm
performs better.

6.2 Results of synthesis and simulation
After performing gate-level simulation on all our bench-
marks, architectures, and optimization combinations as
described in Section 5, we collected power data for indi-
vidual processor components. We computed the energy
of individual processor components using the common
formula Energy = Power × Cycles/Frequency. We

computed the averages for all benchmarked applications
to focus on overall trends, in addition to individual
benchmarks.
Figure 11 shows the energy of all processor core

components as it changes for architectures and applied
connectivity reduction and bypassing. Specifically, on
Figure 11a, FC TD denotes a fully connected architec-
ture configuration with top-down scheduling, RC TD
denotes an architecture with reduced connectivity with
top-down scheduling, FC BU denotes a fully connected
architecture configuration with bottom-up scheduling,
and RC BU denotes an architecture with reduced con-
nectivity with bottom-up scheduling. On Figure 11b,
FC + bypass TD denotes a fully connected architec-
ture with software bypassing applied with a top-down
scheduler, RC + bypass TD denotes software bypassing
applied followed by the application of connectivity reduc-
tion with a top-down scheduler, FC + bypass BU denotes
a fully connected architecture with software bypassing
applied with a bottom-up scheduler, and RC + bypass
BU denotes software bypassing applied followed by the
application of connectivity reduction with a bottom-up
scheduler.
It can be seen from the figure that the effect of con-

nectivity reduction is larger for cases with single-ported
register files. In each of the cases, the effect of software

20

40

60

80

100

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU

20

40

60

80

100

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 11 Average spent energy for each architecture. In this figure, we display the relative energy for (a) fully connected architectures and
reduced connectivity without bypassing and (b) fully connected architectures and reduced connectivity with software bypassing.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 18 of 30
http://jes.eurasipjournals.com/content/2013/1/9

bypassing on the overall energy is larger than that of
connectivity reduction. Minimal energy can be found
with the combination of both, software bypassing and
connectivity reduction, as they complement each other,
with about 50% reduction compared to the largest archi-
tecture without bypassing and connectivity reduction. It
is notable that bottom-up scheduling without software
bypassing produces worse energy results due to the
penalty of slightly higher clock cycles. However, the
application of connectivity reduction erases this penalty
leading to results similar to top-down scheduling, and
the application of bypassing and connectivity reduction
produces slightly better energy results for bottom-up
scheduling than top-down for most of the architec-
tures. For individual benchmarks of mips and motion,
Figure 12a,b shows the same data, with the left side of
the figure displaying data without bypassing and the right
side of the figure with bypassing enabled. The effect of
connectivity reduction and software bypassing follows the
patterns observed previously in Figure 6, with Figure 12a
representing the worst observed result and Figure 12b the
best observed result.
Overall, results in Figure 11 show that the combination

of software bypassing and connectivity reduction leads to
energy savings up to 50% using single-ported register files
compared to the energy required by the largest architec-
ture with four read and four write ports while maintaining
or improving cycle counts.
Looking into more detail, Figure 13a shows the effect

of bypassing and connectivity reduction on the energy of
register files, with the left graph displaying data without
bypassing and the right graph with bypassing. Due to it’s
nature, connectivity reduction does not contribute signif-
icantly to the reduction of energy of register files (with
the exception of possible buffer distribution, as discussed
previously in Section 5), and the main benefit is from
the effect of bypassing, combining drop in cycle counts
(Figure 6a) as well as actual reduction in the number
of dynamic register reads and writes (Figure 6b). It can
be seen from this figure that the addition of write port
increases the energy dramatically, this trend is visible
regardless of the use of software bypassing. As a matter
of fact, from the single register file, we observed a linear
progression when adding register file write ports. Starting
from the architecture with a single register file with a sin-
gle read and write port (denoted as 1 × 1 × 1) through
two read and two write ports (1 × 2 × 2), three read and
write ports (1× 3× 3) until the most expensive four read
and write ports (1 × 4 × 4). The addition of read ports
(architecture with four read and two write ports, denoted
as 1× 4× 2), however, does not significantly differentiate
from two read and two write ports. A similar observation
can be made for the case of two register files. The archi-
tecture with two register files, each with a single read and

single write port (2× 1× 1) does not differentiate signifi-
cantly from the architecture with two read and single write
ports in each register file (2 × 2 × 1). However, the addi-
tion of a second write port to both register files (2×2×2)
leads to a significant jump in energy consumption.
While in Figure 6a,b we observed a fairly consis-

tent clock cycle performance across the range of archi-
tectures after the application of software bypassing
as well as reduction in register file reads and write,
Figure 13a clearly shows how expensive more com-
plex register file configurations are, even with software
bypassing.
Figure 14a,b shows the breakdown of the regis-

ter consumption of register files for mips and motion
benchmarks, with a visible effect of dramatic reduction
in register file reads and writes observed in Figure 8b
causing a significant difference in energy between soft-
ware bypassing with top-down scheduler and soft-
ware bypassing with bottom-up scheduler in the case
ofmotion.
Figure 13b shows the effect of bypassing and connec-

tivity reduction on the interconnection network. Both
reduced the connectivity and bypassing results in the
drop of energy, with the combination of both provid-
ing the best results. However, while connectivity reduc-
tion causes a drop of energy by actually removing
components that consume energy, the benefit from soft-
ware bypassing is largely due to a decrease in cycle counts
and interconnection network traffic. The use of new
bottom-up scheduling and bypassing algorithm results
in better interconnection energy results for all of the
architectures.
Figure 15a,b shows the same information for mips

and motion, respectively. As discussed in Section 5,
the register files and interconnection network interact.
Therefore, when synthesizing for reduced connec-
tivity, the synthesis tool redistributed capacitance
between the interconnection network and register
file, which shows, for the architecture marked as
3 × 1 × 1, as a slight increase in interconnection
network energy.
In order to investigate the claim that connectivity

reduction leads to a decrease in processor core energy,
we present Figure 16a,b where the breakdown for mips
and motion benchmarks shows combined energy of reg-
ister file(s) and interconnection network, respectively.
We observe that in cases where connectivity reduction
caused a slight increase in register file energy or inter-
connection energy, the sum of those two still shows
minimal difference compared to fully connected archi-
tectures. The same result has been observed for all the
benchmarks.
Figure 17a shows the results of energy reduction in

decode, following a similar suite. A notable exception

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 19 of 30
http://jes.eurasipjournals.com/content/2013/1/9

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD
RC+bypass TD
FC+bypass BU
RC+bypass BU

a

b

Figure 12 Relative energy for (a)mips and (b)motion. In this figure, we display the relative energy without bypassing in the left side and the
relative energy with bypassing in the right side, normalized to the case with fully connected architectures without software bypassing with
top-down scheduler.

is the visible effect of connectivity reduction, produc-
ing better energy savings than software bypassing for
cases with multiple register files, while for single register
files, bypassing seems to have similar benefits. Detailed
results for mips and motion benchmarks are shown in
Figure 18a,b, respectively.

Finally, Figure 17b shows the effects of bypassing and
connectivity reduction on the instruction fetch energy.
Here, the impact of connectivity reduction is caused by
the decrease in instruction width, as outlined previously
in Figure 6c, following the same trend. The effect of soft-
ware bypassing in this case is caused only by the reduction

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 20 of 30
http://jes.eurasipjournals.com/content/2013/1/9

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU

0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

40

50

60

70

80

90

100

110

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
40

50

60

70

80

90

100

110

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

Figure 13 Relative energy consumption in (a) register files and (b) interconnection network. On the left side of this figure, we display the
relative energy without software bypassing and on the right side, the relative energy with software bypassing.

in clock cycles. We can observe a larger impact of con-
nectivity reduction with the bottom-up scheduler. The
breakdown of results for mips and motion benchmarks is
shown in Figure 19a,b, respectively.
While previously we considered various components in

the processor core, the interesting question is how large

the impact of those is on the total core energy. Figure 20
shows the breakdown of the processor components for
different architectures. On left side of the figure, the
results with the top-down scheduler are presented, and in
the right side of the figure, the results with the bottom-
up scheduler are presented. In particular, we selected

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 21 of 30
http://jes.eurasipjournals.com/content/2013/1/9

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD
RC TD
FC BU
RC BU

0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD
RC+bypass TD
FC+bypass BU
RC+bypass BU

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

Figure 14 Relative energy consumption of register files for (a)mips and (b)motion. On the left side of this figure, we display the relative
energy of register files without bypassing and on the right side, the relative energy of register files with bypassing.

components consuming significant amounts of energy,
such as decode, fetch, interconnection network, and reg-
ister files in previous results, making an observation that
the actual amount of computation carried out by function
units remains the same across the architectures and is
not directly affected by connectivity reduction either. The

application of software bypassing decreases the number
of clock cycles but does not change the number of oper-
ation execution in function units; therefore, reduction in
the energy of function units is due to the change in clock
cycles. In a similar way, the reduced connectivity does not
influence the energy of function units.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 22 of 30
http://jes.eurasipjournals.com/content/2013/1/9

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU
20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 15 Relative energy consumption of interconnection network for (a)mips and (b)motion. On the left side of this figure, we display the
relative energy of the interconnection network without bypassing and on the right side, the relative energy of the interconnection network with
bypassing.

6.3 Matching real-time performance via synthesizing for
higher clock frequency

We observed that several architectures resulted in sim-
ilar low-energy requirements for cases with bypass-
ing. We selected an architecture with two register

files, each with a single read and single write port.
We attempted to achieve the same real-time perfor-
mance, without bypassing, while applying only con-
nectivity reduction and synthesizing for higher clock
frequency.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 23 of 30
http://jes.eurasipjournals.com/content/2013/1/9

20

30

40

50

60

70

80

90

100

110

%
 o

f m
ax

im
um

 e
ne

rg
y

of
 R

F
 +

 IC

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU

20

30

40

50

60

70

80

90

100

110

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

20

30

40

50

60

70

80

90

100

110

%
 o

f m
ax

im
um

 e
ne

rg
y

of
 R

F
 +

 IC

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
20

30

40

50

60

70

80

90

100

110

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 16 Relative energy consumption of interconnection network and register files for (a)mips and (b)motion. On the left side of this
figure, we display the relative energy of the interconnection network and register files without bypassing and on the right side, the relative energy
of the interconnection network and register files with bypassing.

Table 2 shows, for each benchmark, clock cycles with
bypassing during bottom-up scheduling and without. It
also shows the required time per cycle and equivalent
clock frequency for each benchmark to achieve the same
real-time results without bypassing as with bypassing. Set-
ting timing constraints for each benchmark individually,

we synthesized the architecture, simulated at gate level,
and provided gate activity to the power compiler, as dis-
cussed in Section 5.
We observed that for all benchmarks, designs can

be successfully synthesized and simulated at required
frequencies. The results of this experiment are presented

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 24 of 30
http://jes.eurasipjournals.com/content/2013/1/9

20

30

40

50

60

70

80

90

100

110

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
20

30

40

50

60

70

80

90

100

110

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

40

50

60

70

80

90

100

110

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU

40

50

60

70

80

90

100

110

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 17 Relative energy consumption in (a) decode and (b) fetch. On the left side of this figure, we display the relative energy without
software bypassing and on the right side, the relative energy with software bypassing.

in Figure 21, with a fully connected architecture with
bypassing with a top-down scheduler (FC + bypass TD),
software bypassing with reduced connectivity architec-
ture with a top-down scheduler (RC + bypass TD),

with fully connected architecture with bypassing with a
bottom-up scheduler (FC+ bypass BU), software bypass-
ing with reduced connectivity architecture with bottom-
up scheduling (RC + bypass BU), and the data acquired

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 25 of 30
http://jes.eurasipjournals.com/content/2013/1/9

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU 20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 18 Relative energy consumption of decode for (a)mips and (b)motion. On the left side of this figure, we display the relative energy of
decode without bypassing and on the right side, the relative energy of decode with bypassing.

when setting the clock frequency as required by Table 2
and using reduced connectivity with bottom-up schedul-
ing (RC BU speed optimized).
Results in Figure 21 indicate that the increase in

clock frequency required to achieve a shorter execution

time to match performance with software bypassing
leads to an increase in energy consumption for four
of the eight benchmarks, when compared to the fully
connected architecture with bypassing synthesized for
250 MHz.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 26 of 30
http://jes.eurasipjournals.com/content/2013/1/9

40

50

60

70

80

90

100

110

120

130

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC TD

RC TD

FC BU

RC BU
40

50

60

70

80

90

100

110

120

130

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

40

50

60

70

80

90

100

110

120

130

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2
40

50

60

70

80

90

100

110

120

130

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

a

b

Figure 19 Relative energy consumption of fetch for (a)mips and (b)motion. On the left side of this figure, we display the relative energy of
fetch without bypassing and on the right side, the relative energy of fetch with bypassing.

Exceptions from this trend are aes, jpeg, mips, and
motion benchmarks. As can be seen from Table 2,
the impact of software bypassing for those two
benchmarks was relatively limited, and therefore, only
a relatively small increase in clock frequency was
required.

Compared to the combination of software bypass-
ing and reduced connectivity at 250 MHz, however,
synthesizing for higher frequency leads to an increase in
energy requirements for all the cases.
Figure 22 shows the same results for register files,

interconnection network, decode, and instruction fetch

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 27 of 30
http://jes.eurasipjournals.com/content/2013/1/9

0

50

100

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

%
 o

f m
ax

im
um

 e
ne

rg
y

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

Decode energy

Fetch energy

IC energy

RF energy

FU energy

0

50

100

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

0

20

40

60

80

100

120

1x
4x

4

1x
3x

3

1x
2x

2

1x
4x

2

1x
1x

1

2x
1x

1

3x
1x

1

2x
2x

1

2x
2x

2

a

b

c

d

Figure 20 Relative energy consumption of various parts of the processor for each architecture. On the left side, we present results obtained
using the top-down scheduler and on the right side, corresponding results using the bottom-up scheduler for (a) fully connected without
bypassing, (b) reduced connectivity without bypassing, (c) fully connected with software bypassing, and (d) reduced connectivity and bypassing.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 28 of 30
http://jes.eurasipjournals.com/content/2013/1/9

Table 2 Clock cycles and timing constraints tomatch real-time deadline for MS 2× 1× 1 architecturewith bottom-up
scheduling

Benchmark Cycles Cycles Required clock Required

name without bypass with bypass period (ns) frequency (MHz)

adpcm 118,703 81,740 2.6 384

aes 94,471 74,462 3 333

blowfish 1,138,102 760,914 2.6 384

gsm 21,534 16,654 3 333

jpeg 4,343,468 3,355,832 3 333

mips 47,760 39,046 3.2 313

motion 14,217 11,331 3.2 313

sha 859,330 532,325 2.4 416

separately. Here, we can observe that the synthesis for
higher clock frequency has the highest impact on the
energy of the register files and instruction fetch.

7 Conclusions
In this paper, we evaluated our proposed method on
how to improve energy efficiency of processor cores for
exposed data path architectures - software bypassing,
against a design space exploration technique - connectiv-
ity reduction. Our observation shows that both, compiler
optimization of software bypassing and architecture opti-
mization of connectivity reduction, lead to a decrease in
energy requirements of the processor.

50

60

70

80

90

100

110

120

130

%
 o

f F
C

+
by

pa
ss

 T
D

 e
ne

rg
y

ad
pc

m ae
s

blo
wfis

h
gs

m
jpe

g
m

ips

m
ot

ion sh
a

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

RC BU speed optimized

Figure 21 Relative energy for each benchmark for MS 2× 1× 1
architecture.

In particular, we observed that for the architecture with
several register files, connectivity reduction brings bene-
fits equaling that of software bypassing overall, mainly due
to the large number of removed connections and conse-
quent decrease in instruction width. It has, however, no
significant effect on the register file energy and does not
contribute to performance increase as such. In the case
of a single register file, the overall effect of connectivity
reduction on energy savings is much smaller than that of
software bypassing. It is notable, however, that connec-
tivity reduction allowed for higher clock frequency with
architectures with a small number of register file write
ports.
Software bypassing, on the other hand, showed a fairly

consistent improvements to cycle counts, across all tested
architectures. Eventually, even the most limited register
file configuration achieved better clock cycle performance
than the architectures with a large number of read and
write ports, without bypassing.
While software bypassing does not contribute to reduc-

tion in instruction width, or reduction in the complexity
of the interconnection network, the main benefits of soft-
ware bypassing come from cycle count improvements and
associated energy savings across all components and from
register file savings.
We observed that software bypassing provides similar

or better energy efficiency to processor customization
by reducing connectivity while maintaining the full pro-
grammability of the processor.
We also showed that in order to match the perfor-

mance achievable with software bypassing, architectures
with reduced connectivity can be synthesized with higher
frequency. However, this results in four of eight bench-
marks increasing their energy requirements compared to
software bypassing with a fully connected network as well
as the loss of the reprogrammability.
In addition, the combination of software bypassing

and reduced connectivity is more energy efficient than

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 29 of 30
http://jes.eurasipjournals.com/content/2013/1/9

50

60

70

80

90

100

110

120

%
 o

f F
C

+
by

pa
ss

 T
D

, I
C

 E
ne

rg
y

ad
pc

m ae
s

blo
wfis

h
gs

m
jpe

g
m

ips

m
ot

ion sh
a

0

100

200

300

400

500

600

%
 o

f F
C

+
by

pa
ss

 T
D

, R
F

 E
ne

rg
y

ad
pc

m ae
s

blo
wfis

h
gs

m
jpe

g
m

ips

m
ot

ion sh
a

FC+bypass TD

RC+bypass TD

FC+bypass BU

RC+bypass BU

RC BU speed optimized

50

60

70

80

90

100

110

120

%
 o

f F
C

+
by

pa
ss

 T
D

, D
ec

od
e

E
ne

rg
y

ad
pc

m ae
s

blo
wfis

h
gs

m
jpe

g
m

ips

m
ot

ion sh
a

50

100

150

%
 o

f F
C

+
by

pa
ss

 T
D

, F
et

ch
 E

ne
rg

y

ad
pc

m ae
s

blo
wfis

h
gs

m
jpe

g
m

ips

m
ot

ion sh
a

ba

dc

Figure 22 Relative energy of components for each benchmark for MS 2× 1× 1 architecture.We present energy comparison relative to fully
connected architecture for (a) register files, (b) interconnection network, (c) decode, and (d) instruction fetch.

synthesizing for higher frequency for all the benchmarks.
Therefore, if the reprogrammability is not an issue, it is
still more effective to combine software bypassing with
reduced connectivity, combining their respective benefits,
than to use only reduced connectivity and synthesize for
higher frequency.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
Part of the work presented in this paper has been financially supported by the
Academy of Finland (funding decision 253087) and Radio Laboratory of Nokia
Research Center.

Guzma et al. EURASIP Journal on Embedded Systems 2013, 2013:9 Page 30 of 30
http://jes.eurasipjournals.com/content/2013/1/9

Received: 10 September 2012 Accepted: 8 April 2013
Published: 10 May 2013

References

1. MAR Saghir, M El-Majzoub, P Akl, in Proceedings of the IEEE International
Conference on Reconfigurable Computing and FPGA’s. Datapath and ISA
customization for soft VLIW processors (Springer-Verlag Berlin,
Heidelberg l’ 2007 San Luis Potosi, 20–22 Sept 2006), pp. 1–10

2. N Clark, H Zhong, S Mahlke, inMICRO-36. Processor acceleration through
automated instruction set customization (San Diego, 3–5 Dec 2003),
pp. 129–140

3. V Guzma, P Jääskeläinen, P Kellomäki, J Takala, in Embedded Computer
Systems: Architectures, Modeling, and Simulation, ed. by M Bereković, N
Dimopoulos, and Wong S. Impact of software bypassing on instruction
level parallelism and register file traffic. Lecture Notes in Computer
Science, vol. 5114 (Springer-Verlag Berlin, Heidelberg l’2008 Heidelberg,
2008), pp. 23–32

4. T Pitkänen, T Rantanen, AGM Cilio, J Takala, in SAMOS, ed. by TD
Hämäläinen, AD Pimentel, J Takala, and S Vassiliadis. Hardware cost
estimation for application-specific processor design. Lecture Notes in
Computer Science, vol. 3553 (Springer Berlin Heidelberg, 2005),
pp. 212–221

5. S Park, A Shrivastava, N Dutt, A Nicolau, Y Paek, E Earlie, in Proceedings of
the 2006 ACMSIGPLAN/SIGBED Conference on Language, Compilers, and
Tool Support for Embedded Systems, LCTES ’06. Bypass aware instruction
scheduling for register file power reduction (ACM New York, 2006),
pp. 173–181

6. D She, Y He, B Mesman, H Corporaal, in Design, Automation Test in Europe
Conference Exhibition (DATE), 2012. Scheduling for register file energy
minimization in explicit datapath architectures (IEEE Computer Society
Washington, DC, USA l’2012 , isbn 978-1-4577-2145-8 Dresden, 12–16
Mar 2012), pp. 388–393

7. A Gangwar, M Balakrishnan, A Kumar, Impact of intercluster
communication mechanisms on ILP in clustered VLIW architectures. ACM
Trans. Des. Autom. Electron. Syst. 12, 1 (2007)

8. A Terechko, E Le Thenaff, M Garg, J van Eijndhoven, H Corporaal, in HPCA
’03: Proceedings of the 9th International Symposium on High-Performance
Computer Architecture. Inter-cluster communication models for clustered
VLIW processors (IEEE Computer Society Washington, 2003), p. 354

9. DA Patterson, JL Hennessy, Computer Organization and Design: The
Hardware/Software Interface. (Morgan Kaufmann, San Francisco, 1998),
pp. 177, 184–185

10. PG Sassone, DS Wills, in Proceedings of the IEEE/ACM International
Symposium onMicroarchitecture. Dynamic strands: collapsing speculative
dependence chains for reducing pipeline communication (IEEE
Computer Society Washington, 2004), pp. 7–17

11. D Burger, SW Keckler, KS McKinley, M Dahlin, LK John, C Lin, CR Moore, J
Burrill, RG McDonald, W Yoder, the TRIPS Team, Scaling to the end of
silicon with EDGE architectures. Computer. 37(7), 44–55 (2004)

12. PG Sassone, DS Wills, GH Loh, Static strands: safely exposing dependence
chains for increasing embedded power efficiency. Trans. on Embedded
Computing Sys. 6(4), 24 (2007)

13. A Bracy, P Prahlad, A Roth, inMICRO 37: Proceedings of the 37th Annual
IEEE/ACM International Symposium onMicroarchitecture. Dataflow
mini-graphs: amplifying superscalar capacity and bandwidth (IEEE
Computer Society Washington, 2004), pp. 18–29

14. J Yan, W Zhang, KD Bosschere, DR Kaeli, P Stenström, DB Whalley, T
Ungerer, in HiPEAC. Virtual registers: reducing register pressure without
enlarging the register file. Lecture Notes in Computer Science, vol 4367
(Springer Berlin, 2007), pp. 57–70

15. H Corporaal, Microprocessor Architectures: From VLIW to TTA. (Wiley,
Chichester, 1997)

16. Y He, D She, B Mesman, H Corporaal, in Proceedings of the 11th
International Conference on Embedded Computer Systems (SAMOS-XI).
MOVE-Pro: a low power and high code density TTA architecture (
Springer-Verlag Berlin, Heidelberg l’2012 Samos, 18–21 July 2011)

17. G Cichon, P Robelly, H Seidel, M Bronzel, G Fettweis, in PARELEC ’04:
Proceedings of the International Conference on Parallel Computing in
Electrical Engineering. Compiler scheduling for STA-processors (IEEE
Computer Society Washington, 2004), pp. 45–60

18. M Thuresson, M Själander, M Björk, L Svensson, P Larsson-Edefors, P
Stenström, in Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation. FlexCore:
utilizing exposed datapath control for efficient computing
(Springer-Verlag Berlin, Heidelberg l’2007 Samos, 16–19 July 2007),
pp. 18–25

19. M Reshadi, B Gorjiara, D Gajski, in Proceedings of the 23rd International
Conference on Computer Design. Utilizing horizontal and vertical
parallelism with no-instruction-set compiler for custom datapaths (IEEE
Computer Society Washington, DC, USA l’2005 San Jose, 2–5 Oct 2005),
pp. 69–74

20. I Finlayson, GR Uh, D Whalley, G Tyson, An overview of static pipelining.
Comput. Architecture Lett. 11, 17–20 (2012)

21. Maxim Corporation: MAXQ Microcontroller home page (2007).
[-24pt]http://www.maxim-ic.com/products/microcontrollers/maxq.cfm.
Accessed 7 May 2013

22. H Corporaal, HJ Mulder, in Proceedings of the ACM/IEEE Conference on
Supercomputing. MOVE: a framework for high-performance processor
design (ACM New York, NY, USA l’1991, 18–22 Nov 1991), pp. 692–701

23. J Janssen, H Corporaal, in Proceedings of the 28th Annual Symposium on
Microarchitecture (MICRO-28). Partitioned register file for TTAs (IEEE
Computer Society Press Los Alamitos, CA, USA l’1995 Ann Arbor, 29
Nov–1 Dec 1995), pp. 303–312

24. V Guzma, Pitkänen P, T Kellomäki, J Takala, in Proceedings of the IEEE
Workshop Signal Processing Systems. Reducing processor energy
consumption by compiler optimization (IEEE Computer Society
Washington, DC, USA, 2009 Tampere, 7–9 Oct 2009), pp. 63–68

25. J Heikkinen, A Cilio, J Takala, H Corporaal, in IEEE International Symposium
on Circuits and Systems, 2005. ISCAS 2005. Dictionary-based program
compression on transport triggered architectures, vol. 2 (IEEE Computer
Society Washington, DC, USA, 2005 Kobe, 23–26 May 2005),
pp. 1122–1125

26. J Heikkinen, J Takala, H Corporaal, in IEEEWorkshop on Signal Processing
Systems Design and Implementation, 2005. Dictionary-based program
compression on TTAs: effects on area and power consumption (IEEE
Computer Society Washington, DC, USA, 2005 Athens, 2–4 Nov 2005),
pp. 479–484

27. AV Aho, MS Lam, R Sethi, JD Ullman, Compilers: Principles, Techniques, and
Tools, 2nd edn. (Addison Wesley, Boston, 2006), pp. 721–726

28. P Kellomäki, V Guzma, J Takala, Safe pre-pass software bypassing for
transport triggered processors. Acta Technica Napocensis. 49(3), 5–10
(2008)

29. P Jääskeläinen, V Guzma, A Cilio, J Takala, in Proceedings of the SPIE
Multimedia on Mobile Devices. Codesign toolset for application-specific
instruction-set processors (’SPIE’ society San Jose, 28 Jan 2007),
pp. 65070X–1–65070X–11

30. TCE: TTA-based co-design environment (2002). http://tce.cs.tut.fi.
Accessed 7 May 2013

31. Y Hara, H Tomiyama, S Honda, H Takada, Proposal and quantitative
analysis of the CHStone Benchmark program suite for practical C-based
high-level synthesis. J. Inf. Process. 17, 242–254 (2009)

doi:10.1186/1687-3963-2013-9
Cite this article as: Guzma et al.: Use of compiler optimization of software
bypassing as a method to improve energy efficiency of exposed data path
architectures. EURASIP Journal on Embedded Systems 2013 2013:9.

[
http://tce.cs.tut.fi

	Abstract
	Introduction
	Related work
	Exposing data paths: transport triggering approach
	Software bypassing and connectivity reduction algorithms
	Software bypassing and dead result move elimination
	Simple connectivity reduction

	Experimental setup
	Results
	Data collected before synthesis and simulation
	Results of synthesis and simulation
	Matching real-time performance via synthesizing for higher clock frequency

	Conclusions
	Competing interests
	Acknowledgements
	References

