
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 54074, Pages 1–14
DOI 10.1155/ES/2006/54074

MOCDEX: Multiprocessor on ChipMultiobjective Design Space
Exploration with Direct Execution

Riad BenMouhoub and Omar Hammami

UEI, ENSTA 32, Boulevard Victor, 75739 Paris, France

Received 15 December 2005; Revised 5 May 2006; Accepted 2 June 2006

Fully integrated system level design space exploration methodologies are essential to guarantee efficiency of future large scale
system on programmable chip. Each design step in the design flow from system architecture to place and route represents an opti-
mization problem. So far, different tools (computer architecture, design automation) are used to address each problem separately
with at best estimation techniques from one level to another. This approach ignores the various and very diverse vertical relations
between distinct levels parameters and provides at best local optimization solutions at each step. Due to the large scale of SoC,
system level design methodologies need to tackle the system design process as a global optimization problem by fully integrating
physical design in the design space exploration. We propose MOCDEX, a multiobjective design space exploration methodology,
for multiprocessor on chip which closes the gap between these associated tools in a fully integrated approach and with hardware
in the loop. A case study of a 4-way multiprocessor demonstrates the validity of our approach.

Copyright © 2006 R. B. Mouhoub and O. Hammami. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

System on chip are increasingly becoming complex to design,
test, and fabricate. SoC design methodologies make intensive
use of intellectual properties (IPs) [1] to reduce the design
cycle time and meet stringent time to market constraints.
However, associated tools still lag behind when addressing
the huge associated design space exposed by the combination
of soft IP. In addition, failure to meet an efficient distribu-
tion in terms of performance, area, and energy consumption
makes the whole design inappropriate. Although this prob-
lem is already hard to solve in the ASIC domain, it is exacer-
bated in the system on programmable chip (SoPC) domain.
SoPC are large scale devices offering abundant resources but
in fixed amount and in fixed location on chip. Implementing
embedded multiprocessors on these devices presents several
advantages, the most important is to be able to quickly eval-
uate various configurations and tune them accordingly. In-
deed, embedded multiprocessor design is highly application-
driven and it is therefore highly advantageous to execute ap-
plications on real prototypes. However, due to the fact that
specific resources are located at fixed positions on these large
chips it is hard not to take into account the important impact
of place and route results on the critical paths and therefore
on the overall performance. In this paper, we address this

multiobjective optimization problem [2] restricted to per-
formance and area through the combination of an efficient
design space exploration (DSE) technique coupled with di-
rect execution on an FPGA board [3]. The direct execution
removes the prohibitive simulation time associated with the
evaluation of embeddedmultiprocessor systems. A side effect
of this approach is that direct execution requires actual on
chip implementation of the various multiprocessor configu-
rations to be explored which provides actual post synthesis
and place and route area information. The resulting flow is
fully integrated from multiprocessor platform specification
to execution.

The paper is organized as follows. In Section 2, we re-
view previous work. Section 3 describes an example of soft
IP-based multiprocessor and the breadth of the problem as-
sociated with the design of such multiprocessor on a particu-
lar instance of embedded memories optimization. Section 4
presents our approach, MOCDEX, based on multiobjec-
tive evolutionary algorithms (EA) and direct execution. In
Section 5 we describe a case study and validation, while
Section 6 provides exploration results. Section 7 provides
statistical insight in the explored design space and demon-
strates the diversity of multiprocessor configurations ex-
plored during the automatic process. Finally, we conclude in
Section 8 with remarks and directions for future work.

2 EURASIP Journal on Embedded Systems

Instruction-side
bus interface

IOPB

ILMB

IXCL M

IXCL S

I-C
ach

e

Bus
If

P
rogram
cou

n
ter

In
stru

ction
bu

ff
er

In
stru

ction
decode

Add/sub

Shift/logical

Multiply

FPU

Register file
32 � 32b

D
-C

ach
e

Bus
If

Data-side
bus interface

DOPB

DLMB

DXCL M

DXCL S

MFSL 0–7

SFSL 0–7

Microblaze core block diagram

(a)

Data address bits0
Tag address Cache word address

30 31

Addr.

Addr.

Tag
BRAM

Data
BRAM

=Tag

Valid
Load instruction

Cache hit

Cache data

(b)

Figure 1: (a) MicroBlaze soft IP processor. (b) MicroBlaze processor cache organization.

FSL M clk

FSL M data

FSL M control

FSL M write

FSL M full

FSL S clk

FSL S data

FSL S control

FSL S read

FSL S exists

FIFO

� � �

Figure 2: Fast simplex link.

2. PREVIOUSWORK

The recent emergence of multiprocessors on chip as strong
potential candidates to address performance, energy, and
area constraints for embedded applications has resulted in
the following question: how do we design efficient multi-
processors on chip for a target application? Design automa-
tion tools fail to address this question, while traditional par-
allel computer architectures techniques [4] have not been
exposed to the huge diversity brought by soft IP-based de-
sign methodologies and the strong constraints of embed-
ded systems [5]. Therefore, the design of multiprocessor on
chip is the convergence focus of previously unrelated tech-
niques and as such represents a new problem on how to
establish a close integration between those techniques. It is
then not surprising that few works so far have been devoted
to design methodologies for multiprocessors on chip. In [6]
they present a design flow for the generation of application-
specific multiprocessor architectures. In the flow, architec-
tural parameters are first extracted from a high-level spec-
ification and are used to instantiate architectural compo-
nents such as processors, memory modules, and communi-
cation networks. Cycle accurate cosimulations of the archi-
tectures are used for performance evaluation while all results
in our case are obtained through actual execution and they
do not use design space exploration algorithm. In [7], syn-
thesis of application-specific heterogeneous multiprocessor

architectures using extensible processors is proposed based
on an iterative improvement algorithm implemented in the
context of a commercial design flow. The proposed algo-
rithm is based on cycle count estimation and instruction-
set simulations, and although synthesis results are used, both
architecture and implementation flows are still decoupled.
In [8] they propose an automated exploration framework
for FPGA-based soft multiprocessor systems. Using as in-
put the application graph that describes tasks and commu-
nication links, outputs of the exploration step are a mi-
croarchitecture configuration of processors and communi-
cation channels, a mapping of the application tasks and links
onto the processors and channels of the micro-architecture.
They formulate the exploration problem as an integer lin-
ear problem. The “best design” based on the ILP results is
selected and synthesized to verify performance. This verifi-
cation may fail because routing details are not taken into
account during the exploration process. This approach still
keeps decoupled design automation tools and exploration,
while in our approach design space exploration fully inte-
grates design automation tools since solutions are ranked on
the area results obtained post-synthesis and place and route
and performance results obtained from actual execution on
board. Besides, the problem formulation ignores the arbitra-
tion overhead when computing the communication access
time again due to the static nature of the design space ex-
ploration decoupled from actual execution. As pointed out
by the authors, this can lead to a significant source of errors
when there are a large number of masters on the bus. Finally,
it should be clear that no single “best design” exists in any
multiobjective optimization problem and only a Pareto set
can be obtained. In [9] they present high-level scheduling
and interconnect topology synthesis techniques for embed-
ded multiprocessor system-on-chip that are streamlined for
one or more digital signal processing applications. The pro-
posed interconnect synthesis method utilizes a genetic algo-
rithm (GA) operating in conjunction with a list scheduling
algorithm which produces candidate topology graphs based
on direct physical communication. The proposed algorithm

R. B. Mouhoub and O. Hammami 3

is a single objective algorithm, while the algorithm used in
our work is a multiobjective algorithm; and although we use
direct link we optimize also buffering capacities by trading
on-chip memory among embedded processor cache mem-
ories and connection link buffers. To the best of our knowl-
edge our work is the first to fully integrate and therefore close
the gap between design automation tools and architecture
design space exploration technique in a multiobjective con-
straints paradigm with actual execution for all multiproces-
sor on chip configurations explored during the design space
exploration process.

3. SOFT IP-BASED EMBEDDEDMULTIPROCESSOR
SYSTEMS

Soft IP-based embedded multiprocessor systems are SoC
fully designed with soft IPs. This includes soft IP proces-
sors, interconnect infrastructure and memories. An example
of such soft IP multiprocessor is described below based on
Xilinx EDK IPs [10].

3.1. MicroBlaze soft IP processor

MicroBlaze soft IP [11] is a 32-bit 3-stage single issue
pipelined Harvard style embedded processor architecture
provided by Xilinx as part of their embedded design tool kit.

Both caches are direct mapped, with 4-word cache lines
allowing configurable cache and tag size and user selectable
cacheable memory area. Data cache uses a write-through
policy. MicroBlaze core configurability extends to functional
unit through user selectable barrel shifter (BS), hardware
multiplier (HWM), hardware divider (HWD), and floating
point unit (FPU). MicroBlaze has neither static nor dynamic
branch prediction unit and supports branches with delay
slots. For its communication purposes, MicroBlaze uses ei-
ther a bus or a direct link. The on-chip peripheral bus (OPB)
is part of IBM CoreConnect bus architecture and allows the
design of complete single processor systems with peripherals
and uses designed hardware accelerators [12, 13]. However,
even for a simple embedded-processor-based multiproces-
sors designs such as MicroBlaze, the OPB bus is not suitable
because of its lack of scalability. Another approach is pro-
vided by “Fast Simplex Link” [14] which allows direct con-
nection between embedded processors through FIFO chan-
nels.

3.2. MicroBlaze fast simplex link

The fast simplex link (FSL) [14] is an IP developed by
Xilinx to achieve a fast unidirectional point-to-point com-
munication between any two components. The FSL link is
implemented as a 32-bit wide FIFO with configurable depth
and width option. The FSL can be either a master or a slave
interface depending upon its use.

MicroBlaze soft embedded processor allows up to 8 mas-
ter and slave FSL interfaces. Basic software drivers are pro-
vided to simplify the use of FSL connection. They consist
of read/write routines and control functions. The read/write

routines can be executed in two different ways: blocking and
nonblocking mechanism.

3.3. IBM interconnect

The IBM interconnect [10] represents a set of IPs used to de-
velop SoC devices. It includes the PLB and OPB bus, a PLB-
OPB bridge, and various peripherals.

3.4. MPSoC platform description

Our FPGAmultiprocessor platform consists of four MicroB-
laze processors with instruction and data cache units. These
processors are connected with each other through FSL chan-
nels.

Each MicroBlaze is connected, as shown in Figure 3, to
an OPB bus to use a timer and an interrupt controller for
threads and OS execution. MicroBlaze MB0 is connected to
the OPB bus which is connected to the PCI interface of the
host (WS). This allows the designer to send and receive data
from the host to the multiprocessor system.We implemented
a soft layer of communication in each MicroBlaze which per-
forms send and receive functions of packets. The packets
consist of headers representing the destination and source
addresses and the number of flits in the payload. A worm-
hole routing algorithm was used since it uses less memory,
making it suitable for network on chip communication. As it
can be seen a 4-way multiprocessor has been built based on
the previously described soft IPs.

The implementation of such a soft IP multiprocessor on
FPGA platform requires a variable amount of resources as
each soft IP composing themultiprocessor requires a variable
amount of resources depending on the configuration options
[10]. Table 1 provides an insight on such variability.

Such a soft IP multiprocessor can be easily adapted to
the need of a specific application adapted to a particular
application. However, these systems for best efficiency and
low memory latency require the use of embedded on chip
memories. Unfortunately, embedded memories are scarce
resources for which processors instruction and data cache
memories as well as bus and network on-chip FIFO-based
interfaces will compete. This competition is dominated by
the absolute requirement of efficiency in performance, area,
and energy consumption [5]. If we focus on cache and FSL
configurability, we have for each cache memory 7 possi-
ble configurations and for the FSL 11 possible configura-
tions. The design space associated with those parameters
(74 � 118, thus 514 675 673 281 different configurations) re-
quires 16 321 years of simulation for 1 minute simulation per
configuration.

4. MOCDEXMULTIOBJECTIVE DESIGN
SPACE EXPLORATION

4.1. Problem formulation

The design challenge represented by soft IP-based multipro-
cessor design is a multiobjective optimization problem [2].

4 EURASIP Journal on Embedded Systems

Host

PCI

Timer

Intr

Timer

Intr

OPB

MB0 MB1

MB2 MB3

OPB

Timer

Intr

Timer

Intr

Figure 3: Mesh platform 2� 2.

Table 1: Multiprocessor soft IP resources variation.

Soft IP
Slices FF BRAM

Parameters Soft IP
Slices FF BRAM

ParametersMin Min Min Min Min Min

Max Max Max Max Max Max

MicroBlaze
731
var

552
var

0
var

Cache sizes
1 K, 2 K, 4 K, 8 K,
16K, 32K, 64K

OPB
46
410

5
121

N/A
N/A

Data bus width,

address bus width,

arbiter

OPB PCI
340
3025

445
2105

0
2+

Interface/DMA

parameters

FSL
width/depth

21
451

36
34

0
17

FIFO sizes
OPB timer

99 105
0

Timer counter

8, 16, 32, 64, 128, 200 266 widths

256, 512, 1 K,
OPB intr ctr

54 63
0

Number of

2 K, 4 K, 8 K 307 342 interrupt inputs

The multiobjective optimization problem is the problem of
simultaneously minimizing the n components (e.g., area,
number of execution cycles, energy consumption), fk, k =
1, . . . ,n, of a possibly nonlinear function f of a general deci-
sion variable x in a universe U , where

f (x) = (f1(x), f2(x), . . . , fn(x)
)
. (1)

The problem has usually no unique optimal solution but a set
of nondominated alternative solutions known as the Pareto-
optimal set. The dominance is defined as follows.

Definition 1 (Pareto dominance). A given vector u = (u1,
u2, . . . ,un) is said to dominate v = (v1, . . . , vn) if and only if
u is partially less than v (up < v), that is,

�i � �1, . . . ,n�, ui � vi, �i � �1, . . . ,n� : ui < vi.
(2)

The Pareto optimality definition derives from the Pareto
dominance.

Definition 2 (Pareto optimality). A solution xu � U is said to
be Pareto optimal if and only if there is no xv � U for which
v = f (xv) = (v1, . . . , vn) dominates u = f (xu) = (u1, . . . ,un).

Pareto-optimal solutions are also called efficient, non-
dominated, and noninferior solutions. The corresponding
objective vectors are simply called nondominated. The set of
all nondominated vectors is known as the nondominated set
or the Pareto set (also Pareto-optimal set or Pareto-optimal
front). This Pareto set can be seen as the tradeoff surface
of the problem. The solution of a practical problem such as
multiprocessor system on chip (MPSoC) design may be con-
strained by a number of restrictions imposed on a decision
variable. Constraints may express the domain of definition
of the objective function or alternatively impose further re-
strictions on the solution of the problem according to knowl-
edge at a higher level. In the general case of system on pro-
grammable chip, the amount of on chipmemory for example
is fixed and represents a clear and stringent constraint. The
constrained optimization problem is that of minimizing a
multiobjective function (f1, . . . , fk) of some generic decision

R. B. Mouhoub and O. Hammami 5

variable x in a universe U subject to a positive number n� k
of conditions involving x and eventually expressed as a func-
tional vector inequality of the type

(
fk+1(x), . . . , fn(x)

)
<
(
gk+1, . . . , gn

)
, (3)

where the inequality applies component-wise. It is implicitly
assumed that there is at least one point inU which satisfies all
constraints although in practice that cannot always be guar-
anteed.

The case study of multiobjective optimization we will ad-
dress in this paper is the minimization of area (BRAM f 1
and slices resources f 2) and execution time (number of cy-
cles f 3) representing a 3-objectives multiobjective problem.

4.2. Multiobjective optimization andmultiobjective
evolutionary algorithms (MOEA)

Multiobjective optimization have not been addressed prop-
erly by traditional optimization techniques (gradient based,
simulated annealing, linear programing) since most of these
techniques are mono-objective. Extending these techniques
through approaches using aggregation functions does not
represent true multiobjective optimization and does not pro-
duce multiple solutions. Multiobjective evolutionary algo-
rithms (MOEA) are more appropriate to solve optimization
problems with concurrent conflicting objectives and are par-
ticularly suited for producing Pareto-optimal solutions. Sev-
eral Pareto-based evolutionary algorithms have been pro-
posed during the last decade, SPEA-2, PESA, and NSGA-
II, [2, 15] to solve multicriteria optimization problems. The
NSGA-II [16] is an MOEA considered to outperform other
MOEA [17] and is briefly presented below.

Individuals classification

Initially, before carrying out the selection, one assigns to each
individual in the population a row rank (by using the Pareto
set). All the nondominated individuals of the same row are
classified in a category. To this category, we assign effective-
ness, which is inversely proportional to the order of Pareto
set. Figure 4 presents an example of classification in Pareto
sets.

Main loop of algorithmNSGA-II [16]

Initially, a random parent population P0 is created. Each in-
dividual of this population is affected to an adequate Pareto
rank. From the population P0, we apply the genetics op-
erators (selection, mutation, and crossover) to generate the
population child Q0 of size N . The elitism is ensured by the
comparison between the current population Pt and the pre-
ceding population Pt�1. The NSGA-II procedure follows (see
Algorithm 1).
The NSGA-II algorithm runs in time O(GN logM�1N),
where G is the number of generations, M is the number of
objectives, andN is the population size [17]. In addition, our
previous experience on multiobjective optimization of soft
IP embedded processor [18, 19] emphasizes this choice.

F1

F2

X1

X2

X3

X4

X5
X6

X7

X8

X9

X10
X11

X12

X13

X14

X15

S1

S2
S3

Figure 4: Classification of the individuals in several fronts accord-
ing to the Pareto rank (list of Pareto sets).

Rt = PtUQt # combine parent and children
population

F = fast-nondominated-sort (Rt) # F all
nondominated fronts sets

Pt+1 =� and i = 1 # initialization
until �Pt+1� + �Fi� � N # till parent pop is filled

Crowding-distance-assignment (Fi) # compute
distance in Fi
Pt+1 = Pt+1UFi # include ith nondominated

front in the parent pop
i = i + 1 # check the next front for inclusion

Sort (Fi,<n) # Sort in descending order using <n

Pt+1 = Pt+1UF[1 : (N � �Pt+1�)] # Choose the first
(N � �Pt+1�) elements

Qt+1 =make-new-pop (Pt+1) # apply genetic
operators to create new pop Qt+1

T = t + 1 # increment to next generation

Algorithm 1: NSGA-II.

4.3. MOCDEX

It is clear that MOEAs such as NSGA-II requires the evalu-
ation of individuals (MPSoC configurations) with regard to
the 3 objectives considered, BRAM, slices and number of cy-
cles Although, BRAM and slices, could be estimated, we ad-
vocate the full use of design automation tools including place
and route to access this information. Indeed, for complex
systems on large platform FPGA place and route impact can-
not be overlooked and can hardly be estimated with sufficient
accuracy to be used in an automatic multiobjective design
space exploration tool. The execution time of multiprocessor
on chip can be obtained through simulation either at RTL
level which would be prohibitive for large design space explo-
ration withoutmassive use of computing resources (compute
farms) or at TLM level (SystemC) as often advocated [20, 21].

6 EURASIP Journal on Embedded Systems

However although SystemC level simulation has been regu-
larly proved to outperform RTL VHDL level simulation, it
does not outperform actual execution on FPGA. We argue
that for large scale MPSOC, FPGA platform represents an
opportunity to both reduce simulation time through actual
execution and increase the design space exploration through
this reduction of the evaluation of each MPSOC configura-
tion. Our proposal follows.

MOCDEX (general)

(1) Generate random population of MPSOC configura-
tions within soft IP parameters constraints.

(2) For all configurations,

(a) generate hardware/software platform specifica-
tion files,

(b) generate through system EDA and IPs HW/SW
model of the MPSOC,

(c) synthesize/place and route MPSOC configura-
tion using EDA tools,

(d) record place and route reports,
(e) download configuration file on FPGA platform,
(f) executeMPSOC configuration and record execu-

tion clock cycles,
(g) rank the solution.

(3) Generate new population using MOEA algorithm.
(4) Is the Pareto front satisfactory or the number of gener-

ations reached if no goto 3?
(5) Final Pareto front MPSOC configurations are available

for selection.

As shown in Figure 5, both the DSE and physical design are
executed on a host PC while the execution is achieved on a
PCI-based FPGA platform which communicates execution
results to the host.

5. CASE STUDY AND VALIDATION

The previously described design flow has been applied in the
framework of Xilinx FPGA platforms.

5.1. Image filtering application

A design of four Xilinx MicroBlaze processors, communicat-
ing with eight FSL channels in a mesh topology and execut-
ing image filtering algorithms, was implemented at 100MHz.
This application was chosen because it requires extensive
data processing and data communication among the filters
for a good and fast testing of our exploration framework.

Figure 6 shows our filtering methodology. As we can see,
the execution is achieved in a pipelined way where image
lines are sent from a processor to another as soon as the pre-
vious processor has finished its work on it. Obviously, this
type of execution makes us save a significant amount of time
and memory which are often the major constraints for em-
bedded systems in general and for our platform in particular.
Indeed, performing this task in a pipelined way allows us to

Parallel
application

Multiprocessor
platform

Design space
exploration

Physical
design

1. MOEA

2. Synthesis

3. Place & route

FPGA implementation

Figure 5: MOCDEX MPSOC exploration flow.

n = 0–255

- Read image

- Save image

Median
filtering

Conservative
smoothing

Mean
filtering

P0 P1 P2 P3

Line
n + 3

Line
n + 2

Line
n + 1

Line n

Figure 6: Image filtering application multiprocessor platform dis-
tribution.

have a maximum of three image lines stored in the associated
processor’s memory rather than the whole image. The rest of
the image lines will enter the FIFOs (FSLs) of their respective
processors one by one. The processor P0 in Figure 6 receives
image data from the host computer through the PCI bus.
Once it receives the data it immediately sends it to the next
processor which is P1. P1 performs a median filtering which
results in noise reduction from the image. It is performed
on a 3-by-3 pixel window where the center pixel value is re-
placed by the median of the neighboring pixel values. This
value is obtained by sorting the pixels based on their numer-
ical values and then replacing the pixel to be processed by the
middle value. The processor P2 fetches the line coming from
P1 and performs a conservative smoothing on it which is an
operation that preserves the high spatial frequency details.
Finally, the third processor P3 performs a mean filtering
which consists of very simple method used for noise reduc-
tion where the pixel to be processed is replaced by the average

R. B. Mouhoub and O. Hammami 7

Header

PMC #1 PMC Pn4
Mux

PMC #2

I/O

64/66 PCI bus
PCI-PCI bridge
66MHz 64-bit

64/66 PCI bus

(a)

SSRAM
256K � 32/36

SSRAM
256K � 32/36

SSRAM
256K � 32/36

SSRAM
256K � 32/36

SSRAM
256K � 32/36

SSRAM
256K � 32/36

PCI
bus

PCI
interface
PLX 9656

Target/
initiator
(DMA)

A/D

Control

Flash
memory

Programmable
clocks

Pn4 IO

Select IO

Front panel IO

XC2V3000� 10000
FF1152

Select
m
ap

(b)

Figure 7: Alpha-data ADM-XRC-II and ADC-PMC boards.

Table 2: Multiprocessor on chip design space.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB1 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB2 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB3 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

value of its neighbors. Due to the different amount of com-
putations required by each filter, it results in different work-
load for each processor. Thus the execution time for each
algorithm differs and hence involves an unequal FIFOs oc-
cupancy. Therefore, the application used has to be naturally
unbalanced to thoroughly analyze the problem. The problem
at hand is to optimally distribute the limited on chip embed-
ded memory among the embedded processors cache memo-
ries (instruction, data) and the communication FIFOs while
optimizing execution time and area. The design space for this
problem is specified in Table 2.

The possible number of different configurations is given
by the product of the number of distinct configurations for
each configurable architectural parameter. Each cache mem-
ory may have up to 4 different sizes and each FIFO up to
8 different sizes. The total design space represents (4 � 4 �
8 � 8)4 = 240 configurations. If each configuration evalua-
tion would require 1 second, the total evaluation time would
be 34 865 years of evaluation. Clearly an exhaustive evalua-
tion technique is unfeasible and multiobjective optimization
techniques are able to efficiently prune this design space
while simulation is clearly outperformed by direct execution
on large scale FPGA devices.

5.2. Alpha-data environment

For the implementation ofMOCDEXwe used the alpha-data
hardware and software environment.

Table 3: Xilinx virtex-II XC2V 8000 resources.

XC2V8000 Values

Slices 46 952

BRAM (18Kbits) 168

18� 18 multipliers 168

DCM 12

Max. Dist RAM Kb 1456

5.2.1. Alpha data hardware environment

The alpha-data hardware environment described in Figure 7
is composed by (1) the ADC-PMC and (2) the ADM-XRC-
II. The ADC-PMC is a dual PMC adapter for PCI. It supports
64-bit 66MHz primary and secondary PCI via an Intel 21154
PCI-PCI bridge device. The ADM-XRC-II is a high per-
formance reconfigurable PMC (PCI mezzanine card) based
on the Xilinx Virtex-II range of platform FPGAs. Features
include high-speed PCI interface, external memory, high-
density I/O, programmable clocks, temperature monitoring,
battery backed encryption, and flash boot facilities.

On board clock generator provides a synchronous local
bus clock for the PCI interface and the Xilinx Virtex-II FPGA.
A second clock is provided to the Xilinx Virtex-II FPGA
for user applications and can be free running or stepped
under software control. Both clocks are programmable and
can be used by the Virtex clock. The user clock has a max-
imum value of 100MHz. The ADM-XRC-II uses a Xilinx
XC2V8000-6 FF1152 device [22] whose characteristics are
described Table 3.

5.2.2. Alpha-data software environment

The ADM-XRC SDK is a set of resources including an
application-programing interface (API) intended to assist
the user in creating an application using one of Alpha-data’s
ADM-XRC range of reconfigurable coprocessors. The API

8 EURASIP Journal on Embedded Systems

Table 4: ADM XRC SDK API functions.

Group Application

Initialization

ADMXRC2 CloseCard

ADMXRC2 OpenCard

ADMXRC2 OpenCardByIndex

ADMXRC2 SetSpaceConfig

FPGA configuration
through PCI

ADMXRC2 ConfigureFromBuffer

ADMXRC2 ConfigureFromBufferDMA

ADMXRC2 ConfigureFromFile

ADMXRC2 ConfigureFromFileDMA

ADMXRC2 LoadBitstream

ADMXRC2 UnloadBitstream

Data transfer
PC = FPGA board

ADMXRC2 BuildDMAModeWord

ADMXRC2 DoDMA

ADMXRC2 DoDMAImmediate

ADMXRC2 MapDirectMaster

ADMXRC2 Read

ADMXRC2 ReadConfig

ADMXRC2 SetupDMA

ADMXRC2 SyncDirectMaster

ADMXRC2 UnsetupDMA

ADMXRC2 Write

ADMXRC2 WriteConfig

Interrupt handling
ADMXRC2 RegisterInterruptEvent

ADMXRC2 UnregisterInterruptEvent

makes use of a device driver that is normally not directly
accessed by the user’s application. The API library described
in Table 4 takes care of open, close, and device I/O control
calls to the driver. The ADM-XRC SDK is designed to be
thread-safe. Table 4 describes the main API functions which
allow initializing the board, configuring the FPGA though
the PCI bus, and transfering data between the FPGA and the
host computer and the interrupt handling.

Clearly since MOCDEX explore the design space by im-
plementing on FPGA new multiprocessor configurations the
FPGA is reconfigured through the PCI bus from the main
program by executing the ADM-XRC SDK FPGA reconfig-
uration API using the bitfile generated from EDK synthesis
and place and route. Resulting execution number of cycles
are provided as well through the PCI bus to the host using
ADM-XRC SDK data transfer API.

5.3. Xilinx EDK tools

The embedded development kit (EDK) bundle is an inte-
grated software solution for designing embedded processing
systems.

Table 5 and Figure 8 describe the use of each configura-
tion file in the process of hardware platform generation, soft-
ware platform generation, and software application and cre-
ation.

The MHS file defines the system architecture, peripher-
als, and embedded processors. It also defines the connectivity

of the system, the address map of each peripheral in the sys-
tem, and configurable options for each peripheral. The MHS
file can be defined through XPSGui wizards. However for the
time being Xilinx wizards do not allow the design of multi-
processors platforms and therefore they should be defined
directly in the MHS file. It is clear that in the purpose of
design space exploration of multiprocessor architecture the
MHS file is the prime target of modifications. Changing pa-
rameters value in the MHS file generates a new multipro-
cessor configuration and invoking the XPS tool in no win-
dowmode from amain program allows the generation of the
multiprocessor netlist. Table 6 provides examples ofMHS file
parts.

5.4. Exploration flow description

The proposed automatic design flow described in Figure 5
can be applied in the framework of Xilinx EDA tools and
the Alpha-data environment. The flow is mainly composed
of 3 parts: (1) architecture design space exploration engine
(DSE), (2) physical design, and (3) FPGA platform PCI
board. The architecture design space exploration part con-
trols the whole flow and runs on a host PC. First based on
the user specified design space parameters and parameters
range, the DSE specifies the architectural parameters of the
multiprocessors configurations to be evaluated then trans-
lates those parameters into platform EDA design tool input
file specifications. In our case,

(1) MOCDEX for Xilinx FPGA platform,
(2) generate random population of MPSoC configura-

tions (caches and FSL variations),
(3) for all configurations,

(a) generate hardware/software platform specifica-
tion files (mhs, mpd, pao, mss, mld, mdd, files),

(b) generate through Xilinx system XPS and Xilinx
IPs HW/SWmodel of the MPSOC,

(c) synthesize/place and route MPSOC configura-
tion using Xilinx ISE 6.3,

(d) record place and route reports generated from
Xilinx ISE 6.3,

(e) download configuration file on FPGA Alpha-
data platform using ADM-XRC SDK API,

(f) executeMPSOC configuration and record execu-
tion clock cycles using ADM-XRC SDK API,

(g) rank the solution,

(4) generate new population using NSGA-II algorithm,
(5) is the Pareto front satisfactory or the number of gener-

ations reached if no goto 3?
(6) final Pareto front MPSOC configurations available for

selection.

The Xilinx system EDA tools Xilinx platform studio (XPS) is
ran in no window mode with all batch commands launched
from a C main program. Those input file specifications are
used to control the physical design part of the implementa-
tion by synthesizing, placing, and routing the multiprocessor
configurations onto FPGA platform devices. The generated

R. B. Mouhoub and O. Hammami 9

Table 5: EDK specifications files.

Files Description Comments

MHS Microprocessor hardware specification The MHS defines the hardware component

MSS Microprocessor software specification The MSS contains directives for customizing libraries, drivers, and file systems

MDD Microprocessor driver definition An MDD file contains directives for customizing software drivers

MPD Microprocessor peripheral definition The MPD defines the interface of the peripheral

MLD Microprocessor library definition
the MLD contains directives for customizing software libraries and
operating systems

PAO Peripheral analyze order
Contains a list of HDL files that are needed for synthesis, and defines the
analyze order for compilation.

ISE HW impl.

Embedded software tool architecture

Simulators

Sim. plat. gen.

Sim. spec. ed.

HW plat. gen.

HW spec. ed.

BSB wizard

XPS

Bitinit

XMD

SW debugger

SW compilers

SW source ed.

SW plat. gen.

SW spec. ed.

Figure 8: Xilinx EDK (XPS Xilinx platform studio).

FPGA configuration bitstream is downloaded on the FPGA
device for execution and performance evaluation of the mul-
tiprocessor. The board hosting the FPGA device is an Alpha-
data PCI FPGA board [3]. The implementation area and re-
sources of the multiprocessor configurations are provided by
the design automation tools composing part (2) while per-
formance results in number of clock cycles are obtained from
the actual execution of the multiprocessor configurations.
These informations are automatically fed back to the DSE
engine which runs on the host through the PCI bus.

The number of cycles are obtained directly from the exe-
cution, thanks to a timer connected to theMicroBlaze (MB0)
OPB bus, which counts the number of clock cycles. After
that, the execution time results are communicated to the host
PC using an IP which bridges the MicroBlaze OPB bus to
the PCI host bus. These results (occupied slices, occupied
BRAM, and the execution time) are then injected as feed-
back input to the evolutionary algorithm for the next genera-
tion run. For this work we initially executed two explorations
where the first consisted of a population size of 22 individuals
and 10 generations (242 implementations with the initializa-
tion generation).

6. EXPLORATION RESULTS

6.1. Flow execution results

Figures 10 and 11 describe the corresponding results of these
implementations. Figure 10(b) represents Pareto solutions
for the second exploration where we attempted to increase
the population size to 30 individuals and the number of gen-
erations to 14 in order to observe the behavior of the evolu-
tionary algorithm for bigger explorations. From the results
of second exploration it is obvious that the algorithm is con-
verging to optimal solutions showing that for larger popula-
tion size and generation size, potential of convergence is in-
creased in NSGA-II algorithm as was expected. From the two
preceding exploration flow executions, it appears as expected
since we focused on embedded memories that the number
of occupied slices does not vary much across multiprocessor
configurations. However the variations are much more sig-
nificant concerning both the number of occupied BRAMs
and the execution time. So we decided to continue the ex-
ecution of the proposed exploration flow in order to see its
evolution.

10 EURASIP Journal on Embedded Systems

Table 6: MHS file parts: Microprocessor IP, FSL IP, BRAM controller IP.

MicroBlaze processor FSL communication BRAM controller

BEGIN MicroBlaze BEGIN fsl v20 BEGIN lmb bram if cntlr

PARAMETER INSTANCE =MicroBlaze 0 PARAMETER INSTANCE = fsl v20 7 PARAMETER INSTANCE = ilmb cntlr3

PARAMETER HW VER = 3.00.a PARAMETER C FSL DEPTH = 8 PARAMETER HW VER = 1.00.b

PARAMETER C FSL LINKS = 2 PARAMETER HW VER = 2.00.a PARAMETER C BASEADDR

BUS INTERFACE MFSL0 = fsl v20 2 PARAMETER C EXT RESET HIGH = 0 = 0� 00000000

BUS INTERFACE SFSL0 = fsl v20 1 PARAMETER C IMPL STYLE = 1 PARAMETER C HIGHADDR

BUS INTERFACE DLMB = dlmb0 PARAMETER C USE CONTROL = 0 = 0� 00003fff

BUS INTERFACE ILMB = ilmb0 PORT SYS Rst = lreseto l BUS INTERFACE SLMB = ilmb3

BUS INTERFACE DOPB =mb opb0 PORT FSL Clk = lclk BUS INTERFACE BRAM PORT

BUS INTERFACE IOPB =mb opb0 PORT FSL M Clk = lclk = ilmb port3

PORT INTERRUPT = Interrupt 0 PORT FSL S Clk = lclk END

PORT CLK = lclk END

END

HW plat. gen.

Platgen

MHS file

EDIF, NGC,
VHD, V, BMM

HW spec. ed.
XPS, wizards

MHS file

XPS

Hardware platform creation

(a)

SW plat. gen.

Libgen

MSS, MHS,
lib/�.c, lib/�.h

libc.a, libXil.a

SW spec. ed.

Emacs, XPS MSS editor

MSS file

XPS

Software platform

(b)

SW source ed.
Emacs, XPS MSS editor

.c and .h files

Mb-gcc, ppc-gcc
SW compilers

.elf file

.c and .h files
libc.a, libXil.a

.c and .h files
.elf file

SW debuggers
Mb-gdb, ppc-gdb

XPS

XMD

Software application
creation and verification

(c)

Figure 9: Xilinx EDK. (a) Hardware platform generation. (b) Software platform. (c) Simulation and verification.

0

50

100

150

30
25

20
15

10
5

0
1

2
3

4
5

1
2 3

4
5

6

7

8

9

10

11
12

13
14

15

16

17

18

�107

Sl
ic
es

BRAM
Cycles

(a)

0

50

100

150

25

20
15

10

5
0

0.5
1

1.5
2

2.5
3

3.5

1

2
3
4

5

6

7

8
9

10 11

12

1314

15

1617 18
19

�107

Sl
ic
es

BRAM

Cycles

(b)

Figure 10: (a) For 10 generations-popsize = 22. (b) For 14 generations-popsize = 30.

R. B. Mouhoub and O. Hammami 11

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5

�107

B
R
A
M

Cycles

(a)

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5

�107

B
R
A
M

Cycles

(b)

Figure 11: (a) For 30 generations-popsize = 30. (b) For 60 generations-popsize = 30.

1 4 7 10 13 16 19 22 25 28

:

0
2
4
6
8

10
12
14
16
18
�107 Performances

Configurations

N
u
m
be
r
of

cy
cl
es

(a)

1 4 7 10 13 16 19 22 25 28

95

100

105

110

115

120
Embedded memory

Configurations

V
al
u
es

(b)

Figure 12: Pareto front. (a) Pareto front performance distribution. (b) Pareto front BRAM distribution.

For this second part of the exploration, we fixed the pop-
ulation size to 30 individuals and changed the number of
generation to 30 and finally 60 generations. The results for
each execution are, respectively, described in Figures 11(a)
and 11(b). From these different figures we can clearly observe
that the NSGA-II evolutionary algorithm tends to converge
to the optimal Pareto solutions front which proves the correct
implementation of the algorithm. The figures show different
execution times for the same BRAM occupation meaning
that using more BRAM will not systematically result in per-
formance improvements.

However, to achieve better results BRAM resources need
to be well distributed among the IPs where it would be used
for getting optimal resource utilization.

Figure 12 shows the distribution of performance in the
final Pareto front and clearly few configurations demon-

strate superior performance while BRAM distribution for
the same front demonstrates an uneven use of BRAM.
This clearly shows the impact of BRAM careful distribu-
tion.

Examples of final Pareto front configurations are given
in Table 7. The configurations chosen represent, respectively,
69.64%, 61.90%, and 64.88% of all BRAM resources. 11.11%
BRAM reduction is obtained in the second configuration for
a 0.004% increase in execution time while a 6.8% BRAM
reduction is obtained in the third configuration for a 0.009%
increase in the execution time.

6.2. Flow execution time

The results achieved in the previous section required the
performance evaluation of 3120 different multiprocessor

12 EURASIP Journal on Embedded Systems

Table 7: The design space associated with those parameters (74 � 118, thus 514 675 673 281 different configurations) requires 16 321 years
of simulation for 1 minute simulation per configuration.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 2048 2048 1024 4096

MB1 512 512 1024 1024

MB2 2048 512 2048 2048

MB3 1024 1024 4096 4096

(a) Cycles: 138 974 816 BRAM: 109.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 2048 128 2048 2048

MB1 256 32 2048 512

MB2 512 16 4096 512

MB3 1024 32 512 2048

(b) Cycles: 138 844 064 BRAM: 117.

Table 8: Flow execution time direct execution versus simulation.

Flow main steps Functions Time

Multi-objective
evolutionary
algorithm (ms)

Indi. Gene. 190
Obj functions eval. 293

Selection 0.116
Crossover 0.033
Mutation 1.118

Synthesis (sec)
Synthesis 523.503
P and R 655.174

P/R & Bitgen 797.856

Evaluation
Exploration 60� 30

2250 days
1.39 hourSim. 64� 64

Direct exec. 256� 256

on-chip configurations. These evaluations have been cycle-
accurate after actual implementation on single-chip large
scale FPGA devices. Contrary to traditional board-based
multiprocessor, multiprocessors on chip are implemented on
single chip; and due to the complexity of these architectures
and the scale of the target devices, it is not possible to over-
look the impact of place and route on the number of cycles
required for various operations and on the cycle time.

It results from this fact that comparing different multi-
processors on chip configurations on the number of execu-
tion cycles is meaningless if one does not take into account
the impact of place and route on each distinct configura-
tion resulting from actual implementation. From this point
mainly two alternatives exist: (1) post place and route sim-
ulation which will accurately represent the multiprocessor
on chip behavior, and (2) emulation through direct execu-
tion. We conducted cycle accurate simulations using a pow-
erful multi-language (SystemC, VHDL, Verilog-HDL) simu-
lator ModelSim 6.0. Indeed, ModelSim 6.0 can handle large
and complex designs and allow their simulation in a post-
synthesis and post-place and route modes. Table 8 describes
the very important time savings while using direct execution
instead of simulation. Simulation would require 2250 days of
simulation versus 1.39 hour for direct execution.

In order to reach the same evaluation speed at this level of
accuracy it would require a compute farm (grid computing)
of well over 25 000 workstations. The proposed flow execu-
tion time is obviously very competitive with regard to Sys-
temC approaches [20, 21] for platform-based design. Similar
observations have been drawn for embedded processors de-
sign space exploration [18, 19].

5360 5380 5400 5420 5440 5460 5480 5500
0

2
4

6
8

10
12

MOCDEX slices

Slices
multiprocessor on chip

Pe
rc
en
t
of

to
ta
l

(a)

105 110 115 120

0
2

4
6

8
10

12

MOCDEX BRAM

BRAM
multiprocessor on chip

Pe
rc
en
t
of

to
ta
l

(b)

Figure 13: Explored design space. (a) Slices histogram. (b) BRAM
histogram.

7. EXPLORED DESIGN SPACE STATISTICAL ANALYSIS

If we analyze in detail the complexity landscape of such a de-
sign space exploration we obtain the configurations distri-
bution found in Figures 13 and 14. Clearly from these his-
tograms we see that slices, BRAM, and performance (execu-
tion time) distributions in the explored design space are very
different and demonstrate that the design space exploration
was not confined in a limited subspace but explored a large
diversity of multiprocessor configurations. The explored de-
sign landscape is given in Figure 15.

R. B. Mouhoub and O. Hammami 13

1.4 1.45 1.5 1.55 1.6 1.65
�108

0
5

10
15

20
MOCDEX execution time

Execution time

multiprocessor on chip

Pe
rc
en
t
of

to
ta
l

Figure 14: Explored design space execution time histogram.

MOCDEX multiprocessor design space exploration

BRAM

Slices
Execution time

Figure 15: MOCDEX explored design space.

Figure 15 demonstrates the complexity of the design
landscape and emphasizes the need to match this complex-
ity with appropriate applied mathematics optimization tech-
niques.

8. CONCLUSION

The design complexity of multiprocessors on chip requires
efficient design methodologies. We propose in this paper a
novel technique which fully integrates architectural design
space exploration with design automation tools, where all
area and performance results are obtained from actual post-
synthesis place and route and actual execution on large scale
FPGA platforms. To the best of our knowledge, our work is
the first to fully integrate and therefore close the gap between
design automation tools and architecture design space ex-
ploration technique in amultiobjective constraints paradigm
with actual execution for all multiprocessor on chip configu-
rations explored during the design space exploration process.

It is important to note that actual execution reduces explo-
ration time and can be exploited for either reducing design
cycle time (i.e., TTM) and/or exploring even larger design
space by including additional parameters. This work can be
easily extended to include more parameters at various ab-
straction levels from architecture to circuit allowing interest-
ing tradeoffs between usually uncorrelated various abstrac-
tion levels in the general design flow.

REFERENCES

[1] M. Keating and P. Bricaud, Reuse Methodology Manual for
System-on-a-Chip Designs, Springer, New York, NY, USA,
2002.

[2] C. A. C. Coello, D. V. Veldhuizen, and G. B. Lamont, Evolu-
tionary Algorithms for Solving Multi-Objective Problems, vol. 5
of Genetic Algorithms and Evolutionary Computation, Kluwer
Academic, Dordrecht, The Netherlands, 2002.

[3] Alpha-Data, ADM-XRC-II PCI mezzanine card, http://www.
alpha-data.com.

[4] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/Software Approach, Morgan Kaufmann, San
Francisco, Calif, USA, 1999.

[5] A. A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips,
Morgan Kaufman, San Francisco, Calif, USA, 2004.

[6] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Auto-
matic generation of application-specific architectures for het-
erogeneous multiprocessor system-on-chip,” in Proceedings of
the 38th Design Automation Conference (DAC ’01), pp. 518–
523, Las Vegas, Nev, USA, June 2001.

[7] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis
of application-specific heterogeneousmultiprocessor architec-
tures using extensible processors,” in Proceedings of the 18th
IEEE International Conference on VLSI Design, pp. 551–556,
Kolkata, India, January 2005.

[8] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An auto-
mated exploration framework for FPGA-based soft multi-
processor systems,” in Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES ’05), pp. 273–278, New York, NY, USA, September
2005.

[9] N. K. Bambha and S. S. Bhattacharyya, “Joint application
mapping/interconnect synthesis techniques for embedded
chip-scale multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 2, pp. 99–112, 2005.

[10] Xilinx, Embedded system tools guide, http://www.xilinx.
com/ise/embedded/edk docs.htm.

[11] Xilinx microblaze soft core processor, http://www.xilinx.
com/ise/embedded/mb ref guide.

[12] I. Aouadi, R. B. Mouhoub, and O. Hammami, “System on a
programmable chip oriented JPEG-2000 entropy coder imple-
mentation for multimedia embedded systems,” in Proceedings
of the IEEE International Conference on Consumer Electronics
(ICCE ’05), pp. 447–448, Las Vegas, Nev, USA, January 2005.

[13] R. B. Mouhoub, I. Aouadi, and O. Hammami, “System on
programmable chip platform based design of JPEG- 2000 en-
tropy coder,” in Proceedings of the 12th Workshop on Synthe-
sis and System Integration of Mixed Information Technologies
(SASIMI ’04), pp. 103–106, Kanazawa, Japan, October 2004.

[14] Xilinx Fast Simplex Link IP, http://www.xilinx.com.
[15] C. A. C. Coello, “An updated survey of GA-based multiob-

jective optimization techniques,” ACM Computing Surveys,
vol. 32, no. 2, pp. 109–143, 2000.

http://www.alpha-data.com
http://www.alpha-data.com
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/mb_ref guide
http://www.xilinx.com/ise/embedded/mb_ref guide
http://www.xilinx.com

14 EURASIP Journal on Embedded Systems

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[17] M. T. Jensen, “Reducing the run-time complexity of multiob-
jective EAs: the NSGA-II and other algorithms,” IEEE Transac-
tions on Evolutionary Computation, vol. 7, no. 5, pp. 503–515,
2003.

[18] K. Ghali and O. Hammami, “Embedded processor character-
istics specification through multiobjective evolutionary algo-
rithms,” in Proceedings of the IEEE International Symposium
on Industrial Electronics (ISIE ’03), vol. 2, pp. 907–912, Rio de
Janeiro, Brazil, June 2003.

[19] K. Ghali and O. Hammami, “Embedded processors optimiza-
tion with hardware in the loop,” in Proceedings of the IEEE
International Symposium on Industrial Electronics (ISIE ’04),
vol. 1, pp. 561–564, Ajaccio, France, May 2004.

[20] F. Fummi, S. Martini, G. Perbellini, and M. Poncino, “Na-
tive ISS-SystemC integration for the co-simulation of multi-
processor SoC,” in Proceedings of the IEEE Conference and Ex-
hibition on Design, Automation and Test in Europe (DATE ’04),
vol. 1, pp. 564–569, Paris, France, February 2004.

[21] F. Ghenassia, Transaction-Level Modeling with SystemC TLM
Concepts and Applications for Embedded Systems, Springer,
New York, NY, USA, 2005.

[22] Xilinx Virtex-II Platform FPGA, http://www.xilinx.com/
products/silicon solutions/fpgas/virtex/virtex ii platform
fpgas/index.htm

Riad Ben Mouhoub received the Electron-
ics Engineering degree in 2002 from the
University of Algiers USTHB. He also re-
ceived a Master degree in electronic systems
and data processing from the University of
Paris Sud Orsay in 2003. He currently holds
a Doctorate position in electrical and com-
puter engineering from the University of
Paris Sud in the Department of Electron-
ics and Computer Engineering at École Na-
tionale Supérieure de Techniques Avancées in Paris (ENSTA). His
research interests include design automation, design methodolo-
gies for multiprocessor system on programmable chips (MPSoPC),
and NoC synthesis. He is a Student Member of the IEEE.

Omar Hammami is an Associate Professor
at ENSTA/DGA since 2000. Prior to that he
was Assistant Professor from 1991 to 1993
with ENSEEIHT, Toulouse, and Associate
Professor with the University of Aizu, Japan,
from 1993 to 2000. He received his Ph.D.
degree in computer science and electrical
engineering from Paul Sabatier University,
Toulouse, in 1993 and has since worked
in the field of circuits, system level design
methodologies, embedded parallel architectures, and system on
chip (SOC) for multimedia and wireless communications. He has
been involved in numerous international and national research and
industrial projects in those areas and have been funded by various
government and funding agencies. He is a regular reviewer for var-
ious journals (IEEE, EURASIP, etc.) and conferences as Program
Committee Member.

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/

	Introduction
	Previous Work
	Soft IP-Based Embedded Multiprocessor Systems
	MicroBlaze soft IP processor
	MicroBlaze fast simplex link
	IBM interconnect
	MPSoC platform description

	MOCDEX MultiObjective designspace exploration
	Problem formulation
	Multiobjective optimization and multiobjective evolutionary algorithms (MOEA)
	Individuals classification
	Main loop of algorithm NSGA-II []

	MOCDEX
	MOCDEX (general)

	Case Study and Validation
	Image filtering application
	Alpha-data environment
	Alpha data hardware environment
	Alpha-data software environment

	Xilinx EDK tools
	Exploration flow description

	Exploration Results
	Flow execution results
	Flow execution time

	Explored design space statistical analysis
	Conclusion
	REFERENCES

