Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1

http://jes.eurasipjournals.com/content/2012/1/1

® EURASIP Journal on Embedded Systems

a SpringerOpen Journal

Pseudorandom recursions |l

Laszlo Hars'™ and Gyorgy Petruska®

Abstract

and XOR.

nomial, extended GCD algorithm

We present our earlier results (not included in Hars and Petruska due to space and time limitations), as well as
some updated versions of those, and a few more recent pseudorandom number generator designs. These tell a
systems designer which computer word lengths are suitable for certain high-quality pseudorandom number
generators, and which constructions of a large family of designs provide long cycles, the most important property
of such generators. The employed mathematical tools could help assessing the bit-mixing and mapping properties
of a large class of iterated functions, performing only non-multiplicative computer operations: SHIFT, ROTATE, ADD,

Keywords: pseudorandom number generator, recursive function, invertible functions, matrix, binary modular poly-

1. Introduction

Security applications, simulations, randomized algo-
rithms, gambling, etc. need good quality random num-
bers. They can often be substituted with pseudorandom
numbers, which are generated by software and behave
like true random numbers in many statistics. When these
pseudorandom numbers are generated in embedded
microprocessors, speed and memory requirements pose
constraints, limiting the choice of algorithms.

The quality of the generated sequences is crucial.
Randomness tests can verify desired statistical properties
for the targeted applications. One of the desired proper-
ties of such sequences is the length of the unavoidable
cycles. The main point of our investigations is the invert-
ibility of the generator function of such pseudorandom
sequences, which can ensure very long cycles in certain
operation modes.

Many more characterizations of the generated
sequences are possible, like the distribution of blocks of
bits. Our corresponding results in this regard have to be
deferred to a future publication. This article represents
the first step in the investigations of random properties
of the sequences generated by a large class of iterated
functions, performing only non-multiplicative computer
operations: SHIFT, ROTATE, ADD, and XOR.

* Correspondence: lhars@cputech.com
'CPU Technology, Pleasanton, CA 94588, USA
Full list of author information is available at the end of the article

@ Springer

1.1 Prior work

In our original study [1], we presented many small and
fast pseudorandom number generators, which pass the
most common randomness tests. They repeatedly call
simple bit-mixing functions that perform only a few
non-multiplicative operations for each generated num-
ber, and require very little memory. Therefore, they are
ideal for embedded- or time-critical applications. In [1],
we also presented general methods to ensure very long
cycles in repeated calls of the mixing functions, and
showed how to use these algorithms as cryptographic
building blocks.

In 2005 (unpublished submission to the CHES'06
workshop), we proved that a necessary condition for the
invertibility of a rotate-XOR chain is that the number of
rotations is odd. This result later appeared in [1]. In this
article, we presented our previously unpublished results
of 2005/2006, together with some newer results and
useful tools, which would help resolving the invertibility
in concrete general cases.

A similar class of functions turned out to be very use-
ful in cryptography and pseudorandom number genera-
tion, the T-functions. They have been extensively
studied [2-11]. A T-function is a mapping from n-bit
input to n-bit output in which each bit i of the output
depends only on bits 0,1,..., i of the input. All the logical
operations, such as XOR, AND, OR, NOT, and most of
the arithmetic operations modulo 2", such as addition,
multiplication, subtraction, negation, as well as left shift

© 2012 Hars and Petruska; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lhars@cputech.com
http://creativecommons.org/licenses/by/2.0

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

and their compositions, are T-functions. However, rota-
tions and right shift operations are not.

1.2 This work

The most important property of the considered bit-mix-
ing functions is long period length, related to the invert-
ibility of their generating function. For invertible
functions, a counter can be included in the input, assur-
ing that no output value repeats before the counter
wraps around. Even when the output is truncated or its
bits are mixed together, there will still be no short cycle.
A large part of this study below deals with this invert-
ibility, which is present in many pseudorandom number
generator modes we have proposed.

In the era of synthesizable processor cores unusual
word lengths are easy to implement. Our results tell a
systems designer which ones allow efficient pseudoran-
dom number generators, and which constructions could
work. It can save design and experimentation work. The
employed mathematical tools are easy to use and power-
ful, and they can aid investigating large classes of iter-
ated functions.

This article comprises three major sections. In
Section 2, we describe and analyze several recent ran-
dom number generator designs, and include some
characteristic code segments. In Sections 3 and 4, we
discuss the existence of inverses of rotate-add func-
tions and rotate-XOR functions, respectively. Our
experience shows that rotate-add methods are usually
inferior to rotate-XOR methods.

2. New random number generator modes
Recall our notation in [1]: Counter mode (of pseudoran-
dom number generators) is defined as x; = f(i), where
the counter i is incremented before each call of the
function f. Hybrid counter mode uses a function of sev-
eral variables, one of them is a similar counter as above:
x; = fi, %i1, Xi 2., %i1). Multi-stage generators are based
on this kind of iterations, but several calls are performed
to such type of functions for one set of output values.

The apparent pseudo-randomness of the counter
mode and hybrid counter mode can be improved by
incrementing the counter by a large odd constant ¢
(instead of 1), because many more bits change at such
addition than at incrementing by 1, most of the time.
Although a (loop) counter i is sometimes available for
free, and this number ¢ needs extra storage, we found
that the pseudo-randomness improves significantly, and
so ultimately computation can be saved. We call these
new modes offset counter mode and offset hybrid coun-
ter mode.

Note that the function f could compute the modified
counter k from a regular one i, as k = i-c mod 2% (in
case of 32-bit machine words), but we excluded

Page 2 of 11

multiplication from the admissible operations (because
they need large hardware cores and multiple clock
cycles at high clock frequencies).

2.1 MIX permutations

It is an intriguing idea to design some small additional
hardware to embedded processors for rearranging the
bits of a register. With the help of a few extra gates (or
just wires) the performance of our pseudorandom num-
ber generator might be improved.

A MIX operation has to be a permutation of bits, not to
reduce the range of the outputs. At repeated application of
the MIX permutation a bit gets back to an already occu-
pied position after at most 32 steps. Odd rotations are
maximal permutations in every bit position (when the
machine word is 2" bits). This is advantageous for random
number generation, where we must not have short cycles.

Bit or byte reversals are sometimes available as CPU
operations, but they are not very good mixers, as they
define permutations with short cycles. Similarly, bit-
swap, byte swap, or a rotation followed by swapping
neighbor bits all proved to be less effective mixers, than
simple rotations. This explains why our best construc-
tions are based on rotations, not on complicated MIX
permutations.

2.2 MIX-XOR circuits

As compared to our earlier designs, a little more com-
plex bit mixing hardware still proved to be advanta-
geous. It could be implemented with very few gates and
wires. For example, in such operations each output bit
can be the XOR of two (or more) different input bits.
An example is the offset hybrid counter mode generator,
which passes all Diehard tests:

x = rot(x, 5) ” rot(x, 24) * (k += 0x37798849)

where (x, k) represent the state of the random number
generator, updated during each invocation of the mixing
function. The output, the generated random number,
is x.

In hardware, the rotations need not actually be per-
formed, only the corresponding bits of the machine
word x are XOR-ed, so one iteration can provide 32 bits
output in 2 clock cycles.

2.3 Statistical randomness tests

We wrote simple C programs for creating 10 MB binary
data files for every variant of our pseudorandom number
generators and applied statistical tests to them, to assess
their quality. Many randomness tests have been published,
for example [12-14]. In [15], there is a survey. A recent
test suite for testing randomness of sequences for crypto-
graphic applications is the NIST 800-22 Randomness tests

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

[14], provided as C-99 source code. Unfortunately, it con-
tains errors (acknowledged by its publisher), which were
not fixed at the time of this writing.

We found the classic Diehard test suite the most
stable and reliable. It was published by Marsaglia [12]
and performs 15 different groups of statistical random-
ness tests. Many different properties are tested and the
protocol of the results is 17 pages long. The randomness
measures are 250 p-values. We employed the standard
way for accepting a single p-value: checked if it was in a
certain interval, like [0.001, 0.999].

2.4 Offset hybrid counter mode
We assume 32-bit machine words. The smallest case is
of stage-2: These random number generators have two
parameters (which can be treated as two internal state
variables), one is recursively updated by a mixing func-
tion, while the other one (an offset counter) is incre-
mented by a large, odd constant before each call.
Surprisingly, for satisfying the Diehard randomness
tests, loading an operand with its bits rotated by a fixed
amount proved to be sufficiently random.

x =r1ot(x, 9) " (k += 0x37798849).

This generator passes all Diehard tests, with one near
fail of p-value = 0.9995. Rotation by 7 works, too, with
one p-value = 0.9998.

Rotation to the right works even better (because the
carry propagation is better utilized):

x = rot(x, 23) " (k += 0x49A8D5B3).

(Rotate by 23 to the left is the same as rotate by 9 to
the right.) This generator passes all Diehard tests, with
no p-value > 0.999. Rotation by 25 bits (or 7 bits to the
right) is equally good.

Because these generators are already good enough
with the minimum number of operations, there is no
need for considering more stages (stored in more inter-
nal variables).

2.5 Offset counter mode
Offset counter mode is the one-stage version of the
above-discussed offset hybrid counter mode, that is,
there is no state variable, except the counter k to be
incremented by a large odd constant before each call. It
can be supplied as input, and the output is computed
directly from k. This mode can be used as a component
for data scrambling, hashing, and encryption. Note that
invertible functions are needed to map the input to the
full range of machine words as output.

We use the notation ROL/ROR(x, k) for rotation of
the unsigned integer x to the left/right, respectively, by k
positions.

Page 3 of 11

32-bit words
The generators are defined as

(L,R) = (4,9), no Diehard test fails, or nearly fails
(rotate left).

x = (k += 0x37798849).

x = (x » ROL(x,L) » ROL(x,R)) + 0x49A8D5B3.

x = (x » ROL(x,L) » ROL(x,R)) + 0x6969F969.

x = (x » ROL(x,L) » ROL(x,R));

(L,R) = (4,9), no Diehard test fails, or nearly fails
(rotate right).

x = (k += 0x37798849).

x = (x » ROR(x,L) » ROR(x,R)) + 0x49A8D5B3.

x = (x » ROR(x,L) » ROR(x,R)) + 0x6969F969.

x = (x » ROR(x,L) » ROR(x,R)).

Here x is the output, used also for storing intermedi-
ate values. Its value is not retained between calls. These
generators work even with structured constants for both
adders (e.g., 0455555555, with only one near fail), so we
can safely replace these constants with parameters, to
diversify the generators.
64-bit Words
One could think that 64-bits need more iterations to get
full distribution of bits, but the process above proved to
have enough reserve that it still works adapted for long
machine words.

The direct dispersion of any bit is to 3 x 3 x 3 = 27
positions. With the two long added constants, most of
the time, the carry makes the majority of the 64 bits
changed when a single bit is flipped in the counter. Of
course, when two initial values are close (e.g., k = 0 and
1, or generally at small counter increments), this 1-to-27
dispersion effect is not sufficient. That is why we incre-
ment k with a large odd value, ensuring that many input
bits change between consecutive calls.

If these increment values (considered as 64-bit keys),
have no blocks of 20 identical bits, the scheme was
found to work well, so we are reasonable safe against
accidental weak keys. Nevertheless, these keys should be
tested for blocks of more than 12 zeros or 12 ones, and
reject such numbers.

The generators are defined as

(L,R) = (4,9), no fail, no near fail in Diehard (rotate
left).

x = (k += 0x3779884922721DEB).

x = (x » ROL(x,L) » ROL(x,R)) + 0x49A8D5B369
69F969.

x = (x » ROL(x,L) » ROL(x,R)) + 0x6969F96949A
8D5B3.

x = (x » ROL(x,L) » ROL(x,R)).

(L,R) = (4,9), no fail, no near fail in Diehard (rotate
right).
x = (k += 0x3779884922721DEB).

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

x = (x " ROR(x,L) » ROR(x,R)) + 0x49A8D5B3696
9F969.

x = (x » ROR(x,L) » ROR(x,R)) + 0x6969F96949A
8D5B3.

x = (x » ROR(x,L) » ROR(x,R)).

If we set both other additive constants in the rotate-
left version to the structured 0x3333333333333333 or
0x7777777777777777, only one Diehard test fails. With
0x7E7E7E7E7E7E7E7E all tests pass (with one near fail).
Experiments with many similar values show that we
have a safety margin for weak constants, therefore these
numbers can serve as further 64-bits keys.

2.6 Data expansion

For ciphers, e.g., of unbalanced Feistel networks [16,17],
we often need to scramble and to expand short, e.g.,
32-bit numbers to long values. We can do this really
fast in hardware: perform several of these offset counter
mode mix operations with different additive constants,
in parallel, maybe with varying rotate directions and dis-
tances. To get the expanded data just concatenate the
results.

If the additive constants are treated as secret keys, or
they are derived from a secret key, we get a primitive
cipher. With sufficiently many iterations of varying con-
stants, it could be secure.

3. Invertibility of rotate-add functions

Since we observed thorough mixing properties in the
offset counter mode generators, we could be tempted to
simplify the generator function by tweaking their code
lines. In [1], we showed that XOR-ing two (instead of
three) rotated entries breaks the invertibility of the func-
tion, so we tried this idea with addition instead of XOR:
x < x + ROT(x,k). (It represents a reduction from two
rotates and two XOR operations to one rotate and one
addition.) The Diehard tests still pass with a rotation by
7 or 11, in either a left- or the right-rotating variant.

The rationale of investigating this function is that add-
ing to the input its rotated version causes larger changes
in the output than a rotate-XOR operation had: a
flipped bit in the input influences at least two output
bits, but usually much more, dependent on the carry
propagation. In this sense the dispersion of input
changes is larger than at the rotate-XOR type functions,
so better mixing properties are expected.

Unfortunately, most of the time this simplified func-
tion cannot be inverted, that is, we cannot solve the
equation y = x + ROL(x, k) = floor(x-(1 + 2k 4+ 2k-32y)
mod 2°? for x (assuming 32-bit machine words). For
many y values, there is no solution, or there are more
than one possible x values. Therefore, we should better
avoid these functions in counter mode, in hybrid counter
mode of random number generators, or in ciphers.

Page 4 of 11

The problems are easily seen by computing x + ROL
(x, k) for all values of x, and sorting the results. For
example, for w = 16-bit machine words, and rotation by
k = 3, the sequence of the sorted y values starts as:

0, 2,2,2, 5,5,5, 8,38, 9, 11,11,11, 14,14,14, 17,17, 18,
20,20,20, 23...

To the best of the authors’ knowledge, the corre-
sponding general problem has not been addressed in the
literature.

Claim: the Rotate-Add functions defined below do not
attain all y values, with any fixed k: 0 < k < w, when x
goes over all possible values in [0, 2" - 1].

y(x) = x + ROL(x, k) = floor(x - (1 + 2% + 2¥7)) mod 2V.

In the rest of this section, we are going to validate this
claim. We will use a little more convenient way to write
y(x), by first partitioning x into its least significant k bits
(v), and the remaining bits (u), such that x = 2Ky 4+ v,
(with 0 < # < 2" % and 0 < u < 2Y). Our rotate-add func-
tion now expressed as

y() = (2% + Du+ (2°7* + 1)v mod 2%

3.1 Word lengths of 2
3.1.1. Common factors
For the ordinary sizes of machine words, the coefficients
of u and v are not relative primes. Below we list their
common factors as k ranges through 0 to w:

w = 16:

1,3,5,3,17,3,5,3,257,3,5,3,17,3,5,3, 1

w = 32:

1,3,5,3,17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 65537, 3,
5 3,17,3,5, 3,257,3,5,3,17,3, 5,3, 1
w = 64:

1,3,5,3,17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 65537, 3,
5,3,17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 4294967297, 3,
53,17, 3,5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 65537, 3, 5, 3,
17, 3,5, 3,257,3,5,3,17,3,5,3, 1

As we can see, there is no proper rotation of 0 < k < w
distance, which does not suffer from common factors. It
is a remarkable experience, that all the common factors
are Fermat numbers, that is integers of form
F, = 22" + 1. There are deep and age old open problems
concerning Fermat numbers. Computational evidence
supports the following conjecture, which is important,
because the length of machine words in all practical
cases is a power of 2 (8, 16, 32, 64...).

Conjecture 1: If w is a power of two and 0 < k < w,
then GCD(2* + 1, 2% + 1) is a Fermat number 2*" + 1.

Notes:

» The first few Fermat numbers are F, = 3, F; = 5,
F, = 17, F3 = 257, F, = 65537, F5 = 4294967297,
Fg = 18446744073709551617,

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

F; = 340282366920938463463374607431768211457.

« Only the first five Fermat numbers Fy, F;, F, F3, F,
are known to be prime. The next three we listed are
products of two primes:

4294967297 = 641 x 6700417

18446744073709551617 = 274177 x 67280421310721

340282366920938463463374607431768211457 =
59649589127497217 x 5704689200685129054721

» Conjecture 1 has been numerically verified for w =
22, 2%..., 2%°. Up to w = 2'® just minutes of PC comput-
ing time was used, w = 2'? took 3 h, and verifying the
conjecture for w = 2°° needed 22 h at light CPU load.
The cases w = 16, 32, 64 are demonstrated by the tables
presented above.

Though Conjecture 1 eludes a rigorous proof, we can
prove a somewhat weaker statement, sufficient for our
investigations: the GCD in question is at least divisible
by a Fermat number:

Theorem 3.1: If W is a power of two, then GCD2X + 1,
2% 4 1) is divisible by a Fermat number for any K inte-
ger, 0 < K< W.

Proof: We change the notation showing that the expo-
nents are symmetrically positioned around w = W/2,
again a power of 2 say, w = 2. Also, we denote k = w - K
and using the new notations we are to show that GCD
(2"*% + 1, 2% + 1) is a multiple of a Fermat number.
We put k = 27, 0 < g < p integer, and r is an odd num-
ber. Now we obtain

w+ k=20 +29r =292 + r) = 29 for the first,
and

w-k=20-27y=29(2"9_ r) = 29) for the second
exponent, where 4 and b are odd integers.

With the notation # = 227 we have GCD(2"** + 1,
2"k 4 1) = GCD(u® + 1, u® + 1). Since a and b are odd,
u + 1 (that is Fermat number F,) is a divisor of both
numbers #* + 1 and u” + 1. O

Corollary 3.2: If Conjecture 1 holds true, then the
Fermat number F, we found in the above proof is the
greatest common divisor in question.

Indeed, it is well known that the Fermat numbers are
pair-wise relative primes, thus a Fermat number cannot
be the divisor of another Fermat number. Note that for
q = 0 we have F, = 3, which explains the occurrence of
3 in every second position in the above tables of com-
mon divisors. O
3.1.2. Overflow
If the addition of x to ROL(x, k) does not cause over-
flow, we have y(x) = 2%+ Du + (2¥% + 1).v. For the
investigated word lengths of 2%, y(x) is a multiple of one
of the common factors granted by Theorem 3.1, and so
y(x) does not take all possible values.

The situation is not much more complicated when
there is an overflow (which can only be 1):

Page 5 of 11

p(x) = (2% + Du+ (2°7*+ 1)v—2v

In this case, dividing y(x) by the above discussed com-
mon factor the remainder is determined by 2".

Note that when we divide by the Fermat number we
found above as a common factor, the remainder is
always 1. This is explained by the well known and fairly
obvious product formula of Fermat numbers:

Fpoi —2=Fo---Fp.

3.1.3. Missing words

As we just saw, y(x) is a multiple of a Fermat number 3, 5,
17, 257, 65537, 4294967297...; or 1 less than such a multi-
ple, in all practical computing systems. Thus, numbers in
at least one residue class modulo a Fermat number (at
least a third of the possible output values [0, 2" - 1]) never
get generated.

3.2 Uncommon word lengths
There are machine word lengths, which do give relative
prime coefficients of u# and v, for certain rotation
lengths. These machine words are almost never used in
real-life computing systems, but in the age of synthesiz-
able processor cores special hardware could easily be
built for them, if they were advantageous. Unfortunately,
as our negative results show below, they are not much
better regarding invertibility than the more common
word sizes. This knowledge can save a lot of futile work.
24-bit words
We can list the common factors of the coefficients of u
and v, as k goes from 0 to w:
w=241,3,5917,3,65,3,1,9, 5, 3, 4097, 3, 5, 9,
1,3,65,317,9,5,3, 1
Here, rotations by 8 and 16 could be good candidates
for mixing functions, but when there is an overflow,
many y values get repeated. With a simple PC program
we counted the number of missing words: at rotation by
8 or 16 there are 4,210,688 missing words, which repre-
sents over 25% of all 24-bit words.
25-bit words
The odd word length 25 makes each pair of the coeffi-
cients of u and v relative prime, and still all rotation-
add options leave out many words. The best cases are
with rotations by 12 or 13 (0.024%: 8191 missing
words), the worst cases are with rotations by 1 or 24
(one-third of the words: 11,184,811 are missing).
31-bit words
One can drop one bit of the most common 32 bit
machine words. All the pairs of multipliers become rela-
tive primes, and still every rotation-add option leaves
out many words. A PC program found the best cases at
rotations by 15 or 16 (65,535 = 0.003% missing words),

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

and the worst cases at rotations by 1 or 30 (one third of
the words: 715,827,883 are missing).

Note that the relatively few missing words at rotations
by 15 or 16 do make this scheme useable for Feistel-
style encryption, but other constructions (like rotate-
XOR) are still better.

3.3 Arbitrary word sizes
We can show in general that no rotate-add function is
invertible:

Theorem 3.3: At any word length w and rotation dis-
tance k the corresponding rotate-add function repeats at
least one word (and so at least one output word is
always missing).

Proof: (a) If there is a common factor d > 1 dividing
both the coefficients of % and v in (2° + 1)-u + (2% + 1),
it is odd, therefore at least 3. Thus, y(x) = 0 or -2" mod d,
hence numbers in the remaining (at least one) mod d resi-
due classes are not generated.

(b) If GCD(2* + 1, 2" + 1) = 1, the extended GCD algo-
rithms find &’ and v’ integers (one of them negative), such
that 2%+ D)’ + "%+ 1)/ = 1. Multiplying this equation
with 2% we obtain (2% + 1)-(’2") + 2" + 1).(v:2"¥) = 2%,
thus the Diophantine equation (2% + 1)-u + (2" + 1)w =
2" admits a solution.

Note that for any integer m, u = u’ + m-(2" 7% + 1),
and v =7 - m(2¥ + 1) represent another solution for
the equation above. At a suitable m value there is a
solution (”v”), such that 0 < u” < 2*7X

Because of the symmetry, we may assume that k < w - k.
Substituting the minimum and maximum #” values
into the equation (2% + 1) + (2% + 1)v = 2" we find that
0 <" < 2X. These (u”v”) values, therefore, can be concate-
nated to form a machine integer x = 0, of length w. Our
mod 2" rotate-add function transforms this x into 0.
Because 0 is a fix point, we found two machine integers
(x and 0), which are both transformed to 0. O

4. Invertibility of rotate-XOR functions

For many applications of random number generator
constructions presented in Section 2 of this article (and
of the ones in [1]) we needed the recursions to be inver-
tible. In [1], we proved the following

Lemma: The determinant of M, the sum of k powers
of unit circulant matrices is divisible by k.

Its corollary is that even number of rotations XOR-ed
together does not define invertible recursions.

In the rest of the article, we investigate the invertibility
problem in more details. Two (equivalent) models of the
iterated functions are employed, namely, matrix and
binary polynomial representations.

4.1 Elementary results
Let N denote the length of the machine word where we
perform rotate-XOR computations. We denote by C the

Page 6 of 11

corresponding unit circulant matrix of size N x N (all
entries are 0, except the 1s above the main diagonal and
in the lower left corner). C is the cyclic permutation
matrix performing a circular left-shift (rotation) on the
elements of an N-vector. Its kth power C* performs a
rotation by k places.

The parity of the determinant of the N x N (compo-
site circulant) matrix p = % 4 CR2 4 .. + Cfn decides
the solvability of the linear system of equations on the
individual bits in the recursions defined by rotations (by
ki, k..., k,,, positions) and bitwise XOR (with possibly a
known number added to the result). Therefore, the
matrix entries can be taken modulo 2 (0 or 1). Adding a
matrix of all even entries to M does not change the par-
ity of det(M).

Note that CN = I, and det(CY) = 1. By
M =Ch(I+Cl g 4 Clnl)
assume 0 = k; < ky < ... < k,, < N. Since the system of
parameters {ky,ks...,k,;; N} fully determines the invertibil-
ity of the recursion represented by the corresponding
circulant matrix M, we may call the system {k;, ko,..., k3
N itself regular for det(M) = 1, or singular for det(M) =
0. We state the result mentioned in the introductory
remark of this section as

Theorem 4.1 [1]. If for a system {ky, k,...,K,,,; N} m is
an even number, then the system is singular. That is, for
regular systems m is necessarily odd. O

It is well known that a matrix A has an inverse over
any field iff (if and only if) its determinant is non-zero
(det(A) = 0). The inverse A™' can be explicitly written
as a matrix of cofactors.

Note that the determinant is multiplicative in general:
det(AB) = det(A) det(B), and hence

det(M) = det"(M) = det(M") mod 2, for any integer k > 0.

The case N = 2"

If we expand M? = (Ct + C* + ... + C*)2, the double
products contribute only even (~0) entries:

we may always

ME=c? 4+ C™ mod 2.

If N = 2" squaring matrix M n-times gives
MN = CNoy CNk2 4 CNFn mod 2 Because
CNli = (€Nl and CN = I (the unit matrix), MN = m-I
mod 2. This proves the following

Theorem 4.2: If N = 2", M is invertible mod 2, that is
the system {ky, k..., k,,;; N} is regular iff m, the number
of non-zero diagonals is an odd number. O

Theorem 4.2 is important because it covers almost all
practical cases in computer systems, where the word
length is 8, 16, 32, or 64 bits, even the extended preci-
sion of 128 and 256 bits.

The case N = q-2", with odd q

After n squaring operations, two terms become equal:
cu2" = ¢v2", iff the exponents are congruent mod N: 2"u =

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

2"y mod ¢-2", or equivalently # = v mod g. These terms
cancel each other; therefore, it is enough to consider those
M =Ck 4+ Cke 4 .. 4+ Ckn matrices, where ki, k..., k,,, are
all different mod ¢. In particular, the following cancellation
law holds true: if we add (or remove) C* + C” where u = v
mod g, the parity of det(M) does not change. Thus we
obtain the following useful

Corollary 4.3: If N = ¢-2"” and u# = v mod ¢, then
replacing C* by C” in M does not change the parity of
det(M). In particular, we can restrict our investigations
to systems {ky, ko,..., k,;; ¢-2"} such that 0 < k; < ¢, or
-(g-1)/2 < k; < (g-1)/2. B

Now the construction of a regular system {ky, k..., k3
q-2"} (g odd) is easy as shown in

Corollary 4.4: The system {ky, k..., k,,;; ¢-2"} (g odd)
is regular, if kq, ko,..., k,,, are chosen such that one resi-
due class mod g contains an odd number of k; values,
and every other residue class contains an even number
of k; values. In this case det(M) is odd. O

We remark that if with the above notations N = ¢
(that is, n = 0) the statement of Corollary 4.3 reduces to
a triviality: det(M) is odd if it is derived from a single
rotation.

The sub-case N = 3 - 2"

This case has practical relevance for digital systems
with a word length of 12, 24, 48... bits.

Theorem 4.5: If N =3 - 2" and M = C* + C* + ... +C*~
is an N x N matrix, then det(M) is odd iff one of the
three residue classes mod 3 contains an odd number of k;
values, and each of the other two residue classes contains
an even number of k; values.

Proof: Corollary 4.4 shows that these determinants are
indeed odd. As for the other direction, according to the
cancellation law in Corollary 4.3, the following systems
are to be considered:

{0; 32"}, {1; 3-2"}, {2; 3-2"}, {0,1; 3-2"}, {0,2; 3-2"}, {1,2;
327, {0,1,2; 3-2").

The first three are regular (obvious), the next three are
singular (Theorem 4.1). In order to verify Theorem 4.5
we have to show that the last system is also singular.
For this we manipulate the corresponding matrix. We
do not change the determinant, if we add all the rows of
index 4, 7..., (4 + 3k),... to the first row, and add all the
rows 5, 8..., (5 + 3k),... to the second row. We obtain a
matrix such that all the entries in the first two rows are
1, and hence the determinant is 0. O

4.1.1. Consecutive diagonals

In practice, the most important non-trivial invertible
recursions (the fastest to compute) have three rotations.
We can fully characterize the cases, when the rotation
displacements are next to each other. We will revisit
this case later, and prove a more general theorem with
the help of binary polynomials.

Page 7 of 11

Theorem 4.6: det(C° + C' + C*) = 0 mod 2 iff N is
divisible by 3. That is, the system {0,1,2; N} is singular
iff N = 3n.

Proof: For N > 6: The top and bottom rows of the
matrix look like:

111000..

011100..

001110..

11000..

We add rows 1 and 2 to the second but last row, and
rows 1 and 3 to the last row, and obtain

0001 «x...

00011.

in the last two rows. The first column of the matrix
has now only a single leading 1 entry, so we can remove
it together with the first row (Laplace’s formula). In the
new matrix the first column still has just a single leading
1, so this row/column removal can be done, all together
3 times. The result is a matrix of the original type, only
its dimension decreased by 3. Repeat these reduction
steps until the size of the matrix is reduced to <5. The
result is one of three small matrices, and their determi-
nants D3, D4, and Ds are easily computed, completing
the proof:

D3 =0, Dy =3, Ds =3.

Note: The above described reduction method works
for any number (m > 3) of consecutive cyclic diagonals.
We assume N = 2m and, as usual, we can suppose k; =
0. We denote the sum of row 1 and row j of the matrix
by s;, we obtain the following modified rows:

$,=10...010..., S3=110...0110...,
~

m—1 m—2 m—1 m—1

When each of these rows is added to the correspond-
ing row of index N - m + 2, N - m + 3,..., N, respec-
tively, in the bottom section of the matrix the 1 entries
in the leftmost m columns are effectively moved m posi-
tions to the right. We can apply Laplace’s formula for
column 1, then for column 2,... up to column m - 1,
to reduce the matrix to an m-diagonal matrix of size
N - m. The reduction process does not change the
determinant.

These steps can be repeated until the matrix becomes
too small for any further reduction. In the end m small
matrices of size m x m,..., 2m - 1) x (2m - 1) remain to
be evaluated. The smallest one is of size m x m. This
matrix, having all its entries = 1, has 0 determinant. The
other determinants can easily be computed and their par-
ity may vary. The exact characterization of consecutive
diagonals will be completed in Section 5, Theorem 5.2.

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

4.2 Modular binary polynomials

Using a polynomial model and arithmetic, we may
obtain better insight to the problem of inverses and
prove more general results.

4.2.1. Polynomial representation of circulant matrices
There is a one-to-one correspondence between mod 2
circulant matrices of size n x n, and binary polynomials
mod x” + 1: Replace the unit circulant matrix C in the
matrix equation with x, and replace the (+,x) matrix
operations with their polynomial counterparts. The unit
matrix / corresponds to the polynomial identically 1, and
the matrix equation C” = I translates to the polynomial
equation x” = 1 mod x” + 1 (note that x” - 1 =" + 1
mod 2).

Proposition 4.7: If M, the inverse of the circulant
matrix M over a finite field exists, it is also a circulant
matrix.

Proof: For the given size n x n, there are only a finite
number of circulant matrices over a finite field, so M” =
M? for some a > b > 0 integers. Multiply this equation
(b + 1)-times with M~* to get M“*'= M™'. The left-
hand side is a non-negative power of a circulant matrix,
so it is circulant. O

Corollary 4.8: A circulant matrix is mod 2 invertible
iff the corresponding binary polynomial has an inverse,
such that

p(x)-q(x) =1 mod x" + 1.

The following lemma is well known.

Lemma 4.9: The inverse polynomial g(x) of p(x) exists
iff GCD(p(x), " + 1) = 1.

Proof: (a) The extended Euclidean algorithm com-
putes the inverse g(x) if GCD(p(x), " + 1) = 1.

(b) If GCD(p(x), x” + 1) = h(x) = 1, then p(x) = p1(x)-h
(x) and x" + 1 = u;(x)-h(x) with some p;(x) and u;(x)
polynomials. If there was an inverse, g(x), then there is
u(x) polynomial such that p;(x)-h(x) g(x) = 1 + u(x)-h(x).
It is equivalent to the impossible equation [p;(x)-q(x) - u
x)]-h(x) =1. 0

The following result shows that the singularity of sys-
tems is “stable” for multiplied dimensions. Unfortunately
no such stability holds for regular systems, even under
stronger conditions.

Theorem 4.10: If the system {ky, ko,..., k,,;; N} is

(i) singular, then for all integer j > 0 the system {k;,
Koo K3 J-N} is also singular

(ii) regular and d > m is a divisor of N, then {k;,
Ky ks d} is also regular.

Proof: Note that (i) and (ii) are equivalent. Let p(x) be
the polynomial representation of the system. By Corol-
lary 4.8 and Lemma 4.9, we have GCD(p(x), x¥ + 1) # 1.

Page 8 of 11

Since ™ + 1 divides ¥N + 1, GCD(p(x), ¥N + 1) # 1 and
statement (i) follows. O

Note: Even if both systems {ky, ks..., k,,;; N1} and {ky,
ky..., k.3 No} are regular, the system {ky, ko...,K,,,; N1-No}
is not necessarily regular. We find the following coun-
terexample: {0,1,6; 7} and {0,1,6; 9} are regular systems,
however {0,1,6; 63} is singular. Indeed,

GCDX® +x+ 1, 2" +1)=GCD&x® +x+ 1, x° +1) =1,
but x° + x + 1 divides x*®> + 1. O

Theorem 4.11 [18]. Every irreducible binary polyno-
mial of degree k divides x* +x mod 2. If k > 1 then
p(x) = x, so p(x) has a constant term, and we have

p(x)x* 1 +1 mod 2.0

Corollary 4.12: For any p(x) binary polynomial with
a constant term, there exists an exponent ¢, such that
px) | " + 1 mod 2.

Proof: Write the polynomial p(x) (not divisible by x) as a
product of powers of irreducible factors. Each irreducible
factor has a corresponding multiple of form x” + 1.

x* + 1 and x” + 1 both divide x*” + 1 (where u = v
allowed), from an elementary identity. Because x**” + 1 =
@™ +1)> mod 2, (x“ + 1)-(x" + 1) divides x**” + 1. Repeat-
ing this for all the factors of p(x), we see that there always
exists an exponent £, such that p(x) | #* + 1 mod 2. O

Definition: We call the smallest of such ¢ values the
characteristic exponent of p.

Note that if p(x) | #“ + 1 mod 2, then u is a multiple
of the characteristic exponent ¢. Indeed, we write u = kt
+ 7 (r<t)and we get £ + 1 = (&) - D)a" + & + 1,
and hence p(x) | x” + 1 mod 2, a contradiction to the
minimum choice of .

Theorem 4.13: Given a p(x) binary polynomial, let £ > 0
denote its characteristic exponent. Then, p(x) is invertible
mod x” + 1 iff it is invertible mod x"** + 1, or assuming
n > t, iff it is invertible mod x”* + 1.

Proof: Since p(x) divides x° + 1 mod 2, it also divides
2" + x” mod 2. Adding this to x” + 1, we get 2" + 1,
which is relative prime to p(x) iff x” + 1 is relative
prime to p(x). Suppose #n > t, then we can apply the first
part of Theorem 4.13 for n - ¢ in place of 1, which com-
pletes the proof. O

Theorem 4.13 plays a fundamental role in testing the
regularity of systems.

Corollary 4.14: Let p denote the polynomial asso-
ciated to the system {0 = ky, k..., k,,;; N}, and ¢ the char-
acteristic exponent of p. If N; = N, mod ¢, the systems
{ky, ka,..., k3 N1} and {ky, k..., k,;; No} are both regular
or both singular. That is, the regularity of a system
depends on the mod ¢ residue class of the dimension. O

Note that by the above corollary, the notion of regular-
ity/singularity of a system {0 = ki, k..., k,,,; N} is mean-
ingful for any dimension N, even if the N-dimensional
matrix is too small to accommodate the rotations in the

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

system: the dimension is to be considered mod ¢, that is if
N is too small we may always replace it by N + ¢.

4.2.2. Testing procedure

Based upon Corollary 4.14 above, we established the fol-
lowing testing procedure: if we want to know if a circu-
lant matrix of a fixed set of diagonals, but of arbitrary
size N, is invertible, we determine the characteristic
exponent ¢, and the residue class ¢ = N mod ¢t. Now we
have to compute the determinant of the circulant matrix
of size g. In particular, if we know the “regular” residue
classes mod ¢, we know every dimension numbers for
which the system is regular or singular. Also, rather
than computing determinants, we can deal with GCD(p
(%), x7 + 1) to check regularity.

Corollary 4.15: A system is singular if the dimension
is the characteristic exponent £, or any of its multiples.
In greater generality, if g is a singular residue class mod
t, then the system is singular in any dimension ng (n =
1,2,...). If g is regular residue class mod t and d > m is a
divisor of g, then the system is regular in dimension d
as well. O

Lemma 4.16. For any binary polynomial p(x), x + 1 | p(x)
mod 2 holds iff p has an even number of terms.

Proof: Indeed, adding pair-wise the terms of p, each
such sum x* + x* = x“(x"™ + 1) is divisible by x + 1. In
case of even number of terms these pairs add up to the
polynomial, making it a multiple of x + 1, while for an
odd number of terms there remains a single term x7,
clearly not a multiple of x + 1. O

Theorem 4.17: Let p(x) be the polynomial associated
to a system {0 = ky, ky,..., k,,;; N} and let ¢ denote the
characteristic exponent.

(i) If x + 1 | p(x) mod 2 then the system is comple-
tely singular, that is singular for any dimension N.
(ii) If x + 1 is not a divisor of p(x) mod 2, then ¢ - 1
and t + 1 are regular dimensions (in particular, the
system is not completely singular). Moreover, if ¢
happens to be a prime number, then the system is
completely regular, that is regular for any dimension
except the multiples of ¢.

Proof: Since x + 1 divides x” + 1 mod 2 for any n, GCD
(" + 1, p(x)) = 1 cannot hold true, verifying (i). Next con-
sider x™1+ 1 - (x* + 1) = #%(x + 1) mod 2 and we obtain
GCD(x™'+ 1, 2" + 1) = GCD(x™ '+ 1, 2" + 1) = x + 1. Since
p |« +1andx + 1 is not a divisor of p, GCD(x'* '+ 1, p) =
GCD(x"'+ 1, p) = 1, showing that £ - 1 and ¢ + 1 are
indeed regular. If, in addition, ¢ is a prime number, then
the multiples of a non-zero residue class run through all
the residue classes’ mod ¢, thus a single singular dimension
would imply complete singularity which cannot be the
case, proving (ii) and the theorem. 0

Page 9 of 11

Note that by Lemma 4.16 above, statement (i) is the
polynomial version of Theorem 4.2. By the lemma and
Theorem 4.17, the following corollary is immediate.

Corollary 4.18: The statements below are equivalent:

(i) A system is completely singular
(ii) A system has an even number of rotations
(iii) » + 1 is a divisor of the associated polynomial. O

Several examples are given below illustrating the fre-
quent case of complete regularity.

5. Examples

5.1 Three non-zero diagonals

For certain fixed sets of diagonals (~polynomial coeffi-
cients, corresponding ultimately to the rotation distance
in a rotate-XOR bit mixing function) we determined with
a computer algebra system, at which word sizes n are the
function invertible. We call # “invertible” or “regular”.

The computation takes two steps. First, with a search
loop we determine the smallest ¢, such that the corre-
sponding binary polynomial p(x) divides x° + 1 mod 2
(the smallest characteristic exponent). Then, we check
for which 7 < ¢, p(x) is invertible. The computation for
each case takes only a fraction of a second. (Recall, that
we can transform the system to have k; = 0, that is, p(x)
to have a constant term 1.)

(1) For p(x) = x* + x + 1, t = 3. Only 0 = # mod 3 is
singular.

(2) For p(x) = x> + x + 1, £ = 7. Only 0 = n mod 7 is
singular.

(3) For p(x) = &> + x> + 1, t = 7. Only 0 = n mod 7 is
singular.

(4) For p(x) = x* + x + 1, t = 15. Only 0 = # mod 15
is singular.

(5) For p(x) =x* + > + 1 = (& + x + 1)%, t = 6. The 0
and 3 residue classes mod 6 are singular.

(6) For p(x) =a&” + x* + 1 = (1 + x + &%) (1 + x + &),
¢t = 21. The singular residue classes mod 21: 0, 3, 6, 7, 9,
12, 14, 15, 18; (not the ones relative prime to 21).

(7) For p(x) = x° + x + 1, t = 63. Only 0 = n mod 63 is
singular.

5.2. Consecutive non-zero diagonals
The above techniques work for any number of nonzero
matrix diagonals:

Forp(x) =a® +x° +x* + X + ¥ +x+ 1= (1 + x + x°)
(1 +%°+4°),t=7.Only0 =#nmod 7 is singular.

The sum of k (odd) consecutive powers like the above
case can be fully characterized. The degree of the poly-
nomial is k — 1, thus multiplying the sum with (x + 1)
gives x5 + 1, and we have ¢ = k for the characteristic
exponent. Hence, k is a singular dimension. In general,
there can be other singular cases, like

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

GCDE* + La® +x” + 2% + a2+t + 2%+ 4% +x+ 1) =
x%+x+ 1 mod?2

GCD(® + L x® + 4" + %+ +a* + a8 + a2 +x+ 1) =
x% +x + 1 mod 2.

Having multiplied p(x) with (x + 1) the condition
of invertibility is GCD(x" + 1, #* + 1) = x + 1, because
x+ 14"+ 1L

Lemma 5.1: If d = GCD(n, k) then GCD(x” + 1,
Pra 1) = 2+ 1

Proof: We assume k < n and put n = g k + r. Since
2+ 1= (6N% + 1 =[N - 1]%” + & + 1, and the
term in the brackets is divisible by x* + 1 mod 2, we
have GCD(x" + 1, X + 1) = GCD(** + 1, " + 1). This
is the (1, k) —> (k r) reduction the Euclidean algorithm
performs in computing GCD(n, k), and the algorithm
ends at d and x? + 1, respectively. O

Theorem 5.2: Let k be odd and p(x) = 1 + x +...+ L

(i) p(x) is regular mod x” + 1 iff GCD(n, k) = 1. Or,
equivalently, the system {0, 1..., k — 1; n} is regular
iff GCD(n, k) = 1.

(ii) If p(x) is irreducible then the characteristic expo-
nent k is a prime number and the system is comple-
tely regular.

Proof: (i) If p(x) is regular mod x” + 1 then GCD(p(x), x”
+ 1) = 1, therefore GCD((1 + x)-p(x), x" + 1) = GCD(" + 1,
%"+ 1) =1 + x. By Lemma 5.1 we have GCD(n,k) = 1.

As for (ii), suppose k = ab, where a > 1, b > 1. Now
p) | 2+ 1= + 1= @ + D)(EY? 4.+ 1) and
p(x) must be a divisor of one of the factors on the
right hand side. This cannot hold, since for the
degrees:a < k-1,and k-a < k-1.0

This Theorem settles the procedure left open in the
Note following Theorem 4.6.

Note that the statement in (ii) cannot be reversed as
we have seen the counterexample above:

5 3

px) =xb +x +xt 43+l v+ 1= (1 +x+23) (1+x%+5%),

t = k =7, prime number.

5.3. Further notes

(1) If p(x) = ¢"(x), and g(x) is an irreducible binary poly-
nomial, the singular residue classes are 0 mod ¢,, or 0,
k, 2k... mod t, (we have t, = kt,).

(2) For the computations we needed a polynomial
irreducibility test. There have been several such tests
published. One of them is the Ben-Or test: a polynomial
p(x) of degree d is reducible if GCD(xzk +x) mod p(x);
p(x) = 1 for any k < d/2 (see [19]).

(3) There are a huge number of irreducible binary
polynomials available (see [19]). For example:

d = 32: 134,215,680; d = 40: 27,487,764,474

This number is roughly doubling when d is incremen-
ted by 1. More precisely, for large degrees d the

Page 10 of 11

probability that a randomly chosen polynomial is irredu-
cible is about 1/d. These show that for machine word
size n > 32, one has a very large choice of sets of diago-
nals to get an invertible binary circulant matrix.

(4) Irreducible binary trinomials of the form 1 + prag
x? can be listed with a computer algebra system:

k = 1: The primitive trinomials of the form 1 + x + & for
d < 400 are those with d = 2, 3, 4, 6, 7, 15, 22, 60, 63, 127,
153

k=2:1+ x>+ x% (d > 2) is irreducible for the
following:

d=3,5,11, 21, 29, 35, 93, 123, 333, 845, 4125

k=31+x>+x% (d > 3) is irreducible for the
following:

d=4,5,6,7, 10, 12, 17, 18, 20, 25, 28, 31, 41, 52, 66,
130, 151, 180, 196, 503, 650, 761, 986

=4:1 + x* + x%, (d > 4) is irreducible for the
following:

d=17,9 15,39, 57, 81, 105

k=5 1+x"+ x% (d > 5) is irreducible for the
following:

d=6,9,12, 14, 17, 20, 23, 44, 47, 63, 84, 129, 236,
278, 279, 297, 300, 647, 726, 737

(5) Let g(x) be an irreducible polynomial of degree d > 1
over a prime field F,,. The order of g is the smallest posi-
tive integer n such that g(x) divides x” - 1. It is also
the multiplicative order of any root of ¢, and a divisor of
p? - 1. g is called a primitive polynomial if # = p? - 1.

The smallest degree non-primitive binary irreducible
polynomial is x* + x> + x> + x + 1. Its order is 5.

There is no degree 5 non-primitive binary irreducible
polynomial, because 2° - 1 = 31, a prime.

There are three degree six non-primitive binary irre-
ducible polynomials:

Ordx® + 23+ 1) =9

Ord(x® + #* + x> + x + 1) = 21

Ord(x® + &° + x* + 4> + 1) = 21

There is no degree 7 non-primitive binary irreducible
polynomial, because 2” - 1 = 127, a prime.

There are 14 degree 8 non-primitive binary irreducible
polynomials.

6. Conclusion

We proposed new pseudorandom number generator
modes of iterative algorithms built from non-multiplica-
tive computer operations: the offset counter mode and
offset hybrid counter mode. They are somewhat better
than simple counter- or hybrid counter-mode generators
described in [1]. Long cycle lengths of these and some
other generators can be assured when the generator
function is invertible. We showed that two-term rotate-
add functions are never invertible, but many classes of
rotate-XOR functions are. In particular, when the length
of the computer word is a power of 2 (8, 16, 32, 64...),

Hars and Petruska EURASIP Journal on Embedded Systems 2012, 2012:1
http://jes.eurasipjournals.com/content/2012/1/1

any rotate-XOR function of an odd number of terms is
invertible. For other word lengths, we presented simple
algorithms that decides the invertibility of any given set
of rotate-XOR terms, and listed the full answers for
many classes of fixed terms. These pieces of information
could help a system designer.

Author details
'CPU Technology, Pleasanton, CA 94588, USA Purdue University, Fort
Wayne, IN, USA

Competing interests
The authors declare that they have no competing interests.

Received: 25 July 2011 Accepted: 1 February 2012
Published: 1 February 2012

References

1.

Hars L, Petruska G: Pseudorandom recursions-small and fast
pseudorandom number generators for embedded applications. EURASIP
J Embed Syst 2007, Article ID 98417, 13 (2007). doi:10.1155/2007/98417.
Anashin V: Uniformly distributed sequences of p-adic integers. Math
Notes 1994, 55:109-133.

Anashin V: Uniformly distributed sequences of p-adic integers, Il. Discrete
Math Appl 2002, 12:527-590.

Anashin V: Pseudorandom number generation by p-adic ergodic
transformations. arXiv: Cryptography and Security 2004 [http://arxiv.org/abs/
€s/0401030/1.

Anashin V: Wreath products in stream cipher design. arXiv: Cryptography
and Security 2006 [http://arxiv.org/abs/cs/0602012/].

Anashin V, Khrennikov A: In Applied Algebraic Dynamics. De Gruyter
Expositions in Mathematics. Volume 49. Walter de Gruyter, Berlin; 2009.
Klimov A, Shamir A: A new class of invertible mappings. Workshop on
Cryptographic Hardware and Embedded Systems 2002 2003, 2523:470-483,
Lecture Notes in Computer Science.

Klimov A, Shamir A: Cryptographic applications of T-functions. Selected
Areas in Cryptography (SAC) 2003 2004, 3006:248-261, Lecture Notes in
Computer Science.

Klimov A, Shamir A: New cryptographic primitives based on multiword T-
functions. Fast Software Encryption 2004 2004, 3017:1-15, Lecture Notes in
Computer Science.

Klimov A, Shamir A: New applications of T-functions in block ciphers and
hash functions. Fast Software Encryption 2005 2005, 3557:18-31, Lecture
Notes in Computer Science.

Klimov A: Applications of T-functions in cryptography. Thesis for the
degree of Ph.D., Weizmann Institute of Science 2005.

Marsaglia G: A current view of random number generators. Computer
Science and Statistics: The Interface Elsevier Science; 1985, 3-10.

Maurer U: A universal statistical test for random bit generators. J Cryptogr
1992, 5(2):89-105.

NIST Special Publication 800-22: A statistical test suite for random and
pseudorandom number generators for cryptographic applications. 2008
[http://csrenist.gov/groups/ST/toolkit/mg/documents/SP800-22b.pdf].

Ritter T: Randomness tests: a literature survey. 1996 [http://www.
ciphersbyritter.com/RES/RANDTEST.HTM].

Menezes A, van Oorschot P, Vanstone S: Handbook of Applied Cryptography
CRC Press; 199%.

Morris B, Rogaway P, Stegers T: How to encipher messages on a small
domain. Advances in Cryptology. CRYPTO 2009 [http://www.cs.ucdavis.edu/
~rogaway/papers/thorp.pdf].

Koblitz N: A Course in Number Theory and Cryptography., 238,
Proposition I1.1.8 (Springer, Graduate Text in Mathematics 114, 1994), ISBN-
13: 978-0387942933.

Arndt J: Matters Computational: Ideas, Algorithms, Source Code.,
(Springer, 2010), ISBN: 3642147631.

Page 11 of 11

doi:10.1186/1687-3963-2012-1
Cite this article as: Hars and Petruska: Pseudorandom recursions Il.
EURASIP Journal on Embedded Systems 2012 2012:1.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://arxiv.org/abs/cs/0401030/
http://arxiv.org/abs/cs/0401030/
http://arxiv.org/abs/cs/0602012/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://www.ciphersbyritter.com/RES/RANDTEST.HTM
http://www.ciphersbyritter.com/RES/RANDTEST.HTM
http://www.cs.ucdavis.edu/~rogaway/papers/thorp.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/thorp.pdf
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	1.1 Prior work
	1.2 This work

	2. New random number generator modes
	2.1 MIX permutations
	2.2 MIX-XOR circuits
	2.3 Statistical randomness tests
	2.4 Offset hybrid counter mode
	2.5 Offset counter mode
	32-bit words
	64-bit Words

	2.6 Data expansion

	3. Invertibility of rotate-add functions
	3.1 Word lengths of 2w
	3.1.1. Common factors
	3.1.2. Overflow
	3.1.3. Missing words

	3.2 Uncommon word lengths
	24-bit words
	25-bit words
	31-bit words

	3.3 Arbitrary word sizes

	4. Invertibility of rotate-XOR functions
	4.1 Elementary results
	4.1.1. Consecutive diagonals
	4.2 Modular binary polynomials
	4.2.1. Polynomial representation of circulant matrices

	4.2.2. Testing procedure

	5. Examples
	5.1 Three non-zero diagonals
	5.2. Consecutive non-zero diagonals
	5.3. Further notes

	6. Conclusion
	Author details
	Competing interests
	References

