
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2010, Article ID 261434, 21 pages
doi:10.1155/2010/261434

Research Article

Hardware-Enabled Dynamic Resource Allocation for
Manycore Systems Using Bidding-Based System Feedback

Theocharis Theocharides,1 Maria K. Michael,1 Marios Polycarpou,1 and Ajit Dingankar2

1Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks,
University of Cyprus, 1678 Nicosia, Cyprus

2Client Components Group, Intel Corporation, Folsom, CA, USA

Correspondence should be addressed to Theocharis Theocharides, ttheocharides@ucy.ac.cy

Received 28 May 2010; Revised 6 October 2010; Accepted 13 October 2010

Academic Editor: Shuvra Bhattacharyya

Copyright © 2010 Theocharis Theocharides et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Manycore architectures are expected to dominate future general-purpose and application-specific computing systems. The ever-
increasing number of on-chip processor cores and the associated interconnect complexities present significant challenges in
the design, optimization and operation of these systems. In this paper we investigate the applicability of intelligent, dynamic
system-level optimization techniques in addressing some manycore design challenges such as dynamic resource allocation. In
particular, we introduce hardware enabled system-level bidding-based algorithms as an efficient and real-time on-chip mechanism
for resource allocation in homogeneous and heterogeneous (MPSoC) manycore architectures. We have also developed a low-
level simulation framework, to evaluate the proposed bidding-based algorithms in several on-chip network-connected manycore
configurations. Experimental results indicate performance improvements between 8%–44%, when compared to a standard on-
chip static allocation, while achieving a balanced workload distribution. The proposed hardware was synthesized to show that it
imposes a very small hardware overhead to the overall system. Power consumption of the embedded mechanism as well as energy
consumption due to additional network traffic for collecting system feedback are also estimated to be very small. The obtained
results encourage further investigation of the applicability of such intelligent, dynamic system-level algorithms for addressing
additional issues in manycore architectures.

1. Introduction

Manycore architectures are expected to become the domi-
nant trend in both general purpose and application-specific
processor architectures. It is anticipated that the number
of on-chip processing cores will increase significantly in
the near future, with the possibility of hundreds (and even
thousands) of cores placed on a single die. Manycore archi-
tectures essentially consist of a large number of processor
cores (typically, greater than eight), possibly heterogeneous,
interconnected together and behaving as a massively parallel
computer system [1, 2]. Core communication in these
systems will be facilitated via packet-based, high bandwidth,
on-chip interconnection networks (NoCs) [3, 4].

While microarchitectural mechanisms and instruction
level parallelism (ILP) have improved the performance of

uniprocessor systems to great extents, it is evident that
future manycore systems will require alternative/additional
mechanisms for performance optimization in order to fully
utilize the large number of available processing cores [2, 5].
Manycore systems are expected to operate on the principle
of thread-level parallelism (TLP) (or task-level parallelism for
application-specific systems) rather than ILP. Hence, system-
level approaches for performance optimization become more
attractive than fine grained core-level mechanisms for these
systems. In addition, the increased on-chip communication
and synchronization complexity among the large number
of cores in a manycore chip give rise to new paradigms for
modeling, designing, and optimizing such systems [1, 2, 5].

A particular aspect when investigating the design of next
generation manycore architectures involves porting of cer-
tain operations currently performed by the Operating System

2 EURASIP Journal on Embedded Systems

(O/S) or the runtime system in dedicated hardware units
(or cores). Control operations such as synchronization and
resource allocation, which are vital operations in manycore
architectures and for which the O/S is currently predomi-
nantly responsible, could potentially be designed using either
dedicated hardware mechanisms or hardware/software co-
design, with small hardware overhead. An advantage of this
scenario is the use of truly dynamic, system-level algorithms
for such operations, where feedback, received from the cores
and the associated interconnect and input/output units, can
potentially be used in real-time adjustment of the system
operation, acting as a self-adjusting dynamic knob [6]. One
critical design optimization challenge in manycore systems
is the efficient assignment of program tasks to each of
the processing elements (PEs/cores) available. Traditionally
known as resource allocation or task assignment in off-
chip multiprocessor architectures and monolithic processors,
it has been a part of the O/S, and has been extensively
researched (e.g., see [7, 8], among many others). Implement-
ing a resource allocation engine using dedicated hardware,
allows for the utilization of real-time knowledge of the
system status (in our case, the system status is given in terms
of PE/core utilization and on-chip network traffic), which in
turn can lead to more intelligent decisions by the resource
allocation algorithm, especially as the number of cores and
the complexity of the on-chip network are increased.

In this paper, we consider intelligent, runtime, system-
level optimization mechanisms, embedded on-chip, that
can be used to address some key manycore challenges. We
focus on the problem of intelligent resource allocation for
manycore architectures (homogeneous and heterogeneous)
and propose a hardware enabled, system-level dynamic
mechanism that assigns processes to cores based on bidding
algorithms [9–12], in an attempt to improve the overall
system performance. We focus on a simple bidding-based
approach, since it requires small hardware resources and,
therefore, can be implemented and utilized as a real-time
on-chip resource allocation algorithm. Furthermore, we have
developed a low-level simulation framework in order to
accurately evaluate the proposed mechanisms. We experi-
mented with both homogeneous chip multiprocessor archi-
tectures (CMPs) as well as heterogeneous multiprocessor
systems-on-chip architectures (MPSoCs), using various on-
chip network sizes and topologies. In both cases, we observe
significant improvement in system performance from a com-
parable (on-chip) standard mechanism such as static round
robin allocation. The implemented bidding algorithm is
very simple, with small overall hardware overhead (between
2.5%–6%). Anticipating that future manycore applications
will emphasize thread-level speculation and target thread-
level parallelism, we form a set of benchmarks based
on small, general-purpose, and application specific highly
parallel tasks in order to evaluate the proposed mechanisms.
Hence, performance is evaluated using both real-world
applications and representative synthetic benchmarks.

This paper extends our previous work in [13, 14],
expanding in the process the benchmark applications, the
interconnection architectures and topologies, and the scale
(number of cores) of the system. Additionally, the paper

presents a more detailed view of the hardware architecture,
along with the associated hardware performance metrics.
Moreover, we detail the benchmark suites that we developed
for evaluating the presented algorithms as well as the multi-
media applications that were used as part of the evaluation
process. We expect that this work will provide motivation
for further research on dynamic, system-level optimization
algorithms, addressing various manycore issues such as
power-aware resource allocation, energy consumption, and
interconnect optimization.

The rest of this paper is organized as follows. Section 2
discusses some preliminary concepts related to system-level
optimization, focusing on the resource allocation problem
on CMPs and MPSoCs as well as some basic concepts
of bidding-based algorithms. Previous work on resource
allocation for CMPs and MPSoCs is discussed in Section 3.
Section 4 presents the targeted underlying system archi-
tecture considerations, explaining the motivations behind
the architectural assumptions taken. Section 5 introduces
the considered resource allocation framework and describes
the proposed system-level algorithms and their hardware
implementation. Section 6 details the experimental proce-
dure and the developed simulation framework, and explains
the benchmarking approach taken. Section 7 reports and
discusses the obtained results, and Section 8 concludes the
paper and gives future research directives.

2. Background

2.1. System-Level Optimization. Runtime system-level opti-
mization algorithms have been employed with the purpose
of dynamically adjusting the system’s parameters through
knowledge of the system’s status, in order to improve the
system operation at that given time. In the manycore case, the
improvement can target several issues such as performance,
and reduction in energy consumption (and subsequently
temperature) as well as system reliability.

In general, system level optimization algorithms operate
on the principle of feedback received from the system
in periodic intervals and system operational constraints
at a given time. These are subsequently used to update
the algorithm’s optimization criteria, in order to optimize
the global system performance subject to certain system
constraints. Such algorithms can be embedded as part of
the on-chip hardware (such as a custom processor). Figure 1
shows one such scenario, where the on-chip optimization
unit is encapsulated as an individual processing element, part
of the manycore system (light-shaded block), with its internal
operation illustrated on the left and below. The optimization
unit receives runtime information y(t) about the status of the
system (processing elements and the communication fabric)
at time t and operational constraints (u(t)) given by the
application requirements also at time t, and in turn, decides,
based on one or more optimization goals, how to modify the
system’s operation z(t+dt) at the future time t+dt. There can
be obviously more than one dedicated unit, depending on the
underlying architecture, optimization algorithm, feedback,
and application operational constraints. Additionally, the
granularity of the optimization interval (dt) is an important

EURASIP Journal on Embedded Systems 3

Optimization
engine

Application
operational
constraints

Processing
elements

Interconnect

Feedback
(status information)

D
ec

is
io

n
si
gn

al
s

Sample manycore system

Integrated (on-chip) optimization engine implemented as a
processing element of the system

Optimization
algorithm

Manycore
components

u(t) z(t + dt)

y(t)

Optimization algorithm basics

I/O’s

I/O

Figure 1: Integrated system-level optimization algorithm (above) and its basic operation (below).

parameter in determining the location of the mechanism in
the network topology.

On-chip implementation favors cases where frequent
optimization actions are necessary, since system feedback
can be collected quickly and decision and optimization steps
can happen in real time. Real-time information such as the
utilization of each component and the state of the communi-
cation network can result in efficient workload distribution;
this is particularly important in MPSoC environments where
tasks are usually small and periodic, and thus frequent
(and predictable) allocation takes place. It also holds for
future large-scale CMPs systems with simple PEs/cores,
running parallelized code. Clearly, for efficient on-chip
implementation, the chosen optimization algorithm needs to
be fast and simple (its implementation has to impose small
hardware overhead). In cases where the optimization actions
can be taken during sparse intervals, real-time feedback may
not be as crucial. In such cases, more sophisticated and
complex optimization algorithms can be employed using
software (as part of the O/S or runtime system), avoiding a
possibly expensive hardware implementation.

Our focus in this work is to investigate the applicability of
different on-chip system-level optimization algorithms and
the impact of introducing real-time intelligent processing in
such algorithms (using the problem of resource allocation as
an example) in networked manycore systems.

2.2. Resource Allocation. Resource allocation in comput-
ing systems deals with the allocation of available system
resources to the various tasks ready to be executed. This is
a process that significantly affects the overall performance of
the system. Typically, resource allocation algorithms take as
input a list of tasks or processes that are ready to be executed
at some particular time as provided by a system scheduler.
The scheduler considers a task flow graph in order to resolve
task dependencies. Traditionally, resource allocation in off-
chip multiprocessor systems concentrates on the allocation

of software tasks to each of the processor nodes (usually
individual processors with local caches and memory), such
that the overall performance of the system is maximized.
This is a well-known problem, with a large amount of
research contributions [7, 8] towards efficient utilization of
the massive hardware parallelism available in such systems
using various exact and heuristic approaches [11, 15–17]. In
the case of manycore systems, important on-chip constraints
such as limited buffer capacity for on-chip communication,
on-chip network congestion, power density, and limited
I/O bandwidth [5] necessitate the evolution of existing
algorithms or even the development of new algorithms, in
an effort to integrate the emerging challenges [3, 5]. In such
dense systems, efficient workload distribution could benefit
from real-time system information knowledge such as the
status/utilization of each core and, additionally, the status of
the interconnection network. Interconnect-associated delays
are an important factor in efficient decision-making and the
problem is further complicated when control and memory-
related traffic, such as cache misses and synchronization data
is taken into consideration.

Whilst dealing with a similar problem, research looks
at general-purpose systems (CMPs) from a slightly different
viewpoint when compared to application-specific systems
(MPSoCs). General purpose systems face runtime uncertain-
ties, where cache misses, data hazards, and unpredictable
interconnect behavior can potentially alter the expected
execution time of one task significantly. On the other hand,
application-specific manycore systems (typically heteroge-
neous MPSoCs) usually deal with predictable schedules
and execution times. Consequently, MPSoC-related research
focuses mostly on finding optimal, static, design time
allocation, where the mapping of tasks to the cores can either
take place as part of the compilation, or mapped prior to
execution on the processor cores. However, as the number
of cores increases, MPSoCs are expected to contain groups
of cores, where all cores in a group are of the same type. Any

4 EURASIP Journal on Embedded Systems

core inside a group can potentially execute some task, shifting
the task allocation process towards finding the best core that
can execute one type of task among the cores in a group.
As a result, allocation in future massively parallel CMPs and
MPSoCs is expected to face similar issues and should not
necessarily be treated independently.

2.3. Bidding. This work uses the concept of bidding to decide
how to allocate processes to the various cores of the system.
Bidding algorithms have been widely used to solve several
optimization problems as part of auction-based algorithms
[9–12]. Typically, for a specific number of items, there are
n possible “bidders”, with each “bidder” placing a bid in an
attempt to “buy” a number of items. Usually, the highest
bidder claims one or more items, and bidding continues
until there are no more items or no more bidders [10].
Such algorithms can also be used in more complex scenarios,
under various constraints. Bidding-based algorithms tradi-
tionally offer load balancing across distributed systems and
networks, optimizing performance and utilization [10]. In
the proposed algorithms, cores actively decide based on their
workload and utilization of their related communication
resources (on-chip network) whether, and to what extent, to
bid for (request) additional process (task) assignment. Each
core (or group of cores), computes its bid independently
and sends it, through the on-chip network, to the system-
level on-chip allocation engine. Transferring this decision to
the cores is done with minimal overhead; it also improves
flexibility and scalability of the system. Subsequently, the
allocation engine decides where to assign the list of pending
processes/tasks dispatched by the system scheduler, based on
the placed bids. In this work, we present two different simple
bidding-based algorithms for performing on-chip resource
allocation in a manycore system, where processes are the
“auctioned” items, and a processor core (or a group of cores)
places its “bid” based on its status (or the status of each core
in the group). We are aiming for a simple and fast bidding-
based solution, rather than an optimal one, since we are
targeting hardware implementation of the algorithm where
speed and simplicity are critical factors. Still, the obtained
experimental results demonstrate significant performance
improvement and highly balanced utilization among the
various cores. The presented algorithms improve the system’s
performance when compared to a standard (static) allocation
mechanism such as round robin implemented in hardware.
We use round robin as a hardware reference algorithm in
evaluating our optimization algorithms, due to its simplicity
to be implemented (very low hardware overhead) as well as
the lack of other existing comparable solely hardware-based
solutions for the specific problem under consideration.

3. RelatedWork

Dynamic system-level optimization has been extensively
studied in software-based algorithms where an O/S routine
acts as the optimization engine, addressing several system-
level issues. For example, software-based, dynamic system-
level thermal-aware optimizations involving scheduling and
task allocation are presented in [18–21]. The authors in

[22] use a two-level mapping technique for online allocation
of streaming applications, while [23–26] introduce other
dynamic techniques such as agent-based techniques, task
migration, and spatial mapping. Additional examples involve
runtime configuration of the on-chip interconnect for
priority among application traffic [27], or on-demand core
“merging” and “splitting”, offering the necessary facilities for
efficient application execution and different granularities of
parallelism [28]. The concept of distributed system status
gathering and real-time adjustments was also examined in
[28], where the authors consider the problem of allocating
a variable number of resources to each process, something
that increases the hardware complexity. Nevertheless, this is
a different problem to the one examined in this work, since
a process is allocated to some resource out of a fixed number
of resources, whereas in [28] the authors allocate a variable
number of resources to a fixed number of processes.

The problem of resource allocation has been widely
addressed, with a large number of proposed method-
ologies applicable to traditional multiprocessor systems
and networks [11, 12, 15–17, 22]. There has also been
extensive study of resource allocation applicable to single
chip multiprocessors, that targets the same problem, but
under different constraints, depending on the underlying
architecture: general purpose CMPs or application-specific
MPSoCs. As mentioned earlier, most of the related work
focuses on software techniques encapsulated within the O/S.

Recent works propose the use of dedicated architec-
tural (hardware) mechanisms to support task allocation
on manycore systems, however the allocation algorithm
remains still as part of the O/S. Preemptive techniques
for task scheduling and allocation which involve thread
migration, as a solution to balance the workload effectively,
are proposed in [29, 30]. A hardware mechanism that is used
to support the computation of a scheduling algorithm for
symmetric CMPs has been proposed in [31]. Additionally,
scheduling and resource allocation with emphasis on other
design constraints such as energy and temperature has also
been investigated, again using software-based algorithms
supported by dedicated hardware mechanisms in [8, 18, 32].
Such preemptive methods usually require additional control
hardware and are often associated with extra delays, in
contrast to the simpler hardware support required for the
nonpreemptive version of the problem that is examined in
this work. Some other dynamic scheduling algorithms are
also proposed in [11, 15, 16, 22, 33–39], however they are
assumed to be maped on dedicated processor cores rather
than custom hardware and take into consideration only the
on-chip network status in reallocating tasks, but not the
processing element status. Similar to previous methods, the
majority of these techniques also apply preemption.

Task allocation for MPSoCs focuses mainly on meeting
real-time constraints, which most MPSoC applications are
bounded by, while maintaining operational constraints such
as temperature, performance, and reliability. The majority
of the existing work involve software-based mechanisms
dealing with static MPSoC task allocation as part of the O/S
or the runtime system and focuses on proposing algorithms
which can efficiently optimize resource allocation, improving

EURASIP Journal on Embedded Systems 5

the algorithm itself as well as the performance of the MPSoC.
Recent works propose the use of runtime, multiobjective
optimization algorithms such as genetic algorithms and mul-
tilevel optimization algorithms for thermal management,
reliability and meeting worst-case execution times [15, 18,
22, 24–26, 40]. These works are also implemented as software
routines, part of the runtime system or the O/S, and utilize
system feedback (temperature and workload) in attempting
to optimize the performance, energy consumption, and
reliability of the system.

In this work, we propose a fully hardware-enabled
allocation engine, which receives real-time system data
relating to the workload of each core and the network traffic
and dynamically allocates tasks coming from the system
scheduler. Unlike previous works, the proposed algorithm
does not impact the instruction set architecture or the
microarchitecture of each core, making it applicable to both
general purpose CMPs as well as MPSoCs. Moreover, the
proposed hardware implementation alleviates cores from
running the allocation task, allowing more execution time
to user applications. By porting the algorithm completely
in the system hardware, system feedback is received in real
time, allowing the allocation engine to deal with frequent
system changes as well as receive well-informed allocation
decisions.

4. Architectural Considerations

While architectural exploration of future manycore systems
is not the objective of this paper, we aim in designing
an algorithm that will be implementable and applicable in
generic homogeneous and heterogeneous manycore archi-
tectures. It is assumed that these architectures will facilitate
the execution of multiple, parallel processes/tasks. Cores are
less likely to contain complicated control or resource and
data dependency resolving hardware. Performance penalty
associated with stalled pipelines in individual cores can be
offset by the increased systemwide parallelism, which is
achieved by running multiple processes in parallel as well as
the elimination of complicated control flow hardware that
traditional uniprocessor architectures employ. Furthermore,
future manycore systems could utilize thread-level speculation
(TLS) [41, 42], with speculative threads inserted to offset
performance penalties associated with control and data
dependences. By such methods such as TLS, emerging
research suggests that future manycore systems may feature
small parallel processes independent of each other, in an
effort to minimize communication and parallelize compu-
tation [43, 44].

In general-purpose architectures, multiple parallel
threads can be issued on processor cores, where threads from
the same process can share data, but processes themselves are
independent from each other. In an effort to compromise on
thread level dependencies, we target an architecture that can
facilitate execution of threads using a shared address space,
and processes using a different address space. Motivated by
the issues surrounding memory coherency protocols and
memory organization [45], we consider a hierarchically
connected networked architecture. In this scenario, groups

Router

2 × 4 mesh network

Core

Cluster

L2 shared
cache

L1
cache

Figure 2: An example of a hierarchical NoC-based 64-core
architecture.

of a small number of cores, called clusters, are connected
via a local bus; clusters are in turn connected using an
on-chip network. Each core has its own private L1 cache,
and all cores within a cluster share an L2 cache. The size of
the cluster is typically smaller than 8 cores, limited by the
bus connecting the cores. Clusters are interconnected using
hierarchical, packet-based NoC through on-chip routers
[3, 4]. This architecture allows a process (which consists of
a variable number of threads) to be dispatched to a cluster
of cores, where shared address space threads belonging to
the process can be executed in parallel (on different cores
of the cluster) using standard cache coherency protocols.
Thread communication is done at the cluster level, where
threads share data and communicate with each other. This,
given that clusters will not share common data between
them (since sharing is done inside the cluster), alleviates
overhead coherency traffic over the network. By dispatching
processes inside each cluster, threads can execute on that
cluster using the L1 and L2 caches, with only L2 misses being
serviced by the on-chip network. Figure 2 shows a sample
2 × 4 clustered architecture, in which clusters consist of 8
cores and a shared L2 cache, and each core consists of a
simple RISC core with L1 cache. The bus connecting all
cores inside a cluster, is responsible for cache coherency, via
an MSI-(modified-shared-invalid) based cache protocol.
It must be noted that even if clusters share data between
them, the algorithm still operates on the same principle,
as memory traffic as well as intercluster communication
and computation due to cluster stalls will be taken into
consideration by the algorithm in each allocation interval.

In the proposed framework, scheduling and resource
allocation are treated separately; the input to the considered

6 EURASIP Journal on Embedded Systems

problem is a list of processes, as scheduled by the O/S and the
compiler. In this paper, we only target the allocation part, the
dispatching of a process to a cluster. Each process consists of
a variable number of threads, to be executed by the allocated
cluster’s cores. The compiler provides precedence between
processes, and for each process, the O/S and compiler
provide an estimated execution time which is used as input
to the bidding algorithm. For example, if we assume that the
targeted cores consist of RISC CPUs with minimal hardware
addressing control and data dependences, the instruction
count for each process can be used as a metric. The actual
execution time for each process may of course vary from
the estimated one due to cache misses, and pipeline stalls
(data and control hazards). The accuracy of the estimated
time is not crucial; the relative time between the processes
is utilized by the allocation algorithm. More importantly, the
system feedback (bids from clusters or cores) considers stalls,
memory misses and network delay in an implicit manner (as
explained in the following section).

It is also assumed that at a given time, the scheduler
sends independent processes to the system, but each process
can contain threads dependent on each other. Therefore,
branches within threads either target instructions from the
same process (possibly the same thread as part of a loop)
or result in a context switch. If the latter happens, it is
assumed that a thread or a process has finished and a
new one waits to be executed. Once a process terminates,
the scheduler is dynamically informed. We anticipate that
this flow model will be preferred for single-address space
manycore architectures, as it removes costly prediction
hardware from cores and eliminates unnecessary traffic from
the on-chip network (such as invalid instructions, etc.). We
must mention that L2 misses, that based on this scheme are
a result of a context switch between processes, will result in
bursts of memory traffic over the network, as most of these
misses will happen concurrently. This is however handled
as part of memory-oriented scheduling and is out of the
scope of this paper. The considered architecture is based
on generally accepted assumptions about general-purpose
manycore architectures. The proposed allocation engine can
be adopted for alternate (nonhierarchical) architectures [2],
where single cores operate as the bidders. We experiment
with both hierarchical cluster-based and non-hierarchical
(traditional NoC-based) architectures in our simulations
(see Section 7).

Similar assumptions are also taken when targeting
MPSoC architectures in which heterogeneous components
communicate with each other through the on-chip inter-
connection network. MPSoCs contain several types of cores,
many of them replicated, in attempts to provide parallel
execution such as processing concurrent video and audio
streams. MPSoCs are typically application specific, with each
component designed specifically for a certain computation.
Additionally, they may include general-purpose embedded
processors for running generic tasks and for control and
management purposes. We clarify that the use of “task” and
“process” is similar; the term task is typically used in MPSoCs
to describe a certain application task, which contains
instructions and data necessary to complete the task. During

resource allocation, each task dispatched by the scheduler
can be bound to a certain PE (or embedded processor)
for execution, along with its associated data. As such, we
consider a non-hierarchical (nonclustered) architecture in
the MPSoC scenario. In the general-purpose case, we use the
term process, as described earlier. Under the context of this
work, we consider a task to be one individual entity, whereas
a process is broken down into multiple small threads. As
such, an application mapped on an MPSoC is broken down
into small, data-independent tasks following an application
taskgraph. Intertask communication for control purposes is
facilitated using the on-chip interconnection network. This
work does not address the memory mapping and allocation
problem in MPSoCs. It is assumed that all task data will
be accessible to on-chip PEs through dedicated memory
elements (MEs) and that two tasks that share the same data
will contain exclusive copies of each data variable inside the
MEs. Clearly, this is a conservative approach which however
can be easily relaxed using message passing via the on-
chip network or even more sophisticated memory coherency
protocols for intratask communication. The important point
here is that any processor delays or network congestion due
to memory accesses are taken into consideration during the
algorithm allocation stage.

We classify a manycore system into three major com-
ponents: the input/output blocks (I/O), the interconnection
network (IN), and the PEs (cores). This abstract viewpoint
subsequently treats the three individual units as black boxes,
using only information transferred between the three units as
input and feedback to optimize the system’s operation. It also
maintains the simplicity of the algorithm, and potentially
makes the applicability of the algorithm scalable since all
system expansion will still be viewed using the three subunit
models.

5. System-Level Bidding-Based
Resource Allocation Algorithms and
Implementation

5.1. Problem Formulation and Basic Principles. The proposed
bidding-based algorithms apply to both heterogeneous and
homogeneous systems as well as clustered and nonclustered
architectures, as explained in the previous section. In this
section, we present the bidding-based allocation concept
and algorithms as applied in the homogeneous clustered
case. While extending the algorithms to the non-clustered
homogeneous case (where each core bids for processes) is
trivial, the heterogeneous MPSoC case (where typically cores
of the same type bid for tasks) requires some modifications.
This case is discussed in Section 5.4.

Two different system-level resource allocation algorithms
are presented, both based on bidding. In this context, each
individual cluster computes independently and submits a
bid to the allocation engine, which centrally decides which
resource (cluster) to allocate to each pending process. Here,
we consider the clusters as the computational resources;
however, the proposed bidding-based algorithms can also be
applied hierarchically inside each cluster, to allocate threads

EURASIP Journal on Embedded Systems 7

to cores (in our experiments, since the amount of cores inside
each cluster is small, a round robin allocation of cores to
process threads is considered).

Let the system be composed of n clusters, denoted by the
listC = {C1,C2, . . . ,Cn}. Each cluster consists of a number of
cores given by c(Ci) = {ci1, ci2, . . . , cimi}, Ci ∈ C. The number
of cores per cluster (mi) can be either the same or different
among the clusters. The input to the allocation engine is
a list of processes from the system scheduler, denoted by
P = {P1,P2, . . . ,Px}, with an estimated execution time for
each process as given by the compiler (measured in clock
cycles), denoted by t(Pi), Pi ∈ P . Additionally, the engine
receives feedback from the system in the form of a list of
bids, one per cluster, given byB = {b(C1), b(C2), . . . , b(Cn)}.
A bid b(Ci) for some cluster Ci gives the estimated new
workload that the cluster can handle (in terms of clock cycles),
and it is calculated based on the remaining workload in the
queue of each core in c(Ci) as well as the network flow on
the path towards the cluster. A zero-value bid (b(Ci) = 0)
indicates that the cluster Ci is full and does not desire any
additional processes (Section 5.2 gives details on how the
bids are calculated).

Time is divided into time intervals of size dt, where
the size of each interval (based on the system clock cycle)
controls the granularity of the algorithm. For every time
interval, the engine receives from the scheduler the list of
processes P and t(Pi) for all Pi ∈ P , along with the list of
bids B from each cluster. The number of processes in P can
vary between intervals whereas n, the number of clusters and,
hence, bids, is clearly fixed since it depends on the underlying
architecture.

Both of the proposed algorithms accept the same input
and use the same bid calculation mechanism, and proceed
in a similar rationale to perform the allocation employing
a highest bidder scenario. Their difference is on the highest
bidder calculation method. In general, the following problem
is targeted: for some time interval [T ,T + dt], create a bind
between each process Pi ∈ P , 1 ≤ i ≤ x, and some cluster
Cj ∈ C, 1 ≤ j ≤ n, using a highest-bidder order where the
cluster with the highest bid receives the process with the highest
execution time (t(Pi)). A cluster can be allocated to more than
one process. A cluster with a zero bid is not allocated to any
process. In the case where one or more processes cannot be
bound to any cluster during the current interval (all clusters
are full), the scheduler can be stalled, indicating that the
system is full, until all scheduled processes can be bound
to some cluster (in subsequent time intervals). This is of
course a pessimistic approach, used to maintain precedence
constraints between processes in different time intervals that
could be further optimized. At this point, it is used in order
to maintain the simplicity of the solution.

5.2. Bid Calculation. At some time instance T, the bid
b(Ci) of some cluster Ci is calculated based on two main
parameters, both expressed in terms of clock cycles: (i) the
remaining, already allocated, workload w(Ci) at the cluster,
and (ii) the network delay d(Ci) on the path towards the
cluster (estimated time for a new process to reach the
cluster).

Let w(cij), c
i
j ∈ c(Ci) denote the remaining workload

at some processor core cij of cluster Ci, which is calculated

by counting the instructions in cij ’s queue awaiting to be
executed. An ideal execution time of one instruction per cycle
is considered (as it is typical in RISC processors); the number
of waiting instructions in a core’s queue can then be used to
represent the workload, in number of cycles, for that core. In
this way, core stalls due to cache misses as well as branches of
already executed instructions (that caused additional clock
cycles to the ones estimated by the compiler) are implicitly
considered. Once every core cij calculates its corresponding

w(cij), the cluster’s workload is computed by

w(Ci) =
mi∑

j=1

w
(
cij
)
. (1)

The workload is computed through the use of dedicated
hardware counters inside each core and through dedicated
counters in the router, for computing the cluster workload.
After a cluster Ci computes its workload w(Ci), it sends
its bidding message to the resource allocation engine that
includes two values: w(Ci) and a timestamp s(Ci) of the
time the packet was sent. When the engine receives the
bidding packet from a cluster, it uses its own timestamp S
and computes the amount of time (estimated in clock cycles)
that the packet needed to travel through the network. If the
bidding packet is constrained to travel on the exact network
path that process data and instructions use to travel towards
the targeted cluster, the delay of the network can be estimated
by

d(Ci) = S− s(Ci). (2)

Enforcing the bidding packet to use the same path
that data/instruction packets use, can be done by reversing
the routing algorithm for those packets marked as bidding
packets; for example, in the case of an XY routing algorithm
with X-first priority, the bidding packets would have to
travel using Y-first priority instead, going through the same
routers that the incoming data/instructions will travel in the
next allocation interval. Bids also utilize a dedicated virtual
channel for deadlock avoidance, but are subject to the same
port arbitration as the regular process packets (data and
instructions), so they are exposed to the network delay that
regular packets are exposed. This method, while simple, gives
a good estimate of the network delay. Relevant NoC literature
suggests that busy routers do tend to remain busy for a
number of cycles, and if a router has one blocked output port,
there is increased probability that the other ports will block
faster as well due to hotspot formation [26].

In order to calculate the estimated new workload that
the cluster Ci can handle, which is actually the bid b(Ci), it
is necessary to establish the maximum amount of workload
each cluster can be assigned. A straightforward measure is the
total instruction queue space available in the cluster, which is

8 EURASIP Journal on Embedded Systems

the sum of the instruction queue space per core in the cluster.
Let this be denoted by bo(Ci). Then, a cluster’s bid is given by

b(Ci)

=
⎧
⎨
⎩
bo(Ci)−w(Ci)− d(Ci) if bo(Ci) ≥ w(Ci) + d(Ci),

0 if bo(Ci) < w(Ci) + d(Ci).
(3)

When the system is entirely empty, w(Ci) = 0 and
b(Ci) = bo(Ci) − d(Ci), for all Ci ∈ C. In this case, the
larger bidders will be the ones closer to the allocation engine
and they will be allocated to the larger processes. On the
other end, if b(Ci) ≤ 0 then cluster Ci cannot accept any
new workload and is out of the bidding contest. The latter
is always encoded with a sentinel value of zero, indicating no
bid.

5.3. System-Level Bidding-Based Algorithms. Both of the
proposed system-level resource allocation algorithms use
the same bid calculation method described in the previous
subsection and follow a highest bidder in order to decide
which cluster to allocate to a process. However, each uses
a different method in determining the order among the
various clusters.

The first algorithm, Necessary Resorting (NRS), is simpler
in terms of operations performed and, therefore, faster. At
some time instance T, it starts by sorting the list of clusters
C and the list of processes P in decreasing order, based
on the bid value b(Ci) ∈ B per cluster Ci ∈ C and the
process size t(Pj) per process Pj ∈ P , respectively. Then,
it binds the highest bidder (cluster at the top of C) with
the largest process (the one at the top of P), the second
highest bidder with the second largest process, and so on.
This scenario tends to distribute the various processes among
the available clusters in such a way that clusters with smaller,
already allocated, workload and/or smaller network traffic
are allocated to larger processes. Hence, workload balancing
is inherently achieved without been explicitly targeted. This
is demonstrated consistently by the obtained experimental
results. Observe that it is possible for a cluster Ci to be
allocated to a process Pj with size greater than the cluster’s
bid (i.e., b(Ci) < t(Pj)). This occurs only if no other cluster
with a bid greater than b(Ci) exists and continues to follow
the overall rationale of the algorithm (larger processes are
bound to clusters with smaller workload and/or network
traffic). Since this is a binding (and not a dispatching) phase,
allocating a cluster to a process whose size is greater than the
cluster’s bid does not create any problems.

In the case where the number of processes is greater
than the number of clusters with positive bids, the algorithm
updates the bids based on the allocation done so far and then
performs a cluster resorting step in order to determine which
clusters to allocate to the remaining processes. Bid update is
carried out only for the allocated clusters by b(Ci) = b(Ci)−
t(Pj), where Pj is the process that has been already bound
to cluster Ci. After re-sorting the cluster list C based on the
updated bids, the allocation phase continues in the same

manner as before the re-sorting. Bid update and re-sorting
occur as many times as necessary to bind all processes. The
algorithm terminates when either all processes have been
bound or no more clusters with positive bids exist.

Algorithm 1 gives an outline of this algorithm. P [1]
indicates the top of list P (contains the largest, not yet bound
process) and C[k] indicates the kth cluster in the list of
available (i.e., with positive bids) clusters C, which is sorted
based on the clusters’ bid values. Once a process is bound to
a cluster the process is removed from P (line 10). Lines 12–
16 are executed only if the number of processes is larger than
the number of available clusters. Clusters with positive bids
are never removed from the list of available clusters allowing,
in the case where lines 12–16 are executed, for a cluster to be
allocated to more than one process.

The second algorithm, Dynamic Resorting (DRS), follows
a similar rationale as the NRS algorithm with the exception
that a cluster’s bid is re-calculated every time a process is
bound to the cluster and the list of available clusters in
C is resorted in order to reflect the allocation. Hence the
allocation is more dynamic in DRS than in NRS. In contrast
to NRS that binds at least one process to each available cluster
before considering binding additional processes to a cluster,
the DRS algorithm can bind several processes to a cluster,
and possibly none to others, based on the dynamically
recomputed bids. Algorithm 2 gives an outline of the DRS
method. P [1] and C[1] indicate the top of list P (largest,
not yet bound process) and the top of list C (highest bidder
an any time), respectively.

The complexity of both algorithms depends on the
complexity of the sorting algorithm chosen. Given that we
target hardware implementation, the sorting algorithm that
can be easily implemented is the insertion sort. The big
hardware advantage of the insertion sort is the fact that
sorting can happen in-place, requiring only constant amount
of memory space.

Bidding, in this context, offers several inherent benefits.
Bid computation is distributed inside the cores/clusters,
eliminating unnecessary traffic. Also, if the clusters cannot
respond due to network congestion or them being busy, their
bid value is assumed to be zero and, hence, these clusters
are excluded from the allocation during the busy intervals.
The bidding process is scalable, since an increase in the
bidders can easily be integrated by increasing the lists of bids
and tasks as well as using more than one allocation units
(each managing groups of clusters/cores). As the network
size grows, network delay, a more important factor in large
networks, is a linear component of the bid. Similarly, core
simplicity and core clustering allow for hierarchical multi-
level allocation engines, which can take into consideration
more detailed intra-cluster conditions.

5.4. Task Allocation in Heterogeneous Manycore Systems.
As mentioned previously, we consider a non-clustered
architecture in the MPSoC case, however, the algorithm
can be applied in clustered MPSoC architectures as well.
Additionally, we use the term task in the same context we
used the term process, for the CMP case. In contrast to CMPs,
MPSoC applications are bounded by a maximum execution

EURASIP Journal on Embedded Systems 9

AlgorithmNecessary Re-Sorting()
Inputs: C = {C1,C2, . . . ,Cn} // list of clusters

B = {b(C1), b(C2), . . . , b(Cn)} // list of bids, per cluster
n // number of clusters
P = {P1,P2, . . . ,Px} // list of processes
t(Pi), for all Pi ∈ P // process size

Output: A bind between all processes and available clusters

01: Sort processes in list P in decreasing order of t(Pj),∀Pj ∈ P
02: Remove clusters with non-positive bid values from C
03: Sort clusters in list C in decreasing order of b(Ci) ∈ B,∀Ci ∈ C
04: if C == ∅ then
05: exit // no (more) allocation possible, system is full
06: else
07: k = 1
08: while P /=∅ do
09: Bind process Pj = P [1], Pj ∈ P to cluster Ci = C[k], Ci ∈ C
10: Remove process Pj from P
11: k = k + 1
12: if (k > n) and (P /=∅) then
13: for each cluster Ci ∈ C bound to a process Pj ∈ P in step 09
14: b(Ci) = b(Ci)− t(Pj) // re-calculated bid for cluster Ci

15: goto step (2)
16: end if
17: end while
18: end if

Algorithm 1: The Necessary Re-Sorting (NRS) Algorithm.

AlgorithmDynamic Re-Sorting()
Inputs: C = {C1,C2, . . . ,Cn} // list of clusters

B = {b(C1), b(C2), . . . , b(Cn)} // list of bids, per cluster
n // number of clusters
P = {P1,P2, . . . ,Px} // list of processes
t(Pi), ∀ Pi ∈ P // process size

Output: A bind between all processes and available clusters

01: Sort processes in list P in decreasing order of t(Pj),∀Pj ∈ P
02: Remove clusters with non-positive bid values from C
03: Sort clusters in list C in decreasing order of b(Ci) ∈ B,∀Ci ∈ C
04: if C == ∅ then
05: exit // no (more) allocation possible, system is full
06: else
07: while P /=∅ do
08: Bind process Pj = P [1], Pj ∈ P to cluster Ci = C[1], Ci ∈ C
09: Remove process Pj from P
10: if P /=∅ then
11: b(Ci) = b(Ci)− t(Pj) // re-calculated bid for cluster Ci

12: if b(Ci) ≤ 0 then
13: Remove cluster Ci from C
14: end if
15: Re-Sort list C in decreasing order of b(Ci) ∈ B,∀Ci ∈ C
16: end if
17: end while
18: end if

Algorithm 2: The Dynamic Re-Sorting (DRS) Algorithm.

10 EURASIP Journal on Embedded Systems

Bid

Processes/tasks Bids

Est.
execution

time

CAM-based sorting

H
ig

h
-l

ow

H
ig

h
-l

ow

New bid

From
scheduler From network

To network
Task/process-cluster/PE bind

Figure 3: Block diagram of proposed Allocation Engine (AE). Dotted lines indicated hardware necessary for re-sorting. There are two CAMs:
one contains bids and cluster/PE ID number, and the other estimated execution times with process/task ID number.

time for real-time response. Moreover, in MPSoCs the
processing capacity of a PE (i.e., its ability to execute i tasks
during an interval [T ,T+dt]) can be determined and utilized
such that, at a given time, the PE can give a representative
value of its available workload capacity in relation to other
PEs. A task’s estimated execution time is statically derived,
by virtue of the task’s maximum execution time and the
processing capability of the targeted PE. Obviously, the
number of tasks already assigned to the targeted PE and
the time taken to transfer each task’s instructions and data
through the on-chip network affect the realistic capability of
the targeted PE. These are the real-time situations addressed
by the proposed dynamic allocation.

Let an MPSoC consist of k types of PEs (a PE type
denotes the functionality of a PE). Multiple cores, say n, of
a particular PE type can exist (the number of cores of a
particular PE type varies among the various types). In the
considered MPSoC architecture, each incoming task can be
executed by certain types of PEs, out of the k possible PE
types in the system. Since our algorithm does not investigate
task assignment based on the type of each PE, but instead
based on the available workload, we present the algorithm
here under the assumption that each task can be executed
by a specific PE (of a certain type), for simplicity purposes.
This assumption can actually be trivially relaxed, without any
impact on the design and implementation of the proposed
bidding algorithm. For some task type i, the list of available
resources can include cores of different types, instead of
being restricted to the available cores of only one particular
type. The proposed allocation scheme does not change, as
it will receive bids based on the same criteria and dispatch
applications to clusters using the same strategy. Hence,
let us assume that the input to the allocation algorithm
for the MPSoC case consists of k lists of incoming tasks
(T1,T2, . . . ,Tk) and k lists of possible PEs (E1,E2, . . . ,Ek),
in contrast to the CMP case where the input consists of
a single list of incoming processes P and a single list of

possible clusters C (or single cores). All tasks in a list Ti must
be bound to one or more PEs in the corresponding list of
PEs Ei (i.e., the index denotes the task and PE type). The
allocation procedure is identical to the one for the generic
CMP case, with the difference that the overall process is
partitioned into k allocation engines, one per PE and task
type. For example, to use the algorithm of Algorithm 2 for
a particular task and PE type i, we consider the list of tasks
Ti = P and its corresponding lists of PEs Ei. = C, with
|Ei.| = n. Time is similarly divided in time intervals of size dt,
where the size of each interval controls the granularity of the
algorithm.

A PE’s bid is calculated based on the same feedback
information as in the CMP case: (i) the remaining workload
of the PE, and (ii) the estimated network delay for the path
from the corresponding allocation engine to the PE. This
is done through the use of dedicated hardware inside each
PE and the associated router, using hardware counters, just
like the general-purpose CMP case. When a PE computes
its available workload (in clock cycles) using its processing
capacity, it sends a packet to the allocation engine that
includes the two values discussed earlier: the workload and
a timestamp of the time the packet is sent.

5.5. Hardware Implementation. The proposed allocation
engine (AE) was designed using content-addressable mem-
ory (CAM), where sorting can be done very fast [46]. The
size of the CAM tables can be set relative to the number
of processor cores and application demands; however, if
more processes per interval are dispatched by the scheduler
than the CAM can support, the AE blocks, and dispatches
the remaining processes in the next interval. Figure 3 shows
the hardware block diagram for the AE; re-sorting can be
selectively done (i.e., NRS versus DRS) via the dotted (blue-
colored) blocks. Bid packets are collected and assembled
inside the network router attached to each cluster/PE. The
NoC router is also configured for routing bidding packets in

EURASIP Journal on Embedded Systems 11

SRAMDSP

DSP

TAE

SRAMSRAM

DSP

SRAMSRAM

DSP DSP DSP

DSP

TAE

SRAM SRAM

DSP DSPDSP

DSP

TAE

TAE
I/O

controller

I/O
controller

I/O
controller

I/O
controller

DSP DSP DSP DSP DSP

SRAM

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

MPEG
decoder

Image
enhance-

ment

Image
enhance-

ment

Image
enhance-

ment

Image
enhance-

ment

32-bit RISC
µP

32-bit RISC
µP

32-bit RISC
µP

32-bit RISC
µP

(a)

 ALU SRAM

IDCT

IDCT

IDCT

AE

IDCT

SRAM

SRAM

AE AE

SRAM ALU

AE

I/O controller

I/O controller

Inv.
quantization

Inv.
quantization

Inv.
quantization

Inv.
quantization

Huffman
DEC.

Huffman
DEC.

Huffman
DEC.

Huffman
DEC.

Motion
compensation

Motion
compensation

Motion
compensation

Motion
compensation

32-bit RISC
µP

32-bit RISC
µP

(b)

Figure 4: (a) Example Multistream Video Pattern Recognition MPSoC showing 4 I/O controllers and 4 AEs (toroidal links not shown for
readability purposes) and (b) example MPEG2 Decoding MPSoC showing 4 AEs.

a separate manner as described earlier in Section 5.2. We have
also designed an allocation engine based on static, round
robin allocation where tasks (or processes) are assigned on
each PE (or cluster) using a round robin order, regardless of
the PE’s status, used as a reference standard engine in our
experiments.

The three AEs (Round-Robin (RR), DRS, and NRS) were
synthesized using Synopsys Design Compiler and TSMC’s
65 nm CMOS standard cell library, with targeted clock
frequency of 800 MHz. The RR unit can have a faster cycle,
but since the AE is invoked during distinct intervals, its
overall delay is amortized. The hardware overhead for the

12 EURASIP Journal on Embedded Systems

Table 1: Types of synthetic processes and applications used in CMPs.

SYNTHETIC PROCESSES

Process Type Description/Contribution
Number of Threads
(Manually Set)

Range of number of
Instructions/Thread

Matrix Multiplication
Heavy and Light Computation depending on Matrix
size and content (MIPS performs MUL with repeated
additions)

Variable, depends on
matrix size and values

100’s–10000’s

Producer/Consumer

Process consists of threads producing data values,
which are then consumed by other threads, and vice
versa. Gives a varied workload of of ALU/Memory
instructions, as well as cache misses.

Variable (Range from
16–64)

100’s–1000’s

Sequential Memory
Access

Fetches a number of variables from memory, performs
addition, storing result in memory. Provides a balanced
workload in terms of threads, as it can be parallelized,
without data dependency between threads. Creates L1
and L2 cache misses.

Max of 64 10’s–1000’s

Random Memory
Access

Similar to sequential access, but with random memory
locations. Creates L1 and L2 Cache Misses

Max of 64 10’s–1000’s

APPLICATIONS

Process Type Input Data
Number of Threads
(Manually selected)

Range of number of
Instructions/Thread

Quicksort 1 QS1 1024 integers Max of 32 10’s–100’s

Quicksort 2 QS2 16384 integers Max 64 100’s–1000’s

Histogram
Equalization HEQ1 Image Sizes of 320 × 240 and 640 × 480 pixels

Max of 16 (320 × 240)
10’s–100’s

Histogram
Equalization HEQ2

Max of 32 (640 × 480)

Canny Edge Detector
CED1 Image Sizes of 320 × 240 and 640 × 480 pixels

Max of 16 (320 × 240)
10’s–100’s

Canny Edge Detector
CED2

Max of 32 (640 × 480)

DRS and the NRS AE that supports 64 processes/tasks
(i.e., CAM size) is very small, ∼2400 and ∼2200 logic
gates, respectively. Both DRS and NRS are slightly bigger
(approximately 3%) than an RR unit (which also contains
memory to keep track and support up to 64 processes/tasks).
Blocking was used in all three cases, whenever the number of
active processes/tasks was larger than the CAM/memory size.

For a single allocation of 128 tasks to 64 bidders, the
DRS AE consumes ∼0.064 mW of total power (including
leakage) at 0.8 V power supply voltage, while the NRS AE
consumes∼0.042 mW. The RR AE consumes the least power,
at ∼0.02 mW, as it involves simpler computations than NRS
and DRS. The overall impact of the bidding packets on the
network traffic consists of less than 1% of the total traffic
on a 16 × 16 network, so it is anticipated that the proposed
dynamic, on-chip-based allocation will not contribute sig-
nificantly towards the overall energy consumption of the
network.

6. Experimental Methodology

With emphasis on modularity, we developed a simulation
framework that would allow us to maintain the generic
nature of the architecture. Existing high-level system simula-

tion frameworks, such as SIMICS-based simulators [47], may
limit the ability in modifying the underlying hardware archi-
tecture, especially in including dedicated hardware, besides
the very long simulation time necessary for full system-
level simulation. Hence, we chose the use of synthesizable
SystemC and Verilog to target RTL hardware simulation
which allowed us to perform synthesis (using Synopsys
CoCentric SystemC Compiler) and derive detailed hardware
overhead and power estimates. To make the simulator as
generic as possible, we partitioned the manycore system in
three major units, the cores/clusters/PEs, the interconnection
network, and the I/O controller (in which the AE was also
implemented). Given the modularity of the system, we chose
to create our framework using an existing NoC simulator
[48] and models for each of the units, which we have merged
into one system-level simulator using SystemC.

The proposed mechanisms were evaluated using both
real-world applications and representative synthetic bench-
marks, using various on-chip network sizes and topologies.
Specifically, for MPSoC architectures, we experimented with
several computational kernels as well as popular MPSoC
applications; for general-purpose architectures (CMPs),
we used standard applications as well as various syn-
thetic benchmarks, developed specifically for our evaluation

EURASIP Journal on Embedded Systems 13

Table 2: Scenarios details for synthetic processes for CMPs.

SCENARIO Process Types
Processes Per

Interval

Scenario 1

15% Heavy Computation (MM),
30% Light Computation (MM),
52% Sequential Memory Accesses,
3% Producer/Consumer

2–32

Scenario 2

8% Heavy Computation (MM),
47% Light Computation (MM),
24% Sequential Memory Accesses,
21% Producer/Consumer

8–64

Scenario 3

22% Heavy Computation (MM),
26% Light Computation (MM),
31% Random Memory Accesses,
21% Producer-Consumer

0–16

Scenario 4
57% Heavy Computation (MM),
31% Random Memory Accesses,
12% Sequential Memory Accesses

0–64

Scenario 5

12% Heavy Computation (MM),
32% Light Computation (MM),
47% Sequential Memory Accesses,
9% Producer/Consumer

8–64

Scenario 6

18% Heavy Computation (MM),
29% Light Computation (MM),
38% Sequential Memory Accesses,
15% Producer/Consumer

16–64

purposes (see Section 6.3). The latter was necessary since
currently there are no publically available standard low-level
benchmarks (in Assembly language) for multi/manycore
architectures, which would be appropriate for our targeted
architecture and simulation framework. As the simulation
framework receives binary data, assembly language is easily
converted to input vectors for the simulator, eliminating
the need for a cross-compiler. Recall that we are targeting
the concept of small, parallel threads; research in future
manycore software is currently an extremely active area,
with the goal of extracting parallelism. As mentioned earlier
in Section 4, emerging literature suggests that trends in
software development favor the concept of small parallel
process and threads [41–44], a concept not readily available
in present day low-level software benchmarks. Hence, we
created in-house evaluation benchmarks that can be used in
conjunction with an MIPS assembler to construct relatively
small and parallel processes, each of which can also be broken
down into several small-scale threads.

The proposed algorithms in this paper are non-
preemptive; if a process is assigned to a cluster/PE, then the
process is queued for that cluster/PE until its execution. If the
cluster/PE is busy, then the process remains in queue until the
cluster/PE completes its current workload.

Also for evaluation purposes, we need a reference
point with which to compare the proposed mechanisms.
Given the lack of alternative, non-preemptive (without
any task/process migration), hardware-based mechanisms
for runtime system-level resource allocation in manycore
systems, we compare with a Round Robin (RR) allocation
algorithm, which was also implemented in hardware. The

Table 3: Applications used in MPSoC simulations.

Benchmark
Name

Description
Benchmark

Code

IMAGE PROCESSING MPSoC

Histogram
Equalization

Histogram Equalization on a 320
× 240 image and on a 640 × 480
image

HEQ320

Canny Edge
Detector

Uses Canny edge detection
algorithm on a 320 × 240 image
and on a 640 × 480 image

CED320
CED640

Noise Removal
Uses a gaussian mask for noise
removal from a 320 × 240 image
and a 640 × 480 image

NR320
NR640

ALL IN
PARALLEL

Runs all six applications in
parallel (equal priority)

ALL

DSP MPSoC

Noise Removal
Uses a gaussian mask for noise
removal from a 320 × 240 image
and a 640 × 480 image

NR320
NR640

Face Detector
Uses a neural network for
detecting faces in an image of 320
× 24 and an image of 640 × 480

NNFD320
NNFD640

Low Pass Filter
Performs a low-pass filter
operation on a digital signal

LPF

ALL IN
PARALLEL

Runs all five applications in
parallel (equal priority)

ALL

PAR MPSoC

Parallel Object
Detection

Detects circular shapes using a
neural network in 4 parallel
video streams of frames 320 ×
240 and 640 × 480

OD320
OD640

MPEG2 MPSoC

MPEG2
Decoding
Algorithm

Performs the MPEG2 decoding
algorithm on encoded frames

MPEG2-320
MPEG2-640

RR algorithm was selected for the following reasons: (i)
it is a static algorithm, that is, it does not receive any
system feedback: this will allow us to evaluate the impact
in performance, when introducing intelligence during the
resource allocation process, (ii) it is very simple and,
therefore, very easy to implement in hardware: this will reveal
the specific hardware overhead that is imposed to the system
by a dynamic method.

Comparing the proposed techniques with existing
dynamic algorithms such as the ones in [11, 15, 16, 22, 33–
39] would be impractical for several reasons. In contrast
to existing state-of-the-art techniques, our algorithm is
purely implemented using a custom hardware architecture.
The majority of existing methods are implemented at the
O/S or runtime system level. Furthermore, state-of-the-art
dynamic algorithms [34–38] are assumed to be running on
a management processor (i.e., a control processor); hence
they can be compiled and simulated using the control
processor’s architecture. Our algorithm receives real-time,
hardware feedback from the on-chip network and the proces-
sors/clusters and is designed on custom hardware, controlled

14 EURASIP Journal on Embedded Systems

exclusively by the feedback received from the hardware and
by minimal O/S interface. The proposed algorithms take into
consideration both network congestion as well as processor
workload characteristics, in contrast to existing NoC-based
dynamic methods which only monitor the network status
(but not the PEs’ status). This enables indirect integration
of all delay mechanisms observed on a chip, such as memory
traffic stemming from cache misses as well as other delays
encountered due to unpredictable nature of most general-
purpose applications. Consequently, the hardware-based
cycle-accurate RLT-level simulation framework utilized is
the most appropriate for studying the impact of RTL-level
modifications done in this work.

The remainder of this section details the experimental
methodology, focusing on each of the issues discussed
above.
6.1. Experimental Platform Details. The experimental plat-
form was designed based on the generic architectural
considerations described in Section 4.

For the homogeneous CMP case, the size of the network
and the overall number of cores and clusters were parameter-
ized. The number of cores per cluster was limited; otherwise
the bus-based communication will become impractical.
Thus, clusters of four and eight cores were considered.
We used modified 32-bit MIPS RISC R2000 cores [49],
with forwarding hardware but without branch prediction or
any other instruction level parallelism optimizations. Each
processor consists of a 5-stage pipeline and 1 KB of L1 cache.
The processor contains a 16-entry instruction queue, where
assigned instructions are stored and executed in FIFO order
from the queue. Cached instructions are fetched directly
from the L1 and stored into the instruction queue as well. All
cores in each cluster share a 16 KB L2 Memory. Cache units
contain snooping hardware for coherency as mentioned in
Section 3. L1 cache misses are handled internally within the
cluster, and L2 misses externally within the network; in each
case, the requesting core stalls until the requested data arrive.
Two primary NoC topologies, mesh and torus, were used.
The network size was varied for each topology, implementing
several manycore configurations.

For the heterogeneous experimental platform, we select-
ed generic MPSoC components obtainable from Open-
Cores [50, 51] and integrated them in the NoC-based
SystemC framework. We implemented four different MPSoC
architectures, which utilize a variety of on-chip PEs. The
first architecture (IP MPSoC) targets image processing
applications. The second architecture (DSP MPSoC) targets
general DSP applications, and the third architecture (PAR
MPSoC) was designed to simultaneously decode multiple
video streams and perform neural network-based detection
of circular objects. In this case, there are four and eight
I/O controllers (we implemented both versions), so each AE
receives its input data from four or eight different sources,
using round robin time-division multiplexing, with the
objective of decoding all streams in real time. Lastly, a custom
MPEG2 decoding MPSoC was designed consisting of the
typical blocks of the algorithm (Huffman decoding, IDCT,
motion compensation and inverse quantization), mem-
ory, and embedded microprocessors for control purposes.

The PAR MPSoC and MPEG2 architectures are given in
Figure 4.

The network parameters were the same in both het-
erogeneous and homogeneous platforms. Communication
was implemented based on dimension-order XY routing,
using wormhole switching [4]. The bidding packets were
routed in reverse XY priority, as explained in Section 5.2.
Packets consist of a 32-bit header flit and four 32-bit payload
flits, each containing one instruction, making the packet
size 160 bits total, with each packet able to transmit 4
instructions to the destination cluster (or core, for the cases
of MPSoCs). Each cluster/core contains a Network Interface
(NI) hardware, which decodes the received packets. In the
clustered CMP case, the NI also decides how to dispatch the
various process threads to the cores inside the cluster. In
our current implementation, we used a static round robin
allocation within each cluster, primarily due to the small
number of cores within each cluster.

6.2. Simulation Methodology. A system simulator was devel-
oped, based on an existing cycle-accurate NoC simulator
in SystemC [48]. The NoC simulator is able to simulate
cycle-accurate variations of the considered mesh and torus
topologies and the XY-dimension order routing algorithm
at the RTL level. The simulator models the behavior of
links (pipelined versus nonpipelined), routers (consisting
of a routing decision unit, a crossbar arbitration unit,
virtual channel (VC) and associated VC selection unit,
and the crossbar itself). Moreover the simulator offers
parameterizeable network interface models (NI), which
connect to the network infrastructure and allow the user
to create user-defined Processing Elements (PEs), using the
NI protocols defined in the simulator. This allowed us to
create architectures for the simulation of both the CMP
as well as the MPSoC cases, by connecting microprocessor
cores, clusters, I/O controllers, or special-purpose PEs on the
existing NoC simulator. As such, our expanded simulator
consists of the on-chip network infrastructure, the NIs and
the processor cores and I/O controllers. All were modeled in
Synthesizable SystemC. The allocation engines were placed
as parts of the I/O controllers. The simulator receives the
binary inputs at the I/O controllers, where the AE proceeds
to direct them to their bound PEs. Communication between
each PE and the NI was supported by hardware handshake
signals.

For the CMP case, we constructed a SystemC clus-
ter model, composed of existing SystemC models of the
modified 32-bit MIPS R2000 RISC core (without the FP
coprocessor and the multiply/divide unit) [49], intercon-
nected using a bus model, also developed in SystemC. We
additionally created SystemC models of our proposed AEs.
All clusters, as well as the AE, were then plugged in the
NoC simulator as NoC processing nodes, with the AE acting
as the NoC I/O node, forming a system-level simulation
framework that has the ability to operate under a plug-
and-play approach, while giving RTL-based simulation. The
CMP simulator accepts 32-bit MIPS assembly instructions
as inputs, converts them to binary data, packetizes them
based on the NoC simulation protocol, and transmits them

EURASIP Journal on Embedded Systems 15

0
5

10
15
20
25
30
35
40
45
50

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5
Scenario 6

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

NRS algorithm DRS algorithm

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

(a)

0
5

10
15
20
25
30
35
40
45
50

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5
Scenario 6

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

NRS algorithm DRS algorithm

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

(b)

Figure 5: Necessary Re-Sorting (NRS) and Dynamic Re-Sorting (DRS) percentage improvement over Round Robin (RR), for clustered
configurations of different network sizes for mesh (a) and torus (b) topologies.

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5
Scenario 6

NRS algorithm DRS algorithm

0

5

10

15

20

25

4
×

4
m

es
h

8
×
8

m
es

h

4
×

4
to
ru

s

8
×
8

to
ru

s

4
×

4
m

es
h

8
×
8

m
es

h

4
×

4
to
ru

s

8
×
8

to
ru

s

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

Figure 6: Necessary Re-Sorting (NRS) and Dynamic Re-Sorting
(DRS) percentage improvement over Round Robin (RR) for non-
clustered configurations of different network sizes and topologies.

through the network to the specific cluster chosen by the AE.
The simulator implements data transfer of packets through
the network, communication between the cores and the L2
cache, and instruction execution and L1 activity at each
MIPS core, giving cycle-accurate behavior. Furthermore, it
provides performance metrics such as the total number of
cycles taken for a set of instructions to execute and individual
core utilization (number of busy cycles over total number
of cycles). The simulator can be functionally modeled using
Modelsim [52] where debugging and validation of the
results and signals were done. Moreover, assertion-based
verification using the Open Verification Library was also
integrated inside the simulation framework for validation
and verification purposes.

A similar approach was followed for the MPSoC case, for
each of the four MPSoC architectures described earlier. All
implemented MPSoCs were interconnected via a 2D torus
NoC, with a number of I/O blocks (controllers) where tasks
and associated data enter the chip. Tasks were then directed
through the corresponding AE (of the appropriate type),
which in turn created the dynamic binds between the tasks
and PEs.

6.3. Synthetic and Application-Based Benchmarks. The objec-
tive was to create benchmarks suitable for both the CMP
and the MPSoC cases, given the differences between the
predictability and types of applications. We therefore utilized
a set of both synthetic as well as real application benchmarks,
for which we were able to control the level of parallelism we
induced in our experiments.

In the CMP case, emphasis was placed in creating
random workloads consisting of independent processes of
random sizes, yielding also random sized threads. Given the
impracticality of creating a cross-compiler, we decided to
create low-level, MIPS assembly benchmarks from programs
that could easily yield the desired parallel processes, while
maintaining precedence between processes. We used MIPS
assembly instructions to develop four different types of
processes. The nature of the chosen processes allows us
to vary the number of threads per process type, creating
several processes for each considered type, with similar
characteristics but different workloads, ranging from tens to
tens of thousands of instructions per process. The first part
of Table 1 gives a short description of each process type. We
implemented a random generator script to generate sets of
processes, randomly choosing (i) process type, (ii) number
of threads per process, and (iii) number of instructions per
thread, to construct a list of processes ranging from 2–256
processes per list. Each list represents the processes scheduled
for execution during one time interval. This method gives

16 EURASIP Journal on Embedded Systems

0

5

10

15

20

25

30

35

40

45

50
Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

NRS algorithm DRS algorithm

CED1
CED2
QS1

QS2
HEQ1
HEQ2

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16
(a)

0

5

10

15

20

25

30

35

40

45

50

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

NRS algorithm DRS algorithm

CED1
CED2
QS1

QS2
HEQ1
HEQ2

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

(b)

Figure 7: Necessary Re-Sorting (NRS) and Dynamic Re-Sorting (DRS) percentage improvement over Round Robin (RR) for the applications
of Table 1, using different mesh network sizes (a) and different torus network sizes (b).

5

15

25

35

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5
Scenario 6

Mesh topology Torus topology

(a)

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16

4
×

2

4
×

4

4
×
8

8
×
8

16
×

16
Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5
Scenario 6

Mesh topology Torus topology

10

20

30

40

(b)

Figure 8: Trends in NRS (a) and DRS (b) improvement over Round Robin (RR) as the network size grows, for mesh and torus topologies.

us a wide range of workloads, consisting of long and short
processes, in random order and with random distribution in
terms of length. Using these processes as input, we created
six different scenarios of execution workloads, which we
labeled as Scenario1–Scenario 6. These workloads consist of
a variable number of processes for each interval, and each
scenario consists of 200 intervals. Details of each scenario are
shown in Table 2.

In addition, we chose three real-world applications
that could yield parallel processes without the need of an
optimized cross-compiler: a canny edge detection algorithm,
an implementation of the quicksort algorithm, and an image
enhancement algorithm based on histogram equalization.

These applications, in addition to their inherent parallelism,
are capable of presenting us with a varied number of
processes and threads per process, due to varied intensity
levels on the images, and by varying the input data to the
quicksort algorithm. Using two data sets for the quicksort
algorithm and four different image sizes, we created another
set of benchmarks shown in the second part of Table 1. In
summary, the utilized workloads for the CMPs platform
feature different number of allocation intervals, processes per
interval, threads per process, and instructions per process.

For the MPSoC case, we selected a variety of MPSoC
applications [50, 51, 53] that targeted the four implemented
platforms. These applications are summarized in Table 3

EURASIP Journal on Embedded Systems 17

10

20

30

40

50 75 100 125 150 175 200 50 75 100 125 150 175 200

4 × 2
4 × 2
4 × 4
4 × 4
4 × 8

4 × 8
8× 8
8× 8
16 × 16
16 × 16

NRS Algorithm

DRS Algorithm

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

of intervals

Figure 9: Trends in NRS and DRS improvement over Round Robin
(RR) as the workload increases from 50 to 200 intervals.

and feature audio and video (image-based) applications.
The image-based applications target images of two sizes;
this provides additional workload in each application, giving
observations regarding the performance of the algorithm as
the number of tasks increases.

Prior to simulating each of the evaluation scenarios, the
simulator was initialized for 100,000 cycles, sending random
instructions involving random computations and data to
each cluster/core/PE, in order to bring the network and the
caches into a random system operating condition. At that
time, simulation pursues using the benchmark scenarios. For
each scenario, we recorded the total number of cycles taken
for the system to execute all the workloads and measured
the improvement of each of the bidding algorithms over
the RR algorithm. We also computed the utilization of each
cluster/core/PE, measured by the number of busy cycles over
the number of total cycles.

6.4. Allocation Interval. An important parameter in the
performance of the bidding algorithm is the allocation
interval, traditionally determined by the scheduler, based
on the average length of the software processes (i.e., the
instruction stream) [7, 8]. In the absence of this information,
in our simulations we have set the time allocation interval
as follows: (i) for the MPSoC case, the time interval is set
appropriately depending on the bound execution time for the
smallest task in each application; doing so, ensures that even
the smallest tasks will be given fair allocation, a conservative
approach but necessary in a time-constrained environment,
(ii) for the CMP case, the average estimated execution time
of all processes scheduled for a particular interval was used.

In practice, the system scheduler can vary the allo-
cation interval depending on the scheduling policy (i.e.,
earliest deadline first, rate-monotonic, etc.). In our case,
the allocation interval was implemented as a counter; the

value can be loaded and adjusted at runtime, through a
simple instruction issued by the O/S. The implications of
this interval however are important in deciding whether to
implement the algorithm in hardware, or explore alterna-
tive options such as embedding the allocation algorithm
as part of the O/S. Frequent allocation intervals benefit
from hardware implementation as feedback is received in
real time, and adjustment policies can be determined in
real time. In time-constrained environments, especially in
applications with hard deadlines, this is very beneficial. If
however the allocation happens in sparse, large intervals,
then a hardware implementation might not be necessary
as the whole operation can be integrated in the software
since feedback and adjustment will happen sparsely. In this
paper we experiment with the former case, having frequent
allocations and small-scale processes with small intervals, as
our aim was to investigate the potential benefits of simple but
real-time system feedback.

7. Results and Discussion

7.1. Homogeneous Manycore Systems (CMP). We first exam-
ine the overall performance impact of each allocation
mechanism, by measuring the overall system performance
of each algorithm in total clock cycles. Figure 5 shows
the obtained results, comparing the two bidding-based
algorithms (DRS and NRS) for different network sizes (up
to 16 × 16) and topologies, over the RR algorithm. Results
are normalized to the RR allocation performance (base of
100%), indicating improvements in the order of 10–38%
for NRS and 15–44% for DRS. The DRS algorithm returns
the highest improvement in all cases, however the NRS
algorithm consumes less power and cycles when running,
since it only sorts the bids when there are more processes
than bidders (as already discussed in Section 5.5). The extra
cycles however are not significant, as over a large period of
time the delay is amortized.

A similar trend, although at a lower scale of improve-
ment, is also observed for non-clustered CMPs. Figure 6
shows the six scenarios and the performance improvement
for both bidding algorithms, through 4 × 4 and 8 × 8 non-
clustered mesh and torus configurations. Figure 7 shows the
performance improvement gained for the applications listed
in the bottom part of Table 1 for both mesh and torus
topologies. Again, we observe a considerable performance
improvement for both mechanisms, with DRS giving con-
sistently the best performance.

Another interesting observation obtained from the sim-
ulation results concerns the network size; in both bidding
algorithms, an increase to the size of the network results
in additional performance improvement. This is better
illustrated in Figure 8, which shows this increasing trend
in all experimental scenarios. This is mainly attributed to
two reasons: (i) a larger network offers more routing paths,
absorbing input congestion formed during each allocation
interval quicker, and (ii) as the network delay increases for
cores which are further away from the AE, the algorithm
acts as a load balancing mechanism taking this delay into
consideration.

18 EURASIP Journal on Embedded Systems

RR utilization

0

0.2

0.4

0.6

0.8

1

(a)

0

0.2

0.4

0.6

0.8

1NRS utilization

(b)

0

0.2

0.4

0.6

0.8

1DRS utilization

(c)

Figure 10: Average cluster utilization when running all benchmark scenarios with RR (a), NRS (b), and DRS (c). The DRS utilization results
in a much more balanced distribution of the workload, with a variance between 55%–78%.

Additionally, both DRS and NRS algorithms exhibit
increased performance improvement over RR as the number
of allocation intervals increases. In Figure 9, we compare
various scenarios in terms of increasing number of timing
intervals (i.e., increasing overall workload), starting from
50 allocation intervals, and observing the improvement
as the amount of allocation intervals increases to 200.
As more processes are dispatched to the system, both
DRS and NRS algorithms show an increase in the % of
improvement over RR. This is encouraging since it shows
that as the workload increases, the performance gap between
the proposed algorithms and RR algorithm increases
significantly.

Load balancing is another important observation.
Figure 10 shows the average utilization obtained from all
synthetic scenarios (average cluster utilization of Scenario
1–Scenario 6) for the case of a 16 × 16 clustered network

(utilization shown in a 16 × 16 grid, each grid data point
represents the average utilization of each cluster during all
six scenarios). Both NRS and DRS give better workload
balancing to that of RR, with the DRS algorithm returning
the most balanced scenario. This is also observed in other
network sizes and configurations. The variance in utilization
between clusters decreases; utilization rates between ∼27%
to ∼61% are observed in RR, whereas in the DRS, utilization
is distributed more evenly between ∼55% and ∼78%. This
holds true for all network sizes and topologies simulated. Bal-
anced workload distribution across the on-chip grid, offers
significant benefits in terms of chip temperature and allo-
cation fairness. Moreover, it improves system performance,
as more processor cores are being utilized in parallel with

other cores and executing more tasks in less amount of
time.

EURASIP Journal on Embedded Systems 19

0

5

10

15

20

25
Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

H
E

Q
32

0

C
E

D
32

0

N
R

32
0

H
E

Q
64

0

C
E

D
64

0

N
R

64
0

A
ll

Image processing MPSoC

(a)

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

0

4

8

12

16

20

N
R

32
0

N
N

FD
32

0

LP
F

N
R

64
0

N
N

FD
64

0

A
ll

DSP MPSoC

(b)

Figure 11: Performance improvement of DRS over RR for two different MPSoC platforms (image processing and DSP platforms).

15

20

25

30

35

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

ov
er

R
R

(%
)

Pattern recognition MPSoC

O
D

32
0

O
D

64
0

O
D

32
0

O
D

64
0

O
D

32
0

O
D

64
0

O
D

32
0

O
D

64
0

M
P

E
G

2-
32

0

M
P

E
G

2-
64

0

MPEG2
decoder

0

5

10

PAR 8× 8-4
streams

PAR 16 × 16-4
streams

PAR 8× 8-8
streams

PAR 16 × 16-8
streams

MPEG2 6 × 5

Figure 12: Performance improvement of DRS over RR for the
applications running on the pattern recognition MPSoC platform
and the MPEG2 Decoding Algorithm.

7.2. Heterogeneous Manycore Systems (MPSoC). As in the
CMP case, the DRS algorithm has consistently outperformed
the NRS algorithm for MPSoC platforms and, therefore, we
only report results for the DRS mechanism in this section.

Figure 11 shows the performance improvement of the
DRS allocation engine over the RR engine. In all benchmark
cases, the DRS algorithm outperforms RR by a range of 10%–
24%. This is especially evident when all applications are run
in parallel (labeled as ALL in Figure 11). Additionally, as the
number of tasks increases (as shown in the cases where the
image size increases yielding more tasks, that is going from
NR320 to NR640, from NNFD 320 to NNFD640, and from
OD320 to OD640), the improvement of the DRS algorithm
increases, indicating better performance as the number of
tasks increases (this trend was also observed in the CMP
platforms).

Figure 12 shows the results for the pattern recognition
MPSoC and the MPEG2 Decoder MPSoC (Figure 4). In
the first MPSoC, the improvement of the DRS performance
increases as the network size increases, which demonstrates
the impact of the encapsulated network delays in the bid.
Moreover, the performance increases when handling an
increased number of I/O streams, as the number of I/O
controllers increases from 4 to 8. For the 16 × 16 network,
the bidding algorithm’s improvement increases to 25%–
27%, an indication that as the network size increases, the
effects of the optimization are clearly more visible, an
improvement which also stands when we introduce more
I/O streams on the chip. The MPEG2 decoder also observes
significant improvements in its performance when using the
DRS algorithm, albeit lower improvement when compared
to the other applications. This is primarily allocated to
the streaming nature of the MPEG2 algorithm. However,
as the workload increases, the improvement observed also
increases, something that holds true so far throughout our
experimental results.

In general, the DRS algorithm outperforms the NRS
algorithm; however the NRS algorithm does consume less
power and hardware (for details on power estimates and
hardware overhead see Section 5.5) and is suitable in cases
where the overall number of processes per assignment
interval can be known ahead of time to be roughly the same
as the overall number of cores.

8. Conclusions and FutureWork

As manycore architectures evolve as a computing paradigm,
hardware-enabled system-level dynamic algorithms surface
as a possible practical approach in addressing system-wide
manycore problems such as resource allocation. In this paper,
we presented on-chip, bidding-based resource allocation
algorithms which improve performance and system utiliza-
tion (with minimal overhead), demonstrating the benefits

20 EURASIP Journal on Embedded Systems

from embedding intelligence on the chip, by utilizing real-
time system feedback. Overall the results encourage us to
further investigate the impact of system level optimization
algorithms.

Future work will investigate the expansion of the pro-
posed hierarchical framework with intra-cluster allocation
(thread allocation), incorporating other important parame-
ters in on-chip large-scale multiprocessors, such as energy-
aware allocation and interfacing the system to more I/O
ports, using an AE per port, in order to increase bandwidth.

References

[1] K. Asanovic et al., “The landscape of parallel computing
research: a view Ffrom berkeley,” Tech. Rep., University of
California at Berkeley, Berkeley, Calif, USA, December 2006.

[2] S. Borkar, “Thousand core chips—a technology perspective,”
in Proceedings of the 44th ACM/IEEE Design Automation
Conference (DAC ’07), pp. 746–749, June 2007.

[3] G. De Micheli and L. Benini, Networks on Chips: Technology
and Tools (Systems on Silicon Series), Morgan Kauffmann,
Boston, Mass, USA, 2006.

[4] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proceedings of the 38th Design
Automation Conference (DAC ’01), pp. 684–689, June 2001.

[5] R. I. Bahar, D. Hammerstrom, J. Harlow et al., “Architectures
for silicon nanoelectronics and beyond,” IEEE Computer, vol.
40, no. 1, pp. 25–33, 2007.

[6] S. V. Gheorghita, M. Palkovic, J. Hamers et al., “System-
scenario-based design of dynamic embedded systems,” ACM
Transactions on Design Automation of Electronic Systems, vol.
14, no. 1, article 3, 2009.

[7] C. C. Price, “Task allocation in distributed systems: a survey
of practical strategies,” in Proceedings of the ACM Annual
Conference/Annual Meeting, pp. 176–181, New York, NY, USA,
1982.

[8] V. M. Lo, “Heuristic algorithms for task assignment in
distributed systems,” IEEE Transactions on Computers, vol. 37,
no. 11, pp. 1384–1397, 1988.

[9] A. Das and D. Grosu, “Combinatorial auction-based protocols
for resource allocation in grids,” in Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’05), April 2005.

[10] D. P. Bertsekas, “Auction algorithms for network flow prob-
lems: a tutorial introduction,” Computational Optimization
and Applications, vol. 1, no. 1, pp. 7–66, 1992.

[11] R. Jain and P. Varaiya, “Efficient market mechanisms for
network resource allocation,” in Proceedings of the 44th IEEE
Conference on Decision and Control, and the European Control
Conference (CDC-ECC ’05), pp. 1056–1061, December 2005.

[12] P. Maillé and B. Tuffin, “Multi-bid auctions for bandwidth
allocation in communication networks,” in Proceedings of
the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM ’04), pp. 56–71,
March 2004.

[13] T. Theocharides, M. K. Michael, M. Polycarpou, and A.
Dingankar, “A novel system-level on-chip resource allocation
method for manycore architectures,” in Proceedings of the IEEE
Computer Society Annual Symposium on VLSI Design (ISVLSI
’08), pp. 99–104, Montpellier, France, 2008.

[14] T. Theocharides, M. K. Michael, M. Polycarpou, and A.
Dingankar, “Towards embedded runtime system level opti-
mization for MPSoCs: on-chip task allocation,” in Proceedings

of the 19th ACM Great Lakes Symposium on VLSI (GLSVLSI
’09), pp. 121–124, Boston, Mass, USA, May 2009.

[15] E. W. Brião, D. Barcelos, and F. R. Wagner, “Dynamic task
allocation strategies in MPSoC for soft real-time applications,”
in Proceedings of the Design, Automation and Test in Europe
(DATE ’08), pp. 1386–1389, March 2008.

[16] X. Liao, W. Jigang, and T. Srikanthan, “Brief announcement:
a temperature-aware virtual submesh allocation scheme for
NoC-based manycore chips,” in Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA ’08), pp. 182–184, Munich, Germany, June 2008.

[17] P. Liu, Y. Kiyoki, and T. Maruda, “Efficient algorithms for
resorce allocation In distributed and paralel query processing
environments,” in Proceedings of the 9th International Con-
ference on Distributed Computing Systems, pp. 316–323, June
1989.

[18] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Tempera-
ture aware task scheduling in MPSoCs,” in Proceedings of
the Design, Automation and Test in Europe Conference and
Exhibition (DATE ’07), pp. 1659–1664, March 2007.

[19] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M.
J. Irwin, “Thermal-aware task allocation and scheduling for
embedded systems,” in Proceedings of the Design, Automation
and Test in Europe (DATE ’05), pp. 898–899, March 2005.

[20] W.-L. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye, T.
Theocharides, and M. J. Irwin, “Thermal-aware floorplanning
using genetic algorithms,” in Proceedings of the Sixth Interna-
tional Symposium on Quality of Electronic Design (ISQED ’05),
pp. 634–639, March 2005.

[21] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G.
De Micheli, “Temperature-aware processor frequency assign-
ment for MPSoCs using convex optimization,” in Proceedings
of the 5th International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS ’07), pp. 111–
116, Salzburg, Austria, October 2007.

[22] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M.
Smit, “Run-time spatial mapping of streaming applications to
a heterogeneous multi-processor System-on-Chip (MPSoC),”
in Proceedings of the Design, Automation and Test in Europe
(DATE ’08), pp. 212–217, March 2008.

[23] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratch-
pad memory optimization and task scheduling for MPSoC
architectures,” in Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems
(CASES ’06), pp. 401–410, October 2006.

[24] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: run-
time agent-based distributed application mapping for on-chip
communication,” in Proceedings of the 45th Design Automation
Conference (DAC ’08), pp. 760–765, June 2008.

[25] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H.
Yajun, “Resource manager for non-preemptive heteroge-
neous multiprocessor system-on-chip,” in Proceedings of the
IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time
Multimedia (ESTIMEDIA ’06), pp. 33–38, October 2006.

[26] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y.
Mignolet, “Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles,”
in Proceedings of the Design, Automation and Test in Europe
(DATE ’05), pp. 234–239, March 2005.

[27] S. Murali and G. De Micheli, “Bandwidth-constrained map-
ping of cores onto NoC architectures,” in Proceedings of
the Design, Automation and Test in Europe Conference and
Exhibition (DATE ’04), pp. 896–901, February 2004.

EURASIP Journal on Embedded Systems 21

[28] D. Pani, G. Passino, and L. Raffo, “Run-time adaptive
resources allocation and balancing on nanoprocessor arrays,”
in Proceedings of the 8th IEEE Euromicro (CDSD ’05), pp. 492–
499, Porto, Portugal, September 2005.

[29] K. Shaw and W. Dally, “Migration in single chip multiproces-
sors,” IEEE Computer Architecture Letters, vol. 1, no. 3, pp. 2–5,
2002.

[30] M. Becchi and P. Crowley, “Dynamic thread assignment on
heterogeneous multiprocessor architectures,” in Proceedings of
the 3rd Conference on Computing Frontiers (CF ’06), pp. 29–39,
May 2006.

[31] A. C. Nácul, F. Regazzoni, and M. Lajolo, “Hardware schedul-
ing support in SMP architectures,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’07), pp. 642–647, March 2007.

[32] R. Watanabe, M. Kondo, M. Imai, H. Nakamura, and T. Nanya,
“Task scheduling under performance constraints for reducing
the energy consumption of the GALS multi-processor SoC,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’07), pp. 797–802, March
2007.

[33] C.-L. Chou and R. Marculescu, “User-aware dynamic task
allocation in networks-on-chip,” in Proceedings of the Design,
Automation and Test in Europe (DATE ’08), pp. 1232–1237,
ACM, New York, NY, USA, March 2008.

[34] L. T. Smit, G. J. M. Smit, J. L. Hurink, H. Broersma,
D. Paulusma, and P. T. Wolkotte, “Run-time mapping of
applications to a heterogeneous reconfigurable tiled system
on chip architecture,” in Proceedings of the IEEE International
Conference on Field-Programmable Technology (FPT ’04), pp.
421–424, December 2004.

[35] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: run-
time agent-based distributed application mapping for on-chip
communication,” in Proceedings of the 45th Design Automation
Conference (DAC ’08), pp. 760–765, ACM, New York, NY,
USA, June 2008.

[36] A. Mehran, A. Khademzadeh, and S. Saeidi, “DSM: a heuristic
dynamic spiral mapping algorithm for network on chip,”
IEICE Electronics Express, vol. 5, no. 13, pp. 464–471, 2008.

[37] E. Carvalho and F. Moraes, “Congestion-aware task mapping
in heterogeneous MPSoCs,” in Proceedings of the International
Symposium on System-on-Chip Proceedings (SOC ’08), pp. 1–4,
2008.

[38] A. K. Singh, W. Jigang, A. Prakash, and T. Srikanthan,
“Efficient heuristics for minimizing communication overhead
in noc-based heterogeneousmpsoc platforms,” in Proceedings
of the IEEE/IFIP International Symposium on Rapid System
Prototyping, pp. 55–60, IEEE Computer Society, 2009, Wash-
ington, DC, USA.

[39] A. K. Singh, W. Jigang, A. Kumar, and T. Srikanthan, “Run-
time mapping of multiple communicating tasks on MPSoC
platforms,” in Proceedings of the International Conference on
Computational Science (ICCS ’10), Elsevier, 2010.

[40] H. Lin, Y. Feng, and X. Qiang, “Lifetime reliability-aware
task allocation and scheduling for MPSoC platforms,” in
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’09), pp. 51–56, Nice,
France, April 2009.

[41] M. Cintra, J. F. Martinez, and J. Torrellas, “Architectural
support for scalable speculative parallelization in shared-
memory multiprocessors,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA ’00),
pp. 13–24, June 2000.

[42] J. F. Martı́nez and J. Torrellas, “Speculative synchronization:
applying thread-level speculation to explicitly parallel appli-
cations,” in Proceedings of the10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’02), pp. 18–29, San Jose, Calif,
USA, October 2002.

[43] K. Asanovic, R. Bodik, J. Demmel et al., “A view of the parallel
computing landscape,” Communications of the ACM, vol. 52,
no. 10, pp. 56–67, 2009.

[44] M. K. Prabhu and K. Olukotun, “Using thread-level specu-
lation to simplify manual parallelization,” in Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP ’03), pp. 1–12, San Diego, Calif,
USA, 2003.

[45] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparative evaluation of
memory models for chip multiprocessors,” Transactions on
Architecture and Code Optimization, vol. 5, no. 3, article 12,
2008.

[46] L. Chisvin and R. J. Duckworth, “Content-addressable and
associative memory: alternatives to the ubiquitous RAM,”
IEEE Computer, vol. 22, no. 7, pp. 51–64, 1989.

[47] [33] The Wisconsin Multifacet Gems Simulator, June 2009,
http://www.cs.wisc.edu/gems/.

[48] The NIRGAM NoC Simulator, http://www.nirgam.ecs
.soton.ac.uk.

[49] A. Vad Lorentzen and N. A. Jørgensen, “SystemC MIPS R2000
Core,” http://www2.imm.dtu.dk/SoC-Mobinet/elements/
mips core.htm.

[50] Open Cores, September 2008, http://www.opencores.org.
[51] N. Nicolici et al., Verilog MPEG2 Decoder, August 2010,

http://www.ece.mcmaster.ca/∼nicola/mpeg.html.
[52] Modelsim HDL Simulator, Mentor Graphics, June 2009,

http://www.model.com.
[53] Intel Integrated Performance Primitives, September 2008,

http://www.intel.com.

	1. Introduction
	2. Background
	2.1. System-Level Optimization
	2.2. Resource Allocation
	2.3. Bidding

	3. Related Work
	4. Architectural Considerations
	5. System-Level Bidding-Based Resource Allocation Algorithms and Implementation
	5.1. Problem Formulation and Basic Principles
	5.2. Bid Calculation
	5.3. System-Level Bidding-Based Algorithms
	5.4. Task Allocation in Heterogeneous Manycore Systems
	5.5. Hardware Implementation

	6. Experimental Methodology
	6.1. Experimental Platform Details
	6.2. Simulation Methodology
	6.3. Synthetic and Application-Based Benchmarks
	6.4. Allocation Interval

	7. Results and Discussion
	7.1. Homogeneous Manycore Systems (CMP)
	7.2. Heterogeneous Manycore Systems (MPSoC)

	8. Conclusions and FutureWork
	References

