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Abstract

The dependability deficiencies and bandwidth constraints of the controller area network (CAN) can prevent its use in
safety-relevant and performance-demanding applications. This paper introduces mechanisms for fault detection and
fault isolation based on an intelligent CAN router, which exploits a priori knowledge about the permitted behavior of
attached electronic control units (ECUs) in order to detect and contain failures. Experiments using an FPGA-based
implementation of the CAN router evaluate these mechanisms under different failure modes (e.g., timing failures,
masquerading failures). Due to its compatibility to the CAN standard, the router can improve the dependability and
performance of systems with existing ECUs. In addition, we extend the application areas of CAN to systems with
higher performance and dependability requirements than can be supported with a conventional bus-based network.
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Introduction

The communication protocol controller area network
(CAN) is used for asynchronous fieldbus networks in
many application domains including the automotive
industry, the avionic industry and factory automation. For
example, cars typically contain several CAN buses for
powertrain, infotainment and comfort functions.

The benefits of CAN include its simplicity, the decentral
structure and the low cost for CAN controllers and wiring.
However, severe limitations concerning reliability have
been identified in literature such as the ability of a sin-
gle faulty node to cause a global communication failure by
monopolizing the bus [1], the susceptibility to bus short-
circuits [2] or the absence of an atomic broadcast in case of
asymmetric bit flips [3,4]. In addition, CAN exhibits diag-
nostic deficiencies such as the inability to trace back faulty
message identifications to the sender nodes [5].

Therefore, a single CAN bus does not support the
construction of embedded systems where the correct
operation of the communication system is required to
ensure safety. As a result, new communication proto-
cols are introduced in different application domains to
address the reliability issues such as FlexRay [6] in the
automotive area.
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This paper provides improvements of CAN w.r.t. fault-
tolerance, which can provide an alternative to the replace-
ment of CAN in many applications. Thereby, system
developers can benefit from the low cost, the high
numbers of existing CAN-based applications and the
widespread expertise in CAN hardware and software.

We replace the CAN bus with a star topology based on
an intelligent CAN router. Fault isolation is one of the pri-
mary objectives of the router and our main focus of this
paper. The CAN router eliminates the hazard of medium
failures of an individual CAN bus leading to a global
communication failure. Furthermore, the router exploits
a priori knowledge about the permitted behavior of CAN
nodes in the time and value domains for the containment
of node failures. In the time domain interarrival times are
monitored and enforced. In the value domain, permitted
message identifiers and constraints on the application data
within a message are enforced.

As CAN is widely used in different domains, legacy
CAN-interface support is of utmost importance. Modi-
fying the legacy CAN-interface would result in tremen-
dous cost for redeveloping existing systems. Therefore,
the CAN router provides interfaces that are compatible to
standard CAN. This includes electrical compatibility and
standard-conforming services of the data link layer (e.g.,
arbitration mechanism, message ordering) [7].
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Further, the router overcomes limitations of existing
CAN networks concerning overall cable length and over-
all bandwidth (40m at 1Mbit/s) by its star topology.
Naming incoherences are solved by a CAN identifier
translation. As today’s breakdown logs do not assist the
technician in a proper way [8,9], the router also provides
new diagnostic services for the detection of timing failures
(e.g., crash failure of a node, babbling idiot) and value
failures (e.g., invalid CAN identifiers, implausible message
contents).

Major contributions of the paper are the introduction
of a system model of a fault-tolerant CAN-based system
using the CAN router, as well as the explanation of the
basic services of the CAN router for fault isolation. Fur-
thermore, we provide an experimental evaluation of the
effectiveness of the fault isolation mechanisms.

The paper is organized as follows: Section Controller
area network provides an overview about CAN and its
limitations. In Section CAN router we define the sys-
tem model of the CAN router, present failure modes
of CAN, and state the basic services of the router.
In Section Fault detection and isolation we describe
how the router detects and isolates previous mentioned
failure modes. In Section Implementation of fault detec-
tion and isolation we concentrate on the implemen-
tation of the router and describe how the means of
fault detection and isolation are realized. Section Test
framework gives an overview about the test framework
we used for our evaluations of the CAN router, where
Section Experiments presents the experiments we con-
ducted and their results. Section Discussion discusses the
gathered results, and finally Section Conclusion concludes
the paper.

Controller area network

CAN belongs to the class of event-triggered communica-
tion protocols. It uses a broadcast bus with “carrier sense,
multiple access with collision avoidance” (CSMA/CA) for
medium access control [7]. The bit transmission takes two
possible representations. The recessive state appears only
on the bus when all nodes send recessive bits. The domi-
nant state occurs, if at least one node sends a dominant bit.
A given bit-stream is transmitted using the “Non-Return-
to-Zero” (NRZ) code. Bit stuffing prevents that more than
five consecutive bits of identical polarity are transmitted.
A node delays its transmission if the bus-line is busy. If the
bus is idle the node can start sending. Bus access conflicts
are resolved by observing the message identifier bits on
the bus-line. While transmitting a communication mes-
sage identifier, each node monitors the serial bus-line. If
the transmitted bit is recessive and a dominant bit is mon-
itored, the node gives up transmitting and starts to receive
incoming data. The node sending the object with the
highest priority will succeed and acquire bus access. The
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information exchange occurs using four types of protocol
data frames:

1. Data frames are used for the transmission of CAN
message objects. A data frame contains a unique
identifier, which identifies the message object and
denotes the message priority.

2. By transmitting a remote frame the dissemination of
a communication object is explicitly requested. For
the same identifier, the data frame takes precedence
over the remote transmission request.

3. An error frame is used for error signaling. It contains
an error flag.

4. The overload frame serves the purpose of extending
the interframe space to handle overload conditions.

After a loss in the arbitration process or the reception
of an error frame, the sender automatically performs
a retransmission of the corresponding communication
object. The integrity of data and remote frames are
checked by a 15-bit cyclic redundancy code (CRC).

CAN was originally developed for non safety-critical
applications and exhibits the following limitations
w.r.t. predictability, dependability and performance:

e A CAN communication system possesses a large
variability in the transmission latency. A message’s
transmission latency depends on the network load.
This latency jitter causes an error in the temporal
domain and introduces an additional measurement
error if there is no global notion of time.

e The arbitration logic of CAN limits the throughput,
because the propagation delay of the channel must be
smaller than the length of a bitcell. A CAN network
of 40 m results in a maximum bandwidth of 1 Mbit/s.

e CAN does not prevent babbling idiot failures. A node
can continuously send highest priority messages and
thereby prevent communication of other nodes.

e The CAN protocol does not include a clock
synchronization service. If a global notion of time is
required, it must be implemented at the host level.

e Communication errors are handled with immediate
message retries. Errors cause increased latencies.

e Handling of station failures is performed with error
counters by recording the receive and transmit errors.
A threshold is defined for entering the error passive
mode. In this mode, a node must wait for a minimum
idle time on the bus before starting a transmission. If
bus contention is low, this results in interleaving of
correct and invalid messages. Exceeding of another
error counter threshold results in entering the bus-oft
state. Under the assumption that failed nodes reach
the bus off state, the worst-case inaccessibility time at
1 Mbit/s is bounded by 2.5 ms [10-12].
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e Since the temporal properties of a CAN system are
changed during the integration of the system, CAN
does not support temporal composability [13]. The
transmission of a message is triggered explicitly by a
transmission request from the host. The temporal
coordination of the communication activities is a
global issue and depends on the host software in all
nodes.

e CAN error recovery mechanisms are unable to ensure
a consistent state, if an error is detected in the last
but one bit of a frame. Possible consequences are an
inconsistent message duplication or an inconsistent
message ordering. Establishing consistency requires
modifications to the host software [4,14] or a
dedicated hardware component [3].

CAN router

This section describes the system model and states the
terminology that is used in the rest of the paper. Figure 1
depicts a CAN system using the CAN router.

CAN segments, consisting of a CAN bus with at least
one node are connected to the router via a CAN port.
The router is implemented as a multi-processor-system-
on-a-chip (MPSoC), where every CAN port is served by
its own CAN interface subsystem (CIS). Each CIS con-
sists of a CPU, local memory, and a CAN controller.
The CPU executes software used for message processing.
Every CIS contains a routing configuration that allows the
router to forward messages from a source CAN segment
to one or more destination segment(s). We use a time-
triggered network-on-chip (TTNoC) [15] for the message
transport between ClSes. All processing in the router is
time-triggered. Additionally, the router possesses a man-
agement port, served by the the management unit (MU),
which is used for diagnosis and configuration (e.g., update
of the routing configuration).
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Fault hypothesis

In this section we define the fault containment regions of
the CAN router and describe the failure modes we expect
to occur.

A FCR is a region of the system that operates correctly
regardless of faults outside of this region [16]. In our
case this includes arbitrary logical or electrical faults. We
distinguish two types of fault containment regions: The
CAN router itself and the individual CAN segments. We
assume the router to be free of faults. In case compatibil-
ity to standard CAN is not a strict requirement, a setup
with two redundant CAN routers can be used to tolerate
a single failure in one FCR.

A definition of failure modes is fundamental for the
design of the CAN router as well as for error handling
and containment of these failures. The following failure
modes, which are subcategories of the arbitrary failure
mode, are assumed for the CAN segments:

Stuck at dominant/recessive failures

If a node or the bus is affected by a stuck at dominant
failure, the state of the bus becomes dominant (e.g., a
node constantly sends ‘0’). In the bus-based CAN segment
this means that no further communication is possible. In
case of a stuck at recessive failure we have to distinguish
between the node and the bus. If a node is affected by this
kind of failure this node is not able to participate in the
communication on the bus. If the bus itself is affected by a
stuck at recessive failure, no nodes can communicate.

Crash/omission failures

Crash/omission failures are one of the most frequent fail-
ure types in CAN. The CAN standard also defines mech-
anisms (e.g., error counters) for mapping different types
of faults into crash/omission failures ([7], p. 42). FCRs
affected by this kind of failure either provide the specified
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service (i.e., sending CAN messages), or they do not pro-
vide the service at all. Crash/omission failures are extreme
scenarios of late message failures.

Asymmetric bit-flip failures

Even though in literature it is sometimes assumed that
CAN provides an atomic broadcast, this is not the case. If
the last but one bit of the end of frame (EOF) delimiter is
affected by an asymmetric bit flip, the nodes on the bus
can be split in two sets, one accepting the message, and
one not. In this case the sender retransmits the message,
which leads to a duplication of that message in the set of
nodes that previously accepted the message [4,14]. A sub-
sequent crash failure can lead to an inconsistent message
omission.

Babbling idiot failures

As the former mentioned crash/omission failures, bab-
bling idiot failures are in the category of message timing
failures [17]. A babbling idiot failure is an extreme case of
an early timing failure. Since conventional CAN does not
provide effective mechanisms for handling babbling idiot
failures [1], a node that sends high priority messages can
disrupt the communication of all other nodes which share
the same bus.

Masquerading failures

Masquerading failures, which are part of the value
domain, occur, if one node impersonates the identity of
another node. In case of CAN, one node could send its
messages with the CAN identifier reserved for another
node, which might lead to severe consequences. For exam-
ple consider an environment where node A sends a tem-
perature value, node B sends a velocity value, and node
C opens a valve according to the temperature value from
node A. If node B sends velocity values with the identi-
fier of node A, node C misinterprets the velocity value as a
temperature value. Masquerading failures in combination
with diagnostic deficiencies of CAN are one of the rea-
sons why today’s automotive breakdown logs do not assist
the technician adequately in the identification of faulty
Electronic Control Units (ECUs) [9,18].

Basic services of the CAN router
The CAN router provides basic services which will be
explained in the rest of this section.

Message rate control

In classic CAN a node k sends messages with a spe-
cific identifier i in the overall set of CAN identifiers I C
{0, ...,2%—1}. A basic CAN identifier contains 11 bits (i.e.,
z = 11), whereas extended identifiers contain 29 bits (i.e.,
z = 29). As CAN is an event-triggered protocol, the inter-
val between two messages with the same identifier is a
stochastic variable. In order to provide fault isolation and
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enhanced diagnosis, we constrain the rate of messages.
The behavior of a CAN node & is defined by the set M:

My = {(i,d,e) | wherei e Iand d,e € Q")

where the positive rational numbers d and e are the min-
imum and maximum interarrival times associated with
the identifier i. The router contains an entry that speci-
fies these interarrival times for every CAN identifier that
is valid on the corresponding CAN segment. In case of
a violation, the message is discarded and the violation is
reported to the MU. Blocking of untimely messages is one
of the key aspects of fault isolation.

Properties for minimum and maximum interarrival
times are often known and in the automotive domain they
can be for example extracted from a fieldbus exchange
format (FIBEX) [19] specification. Tools which generate
a routing configuration from a FIBEX specification are
described in [20].

Message multicasting

In conventional CAN a message that is successfully sent
on the bus gets broadcasted to all other nodes. In order
to overcome the limitations of CAN, the router supports
selective multicasting, which uses the existing bandwidth
more efficiently. The router contains knowledge about the
destination CAN segment(s) of a message and forwards
the message exactly to these segment(s). Broadcasting,
which is a special case of multicasting, is supported by
the router (i.e., the router forwards a message to all other
CAN segments).

Message scheduling

On a CAN bus every transmitting node monitors the state
of the bus. Whenever a node tries to send a recessive bit,
and reads back a dominant bit, it backs off and retries
to send the interrupted message at a later point in time.
As high-priority message identifiers contain more lead-
ing dominant bits than low-priority identifiers, a message
with a high priority is sent first (i.e., it wins the arbi-
tration). In order to reproduce this behavior, the CAN
router maintains a priority queue at every destination CIS
and transmits the messages to the destination CAN bus
according to their priority.

Identifier validation and translation

In a classic CAN setup a faulty node A could send mes-
sages with an identifier reserved for another node B.
Therefore, the router contains knowledge about valid
identifiers of a CAN segment in its routing configuration.
If a node sends a message with an identifier not speci-
fied in the routing configuration, the router discards this
message and sends a report to the MU. In addition to iden-
tifier validation, the router supports identifier translation.
This is important in the case of legacy system integration,
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where two legacy systems use the same CAN identifiers.
It is possible to specify a translation ID for every CAN
identifier used in the system.

Message checks

For every CAN identifier it is possible to specify a func-
tion that gets called with the content of the message. If,
and only if, the message passes the check, the message
gets forwarded to its destination. For example a mes-
sage that contains an engine coolant temperature variable
can be checked if the temperature is within a meaningful
specified range.

Message content translation

As legacy system integration is one of the goals of our
approach, the router supports the translation of the con-
tent of CAN messages. It is possible to specify a transla-
tion function per valid CAN ID. One practical example is
the conversion between different measurement units (e.g.,
converting between degrees Celsius and Fahrenheit).

Diagnosis and management

The router contains a dedicated MU which is capable of
collecting violations in the time and value domain. This
includes violations of the minimum and maximum inter-
arrival time, as well as invalid message identifiers. This
information can then be used as input for further analysis.
Additionally, the MU can be used to change the rout-
ing configuration at run-time. This includes the addition
and removal of valid CAN identifiers, the modification
of minimum and maximum interarrival times, as well as
changing multicast patterns (i.e., the destination of CAN
messages).

Fault detection and isolation

The purpose of this section is to describe how the failure
modes mentioned in Section Fault hypothesis are detected
and contained by the CAN router.

Asymmetric bit-flip failures

Based on the star topology, if the CAN router is cor-
rect, it is ensured that messages are consistently received
by all correct CAN segments. If a node in a CAN seg-
ment transmits a message and the CIS does not accept
this message, then the node has to retransmit the message.
However, no destination CIS is influenced, therefore, the
state is consistent over all CISes. If the source CIS accepts
the message, it will forward the message to the destina-
tion CIS(es). The CAN router will subsequently send the
messages on all correct destination CAN segments, thus
ensuring a consistent overall state of all correct ClSes. If
a CAN segment exhibits a transient fault, the CAN con-
troller at the destination segment will retransmit and try
to eventually deliver the message.
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Stuck at dominant/recessive failures

By the use of a star topology, stuck at dominant and stuck
at recessive failures are contained at their correspond-
ing source CAN bus. Therefore, a faulty node can only
disrupt the communication of all the other nodes that
share the same CAN segment, but it is not possible to
influence the communication of other, separated CAN
segments.

Crash/omission failures

As described in Section Basic services of the CAN router,
the router contains knowledge about maximum interar-
rival times of messages for each valid CAN identifier.
Further, the source CIS stores a timestamp of the last suc-
cessful reception per CAN ID in its internal data structure.
The router checks if the difference between the current
time and the time of the last reception exceeds the max-
imum interarrival time. If this is the case, this temporal
violation is reported to the MU. As the router cannot
enforce messages from a potentially failed node, report-
ing the violation is the next best thing to do. On the MU
this knowledge can be used to initiate a reconfiguration
of the system. For example an a-count can be increased
every time the maximum interarrival time is violated in
order to discriminate between transient and permanent
faults as discussed in [21]. In case of a permanent fault,
the MU could initiate a reconfiguration that uses a spare
node instead of the apparently failed one.

Babbling idiot failures

The router provides means for fault isolation when mes-
sages are sent too fast, e.g., in case of a babbling idiot
failure. Whenever the difference between the current
timestamp and the timestamp of the last reception is less
than the specified minimum interarrival time, it is consid-
ered a temporal violation. In that case the router blocks
this message and does not forward it to the destination
ClISes. Therefore, the fault is contained in the specific
source CAN segment. In addition to that, the violation
is reported to the MU, which then takes further actions
(e.g., log the violation for later analysis conducted by a
maintenance engineer).

Masquerading failures

The CAN router isolates masquerading failures and con-
tains them in their source CAN segment. The routing
configuration contains entries for every valid CAN identi-
fier. Whenever a faulty node tries to send a CAN message
with an identifier that is not specified in the routing
configuration, the source CIS blocks this message and
sends a violation report to the MU. This prevents the
propagation of messages with an identifier not specified
for the given CAN segment. Nodes sharing the same
CAN segment can sill masquerade IDs of nodes on the
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same segment. The router provides the best fault detec-
tion and isolation capability if CISes consist of a single
CAN node.

Implementation of fault detection and isolation
Figure 2 shows the internal structure of the CAN router.
The router itself is realized as a MPSoC, where every CAN
port is served by its own CIS based on a Nios II softcore
CPU. We use the ACROSS MPSoC [22] as our underly-
ing platform. Our design allows us to cleanly decouple
the temporal behavior of each CIS. Additionally, higher
scalability and fault isolation is achieved. From a scala-
bility point of view it is much easier to add additional
ClSes, compared to software or single-core designs where
the addition of every new message requires extra process-
ing power at one processing core that is shared among
all CAN segments. The presented MPSoC design also
provides better fault isolation compared to single core
solutions because the TTNoC [15] ensures that a transient
or permanent fault of a core does not affect the operation
of other cores.

The operation of the router is strictly time-triggered
and divided into rounds of activity. The underlaying
ACROSS MPSoC [22] provides a generic timer service
which is used to synchronously trigger activity rounds
in all CISes. The trigger-period (27155 = 30.52 us) is
faster than the minimum interarrival time of CAN mes-
sages at 1 Mbps. Within one activity cycle each CIS checks
if a newly arrived CAN message at the CAN port has
to be processed, then it processes this message accord-
ing to the associated routing configuration, and forwards
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the message to the TTNoC. Additionally, the CIS checks
if it received a message from the TTNoC (i.e., this mes-
sage was originally sent in the last activity cycle), and if
this is the case, it processes the message and finally sends
the message with the highest priority to the destination
CAN bus.

The router introduces a delay of one CAN message
due to its store and forward behavior and a maximum of
three activity cycles from the instant a message is suc-
cessfully sent on the source CAN bus, until it is stored in
the priority queue at the destination CIS. This includes
finishing the current activity cycle (i.e., which started
before the new message arrived), and one additional activ-
ity cycle for processing the message and forwarding it
to the TTNoC. As the message transport of the TTNoC
is triggered by the system frequency, it is guaranteed
that the message is available at the destination CIS until
the next activity cycle starts. The third and last activity
cycle is consumed at the destination CIS for process-
ing and storing the message to the priority queue. If
the queue is empty or there are no other higher prior-
ity messages, the newly arrived message is sent to the
CAN bus attached to the destination CIS in the same
activity cycle.

As shown in Figure 2, every CIS contains a local rout-
ing configuration. This configuration contains an entry for
every CAN identifier that is valid on the given CIS. We use
the configuration to store properties important for routing
messages to their destination as well as to specify temporal
properties important for fault detection. A sample entry is
shown in Listing 1.

Eth. Transceiver «—<—» Management Subsystem <«

CAN Transceiver <+ CAN Interface Subsystem 0 <« On-Chip Interconnect:

Time-Triggered

CAN Transceiver <+ CAN Interface Subsystem 1 «{»

Network-on-a-Chip

CAN Transceiver <+> CAN Interface Subsystem N <+—>

50
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Figure 2 Overview of the CAN router implementation.
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Listing 1 An example routing entry

typedef struct {

time64 min;

time64 max;

timeé64 last arrived min;
timeé4 last arrived max;
uintlé t message check;
uintlé t message translation;
uintlé t forward to;

} routing entry;

The variables min and max contain the specified min-
imum and maximum interarrival time, forward tois a
bit array that specifies the destination CIS(es). Variables
starting with last arrived are used to store times-
tamps of the last successful message reception. The vari-
ables message check and message translation
contain a position in an array of function pointers that can
be used to validate the content of a message, respectively
translate the content.

As a direct mapping from CAN ID to a position in
the routing configuration is not feasible (i.e., this would
require 2%° entries in the routing configuration), we look
up the configuration with the help of a binary search. This
has the advantage that the memory footprint can be kept
small and that the lookup is bounded by O(log(n)). For the
lookup we use a sorted array of CAN identifies, which is
generated off-line by configuration tools and checked dur-
ing start-up by the MU. The structure of a search entry is
shown in Listing 2.

Listing 2 Structure of an entry used for configuration
lookup

typedef struct {

uint32 t can id;

uint32 t pos; /% in the routing config =/

} searchstruct;

Temporal domain

A CIS checks for violations of the minimum interarrival
time whenever it receives a message from its CAN con-
troller and has to forward the message to one or more
destination CAN segments. In Figure 2, this is repre-
sented by a message flow from the left to the right. In
order to get precise timestamps of message receptions,
we store the timestamp as soon as the CAN message
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arrives (i.e., even between two activity cycles). As the
activity cycles are shorter than the minimum interar-
rival times of CAN messages, we have to store at most
one timestamp. In every activity cycle the CPU checks
if a new message has to be processed. If this is the
case, the CPU transfers the message over the CAN Con-
troller Interface to its own memory and does further
processing. In the first step the router has to look up
the configuration that is associated with the CAN identi-
fier of the newly arrived message. If the ID is found, the
routing configuration associated with the CAN ID gets
evaluated.

The router checks the properties that are important for
fault isolation. For minimum interarrival time validation
the router builds the difference between the timestamp
of the current reception and the timestamp stored for
the last successful reception (last arrived min). If
the specified minimum is violated, the router sends a
message to the MU. In case of a violation of the minimum
interarrival time, the message gets blocked. If there was
no violation we update last arrived min and send
the message to the destination CIS(es). The timestamp
for last arrived max is updated on every reception,
whether it was a minimum interarrival time violation
or not, which is the reason we have to store two time-
stamps (i.e., one for last arrived min and one for
last arrived max).

As previously described, it is sufficient to check the
minimum interarrival time on every reception of a CAN
message. Checking the maximum interarrival time is dif-
ferent because it has to be done in every activity cycle.
If we would check it on reception of a new message, we
would potentially detect the violation later than speci-
fied, and crash failures would remain even undetected.
If we detect a violation of the maximum interarrival
time, we report it and update last arrived max. This
variable contains either the timestamp of the last suc-
cessful reception or the timestamp of the last reported
violation.

Value domain

As described in the previous section, whenever a new
CAN message arrives from a CAN segment, the respec-
tive CIS tries to lookup the routing configuration asso-
ciated with the CAN ID of the newly arrived message.
If the search is not successful, a CAN node sent a mes-
sage with an identifier which is not valid for the given
CAN segment. In that case the router does not fur-
ther process the message and sends an error report
to the MU. If the lookup is successful, the specified
check function for the message content is called. When-
ever the message does not pass the check, the viola-
tion will be reported and the message is not further
processed.
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Test framework

We developed a test framework to validate the fault
detection and fault containment mechanisms of the CAN
router. The framework consists of a 4-port router, 4 inde-
pendent CAN buses, a MU and several CAN test nodes
(CTNs) that generate CAN messages according to a pre-
defined CAN traffic pattern. We designed the MU in a way
that it not only takes care about configuration and collect-
ing violations, but also initiates experiments, monitors all
CAN buses individually, stores the test results and per-
forms a preliminary analysis. Tools take the preliminary
analysis results and visualize [23] the output data
off-line.

Test setup

We use an Altera Stratix III Devkit to host the complete
test framework, i.e., the CAN router design, the CTN
and CAN buses. Figure 3 gives an overview of the test
framework.

e CAN router design: The CAN router design consists
of four CISes and a MU which are connected by a
TTNoC in a configuration that allows each CIS to
send to and receive from all other CISes and the MU.
The TTNoC communication schedule guarantees
timely delivery of all CAN messages and minimum
interarrival time and maximum interarrival time
violation messages within the router, especially
during maximum load. Additionally, each CIS is able
to handle the maximum load arriving from either the
TTNoC or the CAN bus. Specifically for the test
framework, the MU contains four independent CAN
controllers for monitoring all CAN buses within the
design and a DDR2 controller which is attached to a
1 GB memory module for storing test results. All
CISes and the MU are accessible over serial
communication (UART), and the MU is also
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accessible by 100 Mbit/s Ethernet for high volume
data up/download.

e CTN: A CTN emulates a CAN-based device. Each of
the CTN is realized by a small Nios II softcore CPU
system and a CAN controller to generate or consume
CAN messages. The 8 byte payload of each generated
CAN message contains a timestamp that is set
shortly before the CAN message is transferred to the
CAN controller. In case a CAN message transmit
attempt fails (i.e., another CAN message with a
higher priority is sent simultaneously), the CAN
controller will retry sending indefinitely until it
succeeds. Each CAN controller has a transmit FIFO
buffer with a length of 30 messages. In case the FIFO
buffer is overrun, new messages are lost. All CTNs
are also connected to the TTNoC; specifically they
can receive configuration messages from the MU.

e CAN buses: All CAN buses in the test framework
operate independently from each other at a baud rate
of 256 Kbit/s. While each node on a specific CAN bus
can send and receive CAN messages, the MU is only
allowed to receive them.

We use the TTNoC global time [24] as the time base for
all timestamps. In our design the granularity of this time
base is 22! s.

Test application

The test application conducts experiments using the
described setup. An experiment is defined by experi-
ment parameters that consist of the router configuration
(see Section Implementation of fault detection and iso-
lation, Listing 1) for the CISes and CAN traffic patterns
for each CTN. A CAN traffic pattern describes CAN
message contents and message rates over the duration of
an experiment (i.e., message rates may change during the
progression of an experiment). A single execution of an

A
|

CANrouter

<:/Etherneff,i>

CAN BUS }J

CAN BUS }»*74

Figure 3 Test framework.
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experiment is called experiment run. By design, the MU
controls the hardware reset of all CISes and takes care
of (re)configuring them. After all components of the test
framework are configured and operational, the MU logs
minimum interarrival time and maximum interarrival
time violations from the CISes. For the test framework, we
realized the MU software to

e control experiments: The MU autonomously
controls the execution of a large number (i.e., several
thousands) of experiment runs.

e monitor all CAN buses: Any observed CAN message
is timestamped and stored for analysis in the main
memory.

¢ log all minimum interarrival time and maximum
interarrival time violations: Any observed violation
emitted from a CIS is timestamped and stored for
analysis.

e perform preliminary analysis of collected data: The
MU evaluates the collected data by periodically
calculating message rates according to a specified
observation time (e.g., each 0.25 s). Also the MU logs
dropped CAN messages (i.e., messages that appear on
the source CIS but do not appear on the destination
CIS), for example, caused by the router’s fault
isolation with respect to minimum interarrival time
violations or masquerading failures.

Those additions to the MU software are usually not
present in the CAN router. However, they do not influence
any of the router’s characteristics that we want to evalu-
ate: After the CISes are configured, the MU does not take
part in the actual service of the router and only collects
experiment relevant data.

We divide an experiment into several consecutive
phases as depicted in Figure 4. In the startup phase
all CISes and CTNs remain in the reset state until the
MU is configured for the experiment. Configuration is
done by commands issued over Ethernet to the MU. Fol-
lowing the configuration, the MU releases the reset of
the CISes and CTNs. Then an experiment run starts at
the sign-on phase where the CISes and CTNs boot and
start to send periodically alive messages to the MU. The
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MU realizes startup synchronization by waiting until all
nodes have sent at least one alive message. Eventually
all CISes and CTNs have indicated their readiness to
the MU and the configure phase starts. There the MU
sends routing and rate constraint information to all CISes.
After all configuration messages are sent, the MU begins
the experiment phase by sending a start message to all
CISes and CTNs which immediately get operational at the
same global time instant. During the experiment phase
the MU

e collects minimum interarrival time and maximum
interarrival time violations reported by the
originating ClISes.

e calculates CAN message end-to-end latencies.
Latency measurements start when a CAN message is
queued for transfer in a CTN (i.e., before bus
arbitration on the source CAN bus) and stop when
the MU observes the message on the destination
CAN bus.

e counts dropped CAN messages.

Each CTN notifies the MU after it has finished its CAN
traffic pattern. The MU waits until all CTNs have com-
pleted which also marks the end of an experiment run. In
case the last experiment run is complete, the analysis and
presentation phase concludes the evaluation of an exper-
iment. Otherwise, the MU starts the next experiment
run and issues a reset of the CISes and CTNs. Following
to the reset, execution continues at the sign-on phase.
The analysis and presentation phase is the last phase of
an experiment, where statistical parameters (e.g., mean
message throughput, mean end-to-end latencies, ...)
are calculated from the individual experiment runs and
presented to the user. All of the collected data can be
downloaded over Ethernet or serial communication
(UART) for further analysis.

Experiments

For the evaluation of the CAN router and its proposed
means for fault detection and isolation we conducted
experiments. In the following we define the hypotheses for
the router, define the individual experiments, and present
the gathered results.

I—Remaining Experiment Run(s): Reset CISes & CTNs

SIGN-ON

STARTUP LV

CONFIGURE

ANALYSIS &
EXPERIMENT PRESENTATION

L

Figure 4 Test framework timeline.

Experiment Run
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Hypotheses
The following hypotheses were evaluated by the
experiments:

Hypothesis 1. Fault Detection. The router detects the
faults in the value and time domain that are speci-
fied in Section Fault hypothesis. These include stuck at
dominant/recessive failures, asymmetric bit-flip failures,
crash/omission failures, babbling idiot failures, and mas-
querading failures. Additionally, the router detects fail-
ures that that are covered by standard CAN controllers
(e.g, cyclic redundancy check (CRC) failures, bit-stuffing
failures). Detected faults are reported to the MU.

Hypothesis 2. Fault Containment. With the exception of
late message failures the router contains detected faults
in the value domain as well as in the temporal domain.
A violation of the maximum interarrival time can only
be detected and reported. Thus the late messages will be
delivered, while all other messages violating their specified
properties are discarded at their source CIS.

Hypothesis 3. Latencies. By means of the minimal inter-
arrival time it is possible to specify upper bounds for mes-
sage latencies. As the number of messages is constrained,
there is a bounded influence a potentially faulty node can
have on messages from nodes connected to a separated CIS.

Experiments

In order to evaluate the hypotheses, we conducted two
experiments by using the previously described test frame-
work. Each of the experiments is executed 10,000 times
to minimize stochastic effects: Each experiment run (i.e.,
a single execution of an experiment) is carried out with
the exact same experiment parameters. Even though CAN
messages are event-triggered and occurrences are spo-
radic, we decided for our experiments to use periodic
CAN messages only. By setting and controlling a spe-
cific CAN message rate, we are able to evaluate corner
cases (i.e., right before and right after minimum interar-
rival time or maximum interarrival time violations occur)
and investigate on interference effects among different
prioritized CAN messages.

Experiment |
The experiment lasts 12 s and uses the following rout-
ing configuration: CTN 1, 2, and 4 send CAN messages
to CTN 0. Concerning the value domain, error-free CTNs
send only CAN messages where the CAN ID matches the
CTN node number: e.g., CTN 1 is only allowed to send
messages with ID 1. CTN 0 is only an receiver and does
not produce any CAN messages.

Regarding the temporal domain, messages originating
from CAN buses on CIS 0, 1 and 3 are not constrained,

Page 10 of 14

while messages with CAN ID 2 originating from the
CAN bus on CIS 2 have a minimum interarrival time of
125 Kbit/s and a maximum interarrival time of 15 Kbit/s
specified: i.e., according to the router’s configuration only
rates between 15 Kbit/s and 125 Kbit/s are valid.

CTN 1 generates CAN messages at a constant rate of
37.5 Kbit/s during the whole experiment phase. CTN 4
also sends at a constant rate of 37.5 Kbit/s CAN mes-
sages, but with alternating CAN IDs 1 and 4. This results
in two 18.75 Kbit/s CAN message streams where only
the one with CAN ID 4 is valid according to the router’s
configuration. Further, CTN 2 sends at first at a constant
rate of approximately 8 Kbit/s. Starting from second 2.25
the traffic pattern rate function passes over into a lin-
ear ramp where the message generation rate is gradually
increased each 0.25 s until it reaches 220 Kbit/s at the end
of an experiment run. The following function describes
the CAN message rate of CTN 2:

Mming,te t<a
k-t+minge a<t<b
k-b+mingge t>b

t €{0,0.25,0.5,...,12}

rCTN=2, CAN Ip=2(t) =

CTN 3 is unused in this experiment and does not gener-
ate any CAN messages. This experiment contains in total
two erroneous CTNs: CTN 4 violates the value domain
and CTN 2 violates the time domain. Those two nodes are
also marked red in Figure 3.

Experiment Il

Experiment II is the same as Experiment I with the only
difference that CTN 3 is active and generates CAN mes-
sages with CAN ID 3 at a constant rate of 37.5 Kbit/s.
This additional node neither violates the time nor the
value domain according to the router’s configuration, but
there is now a CAN segment with two senders CTN 2
and CTN 3) attached to CIS 2. There will be interfer-
ence effects between CAN ID 2 and CAN ID 3 messages.
This experiment compares classic CAN bus with seg-
mented CAN bus behavior (as established by the CAN
router) in terms of fault containment and end-to-end mes-
sage latencies during temporal violations. Referring to
CAN message interference effects, the two experiments
are well comparable, because they only differ in a single
experiment parameter.

Results

Here we present the results we gathered from our
experiments. A detailed interpretation and discussion of
the results follows in Section Discussion. The following
figures present the arithmetic mean of all experiment runs
for a specific experiment.
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Figure 5a depicts the input traffic applied by the CTNs to
their CAN buses. CTN 1 and 4 send at a constant rate,
while the message generation of CTN 2 is divided into two
phases. In the first phase, it sends too slow and violates the
maximum interarrival time. In the second phase, it con-
stantly increases its CAN message generation rate which
leads to minimum interarrival time violations. Note that
the traffic pattern of CTN 4 consists of messages with the
CAN ID 1 and 4, though CAN ID 1 is not in the specified
set of CAN IDs for the corresponding CIS.

Figure 5b shows the output on the CAN bus attached to
CIS 0. The output of CTN 1 is constant and not influenced
by any erroneous node. The router forwards only half of
the total CAN messages generated by the erroneous node
CTN 4 to the CAN bus on CIS 0: Every second message
of CTN 4 has the valid CAN ID 4, while the other half has
the invalid CAN ID 1 (i.e., only CTN 1 is allowed to send
with CAN ID 1).

The send rate of CTN 2 at the source CIS 2 corresponds
to the rate at the destination CIS 0 until CTN 2 starts to

violate its specified minimum interarrival time. Starting
from that instant a pattern occurs that oscillates to an
upper bound.

Figure 6a shows CTN 2’s number of messages violat-
ing the specified minimum interarrival time. In Exper-
iment I the first violations start at the same instant
where the input pattern (cf. Figure 5a) of CTN 2 crosses
the horizontal line of the bandwidth limit defined by
the minimum interarrival time. As there is no differ-
ence between the experiments concerning maximum
interarrival time violations, they will be shown for
Experiment II.

The oscillating output of CTN 2 can be explained as fol-
lows: In our test setup messages are sent periodically with
different period lengths [. Figure 6b gives an illustrative
example where period lengths of four, three, two, and one
are examined. The interval in which messages are blocked
due to violations of the minimum interarrival time are pic-
tured as gray boxes. Successful send instants are denoted
by arrows with an arrowhead, whereas blocked messages
contain only an arrowtail.
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In the period with the length 4, messages are sent too  Experiment|l

slow to achieve a decent throughput. If messages are sent
faster in the period with length 3, a higher number of
messages is successfully sent, because successfully sent
messages get closer to the gray boxes. In the output
(cf. Figure 5b) this can be seen as a rising edge. In the
period with the length 2, messages are sent a bit too fast
and every second message gets blocked. Although we are
trying to send more messages in the period with the length
2 than in the period of the length 3, less messages pass the
temporal validity check. This corresponds to the falling
edges of the oscillating output. If messages are sent even
faster, 2 out of 3 messages get blocked in the period with
the length 1, but as messages are sent that fast, a spot
shortly after a gray box gets hit and therefore the through-
put increases. This continues and we see again a rising
edge until the message coming closer to the gray box gets
blocked, which leads to a falling edge again. As the periods
get shorter and shorter over time, the influence of blocked
messages gets smaller and smaller.

The input pattern (cf. Figure 7a) of Experiment II is very
similar to the previous experiment with the exception that
CTN 3 also generates messages at a constant rate. The
experiment is now divided into three phases. The first
phase is equivalent to Experiment I. In the second phase
CTN 2 increases its bus load and starts to violate its min-
imum interarrival time. In the third phase, CTN 2 keeps
increasing the send rate and therefore starts to influence
CTN 3 on the shared CAN bus.

Figure 7b shows the output on CIS 0. The output of
CTN 1 is constant and not influenced by any erroneous
node. The same applies for CTN 3 until its messages get
blocked by the erroneous node CTN 2. Again, the router
forwards only half of CTN 4’s messages.

Figure 8a shows that, contrary to Experiment I, there
are minimum interarrival time violations caused by mes-
sages from CTN 2 before the actual configured mini-
mum interarrival time. Those violations increase slowly
starting from approximately second 5 until they sharply
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go up when the specified minimum interarrival time is
undershot. This difference of the two experiments will be
discussed in Section Discussion.

Figure 8b gives an overview about the number of mes-
sages violating the maximum interarrival time. In the first
phase of Figure 7a the number of messages from CTN 2
is below the specified maximum interarrival time. There-
fore, every missing message in that phase gets reported.
In the second and third phase the erroneous node CTN 2
sends messages in the specified range, or even faster.
Therefore, the number of violations of the maximum
interarrival time drops to zero.

Figure 9 depicts the end-to-end latencies of CAN mes-
sages measured from the time the message was queued
for transmission on the source CAN segment until it gets
successfully received on the destination bus. As in phase 3
messages from CTN 3 get blocked by the erroneous node
CTN 2 on the source bus, the latencies of messages with
CAN ID 3 dramatically increase. At the same time the
latencies of messages with a lower priority drop to the next
lower level (i.e., CTN 4’s latencies drop to the previous
level of CTN 3).

In all our experiment runs we did not encounter a
single experiment run where the router lost valid CAN
messages.

Discussion

Hypothesis 1 concerning fault detection was confirmed
by the experiments. In the temporal domain, the router
has detected violations of the maximum interarrival times
(Phase 1 in Figure 7b) and violations of the minimum
interarrival times (late Phase 2, and Phase 3 starting
approx. at second 7 in Figure 7b).
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In the value domain, the routing configuration per-
mits the detection of invalid message identifiers, while the
recognition of errors in the user data occurs using mes-
sage checks. In addition, the CAN controllers [25] detect
errors (e.g., stuffing error, CRC error, acknowledgment
error) that are reported to the MU.

The experiments also provide evidence for hypothesis 2
and the fault containment of the CAN router. At each
CAN port messages are blocked where value or timing
failures are detected by the CAN controller or the CIS’
CPU. In contrast to a bus-based system, no faulty mes-
sages or error frames are relayed by the CAN router. Thus,
faulty messages do not cause inaccessibility times (e.g.,
due to bit errors, stuffing errors, CRC errors, form errors
and acknowledgment errors) as described for bus-base
systems in [26].

Besides eliminating these inaccessibility times, the fault
containment coverage of the CAN router is significantly
higher compared to bus-based systems. In a bus-based
system, local error detection mechanisms are assumed to
shutdown a CAN node that is affected by a fault. However,
error detection mechanisms should be part of separate
fault-containment regions in order to ensure that the error
detection mechanisms are not impacted by the same fault
that caused the message failure [27].

In addition to the containment of errors detected by the
CAN controller at a CAN port, the CAN router blocks
messages with invalid message identifiers and messages
that violate the minimum interarrival time. The experi-
ments show the impact of timing failures on messages
on the same CAN segment and messages from other
CAN segments. In the same CAN segment, message tim-
ing failures with a given priority affect all messages with
lower priorities (cf. Figure 7). In contrast, the effect on
messages from other CAN segments is bounded by the
minimum interarrival times. The worst-case delay for
a given message occurs when the bus of a CAN seg-
ment is not idle at the time of the transmission request
and all higher priority messages are sent according to
their minimum interarrival times. The experiments show
that even lower priority CAN messages can introduce
additional latencies for higher-priority ones (i.e., when
a high priority message is queued for sending, but a
lower priority message is currently being transmitted on
the non-preemptive bus). The additional delay, regardless
whether caused by a lower or higher priority message,
can push two messages with the same CAN ID from a
sender closer together. This behavior occurs when the
last CAN message was delayed and the current one is
not. In case those messages come too close, a minimum
interarrival time violation occurs, even though the actual
message rate (assuming a sufficiently large observation
time) is not violated. For example, Figure 8a shows this
behavior for messages sent by CTN 2, where violations
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of the minimum interarrival time occur before CTN 2
actually exceeds its allotted message rate. Consequently,
the worst case delay (beside message size and CAN bus
bitrate) must also be considered for the minimum inter-
arrival time, if a maximum message rate should be guar-
anteed. This worst case delay can be computed using
existing approaches for response time analysis in CAN
[28].

For the given scenario of Experiment II, Figure 9 shows
experimental results for these bounded effects of timing
failures on the end-to-end latencies. Thus, hypothesis 3
was confirmed by the experimental results.

Due to its benefits concerning error detection and fault
isolation, the CAN router can improve the reliability of
existing CAN-based systems. Furthermore, for certain
safety-relevant applications the CAN router can provide
an alternative to more costly protocols (such as FlexRay
in the automotive industry). If compatibility to existing
CAN nodes is not required, two redundant CAN routers
can be employed to tolerate an arbitrary single failure of a
fault-containment region.

Conclusion

In this paper we showed that standard CAN exhibits limi-
tations with respect to reliability, diagnosis and scalability.
We presented an intelligent CAN router based on a star
topology that allows to overcome these existing limits.
We experimentally validated the proposed capabilities and
showed fault detection and isolation in the temporal as
well as in the value domain. In the time domain this
includes monitoring of minimum and maximum inter-
arrival times and enforcing minimum interarrival times.
In the value domain the router successfully enforced the
permitted CAN identifiers of given CAN segments. We
showed that the router enables the extension of applica-
tion areas of CAN to systems with higher dependabil-
ity and performance requirements, while still providing
legacy CAN interface support.
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