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1. INTRODUCTION

We present improved algorithms for computing the inverse
of large integers modulo a given prime or composite number,
without multiplications of any kind. In most computational
platforms they are much faster than the commonly used
algorithms employing multiplications, therefore, the multi-
plier engines should be used for other tasks in parallel. The
considered algorithms are based on different variants of the
Euclidean-type greatest common divisor algorithms. They
are iterative, gradually decreasing the length of the operands
and keeping some factors updated, maintaining a corre-
sponding invariant. There are other algorithmic approaches,
too. One can use system of equations or the little Fermat
theorem (see [1]), but they are only competitive with the
Euclidean-type algorithms under rare, special circumstances.

Several variants of three extended GCD algorithms
are modified for computing modular inverses for operand
lengths used in public key cryptography (128 bits–16Kb).We
discuss algorithmic improvements and simple hardware en-
hancements for speedups in digit-serial hardware architec-
tures. The main point of the paper is to investigate how much
improvement can be expected from these optimizations. It
helps implementers to choose the fastest or smallest algo-
rithm; allows system designer to estimate accurately the re-
sponse time of security systems; facilitates the selection of the
proper point representation for elliptic curves, and so forth.

The discussed algorithms run in quadratic time: O(n2)
for n-bit input. For very long operands more complex al-
gorithms such as Schönhage’s half-GCD algorithm [2] get
faster, running in O(n log2 n) time, but for operand lengths
used in cryptography they are far too slow (see [3]).

1.1. Extended greatest common divisor algorithms

Given 2 integers x and y the extended GCD algorithms com-
pute their greatest common divisor g, and also two inte-
ger factors c and d: [g, c,d] = xCGD(x, y), such that g =
c · x + d · y. For example, the greatest common divisor of 6
and 9 is 3; and 3 = (−1) · 6 + 1 · 9.

In the sequel we will discuss several xGCD algorithms.
(See also [4] or [5].) They are iterative, that is, their input
parameters get gradually decreased, while keeping the GCD
of the parameters unchanged (or keep track of its change).
The following relations are used:

(i) GCD(x, y) = GCD(x ± y, y),
(ii) GCD(x, y) = 2 ·GCD(x/2, y/2) for even x and even y,
(iii) GCD(x, y) = GCD(x/2, y) for even x and odd y.

1.2. Modular inverse

The positive residues 1, 2, . . . , p − 1 of integers modulo p (a
prime number) form a multiplicative group G, that is, they
obey the following 4 group laws.
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(1) Closure: if x and y are two elements in G, then the
product x · y := xymod p is also in G.

(2) Associativity: the defined multiplication is associative,
that is, for all x, y, z ∈ G : (x · y) · z = x · (y · z).

(3) Identity: there is an identity element i(= 1) such that
i · x = x · i = x for every element x ∈ G.

(4) Inverse: there is an inverse (or reciprocal) x−1 of each
element x ∈ G, such that x · x−1 = i.

The inverse mentioned in (4) above is called themodular
inverse, if the group is formed by the positive residues mod-
ulo a prime number. For example the inverse of 2 is 3mod5,
because 2 · 3 = 6 = 1mod5.

Positive residues modulo a composite number m do not
form a group, as some elements do not have inverse. For ex-
ample, 2 has no inverse mod6, because every multiple of 2
is even, never 1mod6. Others, like 5 do have inverse, also
called modular inverse. In this case the modular inverse of 5,
5−1 mod6, is also 5, because 5 · 5 = 25 = 24 + 1 = 1mod6.
In general, if x is relative prime tom (they share no divisors),
there is a modular inverse x−1 modm. (See also in [4].)

Modular inverses can be calculated with any of the nu-
merous xGCD algorithms. If we set y = m, by knowing that
GCD(x,m) = 1, we get 1 = c · x + d ·m from the results of
the xGCD algorithm. Taking this equation modulo m we get
1 = c · x. The modular inverse is the smallest positive such c,
so either x−1 = c or x−1 = c +m.

1.3. Computing the xGCD factors from
themodular inverse

In embedded applications the code size is often critical, so
if an application requires both xGCD and modular inverse,
usually xGCD is implemented alone, because it can provide
the modular inverse, as well. We show here that from the
modular inverse the two xGCD factors can be reconstructed,
even faster than it would take to compute them directly.
Therefore, it is always better to implement a modular inverse
algorithm than xGCD. These apply to subroutine libraries,
too, there is no need for a full xGCD implementation.

The modular inverse algorithms return a positive result,
while the xGCD factors can be negative. c = x−1 and c =
x−1 − y provide the two minimal values of one xGCD factor.
The other factor is d = (1 − c · x)/y, so d = (1 − x · x−1)/y
and d = x + (1− x · x−1)/y are the two minimal values. One
of the c values is positive, the other is negative, likewise d. We
pair the positive c with the negative d and vice versa to get
the two sets of minimal factors.

To get d, calculating only the MS half of x · x−1, plus a
couple of guard digits, is sufficient. Division with y provides
an approximate quotient, which rounded to the nearest inte-
ger gives d. This way there is no need for longer than ‖y‖-bit
arithmetic (except two extra digits for the proper rounding).
The division is essentially of the same complexity as multipli-
cation (for operand lengths in cryptography it takes between
0.65 and 1.2 times as long, see, e.g., [6]).

For the general case g > 1 we need a trivial modification
of the modular inverse algorithms: return the last candidate
for the inverse before one of the parameters becomes 0 (as

noted in [7] for polynomials). It gives x∗ such that x · x∗ ≡
gmod y. Again c = x∗ or c = x∗ − y and d = (g − x · x∗)/y
or d = x + (g − x · x∗)/y.

The extended GCD algorithm needs storage room for the
2 factors in addition to its internal variables. They get con-
stantly updated during the course of the algorithm. As de-
scribed above, one can compute the factors from the modu-
lar inverse and save the memory for one (long integer) factor
and all of the algorithmic steps updating it. The xGCD algo-
rithms applied for operand lengths in cryptography perform
a number of iterations proportional to the length of the in-
put, and so the operations on the omitted factor would add
up to at least asmuch work as a shift-addmultiplication algo-
rithm would take. With a better multiplication (or division)
algorithm not only memory, but also some computational
work can be saved.

1.4. Cryptographic applications

The modular inverse of long integers is used extensively in
cryptography, like for RSA and ElGamal public key cryp-
tosystems, but most importantly in elliptic curve cryptogra-
phy.

1.4.1. RSA

RSA encryption (decryption) of a message (ciphertext) g
is done by modular exponentiation: gemodm, with differ-
ent encryption (e) and decryption (d) exponents, such that
(ge)d modm = g. The exponent e is the public key, together
with the modulusm = p · q, the product of 2 large primes. d
is the corresponding private key. The security lies in the diffi-
culty of factoringm. (See [5].) Modular inverse is used in the
following.

(i) Modulus selection: in primality tests (excluding small
prime divisors). If a random number has no modu-
lar inverse with respect to the product of many small
primes, it proves that the random number is not
prime. (In this case a simplified modular inverse algo-
rithm suffice, which only checks if the inverse exists.)

(ii) Private key generation: computing the inverse of the
chosen public key (similar to the signing/verification
keys: the computation of the private signing key from
the chosen public signature verification key). d =
e−1 mod(p − 1)(q − 1).

(iii) Preparation for CRT (Chinese remainder theorem
based computational speedup): the precalculated half-
size constant C2 = p−1 mod q (where the public mod-
ulus m = p · q) helps accelerating the modular expo-
nentiation about 4-fold [5].

(iv) Signed bit exponent recoding: expressing the exponent
with positive and negative bits facilitates the reduc-
tion of the number of nonzero signed bits. This way
many multiplications can be saved in the multiply-
square binary exponentiation algorithm. At negative
exponent bits the inverse of the message g−1 modm—
which almost always exists and precomputed in less
time than 2 modular multiplications—is multiplied to
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the partial result [8]. (In embedded systems, like smart
cards or security tokens RAM is expensive, so other ex-
ponentiations methods, like windowing, are often in-
applicable.)

1.4.2. ElGamal encryption

The public key is (p, α, αa), fixed before the encrypted com-
munication, with randomly chosen α, a and prime p. En-
cryption of the message m is done by choosing a random
k ∈ [1, p − 2] and computing γ = αk mod p and δ =
m · (αa)k mod p.

Decryption is done with the private key a, by computing
first the modular inverse of γ, then (γ−1)a = (α−a)k mod p,
and multiplying it to δ : δ · (α−a)k mod p = m. (See also in
[5].)

1.4.3. Elliptic curve cryptography

Prime field elliptic curve cryptosystems (ECC) are gaining
popularity especially in embedded systems, because of their
smaller need in processing power and memory than RSA or
ElGamal. Modular inverses are used extensively during point
addition, doubling and multiplication (see more details in
[4]). 20–30% overall speedup is possible, just with the use of
a better algorithm.

An elliptic curve E over GF(p) (the field of residues mod-
ulo the prime p) is defined as the set of points (x, y) (together
with the point at infinity O) satisfying the reduced Weier-
straß equation:

E : f (X ,Y) � Y 2 − X3 − aX − b ≡ 0mod p. (1)

In elliptic curve cryptosystems the data to be encrypted is
represented by a point P on a chosen curve. Encryption by
the key k is performed by computing Q = P + P + · · · + P =
k · P. Its security is based on the hardness of computing the
discrete logarithm in groups. This operation, called scalar
multiplication (the additive notation for exponentiation),
is usually computed with the double-and-add method (the
adaptation of the well-known square-and-multiply algorithm
to elliptic curves, usually with signed digit recoding of the ex-
ponent [8]). When the resulting point is not the point at in-
finityO, the addition of points P = (xP , yP) andQ = (xQ, yQ)
leads to the resulting point R = (xR, yR) through the follow-
ing computation:

xR = λ2 − xP − xQmod p,

yR = λ · (xP − xR
)− yP mod p,

(2)

where

λ =
⎧
⎨

⎩

(
yP − yQ

)
/
(
xP − xQ

)
mod p if P �= Q,

(
3x2P + a

)
/
(
2yP

)
mod p if P = Q.

(3)

Here the divisions in the equations for λ are shorthand nota-
tions for multiplications with the modular inverse of the de-
nominator. P = (xP , yP) is called the affine representation

of the elliptic curve point, but it is also possible to repre-
sent points in other coordinate systems, where the field di-
visions (multiplications with modular inverses) are traded to
a larger number of field additions and multiplications. These
other point representations are advantageous when comput-
ing the modular inverse is much slower than a modular mul-
tiplication. In [9] the reader can find discussions about point
representations and the corresponding costs of elliptic curve
operations.

2. HARDWARE PLATFORMS

2.1. Multiplications

There are situations where the modular inverse has to be or
it is better calculated without any multiplication operations.
These include

(i) if the available multiplier hardware is slow,
(ii) if there is no multiplier circuit in the hardware at all.

For example, on computational platforms where long
parallel adders perform multiplications by repeated
shift-add operations, (see [10] for fast adder architec-
tures.)

(iii) for RSA key generation in cryptographic processors,
where the multiplier circuit is used in the background
for the exponentiations of the (Miller-Rabin) primal-
ity test [5],

(iv) in prime field elliptic or hyper elliptic curve cryptosys-
tems, where the inversion can be performed parallel to
other calculations involving multiplications.

Of course, there are also computational platforms, where
multiplications are better used for modular inverse calcula-
tions. These include workstations with very fast or multiple
multiplier engines (could be three: ALU, floating point mul-
tiplier, and multimedia extension module).

In digit-serial arithmetic engines there is usually a digit-
by-digit multiplier circuit (for 8–128 bit operands), which
can be utilized for calculating modular inverses. This multi-
plier is the slowest circuit component; other parts of the cir-
cuit can operate at much higher clock frequency. Appropriate
hardware designs, with faster non-multiplicative operations,
can defeat the speed advantage of those modular inverse al-
gorithms, which use multiplications. This way faster and less
expensive hardware cores can be designed.

This kind of hardware architecture is present in many
modern microprocessors, like the Intel Pentium Processors.
They have 1 clock cycle base time for a 32 bit integer add
or subtract instruction (discounting operand fetch and other
overhead), and they can sometimes be paired with other in-
structions for concurrent execution. A 32 bit multiply takes
10 cycles (a divide takes 41 cycles), and neither can be
paired.

2.2. Shift andmemory fetch

The algorithms considered in this paper process the bits or
digits of their long operands sequentially, so in a single cycle
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fetching more neighboring digits (words) into fast registers
allows the use of slower, cheaper RAM, or pipeline registers.

We will use only add/subtract, compare and shift oper-
ations. With trivial hardware enhancements the shift opera-
tions can be done “on the fly” when the operands are loaded
for additions or subtractions. This kind of parallelism is cus-
tomarily provided by DSP chips, and it results in a close to
two-fold speedup of the shifting xGCD-based modular in-
verse algorithms.

Shift operations could be implemented with manipulat-
ing pointers to the bits of a number. At a subsequent ad-
dition/subtraction the hardware can provide the parameter
with the corresponding offset, so arbitrary long shifts take
only a constant number of operations with this offset-load
hardware support. (See [11].) Even in traditional computers
these pointer manipulating shift operations save time, allow-
ing multiple shift operations to be combined into a longer
one.

2.3. Number representation

For multidigit integers signed magnitude number represen-
tation is beneficial. The binary length of the result is also
calculated at each operation (without significant extra cost),
and pointers show the position of the most and least signifi-
cant bits in memory.

(i) Addition is done from right to left (from the least to
the most significant bits), the usual way.

(ii) Subtraction needs a scan of the operand bits from left
to right, to find the first different pair. They tell the sign
of the result. The leading equal bits need not be pro-
cessed again, and the right-to-left subtraction from the
larger number leaves no final borrow. This way sub-
traction is of the same speed as addition, like with 2’s
complement arithmetic.

(iii) Comparisons can be done by scanning the bits from left
to right, too. For uniform random inputs the expected
number of bit operations is constant, less than 1·1/2+
2 · 1/4 + 3 · 1/8 . . . = 2.

(iv) Comparisons to 0, 1, or 2k take constant time also in the
worst case, if the head and tail pointers have been kept
updated.

3. MODULAR INVERSE ALGORITHMS

We consider all three Euclidean-type algorithm families com-
monly used: the extended versions of the right-shift, the left-
shift, and the traditional Euclidean-algorithm. They all grad-
ually reduce the length of their operands in an iteration,
maintaining some invariants, which are closely related to the
modular inverse.

3.1. Binary right shift: algorithms RS

At the modular inverse algorithm based on the right-shift bi-
nary extended GCD (variants of the algorithm of Penk, see
in [12, Exercise 4.5.2.39] and [13]), the modulus m must be
odd. The trailing 0 bits from two internal variables U and V

U← m; V← a;
R← 0; S← 1;
while (V > 0) {

if (U0 = 0) {
U← U/2;
if (R0 = 0) R← R/2;
else R← (R +m)/2;

}
else if (V0 = 0) {

V← V/2;
if (S0 = 0) S← S/2;
else S← (S +m)/2;

}
else // U,V odd

if (U > V) {
U← U−V; R← R− S;

/ ∗∗/ if (R < 0) R← R +m; }
else {

V← V−U; S← S− R;
/ ∗∗/ if (S < 0) S← S +m; }
}
if (U > 1) return 0;
if (R > m) R← R−m;
if (R < 0) R← R +m;
return R; // a−1 modm

Algorithm 1: Right-shift binary algorithm.

(initialized to the input a, m) are removed by shifting them
to the right, then their difference replaces the larger of them.
It is even, so shifting right removes the new trailing 0 bits
(Algorithm 1).

Repeat these until V = 0, whenU = GCD(m, a). If U > 1,
there is no inverse, so we return 0, which is not an inverse of
anything.

In the course of the algorithm two auxiliary variables, R
and S, are kept updated. At termination R is the modular in-
verse.

3.1.1. Modification: algorithm RS1

The two instructions marked with “/ ∗∗/” in Algorithm 1.
keep R and S nonnegative and so assure that they do not
grow too large (the subsequent subtraction steps decrease the
larger absolute value). These instructions are slow and not
necessary, if we ensure otherwise, that the intermediate val-
ues of R and S do not get too large.

Handling negative values and fixing the final result is
easy, so it is advantageous if instead of the marked instruc-
tions, we only check at the add-halving steps (R← (R+m)/2
and S ← (S + m)/2) whether R or S was already larger (or
longer) thanm, and add or subtract m such that the result be-
comes smaller (shorter). These steps cost no additional work
beyond choosing “+” or “−” and, if |R| ≤ 2m was before-
hand, we get |R| ≤ m, the same as at the simple halving of
R← R/2 and S← S/2. If |R| ≤ m and |S| ≤ m, |R− S| ≤ 2m
(the length could increase by one bit) but these instructions
are always followed by halving steps, which prevent R and
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S to grow larger than 2m during the calculations. (See code
details at the plus-minus algorithm below.)

3.1.2. Evenmodulus

This algorithm cannot be used for RSA key generation, be-
cause m must be odd (to ensure that either R or R ± m is
even for the subsequent halving step). We can go around the
problem by swapping the role ofm and a (amust be odd, ifm
is even, otherwise there is no inverse). The algorithm returns
m−1 mod a, such thatm ·m−1 + k′ · a = 1, for some negative
integer k′ · k′ ≡ a−1 modm, easily seen if we take both sides
of the equation mod m. It is simple to compute the smallest
positive k ≡ k′modm:

k = a−1 modm = m +
(
1−m ·m−1)/a. (4)

As we saw before, the division is fast with calculating only
the MS half ofm ·m−1, plus a couple of guard digits to get an
approximate quotient, to be rounded to the nearest integer.

Unfortunately there is no trivial modification of the al-
gorithm to handle even moduli directly, because at halving
only an integer multiple of the modulus can be added with-
out changing the result, and only adding an odd number
can turn odd intermediate values to even. Fortunately, the
only time we need to handle even moduli in cryptography
is at RSA key generation, which is so slow anyway (requir-
ing thousands of modular multiplications for the primality
tests), that this black box workaround does not cause a no-
ticeable difference in processing time.

An alternative was to perform the full extended GCD
algorithm, calculating both factors c and d: [g, c,d] =
xCGD(m, a), such that the greatest common divisor g =
c · m + d · a [5]. It would need extra storage for two fac-
tors, which are constantly updated during the course of the
algorithm and it is also slower than applying the method
above transforming the result of the modular inverse algo-
rithm with swapped parameters.

3.1.3. Justification

The algorithm starts with U = m, V = a, R = 0, S = 1. In
the course of the algorithm U and V are decreased, keeping
GCD(U,V) = GCD(m, a) true. The algorithm reduces U and
V until V = 0 and U = GCD(m, a): if one of U or V is even,
it can be replaced by its half, since GCD(m, a) is odd. If both
are odd, the larger one can be replaced by the even U − V,
which then can be decreased by halving, leading eventually
to 0. The binary length of the larger of U and V is reduced by
at least one bit, guaranteeing that the procedure terminates
in at most ‖a‖ + ‖m‖ iterations.

At termination of the algorithm V = 0 otherwise a length
reduction was still possible. U = GCD(U, 0) = GCD(m, a).
Furthermore, the calculations maintain the following two
congruencies:

U ≡ Ramodm, V ≡ Samodm. (5)

Having an oddmodulusm, at the step halving U we have two
cases. When R is even: U/2 ≡ (R/2) · amodm, and when R

is odd: U/2 ≡ ((R +m)/2) · amodm. The algorithm assigns
these to U and R. Similarly for V and S, and with their new
values, (5) remains true.

The difference of the two congruencies in (5) gives U −
V ≡ (R − S) · amodm, which ensures that at the subtrac-
tion steps (5) remains true after updating the correspond-
ing variables: U or V ← U − V, R or S ← R − S. Choosing
+m or −m, as discussed above, guarantees that R and S does
not grow larger than 2m, so at the end we can just add or
subtract m to make 0 < R < m. If U = 1 = GCD(m, a),
we get 1 ≡ Ramodm, and R is of the right magnitude, so
R = a−1 modm.

3.1.4. Plus-minus: algorithm RS+−

There is a very simple modification often used for the right-
shift algorithm [14]: for the odd U and V check, if U + V has
2 trailing 0 bits, otherwise we know that U − V does. In the
former case, if U + V is of the same length as the larger of
them, the shift operation reduces the length by 2 bits from
this larger length, otherwise by only one bit (as before with
the rigid subtraction steps). It means that the length reduc-
tion is sometimes improved, so the number of iterations de-
creases.

Unfortunately, this reduction is not large, only 15% (half
of the time the reduction was by at least 2 bits, anyway, and
longer shifts are not affected either), but it comes almost for
free. Furthermore, R and S need more halving steps, and
these get a little more expensive (at least one of the halving
steps needs an addition of m), so the RS+− algorithm is not
faster than RS1.

3.1.5. Double plus-minus: algorithm RS2+−

The plus-minus reduction can be applied also to R and S
(Algorithm 2). In the course of the algorithm they get halved,
too. If one of them happens to be odd, m is added or sub-
tracted to make them even before the halving. The plus-
minus trick on them ensures that the result has at least 2 trail-
ing 0 bits. It provides a speedup, because most of the time we
had exactly two divisions by 2 (shift right by two), and no
more than one addition/subtraction ofm is now necessary.

3.1.6. Delayed halving: algorithm RSDH

The variables R and S get almost immediately of the same
length asm, because, when they are odd,m is added to them
to allow halving without remainder. We can delay these add-
halving steps, by doubling the other variable instead. When
R should be halved we double S, and vice versa. Of course,
a power-of-2 spurious factor is introduced to the computed
GCD, but keeping track of the exponent a final correction
step will fix R by the appropriate number of halving or add-
halving steps. (This technique is similar to the Montgomery
inverse computation published in [15] and sped up for com-
puters in [16], but the correction steps differ.) It provides an
acceleration of the algorithm by 24–38% over RS1, due to the
following.
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U← m; V← a;
R← 0; S← 1;
Q = mmod4;

while (V0 = 0) { V← V/2;
if (S0 = 0) S← S/2;
else if (S > m) S← (S−m)/2;
else S← (S +m)/2;

}
Loop { // U, V odd

if (U > V) {
if (U1 = V1)

U← U+V; R← R + S;
else

U← U−V; R← R− S;
U← U/4; T← Rmod4;
if (T = 0) R← R/4;
if (T = 2) R← (R + 2m)/4;
if (T = Q) R← (R−m)/4;
else R← (R +m)/4;
while (U0 = 0) {U← U/2;

if (R0 = 0) R← R/2;
else if (R > m) R← (R−m)/2;
else R← (R +m)/2; }

else {
if (U1 = V1)

V← V +U; S← S + R;
else

V← V−U; S← S− R;
if (V = 0) break;

V← V/4; T← Smod4;
if (T = 0) S← S/4;
if (T = 2) S← (S + 2m)/4;
if (T = Q) S← (S−m)/4;
else S← (S +m)/4;
while (V0 = 0) {V← V/2;

if (S0 = 0) S← S/2;
else if (S > m) S← (S−m)/2;
else S← (S +m)/2; }

}
if (U > 1) return 0; // no inverse
if (R ≥ m) R← R−m;
if (R < 0) R← R +m;
return R; //a−1 modm

Algorithm 2: Double plus-minus right-shift binary algorithm.

(1) R and S now increase gradually, so their average length
is only half as it was in RS1.

(2) The final halving steps are performed only with R. The
variable S needs not be fixed, being only an internal
temporary variable.

(3) At the final halving steps more short shifts can be com-
bined to longer shifts, because they are not confined
by the amount of shifts performed on U and V in the
course of the algorithm.

Note 1. R and S are almost always of different lengths, and
so their difference is not longer than the longer of R and S.
Consequently, their lengths do not increase faster than what
the shifts cause.

Note 2. It does not pay to check, if R or S is even, in the
hope that some halving steps could be performed until the
involved R or S becomes odd, and so speeding up the final
correction, because they are already odd in the beginning
(easily proved by induction).

3.1.7. Combined speedups: algorithm RSDH+−
The second variant of the plus-minus trick and the delayed
halving trick can be combined, giving the fastest of the pre-
sented right-shift modular algorithms. It is 43–60% faster
than algorithm RS1 (which is 30% faster than the tradi-
tional implementation RS), but still slower on most compu-
tational platforms than the left-shift and shifting Euclidean
algorithms, discussed below.

3.2. Binary left-shift modular inverse: algorithm LS1

The left-shift binary modular inverse algorithm (similar to
the variant of Lórencz [17]) is described in Algorithm 3. It
keeps the temporary variables U and V aligned to the left,
such that a subtraction clears the leading bit(s). Shifting the
result left until the most significant bit is again in the proper
position restores the alignment. The number of known trail-
ing 0 bits increases, until a single 1 bit remains, or the result
is 0 (indicating that there is no inverse). As before, keeping
2 internal variables R and S updated, the modular inverse is
calculated.

Here u and v are single-word variables, counting how
many times U and V were shifted left, respectively. They tell
at least how many trailing zeros the corresponding U and
V long integers have, because we always add/subtract to the
one, which has fewer known zeros and then shift left, increas-
ing the number of trailing zeros. 16 bit words for u and v
allow us working with any operand length less than 64Kb,
enough for all cryptographic applications in the foreseeable
future. Knowing the values of u and v also helps speeding
up the calculations, because we need not process the known
least significant zeros.

3.2.1. Justification

The reduction of the temporary variables is now done by
shifting left the intermediate results U and V, until they have
their MS bits in the designated nth bit position (which is the
MS position of the larger of the original operands). Perform-
ing a subtraction clears this bit, reducing the binary length.
The left shifts introduce spurious factors, 2k, for the GCD,
but tracking the number of trailing 0 bits (u and v) allows
the determination of the true GCD. (For a rigorous proof see
[17].)

We start with U = m, V = a, R = 0, S = 1, u = v =0.
In the course of the algorithm there will be at least u and v
trailing 0 bits in U and V, respectively. In the beginning

GCD
(
U/2min(u,v), V/2min(u,v)) = GCD(m, a). (6)

If U or V is replaced by U−V, this relation remains true.
If both U and V had their most significant (nth) bit = 1, the
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U← m; V← a;
R← 0; S← 1;
u← 0; v ← 0;
while ((|U| �= 2u) && (|V| �= 2v)) {

if (|U| < 2n−1) {
U← 2U; u← u + 1;
if (u > v) R← 2R;
else S← S/2;

}
else if (|V| < 2n−1) {

V← 2V; v ← v + 1;
if (v > u) S← 2S;
else R← R/2;

}
else // |U|, |V| ≥ 2n−1

if (sign(U) = sign(V))
if (u ≤ v)
{U← U−V; R← R− S; }

else
{V← V−U; S← S− R; }

else // sign(U) �= sign(V)
if (u ≤ v)
{U← U+V; R← R + S; }

else
{V← V +U; S← S + R; }

if (U = 0 || V = 0) return 0; }
if (|V| = 2v) {R← S; U← V; }
if (U < 0)

if (R < 0) R← −R;
else R← m− R;

if (R < 0) R← m + R;
return R; // a−1 modm

Algorithm 3: Left-shift binary algorithm.

above subtraction clears it.We chose the one fromU andV to
be updated, which had the smaller number of trailing 0 bits,
say it was U. U then gets doubled until its most significant
bit gets to the nth bit position again, and u, the number of
trailing 0’s, is incremented in each step.

If u ≥ v was before the doubling, min(u, v) does not
change, but U doubles. Since GCD(m, a) is odd (there is
no inverse if it is not 1), GCD(2 · U/2min(u,v), V/2min(u,v)) =
GCD(m, a) remains true. If u < v was before the doubling,
min(u, v) increases, leaving U/2min(u,v) unchanged. The other
parameter V/2min(u,v) was even, and becomes halved. It does
not change the GCD, either.

In each subtraction-doubling iteration either u or v (the
number of trailing known 0’s) is increased. U and V are never
longer than n-bits, so u and v ≤ n, and eventually a single 1
bit remains in U or V (or one of them becomes 0, showing
that GCD(m, a) > 1). It guarantees that the procedure stops
in at most ‖a‖ + ‖m‖ iterations, with U or V = 2n−1 or 0.

In the course of the algorithm,

U/2min(u,v) ≡ Ramodm, V/2min(u,v) ≡ Samodm. (7)

At subtraction steps (U−V)/2min(u,v) ≡ (R−S)·amodm,
so (7) remains true after updating the corresponding vari-
ables: U or V← U−V, R or S← R− S.

At doubling U and incrementing u, if u < v was before the
doubling, min(u, v) increases, so U/2min(u,v) and R remains
unchanged. V/2min(u,v) got halved, so it is congruent to (S/2)·
amodm, therefore S has to be halved to keep (7) true. This
halving is possible (V is even), because S has at least v − u
trailing 0’s (can be proved by induction).

At doubling U and incrementing u, if u ≥ v was before
the doubling, min(u, v) does not change. To keep (7) true R
has to be doubled, too (which also proves that it has at least
v − u trailing 0’s).

Similar reasoning shows the correctness of handling R
and S when V is doubled.

At the end we get either U = 2u or V = 2v, so one of
U/2min(u,v) or V/2min(u,v) is 1, and GCD(m, a) is the other one.
If the inverse exists, GCD(m, a) = 1 and we get from (7) that
either 1 ≡ Ramodm or 1 ≡ Samodm. After making R or S
of the right magnitude, it is the modular inverse a−1 modm.

Another induction argument shows that R and S do not
become larger than 2m in the course of the algorithm, oth-
erwise the final reduction phase of the result to the interval
[1,m− 1] could take a lot of calculations.

3.2.2. Best left shift: algorithm LS3

The plus-minus trick does not work with the left-shift algo-
rithm: addition never clears the MS bit. If U and V are close,
a subtraction might clear more than one MS bits, otherwise
one could try 2U − V and 2V − U for the cases when 2U
and V or 2V and U are close. (With the nth bit = 1 other
two’s power linear combinations, which can be calculated
with only shifts, do not help.) Looking at only a few MS bits,
one can determine which one of the 3 tested reductions is
expected to give the largest length decrease (testing 3 reduc-
tion candidates is the reason to call the algorithm LS3). We
could often clear extra MS bits this way. In general micro-
processors the gain is not much, because computing 2x − y
could take 2 instructions instead of one for x − y, but mem-
ory load and store steps can still be saved. With hardware for
shifted operand fetch the doubling comes for free, giving a
larger speedup.

3.3. Shifting Euclideanmodular inverse: algorithms SE

The original Euclidean GCD algorithm replaces the larger
of the two parameters by subtracting the largest number of
times the smaller parameter keeping the result nonnegative:
x ← x − [x/y] · y. For this we need to calculate the quotient
[x/y] andmultiply it with y. In this paper we do not deal with
algorithms, which perform division or multiplication. How-
ever, the Euclidean algorithm works with smaller coefficients
q ≤ [x/y], too: x ← x − q · y. In particular, we can choose q
to be the largest power of 2, such that q = 2k ≤ [x/y]. The
reductions can be performed with only shifts and subtrac-
tions, and they still clear the most significant bit of x, so the
resulting algorithm will terminate in a reasonable number of
iterations. It is well known (see [12]) that for random input,
in the course of the algorithm, most of the time [x/y] = 1 or
2, so the shifting Euclidean algorithm performs only slightly
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if (a < m)
{U← m; V← a;
R← 0; S← 1; }

else
{V← m; U← a;
S← 0; R← 1; }

while (‖V‖ > 1) {
f ← ‖U‖ − ‖V‖
if (sign(U) = sign(V))

{U← U− (V� f );
R← R− (S� f ); }

else
{U← U+ (V� f );
R← R + (S� f ); }

if (‖U‖ < ‖V‖)
{U↔ V; R↔ S; }

}
if (V = 0) return 0;
if (V < 0) S← −S;
if (S > m) return S−m;
if (S < 0) return S +m;
return S; // a−1 modm

Algorithm 4: Shifting Euclidean algorithm.

more iterations than the original, but avoids multiplications
and divisions. See Algorithm 4.

Repeat the above reduction steps until V = 0 or±1, when
U = GCD(m, a). If V = 0, there is no inverse, so we return 0,
which is not an inverse of anything. (The pathological cases
likem = a = 1 need special handling, but these do not occur
in cryptography.)

In the course of the algorithm two auxiliary variables, R
and S are kept updated. At termination S is the modular in-
verse, or the negative of it, within ±m.

3.3.1. Justification

The algorithm starts with U = m, V = a, R = 0, S = 1. If
a > m, swap (U,V) and (R, S). U always denotes the longer
of the just updated U and V. During the course of the al-
gorithm U is decreased, keeping GCD(U,V) = GCD(m, a)
true. The algorithm reduces U, swaps with V when U < V,
until V = ±1 or 0 : U is replaced by U − 2kV, with such
a k, that reduces the length of U, leading eventually to 0 or
±1, when the iteration can stop. The binary length ‖U‖ is re-
duced by at least one bit in each iteration, guaranteeing that
the procedure terminates in at most ‖a‖ + ‖m‖ iterations.

At termination of the algorithm either V = 0 (indicating
that U = 2kV was beforehand, and so there is no inverse)
or V = ±1, otherwise a length reduction was still possible.
In the later case 1 = GCD(|U|, |V|) = GCD(m, a). Further-
more, the calculations maintain the following two congruen-
cies:

U ≡ Ramodm, V ≡ Samodm. (8)

The weighted difference of the two congruencies in (8)
gives U − 2kV ≡ (R − 2kS) · amodm, which ensures that at
the reduction steps (8) remains true after updating the cor-
responding variables: U ← U − 2kV, R ← R − 2kS. As in the
proof of correctness of the original extended Euclidean algo-
rithm, we can see that |R| and |S| remain less than 2m, so at
the end we fix the sign of S to correspond to V, and add or
subtract m to make 0 < S < m. Now 1 ≡ Samodm, and S is
of the right magnitude, so S = a−1 modm.

3.3.2. Best-shift Euclideanmodular inverse: algorithm SE3

We can employ a similar speedup technique for the shift-
ing Euclidean algorithm as with the left-shift algorithm LS3.
If U and 2kV are close, the shift subtraction might clear
more than one MS bits, otherwise one could try U − 2k−1V
and U − 2k+1V. (With k being the length difference. Other
two’s power linear combinations cannot clear more MS bits.)
Looking at only a few MS bits one can determine which
one of the 3 tested reductions is expected to give the largest
(length) decrease. (Testing 3 reduction candidates is the rea-
son to call the algorithm SE3). We could often clear extra
MS bits this way. This technique gives about 14% reduction
in the number of iterations, and a similar speedup on most
computational platforms, because the shift operation takes
the same time, regardless of the amount of shift (except when
it is 0).

We have a choice: how to rank the expected reductions.
In the SE3 code we picked the largest expected length reduc-
tion, because it is the simplest in hardware. Another possibil-
ity was to choose the shift amount, which leaves the smallest
absolute value result. It is a little more complex, but gives
about 0.2% speed increase.

4. SIMULATION TEST RESULTS

The simulation code was written in C, developed in MS
Visual Studio 6. It is available at http://www.hars.us/SW/
ModInv.c. GMPVersion 4.1.2, the GNUmultiprecision arith-
metic library [3] was used for the long integer operations
and for verifying the results. It is linked as an MS Win-
dows DLL, available also at http://www.hars.us/SW/gmp-
dll.zip.

We executed 1 million calls of each of the many variants
of the modular inverse algorithms with 14 different lengths
in the range of 16–1024 bit random inputs, so the experi-
mental complexity results are expected to be accurate within
0.1–0.3% (central limit theorem) at every operand length.
The performed operations and their costs were counted sep-
arately for different kind of operations. Table 1 contains the
binary costs of the additions and shifts the corresponding
modular inverse algorithms performed, and the number of
iterations and the number of shifts with the most frequent
lengths. (Multiple shifts are combined together.) The com-
puted curves fit to the data with less than 1% error at any
operand length.

The right-shift algorithms are the slowest, because they
halve two auxiliary variables (R, S) and if they happen to be

http://www.hars.us/SW/ModInv.c
http://www.hars.us/SW/ModInv.c
http://www.hars.us/SW/gmp-dll.zip
http://www.hars.us/SW/gmp-dll.zip
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Table 1

Algorithm Right shift Left shift Shift Euclidean

Steps/bit RS1 RS+− RS2+− RSDH RSDH+− LS1 LS3 SE SE3
Iterations 0.7045n 0.6115n 0.6115n 0.7045n 0.6115n 0.7650n 0.6646n 0.7684n 0.6744n

UV shift cost
0.3531n2 0.3065n2 0.3065n2 0.3531n2 0.3065n2 0.3834n2 0.3967n2 0.3101n2 0.2708n2

−1.2200n −1.1891n −1.1891n −1.2200n −1.1891n −0.8836n −0.8435n −1.0646n −0.8742n

RS shift cost
1.0592n2 1.2259n2 0.9808n2 0.9241n2 0.8021n2 0.5300n2 0.5558n2 0.3101n2 0.2708n2

−4.9984n −5.2592n −5.1720n −3.3945n −3.3794n −4.9665n −5.1855n −2.9784n −2.5787n

Total shift cost
1.4123n2 1.5324n2 1.2873n2 1.2772n2 1.1086n2 0.9134n2 0.9525n2 0.6202n2 0.5416n2

−6.2184n −6.4483n −6.3611n −4.6145n −4.5685n −5.8501n −6.0290n −4.0430n −3.4529n
UV subtract cost

0.3531n2 0.3065n2 0.3065n2 0.3531n2 0.3065n2 0.3835n2 0.3331n2 0.3851n2 0.3380n2

+0.2658n +0.2967n +0.2967n +0.2658n +0.2967n +0.4377n +0.5942n +0.4276n +0.4958n

RS subtract cost
1.4123n2 1.5325n2 1.2873n2 0.9241n2 0.8021n2 0.3834n2 0.3331n2 0.3851n2 0.3380n2

−4.8065n −4.8844n −4.5004n −1.4559n −0.7786n −1.0101n −0.9160n −1.0331n −0.7125n

Total subtract cost
1.7654n2 1.8390n2 1.5938n2 1.2772n2 1.1086n2 0.7669n2 0.6662n2 0.7702n2 0.6760n2

−4.5407n −4.5877n −4.2037n −1.1901n −0.4819n −0.5724n −0.3218n −0.6055n −0.2167n
Complexity at

1.7654n2 1.8390n2 1.5938n2 1.2772n2 1.1086n2 0.7669n2 0.6662n2 0.7702n2 0.6750n2
0 cost shift

Complexity at
2.1185n2 2.2221n2 1.9156n2 1.5965n2 1.3858n2 0.9953n2 0.9043n2 0.9253n2 0.8114n2

1/4 add cost shift

Complexity at
3.1777n2 3.3714n2 2.8811n2 2.5544n2 2.2172n2 1.6803n2 1.6187n2 1.3904n2 1.2176n2

1 add cost shift

UV shifts by 1 0.3522n — — 0.3522n — 0.1983n 0.1977n 0.2576n 0.2143n

UV shifts by 2 0.1761n 0.3058n 0.3058n 0.1761n 0.3058n 0.2463n 0.2388n 0.1705n 0.1573n

UV shifts by 3 0.0881n 0.1529n 0.1529n 0.0881n 0.1529n 0.1516n 0.1778n 0.0927n 0.0831n

Longer UV shifts 0.0881n 0.1529n 0.1529n 0.0881n 0.1529n 0.1689n 0.1772n 0.0980n 0.0857n

RS shifts by 1 0.7925n 0.7644n 0.3364n 0.6375n — 0.5202n 0.5395n 0.2576n 0.2143n

RS shifts by 2 0.1982n 0.3440n 0.4816n 0.3188n 0.5534n 0.3142n 0.3313n 0.1705n 0.1573n

RS shifts by 3 0.0495n 0.0860n 0.1204n 0.1594n 0.2767n 0.1280n 0.1413n 0.0927n 0.0831n

Longer RS shifts 0.0165n 0.0287n 0.0401n 0.1594n 0.2767n 0.0952n 0.0968n 0.0980n 0.0857n

odd,m is added or subtracted first, tomake them even for the
halving. Theoretical arguments and also our computational
experiments showed that they are too slow at digit-serial
arithmetic. They were included in the discussions mainly,
because there are surprisingly many systems deployed using
some variant of the right-shift algorithm, although others are
much better.

The addition steps are not needed in the left-shift or in
the shifting Euclidean algorithms. In all three groups of al-
gorithms the length of U and V decreases bit-by-bit in each
iteration, and in the left-shift and shifting Euclidean algo-
rithms the length of R and S increases steadily from 1. In the
right-shift case they get very soon as long as m, except in the
delayed halving variant. In the average, the changing lengths
roughly halve the work on those variables. Also, the necessary

additions of m in the original right-shift algorithms prevent
aggregation of the shift operations of R and S. On the other
hand, in the other algorithms (including the delayed halving
right-shift algorithm) we can first determine by how many
bits we have to shift all together in that phase. In the left-
shift algorithms, dependent on the relative magnitude of u
and v, we need only one or two shifts by multiple bits, in the
shifting Euclidean algorithm only one. This shift aggregation
saves work at longer shifts than the most common lengths of
1 or 2.

On the other hand, the optimum shift lengths in the left-
shift and shifting Euclidean algorithms are only estimated
from the MS bits. They are sometimes wrong, while in the
right-shift algorithm only the LS bits play a role, so the opti-
mum shift lengths can always be found exactly. Accordingly,
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the right-shift algorithms perform slightly fewer iterations
(8.6–10%), but the large savings in additions in the other al-
gorithms offset these savings.

4.1. Software running time comparisons

We did notmeasure execution times of SW implementations,
because of the following reasons.

(1) The results are very much dependent on the character-
istics of the hardware platforms (word length, instruc-
tion timings, available parallel instructions, length and
function of the instruction pipeline, processor versus
memory speed, cache size and speed, number of levels
of cache memory, page fault behavior, etc).

(2) The results also depend on the operating system (mul-
titasking, background applications, virtual/paging
memory handling, etc).

(3) The results are dependent on the code, the program-
ming language, and the compiler. For example, GMP
[3] uses hand optimized assembler macros, and any
other SW written in a higher level language is neces-
sarily disadvantaged, like at handling carries.

In earlier publications running time measurements were re-
ported, like in [18] Jebelean gave software execution time
measurements of GCD algorithms on a DEC computer
of RISC architecture. Our measurements on a 3GHz In-
tel Pentium PC running Windows XP gave drastically dif-
ferent speed ratios. This large uncertainty was the reason
why we decided to count the number of specific opera-
tions and sum up their time consumption dependent on
the operand lengths, instead of the much easier running
time measurements. This way the actual SW running time
can be well estimated on many different computational
platforms.

4.2. Notes on the simulation results

(i) The number of the different UV shifts, together, is the
number of iterations, since there is one combined shift
in each iteration.

(ii) In the left-shift algorithms the sum of RS shifts is larger
than the number of iterations, because some shifts may
cause the relationship between u and v to change, and
in this case there are 2 shifts in one iteration.

(iii) In [19] there are evidences cited that the binary right-
shift GCD algorithm performs A · log 2‖m‖ iterations,
with A = 1.0185 . . . . The RS1 algorithm performs the
same number of iterations as the binary right-shift
GCD algorithm. Our experiments gave a very simi-
lar (only 0.2% smaller) result: A′ = 0.7045/ log 2 =
1.0164 . . . .

In Table 1 we listed the coefficients of the dominant terms
of the best fit polynomials to the time consumption of the
algorithms, in 3 typical computational models.

(1) Shifts execute in a constant number of clock cycles

Algorithm LS3 is the fastest (0.6662n2), followed by SE3
(0.6750n2), with only a 1.3% lag. The best right-shift algo-
rithm is RSDH+−, which is 1.66 times slower (1.1086n2).

(2) Shifts are 4 times faster than add/subtracts

Algorithm SE3 is the fastest (0.8114n2), followed by LS3
(0.9043n2), within 14%. The best right-shift algorithm
(RSDH+−) is 1.71 times slower (1.3858n2).

(3) Shifts and add/subtracts take the same time

Again, algorithm SE3 is the fastest (1.2176n2), followed by
SE (1.3904n2), within 14%. The best right-shift algorithm
(RSDH+−) is 2.37 times slower (2.8804n2).

Interestingly the plus-minus algorithm RS+−, which
only assures that U or V are reduced by at least 2 bits, per-
forms fewer iterations, but the overall running time is not
improved. When R and S are also handled this way, the run-
ning time improves. It shows that speeding up the (R, S) halv-
ing steps is more important than speeding up the (U,V) re-
duction steps, because the later reduction steps operate on
diminishing length numbers, while the (R, S) halving works
mostly on more costly, full length numbers.

4.3. Performance relative to digit-serial modular
multiplication

Of course, the speed ratio of the modular inverse algorithms
relative to the speed of the modular multiplications depends
on the computational platform and the employed multipli-
cation algorithm. We consider quadratic time modular mul-
tiplications, like Barrett, Montgomery, or school multiplica-
tion with division-based modular reduction (see [5]). With
operand lengths in cryptography subquadratic timemodular
multiplications (like Karatsuba) are only slightly faster, more
often they are even slower than the simpler quadratic time
algorithms (see [3]).

If there is a hardware multiplier, which computes prod-
ucts of d-bit digits in c clock cycles, a modular multiplica-
tion takes T = 2c · (n/d)2 + O(n) time alone for computing
the digit products [11]. In DSP-like architectures (load, shift,
and add instructions performed parallel to multiplications)
the time complexity is 2c · (n/d)2. Typical values are

(i) d = 16, c = 4: T = n2/32 ≈ 0.031n2,
(ii) d = 32, c = 12: T = 3n2/128 ≈ 0.023n2.

The fastest of the presented modular inverse algorithm
on parallel shift-add architecture takes 0.666n2 bit opera-
tions, which needs to be divided by the digit size (processing
d bits together in one addition). For the above two cases we
get 0.042n2 and 0.021n2 running times, respectively. These
values are very close to the running time of onemodularmul-
tiplication.

The situation is less favorable if there are no parallel in-
structions. The time a multiplication takes is dominated by
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computing the digit products. Additions and register ma-
nipulations are faster. On these platforms computing the
modular inverse takes almost twice as much time than with
parallel add and shift instructions. Consequently, comput-
ing the modular inverse without parallel instructions takes
about twice as much time as a modular multiplication. Still,
in case of elliptic curve cryptography the most straightfor-
ward (affine) point representation and direct implementa-
tion of the point addition is the best (computation with the
projective, Jacobian and Chudnovsky-Jacobian coordinates
are slower, see [9]).

It is interesting to note that modular division (p·q−1) can
be performed faster than 3 modular multiplications. Similar
results were presented in [7, 20] for polynomials of practical
lengths, showing that even in extension fields GF(pk), elliptic
curve points are best represented in affine coordinates.

4.4. Performance relative to parallel adder-based
modularmultiplication

When very long adders are implemented in hardware, re-
peated shift-add steps can perform multiplications in lin-
ear time. To prevent the partial results from growing too
large, interleaved modular reduction is performed. Scanning
the bits of the second multiplicand from left to right, when
a 1 bit is found, the first multiplicand is added in the ap-
propriate position to the partial result r. If it gets too long:
‖r‖ > ‖m‖, it is reduced by subtracting the modulus m.
These add-subtract steps are usually done in the same clock
cycle, resulting in performing an n-bit modular multiplica-
tion in n clock cycles.

In these kinds of hardware architectures the speed of the
different modular inverse algorithms becomes very close, be-
cause there is no advantage of having additions on diminish-
ing length operands. An average iteration reduces the length
of the longer operand by about 1.4 bits, so the left- and
right-shift algorithms do not differ much, in how many shift
steps can be combined into one longer shift. The plus-minus
right-shift algorithm has the smallest number of iterations,
its delayed halving variant can combine the largest number
of shifts, so its running time becomes very close to that of the
shifting Euclidean algorithm.

In each iteration the RSDH+− modular inverse algo-
rithm needs to shift one of U or V, and double R or S the
samemany times, which give about the same amount of work
as the modular multiplication performs, maybe even less. At
the end we need to add-halve R, which makes the modular
inverse slightly slower than one modular multiplication, but
still faster than two.

4.5. Testing relative primality

We can simplify all of our shifting modular inverse algo-
rithms if we only want to know whether the two arguments
x, y are relative primes: leaving out all the calculations with
R and S. In this case all the plus-minus right-shift algorithms
become the same, so the simplest one, RS+− is the best, with
0.3065n2 cost of bit shifts and the same for subtractions.

All together it is 0.6130n2. SE3 is still slightly better, with a
running time of 0.6088n2. The modified left-shift algorithm
LS3 takes 0.3967n2 clock cycles for the shift operations, and
0.3331n2 clock cycles for the subtract operations, which is
only 9–19% more. When, in an application, not only relative
primality has to be tested, but modular inverses have to be
calculated as well, this little speed advantage might not jus-
tify the implementation of 2 different algorithms, so LS3 or
SE3 should be used for both purposes (without computing R
and S if not needed).

5. FURTHER OPTIMIZATIONS POSSIBILITIES

There are countless possibilities to speed up the presented al-
gorithms a little further. For example, when U and V become
small (short), a table lookup could immediately finish the
calculations. If only one of them becomes small, or there is a
large difference of the lengths of U and V, we could perform
a different algorithmic step, which is best tuned to this case
on the particular computing platform. (Most of the time it is
a traditional Euclidean reduction step.) We tried hundreds of
ideas like these, but the little acceleration did not justify the
increased complexity.

Some of the presented speedup methods could have been
applied already somewhere in the huge literature of algorith-
mic optimization, but we could not find the wining combi-
nations of these optimization techniques for the modular in-
verse problem published anywhere. Many modifications ac-
celerate one part of the algorithm while they slow down—
or even invalidate—other parts. We investigated hundreds of
algorithmic changes, but only discussed here the original al-
gorithms and those optimizations, which led to the largest
speedups.

5.1. Working on the ends

On some computational platforms speed increase can be
achieved with delayed full update of the variables. See, for ex-
ample [18, 21] or [22]. It means working with MS and/or LS
digits only, as long as we can determine the necessary reduc-
tion steps, and fix the rest of the digits only when more pre-
cision is needed. Speedup is achieved by the reduced number
of data fetch, and combined update operations on the mid-
dle digits. Unfortunately, the resulting algorithms are much
more complex, less suitable for direct hardware implementa-
tions and the combined operations involve multiplications,
what we wanted to avoid. In our computational model data
load-store operations are free, so having fewer of them does
not provide any speed advantage.

5.2. Hybrid algorithms

The right-shift and the shifting Euclidean algorithms operate
on the opposite ends of the numbers. At least when the mod-
ulus is odd, the reduction steps could be intermixed: check
on a few bits on the appropriate end of the intermediate val-
ues which algorithm is expected to reduce the lengths the
most, and perform one step of it. However, the right-shift
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algorithms are so much slower, that the corresponding re-
duction is almost never expected to be faster than the shift-
ing Euclidean reduction. This way we could not achieve any
significant speedup, but the algorithms became complicated
and convoluted.

5.3. Modular division

If the initialization of S ← 1 is replaced by S ← d, we get
da−1 as the result, as described in [7] for polynomials. In case
the modular inverse is only needed once, and it is multiplied
by another number, we could save that multiplication, like
in elliptic curve cryptography. If the inverse is reused many
times, like at signed digit exponentiation [8], this trick does
not improve performance.

We start with a full length S(= d) instead of length 1, so
(S, R) do not gradually increase from length 1, but start at
length n. Further steps are necessary to prevent them to grow
too large. These more than double the total work updating
(S, R) (but not (U,V)) at the left-shift and shifting Euclidean
algorithms, all together 50–100% increase. The right-shift al-
gorithms do not change much, so modular divisions signifi-
cantly reduce their performance lag. In general, it only pays
doing divisions this way, when the underlying modular in-
verse algorithm is much faster than two modular multipli-
cations (making a modular division faster than 3 modular
multiplications).

NOTATIONS

(i) Modular inverse: a−1, the smallest positive integer for
integer a, such that a · a−1 = 1modm.

(ii) GCD: greatest common divisor of integers.
(iii) xGCD or extended GCD: the algorithm calculating g

and also two factors c and d: [g, c,d] = xCGD(x, y),
such that the greatest common divisor of x and y is g,
and g = c · x + d · y.

(iv) MS/LS bits: the most/least significant bits of binary
numbers.

(v) ‖m‖ the number of bits in the binary representation of
integerm, its binary length.

(vi) m = {mn−1, . . . ,m1,m0} = mn−1,...,0 = Σi=0,...,n−12imi,
where the bits mi ∈ {0, 1} of the integer m form its
binary representation.
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